
Apollo 13: A Challenge Domain for the Planning Community

C Henrik Westerberg ∗ and John Levine
Centre for Intelligent Systems and their Applications
School of Informatics, The University of Edinburgh

Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK
h.c.westerberg@sms.ed.ac.uk

johnl@inf.ed.ac.uk

Abstract

The problem of general purpose planning is vast in
terms of variety of domain. PDDL currently represents
a subset of all possible domains. One type of domain
that may be interesting to include under PDDL are those
domains in which actions examine or update more of
the current state. That is, in order to update a state, a
complicated examination and update occurs each time
an action is simulated. Apollo 13 is a new domain in
which the whole current state must be considered in or-
der to determine the next state. This kind of domain
raises interesting questions about how best to represent
these domains and the affect they might have on the lan-
guage. One solution to the representation problem is for
PDDL to support a foreign function interface.

Introduction
The problem of general purpose planning is vast in terms of
variety of domain. One definition of planning is:

“The solution of a problem - any problem - consists in
discovering how to transform an existing state of affairs
in to a desired one that has not yet come into being
(Donaldson 1978)”

Broadly speaking, a vast number of problems can be
translated into this current state→ desired state scheme.
This in turn creates its own problem. How can so many
domains be represented using a single language? Or more
interestingly, what kinds of domains should we be trying to
solve? Currently PDDL and the planning model constrain
us to a particular kind of planning.

Most of the current and previous domains from the plan-
ning competitions involve movement, delivery, and various
types of resource. However this is just one potential shard of
AI Planning. It may be interesting to look at domains where
actions cause great changes in state, or require a more de-
tailed examination of current the state. This may give rise to
a need for state updates to be carried out by complicated sim-
ulators, or external function calls to calculate state changes
correctly and conveniently.

∗I would like to thank Ruth Aylett,Derek Long and the review-
ers for their helpful comments. I would also like to thank EPSRC
for support via a quota studentship: award number 00317882

Space in particular has been a notable source for AI Plan-
ning domains. Apollo 13 is a domain based on the task
of devising an emergency start up procedure for computer
components with only a limited amount of current available.
The domain is an example where calculating future states
requires examination of the whole current state. This is dif-
ficult to do with the current implementation of PDDL (Fox
& Long 2001). When representing Apollo 13 in PDDL it
is difficult to generalise the domain specification. Though
more complicated, this style of domain is meant for domain
independent planners and is meant to be tractable with ex-
isting technology.

One way to overcome the representational issues is to
leave the physical modelling of systems to simulation rather
than re-interpreting the domain into a domain language. We
advocate the role of using simulators with planning. This
could be incorporated into PDDL by allowing a means to
call other functions or executables. With this extension it
will open a new class of domains for the planning commu-
nity. However, this has important implications for the cur-
rent planning model.

In summary we will look at the state of PDDL domains
from the competitions. The idea of Apollo 13 will then be
given its basis. The domain of Apollo 13 will be outlined,
and examples will given about how it could be represented.
Finally, we will close with some ramifications.

PDDL Planning Domains
PDDL has been in development for the last five years with
the original scope for PDDL being quite broad. More re-
cently its focus has been narrowed on to more “Classical”
styles of domain. Current PDDL domains are written so that
they have quite simple updates of state. Actions typically
contain simple preconditions, meaning very little needs to
be verified about the current state in order to derive the next
state. Also state updates tend to change just a small amount
of the current state.

Due to the language of PDDL and they way it forces you
characterise particular domains, it makes most of the do-
mains broadly equivalent. Goals are typically satisfied with
sequences like: load→ move→ unload. With the inclusion
of numbers and duration this has been complicated: load (10
mins, used 5 litres fuel)→ move (1hr, 20 litres of fuel)→
unload (10 mins, 5 litres fuel). For some domains there may



be extra preparation steps, or the sequences may need to be
synched with other sequences elsewhere in the domain.

The current crop of PDDL domains are constrained by
the modelling language but also by the planning model the
language is meant to cover. Though PDDL makes no as-
sumptions about the invertability of actions it is assumed
when writing a new domain that all actions within the do-
main are invertible. They can be reasoned with by both go-
ing forwards and backwards from a particular state. Sim-
ulation will make this difficult or even impossible to main-
tain. Adding the simulation aspect will also make the plans
more situated, the plans will be run in simulation. Having a
more simulated basis for planning will also help with non-
deterministic domains. The other aspects of the planning
model are the same: deterministic actions, full visibility of
state, and a state only changeable by the planning agent.

Apollo 13
Apollo 13 was NASA’s 13th flight using Apollo flight hard-
ware and was to be the 3rd Lunar landing. During the flight,
the module suffered a massive explosion in one of the oxy-
gen tanks. During the time from the explosion to the splash-
down, NASA had to devise many emergency procedures to
try and bring the crew safely home. One such procedure
we are interested in is an emergency reboot of the module’s
core components, such that the module could splash down
but also not consume too much electrical current. For the
interested reader, there are many sources of information on
Apollo 13’s flight available online1, in books, and one major
film.

Basic Problem
The basic problem is to switchN components on. As each
component is switched on the overall drain on the system in-
creases. However the increase in drain, when a component
is switched on, is dependent on which other components are
on and off. The goal is to come up with an order of switch-
ing that minimises the drain on the system or is under some
particular threshold.

An example
There are three components: X, Y, and Z. Each of the com-
ponents must be switched on. How the components behave
in relation to the other components can be given using truth
tables:

Table 1: Current for Component X

Y Z Value

off off 0.8
off on 0.3
on off 0.6
on on 0.2

1http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo13info.html

Table 2: Current for Component Y

X Z Value

off off 0.9
off on 0.5
on off 0.5
on on 0.3

Table 3: Current for Component Z

X Y Value

off off 0.2
off on 0.1
on off 0.1
on on 0.1

From the above example, if all the components were off,
then switching on component Z would increase the drain by
0.2. The best sequence is ZXY(0.2 + 0.3 + 0.3), resulting
in an overall system drain of0.8.

Extensions
There are a number of ways to extend the domain. One way
would be to introduce dependencies between components.
For example, in order to switch Z on, X and Y would also
have to be switched on. In addition to this, dummy compo-
nents can be added that may not have to be switched on to
satisfy all the goals but be there to increase the interaction
between components. More than one way in which an indi-
vidual component can be switched on may exist, for exam-
ple satisfying(status X on) may be achieved by turn-
ing on eitherX1, X2, or X3. Additional constraints can be
added in the form of safety constraints, X must be on be-
fore Y. A further extension would be to simulate the system
over time, so that the total drain of the system does not ex-
ceed a value over some time period, also some components
may need to be on or off at particular time stamps (a compo-
nent could be switched off with an additionalswitch off
action). The simulation of the system can be made more re-
alistic by determining the real current values based on tem-
perature, and humidity.

Representing Apollo 13 in PDDL
PDDL − Current
The domain can be represented using the current version of
PDDL though somewhat inconveniently. One possible rep-
resentation is:

(define (domain Apollo-13)
(:requirements :typing :fluents)
(:types component bool - object)
(:predicates

(status ?y - component ?v - bool)
(table ?x ?y - component ?v - bool



?z - component ?w - bool))
(:functions (current))
(:action switch_on

:parameters (?x ?y ?z - component
?a ?b - bool)

:precondition
(and (status ?x off) (status ?y ?a)

(status ?z ?b))
:effect

(and (status ?x on)
(not (status ?x off))

(increase (current)
(table ?x ?y ?a ?z ?b))

)))

The three component example outlined above can be rep-
resented as:

(define (problem Apollo-13-1)
(:domain Apollo-13)
(:objects X Y Z - component)
(:init (status X off )
(status Y off )
(status Z off )
(= (table X Y off Z off) 0.8)
(= (table X Y off Z on) 0.3)
(= (table X Y on Z off) 0.6)
(= (table X Y on Z on) 0.2)
(= (table Y X off Z off) 0.9)
(= (table Y X off Z on) 0.5)
(= (table Y X on Z off) 0.5)
(= (table Y X on Z on) 0.3)
(= (table Z X off Y off) 0.2)
(= (table Z X off Y on) 0.1)
(= (table Z X on Y off) 0.1)
(= (table Z X on Y on) 0.1)
(= (current) 0))
(:goal (and (status X on )

(status Y on )
(status Z on )))

(:metric minimize (current)))

This representation suffers from the problem this it does
not generalise over the number of components in the system.
A new domain must be written for each different number of
components. Thought it may be possible to write a domain
file that is usable up to a maximum number of components.

PDDL − Function Call
An alternative would be to extend the PDDL language so
that a call to an outside function would update the state. This
has been used in a couple of cases before: Chemical Flow
(Aylett et al. 1998), and within O-Plan (Currie & Tate 1991).
The domain file could look like:

(define (domain Apollo-13)
(:requirements :typing :fluents)
(:types component bool - object)
(:predicates

(status ?y - component ?v - bool))
(:functions (current)

(sim_current))
(:action switch_on

:parameters (?x)
:precondition (and (status ?x off))
:effect (and (status ?x on)

(increase (current) (
call (sim_current))

))))

The function,sim current , would have to examine the
current state to determine the correct increase in current and
return the value to the planner. In this case the same problem
file can be used.

This has the advantage of generalising over all possible
number of components. It has the negative effect of mak-
ing the domain less portable, and hides some of the seman-
tics of the domain from the planner. But if some kind of
“foreign function interface” was added to the language this
would allow various kinds of executables/code segments to
be callable from domain files.

Ramifications
We would like to explore a new class of planning domain
that require a complex examination of the current state to
determine the future state. One example of this is the Apollo
13 domain. Supporting this kind of domain will allow more
complicated and more realistic planning domains to be tack-
led by domain independent planners.

One solution to the representation problem of these do-
mains would be to add a foreign function interface. This
would allow a planner to make calls to outside systems to
calculate future states. This would ease the strain on the
modelling language as it would no longer have to represent
every aspect of the physical system. Thus also bringing in
a broader range of domains to plan for, and to make them
more convenient to represent in PDDL.

Adding simulation to the current planning model would
have serious implications for it. For instance how is it pos-
sible to reason backwards in such a situation? If all the in-
formation is no longer specified in the action header it is
impossible to determine prior states. It would also make
the planner more situated, as at least the plans are being in-
terpreted by a simulator. It may also help with extending
planning to non-deterministic domains.

References
Aylett, R.; Soutter, J. K.; Petley, G. J.; and Chung, P. W. H.
1998. AI planning in a chemical plant domain. InProceed-
ings of 4th World Congress on Expert Systems, 98–105.
Mexico City: Cognizant Communication Corporation.
Currie, K., and Tate, A. 1991. O-plan: the open planning
architecture.Artifical Intelligence52:49–86. Availible at:
http://www.aiai.ed.ac.uk/̃oplan/.
Donaldson, M. 1978. Children’s Minds. Glasgow:
Fontana/Collins.
Fox, M., and Long, D. 2001. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Availi-
ble at: http://www.dur.ac.uk/d.p.long/competition.html.


