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Abstract: This paper analyses aspects associated with the development of joint human-agent planning agents, showing that 
they can be implemented, in a unified way, via a constraint-based ontology and related functions. The constraints’ properties 
have already been used by several planning approaches as an option to improve their efficiency and expressiveness. This 
work demonstrates that such properties can also be employed to implement collaborative concepts, which are maintained 
transparent to the planning mechanisms. Furthermore, the use of constraints provides several facilities to the implementation 
of advanced mechanisms associated with the human interaction, as also demonstrated here.
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1. Introduction
Coalition, from Latin coalescere (co-, together + alescere, to 

grow) is a type of organisation where joint members work 
together to solve mutual goals. The principal feature of a 
coalition is the existence of a global goal, which motivates 
the activities of all coalition members. However, normally 
such members are not directly involved in the resolution of 
this goal, but in sub-tasks associated with it. For example, 
in a search and rescue coalition that aims to evacuate an 
island (evacuate island is the global goal), there are several 
sub-tasks (e.g., allocate helicopters, provide information 
about road conditions, etc.) that must be performed to reach 
the global goal. Members of a coalition commonly need to 
collaborate because they have limits in abilities and knowl-
edge. For example, ambulances require a clear route to rescue 
injured civilians. If the route is blocked, ambulances must ask 
for help from truck units so that they unblock the route. 

Considering the diversity of tasks of a coalition, it is 
natural that its components carry out different planning and 
plan execution activities at different decision levels. In fact, 
one of the principal aims of knowledge based tools for coali-
tions is to integrate and support such components so that 
they are able to work synergically together, each of them 
accounting for part of the planning and execution process.

The use of planning assistant agents6,25 is an appropriate 
option to provide this kind of support and integration. 
Agents can extend the human abilities and be customised 
for different planning activities performed along hierarchical 
decision-making levels. However, the use of standard plan-
ning mechanisms is not sufficient to deal with the complexity 
of problems associated with coalition domains. In these 
domains, activities cannot consist merely of simultaneous 
and coordinated individual actions, but they must also be 
developed on a collaborative framework that ensures an effec-

tive mutual support among joint members8. Furthermore, 
there are also aspects related to the human participation, in 
conjunction with (semi) autonomous agents, that must also 
be considered and improved during the development of a 
coalition support application.

This paper is concerned with the specification of a frame-
work to the development of hierarchical coalition support 
systems. Our core idea is to consider requirements associated 
with the implementation of multiagent planning mecha-
nisms21 because they can bring several advantages to coalition 
operations such as prediction of failures, resource allocation, 
conflict identification/resolution and so on. However this 
framework must also be able to support other important 
requirements for coalition systems, related to collaborative 
theorie4,8,9,12 and human-agent interaction6,15,25. The problem is 
that the requirements that we intend to consider are investi-
gated by different research areas rather than in a unified way. 
Consequently the solutions are generally incompatibles or 
hard to integrate and there is a lack in the current literature 
about frameworks that discuss such issue.

In this context, the main aim of this work is to show how 
several design aspects of coalition support systems can be 
specified, in a unified way, via a constraint-based ontology 
and related functions18. The advantage of this approach is that 
the implementation of all requirements can be understood 
from a unique perspective and implemented on the same 
basis, using constraints representation and manipulation. The 
contribution associated with this framework specification 
can be divided into two parts. First, the extension and adap-
tation of a constraint-based ontology (<I-N-C-A>26). Second, 
the definition of a set of functions to manipulate the elements 
of this ontology. We consider that all agents of a coalition will 
be based on the ideas discussed here, making commitments 
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on the same ontology and concepts. Thus, we do not intend 
to integrate pre-defined coalition support systems such as 
proposed in other works2,29.

The remainder of this document is organised as follows: 
Section 2 defines the problem that this work intend to tackle 
and related domain. Section 3 presents an agent-centred view 
of the planning process, classifying different sets of constraints 
and functions that are related to this process. Section 4 
summarises the <I-N-C-A> representation, a constraint-
based general purpose ontology that was used to specify the 
constraint model. Section 5 discusses the synthesis of several 
coalition systems aspects, which are conceptually classi-
fied into three groups: planning agent aspects, teamwork 
aspects and human interaction aspects. Section 6 presents 
some details about the implementation approach, which is 
mainly based on the ideas of constraint managers and activity 
handlers. Section 7 discusses the main related works, pointing 
out the differences regarding our proposal. Finally, Section 8 
concludes with a critical vision about this work, stressing the 
opportunities for improvements.

2. Problem Definition
Imagine a disaster relief operation where rescue units, 

such as fire brigades, are planning and executing tasks. Each 
of these rescue units has an assistent agent that is delivering 
planning information to and receiving information from its 
human user. At this moment we do not need to consider the 
kind of device where the computational agent is running, 
which could be a handset-like device (tactical level), a laptop 
(operational level) or a mainframe (strategic level). The set of 
human-agent components makes up a multiagent environ-
ment, which is organised as a hierarchical structure. 

We consider three decision-making levels in this hier-
archy: strategic, operational and tactical. Higher level agents 
decompose complex tasks and delegate its parts to their 
subordinate agents in lower levels. In this way, we do not 
have a flat organisation once levels of decision have different 
responsibilities and knowledge, similar to a military organi-
sation. We also consider that all coalition has a global goal, 
which is also a mutual goal. This means, all members are 
direct or indirectly involved in reaching this goal. We do not 
have competition, neither malicious agents. All decisions 
must be carried out in favor of the coalition rather than indi-
viduals. All these features characterise and restrict the kind 
of domain that we intend to tackle.

As we have a hierarchical multiagent planning, where 
each agent is an assistant agent, we must define an approach 
to the planning process. A natural example could be the 
Distributed Hierarchical Task Network (DHTN) approach30. 
However, the focus of DHTN and other distributed plan-
ning approaches is on typical planning issues such as task 
decomposition, replanning, plan communication and conflict 
detection/resolution. This fact raises design problems when 
we try to extend such planning systems with collaborative 
concepts. The principal reason, as discussed in8, is that collab-
oration between different problem-solving components must be 

designed into systems from the start. It cannot be patched on. The 
problem here is how to incorporate collaborative require-
ments into a distributed planning process, so that the final 
joint plan is not just a sum of individual plans.

Considering that one of the most important functions of 
knowledge-based tools for coalitions is to support human 
users, and this is the main reason to use assistant agents, 
we also need to understand how human users interact in 
the collaborative planning process. Note that we are not 
considering aspects of interface that could improve the 
human-agent interaction17. Our focus is on the study of the 
additional requirements that the human presence brings 
to the development of collaborative planning agents. This 
important issue for coalition systems is not well explored 
by noteworthy collaboration theories, mainly because such 
theories only consider agent-agent interactions rather than 
human-agent interactions23. These issues are discusses in 
details in the next sections.

3. A Constraint-Based View
An appropriate way to understand the planning process 

of assistant agents is via the elements that have influence 
on its reasoning (e.g., world state, time, human users, etc.). 
Considering that each of such elements is represented as a set 
of constraints (Ci), we have the architecture illustrated in the 
next figure (Figure 1). According to this architecture, we can 
identify the following sets of constraints:

•	 C0: represents the set of constraints imposed by the 
environment such as weather conditions or the state 
of world objects;

•	 C1: represents the set of temporal constraints that 
restricts the planning process in adding new activities 
into the agent’s agenda (plan);

•	 C2: represents the capabilities and internal state of 
agents that, together, restrict the kind and amount of 
activities that they can perform. Note that the set C2, 
from subordinate agents, also restrict the creation of 
plans by its superior;

•	 C3: represents the constraints associated with the 
process of commitment. Each delegated activity has 
one constraint C3, whose value indicates if a specific 
agent is committed to the performance of such an 
activity. The value of C3 is generated via the commit-
ment/report function F1;

•	 C4: represents the set of constraints used by humans to 
control/customise the behaviour of agents;

•	 C5: represents the set of constraints that restricts the 
options of a human user;

•	 C6: represents the set of constraints associated with 
activities of other agents. The function F2 acts on C6 to 
discover possible inconsistencies in such a set, so that 
agents can mutually support each other;

•	 C7: represents the set of all constraints monitored by 
the function F3, which accounts for generating expla-
nations to human users;
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•	 C8: represents the set of constraints that accounts 
for providing a declarative manner of restricting the 
autonomy of the planning process.

Two simple properties can be defined to the constraint sets 
C0...C8. First, while some sets are composed of only one type 
of constraint (e.g., C0: world-state, C1: time and C2: resource), 
other sets (e.g., C6 and C7) can be composed of several 
constraint types defined in the model. Second, a constraint c 
can appear in one or more sets, so that a constraint may not 
uniquely be associated with a specific set. 

4. <I-N-C-A> Ontology

<I-N-C-A> (Issues - Nodes - Constraints - Annotations) 
is a general-purpose ontology that can be used to repre-
sent plans (Figure 2) as a set of constraints on the space of 
all possible behaviours in an application domain26. Planning 
can be described as synthesizing an <I-N-C-A> object, i.e., a 
plan, in which nodes are activities. We can formally define an 
<I-N-C-A> object as a 4-tuple (<I,N,C,A>) consisting of: a set 
of issues I, a set of activity nodes N, a set of constraints C and 
a set of annotations A. All these elements can be exchanged 
among agents of a coalition, so that <I-N-C-A> also accounts 
for formatting the content of the messages protocol. This 
should already be expected, once <I-N-C-A> is an ontology 
and one of the main aims of a ontology is to enable the sharing 
of knowledge10. The next subsections detail the formalism28 
behind the <I-N-C-A> components and the relation among 
them.

4.1. Issues (I)

I is the set of unresolved issues in the current plan, i.e., in 
this <I-N-C-A> object. An issue is represented by a syntactic 
expression of the form l:M(O1,…,On), where:

•	 l is a unique label for this issue;

•	 M is a symbol denoting a primitive plan modification 
activity;

•	 O1,…,On are plan-space objects, i.e. they are issues, 
nodes, constraints or annotations. The number n of 
such objects, and the interpretation of each object in 
the context of the issue, will depend on the particular 
primitive plan modification activity represented by 
this issue.

Issues can be seen as primitive meta-level activities, i.e. 
things that need to be done to the plan before it becomes a 
solution to a given planning problem. The most commonly 
found primitive meta-level activities carried out by planners, 
but usually only implicit in their underlying implementation 
or internal plan representation, are:

•	 Achieving	 a	 goal	 (in	 classical	 planners):	 let	 p be a 
world-state proposition and τ be a time point. Then 
the primitive meta-level activity of achieving p at τ 
can be represented as the issue:

l
1
:achieve(p,τ)

•	 Accomplishing	a	complex	activity	(in	HTN	planners):	
Let a be a complex activity. Then the primitive meta-
level activity of accomplishing a can be represented 
as the issue:

l
2
:refine(α)

Here, achieve and refine are examples of symbols 
denoting primitive plan modification activities. Note that 
these symbols are not domain specific but specific to the 
planning process by which these types of issue are handled. 
Issues can be either ‘negative’, in which case they can be 
thought of as flaws in the plan, or they can be ‘positive’, e.g., 
opportunities.

4.2. Nodes (N)

N is the set of activities (nodes) to be performed in the 
current plan, i.e., in this <I-N-C-A> object. An activity is a 
syntactic expression of the form l:a (o1,…,on), here:

•	 l is a unique label for this activity,

•	 a is a symbol denoting an activity name;

Figure 1. Planning architecture of an assistant agent.
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Figure 2. First level of the <I-N-C-A> schema to plans.

PLAN ::= 
  <plan>
     <plan-variable-declarations> 
       <list> PLAN-VARIABLE-DECLARATION </list>
     </plan-variable-declarations>
     <plan-issues>
       <list> PLAN-ISSUE </list>
     </plan-issues>
     <plan-issue-refinements>
       <list> PLAN-ISSUE </list>
     </plan-issue-refinements>
     <plan-nodes>
       <list> PLAN-NODE </list>
     </plan-nodes>
     <plan-node-refinements>
       <list> PLAN-NODE-refinement </list>
     </plan-node-refinements>
     <constraints><list>CONSTRAINT</list></constraints>
     <annotations><map>MAP-ENTRY</map></annotations>
  </plan>
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•	 o1,…,on are object-level terms, i.e. they are either 
constant symbols describing objects in the domain, or 
they are as yet uninstantiated variables standing for 
such objects.

In the context of <I-N-C-A>, nodes represent the object-
level activities in the plan, i.e., things that need to be 
performed by some agent to execute the plan. Activities can 
be of two types from the perspective of the planner:

•	 Primitive	activities:	they	can	be	carried	out	directly	by	
an agent executing the plan. For example, in a search 
and rescue domain, the primitive activity of flying the 
aircraft ac1 from location loc1 to location loc2 may be 
represented as:

l
3
:fly(ac1,loc1,loc2)

•	 Complex	 activities:	 they	 cannot	 be	 accomplished	
directly by the agent executing the plan but need to 
be refined into primitive activities. For example, the 
complex activity of rescuing an isolated person ip 
may be represented as:

l
4
:rescue(ip)

In this example, fly is a primitive activity symbol and 
rescue is a complex activity symbol in some domain. Activity 
symbols have to be domain specific. It follows that there 
has to be an activity schema defined for the domain that 
has the name fly and describes when this activity schema is 
applicable and how it will change the world when applied, 
and there has to be a refinement defined in the domain that 
accomplishes a complex activity with the name rescue and 
describes how exactly it can be accomplished. 

Note that the set N of activities in the plan may contain 
both complex activities and the primitive activities that have 
been chosen to implement them.

4.3. Constraints (C)

C is the set of constraints that must be satisfied by the 
current plan. A constraint is a syntactic expression of the 
form l:c(v1,…,vn), where:

•	 l is a unique label for this constraint,

•	 c is a symbol denoting a constraint relation, and

•	 v1,…,vn are constraint variables, i.e., they can represent 
domain objects (e.g., time points), variables in activi-
ties (which may have binding constraints attached).

Constraints represent the relations that must hold 
between the different objects related in the constraints for the 
plan to be executable. In this work we are interested in the 
use of the CONSTRAINT element (Figure 3) to define new 
types of constraints that represent the sets C0..C8, which were 
introduced in the previous section. According to <I-N-C-A> 

and considering a XML specification, a constraint is charac-
terised by a type (e.g., world-state), a relation (e.g., condition 
or effect) and a sender-id attribute to indicate its source. 

The constraint content is described as a list of param-
eters, whose syntax depends on the type of the constraint. 
For example, a world-state constraint (C0), which is already a 
known-constraint in the <I-N-C-A> definition, has as param-
eter a list of PATTERN-ASSIGNMENT, which is defined as a 
pair pattern-value such as ((speed wind), 35 km/h). In XML 
specification we have:
CONSTRAINT ::= 
<constraint type=“world-state” relation=“condition” 
sender-id=“”>
    <parameters><list>
        <pattern-assignment>
             <pattern><list>
                  <string> speed </string>
                  <symbol> wind </symbol>
             </list></pattern>
             <value>
                  <string> 35km/h <string> 
             </value>
        </pattern-assignment>
    </list></parameters>
</constraint>

4.4. Annotations (A)

A is the set of annotations attached to the current plan. 
Amongst other things, annotations can be used to add 
human-centric information to the plan. This means, informa-
tion that supports the human understand about the rationale 
of the plan. Annotations may be informal or they may adhere 
to some detailed syntax (which is not specified as part of 
<I-N-C-A>).

Annotations can be used to record arbitrary information 
about the plan (and the annotations form a part of this plan 
– hence the plan becomes, in some sense, self-descriptive). 
Specifically, we can see the annotation of plans with one 
particular type of rationale, namely the rationale informa-
tion that can be recorded by the planner during the planning 
process. In this case, an annotation will be a syntactic expres-
sion of the form la:r(lp:O, lm:M, O1,…,On), where:

• la: is a unique label for this annotation;

•	 r is a rationale predicate relating a plan-space object to 
other plan-space objects;

•	 lp:O is a labelled plan-space object that is part of the 
current plan, i.e., it is an issue, an activity, a constraint 
or an annotation;

•	 lm:M is an issue that was formerly in the plan and has 
since been resolved, i.e., it is a primitive meta-level 
activity that has been performed by the planner;

•	 O1,…,On are plan-space objects that may or may not 
be labelled.

An annotation of this type represents the fact that the 
planspace object O was introduced into the plan as part of 
performing the plan modification activity M, and possibly 
involving other plan-space objects O1,…,On. The rationale 
predicate r denotes the relationship between these objects 
and describes the justification for including O. Thus, the 
interpretation of such an annotation depends on the rationale 
predicate r used. The different labels are necessary to specify 
the exact object that is being referred to. This is necessary as Figure 3. Specification of constraints.

CONSTRAINT ::= 
<constraint type=“SYMBOL” relation=“SYMBOL” 
sender-id=“ID”>
      <parameters><list> PARAMETER </list></parameters>
      <annotations><map> MAP-ENTRY </map></annotations>
</constraint>
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there might be two activities in the plan which are identical 
except for the label. Several examples of annotations can be 
seen in28.

5. A Unified Representation
This section discusses three different aspects related to 

planning process for coalition support systems. Each of these 
aspects has a set of requirements that must be considered, 
in a unified way, using <I-N-C-A> as basis for integration. 
The requirements were based on investigations of several 
coalition support systems and our experience during the 
development of some of them19,27.

5.1. Planning agent aspects

5.1.1. Temporal model

The development of an appropriate temporal model, 
for planning in hierarchical coalitions, should be based on 
the following requirement to define the set C1 (Figure 1) of 
constraints:

•	 Requirement	 1: the temporal planning model must be 
based on an explicit timeline approach, which must enable 
the representation of both quantitative and qualitative 
temporal references as well as relations between them.

There are several and expressive ways that this require-
ment could be implemented1,7. We are using a set of timeline 
ideas to show how a temporal model could be specified via 
<I-N-C-A>. Considering the <I-N-C-A> representation, an 
explicit timeline approach indicates that each activity (node) 
has associated a constraint I, expressing its interval, with 
initial (Ii) and final (If) moments. Such a constraint could be 
defined as shown in Figure 4, where the relation attribute is 
set as interval.

For this type of constraint, we are composing the pattern, 
in the PATTERN-ASSIGNMENT element, by the node identi-
fier; while the value is composed by the tuple <Ii,If> where Ii 
and If can be variables (identifiers starting with the ? symbol) 
if the moments are unknown. Based on this definition, 
instances of pattern-assignment for temporal constraints 
could be specified as:

CONSTRAINT ::= 
<constraint type= “temporal” relation=“interval” 
sender-id= “ID”>
    <parameters><list>
        <pattern-assignment>
             <pattern><symbol> node-x �/symbol�
</pattern>
             <value><list>
                  <integer> 10 </integer> 
                  <integer> 20 </integer>
             </list> </value>
        </pattern-assignment>
        <pattern-assignment>
             <pattern><symbol>node-y </symbol></pattern>
             <value><interval>
                  <integer> 0 </integer> 
                  <item-var> ?moment </item-var>
             </interval> </value>
        </pattern-assignment>
    </list></parameters>
</constraint>

Figure 5 illustrates a scenario where we can exemplify the 
use of this model to represent the temporal aspects of hierar-
chical coalition activities.

In this example, “East” is the region where the fires F1 
and F2 are taking place. µ6 represents the command and 
control centre (strategic level); µ5 and µ4 represent the 
police office and the fire station respectively (operational 
level); µ3, µ2 and µ1 represent one police force and two fire 
brigades respectively (tactical level). Using the “relation-
attribute(parameter)” notation, the following constraints 
can be specified for each of the activities in the strategic and 
operational levels:

•	 Plan	of	µ6: overlaps(N1,N2);

•	 N1: interval(N1,(0,?a));

•	 N2: interval(N2,(?b,?c));

•	 Plan	of	µ5: before(N1.1,N1.2);

•	 N1.1: interval(N1.1,(0,?d));

•	 N1.2: interval(N1.2,(?e,?f));

•	 Plan	of	µ4: finishes(N2.2,N2.1);

•	 N2.1: interval(N2.1,(?g,?h));

•	 N2.2: interval(N2.2,(?i,?j));
Note that it is very difficult to determine durations for 

activities related to disaster relief operations. Thus their 
initial and final moments are likely to be variables. 

This time representation allows the expression of values 
for both certain (with numeric values) and uncertain (with 
variables) times. In case of certain time, the duration of an 
activity can directly be defined as the difference between 
the final moment and initial moment. Considering now 
that we want to set temporal relations between two activi-
ties a1 and a2, with respective intervals I(a1) and I(a2). The 
representation of temporal relations via <I-N-C-A> follows 
the structure shown in Figure 4, however with the relation 

Figure 4. Temporal constraint definition.

CONSTRAINT ::= 
<constraint 
type=“resource”relation=“RES-TYPE”sender-id=“ID”>
  <parameters><list>PATTERN-
ASSIGNMENT</list></parameters>
  <annotations><MAP> MAP-ENTRY </map></annotations>
</constraint>

Figure 5. Example of activities and their intervals in a coalition.

N1: Allow_Access(µ6,East,[0,a])

N2: Extinguish_Fire_Region(µ6,East,[b,c])

µ6

µ5 µ4

µ3 µ2 µ1

N1.1: Clear_Road(µ5,R1,[0,d])

N1.2: Clear_Road(µ5,R2,[e,f])

N2.1: Extinguish_Fire_Place(µ4,F1,[g,h])

N2.2: Extinguish_Fire_Place(µ4,F2,[i,j])
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attribute specifying a temporal relation (before, equals, 
meets, etc.) and a simple tuple (a1, a2) as parameter rather 
than a PATTERN-ASSIGNMENT element. The symbols a1 
and a2 are the identifiers of the nodes (activities) that are 
being related. Then, to specify a temporal constraint whose 
semantics is acitivity1 before acitivity2, we have:
CONSTRAINT ::= 
<constraint type= “temporal” relation=“before” sender-
id= “ID”>
    <parameters><list>
         <symbol> activity1 </symbol>>
         <symbol> activity2 </symbol>>
    </list></parameters>
</constraint>

We can conclude that this simple representation for C1 
supports the Requirement 1. First it considers initial and final 
moments to activities so that they have explicit timelines. 
Second we can represent the notion of qualitative time, using 
temporal relations, and also quantitative values to express 
duration of activities. It is interesting to observe that temporal 
relations, such as “before”, are abstractions on numeric rela-
tions between initial and final activities’ moments. A more 
expressive representation could enable relations on any two 
activities’ moments, as for example, to specify exact overlap 
periods between activities. However, this approach increases 
the manipulation complexity of such a representation so that 
its implementation could not be justified.

5.1.2. Resource model

The requirement used as a basis for the resource model 
specification via constraints (C2 in Figure 1) is:

•	 Requirement	2: the resource planning model must support 
the tasks of localising services/agents that provide speci-
fied capabilities, and also provide information that enables 
reasoning on such capabilities.

The original approach of <I-N-C-A> uses a “pattern” in 
the activity element definition26 to specify which capability 
an agent should have so that it could carry out a specific 
activity. For that end, the pattern is composed of an initial 
verb followed by any number of parameters, qualifiers or 
filler words. For example: (transport ?injured from ?x to 
?hospital). Then, the system finds agents to perform this 
activity by matching the verb “transport” with the capabili-
ties (list of verbs) of available agents. This simple mechanism 
supports the task of localising agents.

According to Requirement 2, the resource description 
should also provide information that enables reasoning 
on such capabilities. Imagine the scenario where a high 
building is on fire. To extinguish the fire in this building, 
the fire brigade should have a suitable ladder to reach the 
fire. However, using this simple capabilities description, fire 
brigades with and without ladders can be allocated to this 
activity because both are able to extinguish fires. Based on 
this fact, we can define a new type of constraint (Figure 6) to 
represent the features of a required resource as:

This constraint specification employs the same struc-
ture of the world-state or temporal constraints specification. 

Again we must detail the general form of the PATTERN-
ASSIGNMENT element, which is defined as:
((resource object [resource-qualifier][resource-range]) value)

In this statement, “object” represents the type of the agent 
that accounts for performing the activity. In some cases, 
“object” can represent the identifier of an agent if we want to 
force that a specific agent has a specific status. For example, 
if the activity is “Extinguish ?fire”, the object could be a “fire-
brigade-x”. The attribute “resource” represents some object’s 
resource necessary for its operation (e.g. water-tank). Such 
resource can be qualified via the attribute “resource-quali-
fier” (e.g., quantity) and it can also have a range (e.g., from 
0 to 10000 L), which is typically used when the resource is 
consumable.

Using this approach, the resource model can be seen in 
two levels. The activity pattern provides a simple high-level 
description of the capability required by the plan, while the 
constraints provide a more granular way to characterize or 
restrict the use of such capability. Considering a hierarchical 
coalition, for example, superior agents can keep only the 
high-level description of their subordinate agents, mainly 
because such descriptions are stable. However, if they need 
more information, a query can be performed so that subordi-
nates return their current resource attributes and respective 
values. This interaction between agents evinces the influence 
that the resource specification of subordinates has on the 
planning process of their superior agent.

5.2. Teamwork aspects

5.2.1. Commitment and report function

The temporal and resource models, defined via <I-N-C-A>, 
provide the essential requirements for the development of 
multiagent planning processes, also providing the basis for 
the definition of more detailed models. As our approach is 
considering a multiagent organization based on a hierarchical 
structure, coordination is carried out by central agents, which 
account for developing incomplete plans and delegating tasks 
to their subordinates so that they can complete such plans. 
However, this notion of coordination is not enough to ensure 
that agents work together as a team. 

 Considering such facts, our next aim is to incorporate the 
notion of teamwork collaboration4 into these planning proc-
esses. For that end, two initial requirements are considered 
during the specification of the commitment/report function 
(F1, Figure 1):

Figure 6. Resource constraint definition.

CONSTRAINT ::= 
<constraint 
type=“resource”relation=“RES-TYPE”sender-id=“ID”>
  <parameters><list>PATTERN-
ASSIGNMENT</list></parameters>
  <annotations><MAP> MAP-ENTRY </map></annotations>
</constraint>
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•	 Requirement	3:	the collaborative model must consider the 
establishment of commitments to joint activities, enabling 
consensus on plans or their constituent parts.

•	 Requirement	 4:	 the collaborative model must provide 
ways to the dissemination of information associated with 
progress, completion and failure of activities.

These requirements are considered in several works 
related to Teamwork such as Joint Intentions22, SharedPlan9, 
Joint Responsibility12 and Planned Teams13. In our case, we are 
integrating planning and teamwork ideas via an algorithm 
(F1) that considers the plan creation as one of its steps. For 
that end, consider that such an algorithm is carried out by an 
agent µ, member of a coalition θx, that receives an activity pi 

from its superior agent sender. This algorithm is codified via 
the “CollaborativePlanning” function (Figure 7).

This function entails some implications. First, the func-
tion tries to generate a subplan to perform pi (step 02). 
If a subplan is possible (step 03) and it does not depend 
of anyone else (step 04) then the agent can commit to pi 

(step 10). However, if subplan depends on the commitment 
of subordinates, then µ must delegate the necessary nodes 
to its subordinates and wait for their commitments (step 05). 
This means that commitments are done between a superior 
agent and their subordinates and, starting from the bottom, 
an "upper-commitment" can only be done if all the "down-
commitments" are already stabilised.

Second, if some subordinate agent is not able to commit 
(step 06), µ returns (step 07) to generate other subplan rather 
than sending a failure report to its superior. Such a situation 
is similar to the cases where subplan is violated or µ receives 
a failure message of its subordinates (step 15). This approach 
implements the idea of enclosing problems inside the subteam 
where they were generated. Third, if µ is not able to generate 
a subplan for pi, it reports a failure to its superior (step 21). 

In addition, it must also alert their subordinates that pi has 
failed and consequently its subnodes can be abandoned 
(steps 22 and 23). Fourth, if conditions of pi are changed, so 
that the task pi becomes meaningless, the agent sender of 
pi will generate failure reports and send such reports to all 
involved agents. The interpretation for this situation is the 
same when subplan fails. Remember that pi in the level n+1 is 
part of subplan in an upper level n.

After reporting a commitment (step 10), µ must monitor 
and report execution status until the completion/failure of 
pi. Progress reports are associated with changes in the plan, 
which are monitored and sent to superior as an ongoing 
execution report (step 13). Constraint violations and failure 
messages are also monitored (step 15) so that µ firstly tries to 
repair the problem by itself (step 16) before sending a failure 
report. Using this function, any activity p will have one of the 
following status: not-ready, possible, impossible, complete and 
executing. The <I-N-C-A> definition for activities contains a 
status attribute that can be filled with one of these options. 

According to the Joint Intentions Theory22, if µ finds out 
a problem in subplan, all the commitments previously associ-
ated with subplan should be cancelled. We are following this 
approach, so that we replan the full original task (step 2). 
Differently, the Joint Responsibilities Theory12 states that if θx 
becomes uncommitted to subplan, there may still be useful 
processing to be carried out. In other words, the replanning 
should take into advancement of the conditions that resulted 
from the part of the plan that was performed before replan-
ning. This latter approach seems to be more efficient and it is 
a likely research topic for our future extensions.

5.2.2. Mutual support

The next requirement, related to teamwork, leads the 
implementation of F2 (Figure 1) and can be defined as:

•	 Requirement	 5:	 the collaborative model must underline 
the idea of mutual support, providing mechanisms for 
useful information sharing and allowing agents to create 
activities that support the task of other agents.

The principal idea behind mutual support is to enable that 
one agent has knowledge about the needs of other agents. For 
example, µ knows that a specific road is clear so that it uses 
this constraint in its plan. However, as the world is dynamic, 
the road becomes blocked. If any other agent finds out that 
such road is no longer clear, it must inform this fact to µ. Thus, 
this informer agent is supporting the performance of µ. 

An easy option to implement this model of knowledge 
sharing is to force that agents broadcast any new fact to all 
coalition. Consequently all agents will have their knowl-
edge base updated and problems like that can be avoided. 
However, this is not a good approach in terms of communica-
tion and agents will also receive much useless information.

Consider now that the subplan of µ (µ ∈ θx) has a set of 
conditional constraints C (C6 in Figure 1), which µ desires to 
hold so that its subplan is still valid. In this case, each ci ∈ C is 
a constraint that µ believes to be true and hopes that it is still 
true. Then µ broadcasts C (step 11, Figure 6) for every agent µj Figure 7. Collaborative planning algorithm.

01. function CollaborativePlanning(sender, p
i
)

02.    subplan ← PLAN(µ, p
i
)

03.    if(∃subplan)
04.       if(hasNodesToBeDelegated(subplan)) then
05.          Delegate(subplan,subordinates)∧WaitCommits()
06.          if ∃s(s ∈ subordinates)∧(¬ commits(s)) then
07.             go to step 02
08.          end if
09.       end if
10.       Report(sender, p

i
, commited)

11.       Broadcast(θ
x
,subplan,conditions)

12.       while(¬ Complete(subplan))
13.          if(JustReady(subplan)∨ Changed(subplan))then
14.             Report(sender, p

i
,executing)

15.          else if(Violated(subplan)∨ Receive(failure)) 
then
16. go to step 02
17.          end if
18.       end while
19.       Report(sender, p

i
, completion)

20.    else
21.       Report(sender, p

i
, failure)

22.       ∀s (s ∈ subordinates)∧ HasCommitted(s,subplan
s
)

23.          Report(s, subplan
s
,failure)

24.    end if
25. end function
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∈ θx so that other agents of its subteam know what it needs. 
A function based on this idea (F2 in Figure 1), and applied by 
agents that receive C from µ , is defined in (Figure 8).

According to the function, each agent µj must compare its 
beliefs BEL(µj) with C (step 03). If µj finds some conflict, it must 
try to create a new activity whose goal is to turn cj true (step 
04). If this is not possible, µj must inform µ that cj is no longer 
holding and its new value is ck (step 05). The idea imple-
mented by this function is simple, however there are two more 
complex points: the “Conflict” and “Valid” functions.

The Conflict function (step 03) is an extension of the 
Violated function (step 15, CollaborativePlanning function 
– Figure 7). A violation is a type of conflict between two 
constraints. It says that two constraints, which are supposed 
to match, are not matching. However we are also consid-
ering as conflict the situation where two constraints have the 
potential to be identical. For example, ((colour Car),?x) and 
((colour Car),blue). In this case, the two constraints are in 
conflict because they have the potential to be identical if the 
variable ?x assumes the value “blue”.

This type of conflict is very useful in the following class of 
situations. Suppose that one of the activities of µ is to rescue 
injured civilians. For that end, µ firstly needs to find such 
civilians so that it has the following conditional constraint:

CONSTRAINT ::= 
<constraint type=“world-state” relation=“condition” 
sender-id=“”>
    <parameters><list>
        <pattern-assignment>
             <pattern><list>
                  <string> position </string>
                  <item-var> ?a </item-var>
             </list></pattern>
             <value>
                  <item-var> ?b </item-var> 
             </value>
        </pattern-assignment>
        <pattern-assignment>
             <pattern><list>
                  <string> role </string>
                  <item-var> ?a </item-var>
             </list></pattern>
             <value>
                  <string> civilian </string> 
             </value>
       </pattern-assignment>
       <pattern-assignment>
             <pattern><list>
                  <string> status </string>
                  <item-var> ?a </item-var>
             </list></pattern>
             <value>
                  <string> injured </string> 
             </value>
        </pattern-assignment>
    </list></parameters>
</constraint>

The list of parameters of this constraint can be summa-
rized as: ((position ?a),?b), ((role ?a),civilian) and (status 
?a),injured). Such list implies that the variable ?b is the 
location of an injured civilian ?a. Let consider that another 
coalition agent has or discovers the following propositions: 
((position James),(45.6,78.9)), ((role James),civilian) and 
(status James),injured). Then, this agent has the knowledge 
to match the variables ?a and ?b of µ. Consequently, the agent 

must inform µ about this new knowledge (note that in this 
case it does not make sense to create a new activity).

The Valid function (step 08) accounts for eliminating the 
constraints that no longer represent conditions to µ. This is 
important to avoid that µ still receives useless information 
and also to decrease the number of messages in the coalition. 
A practical way to do that is to consider that all ci ∈ C has a 
timestamp that indicates the interval where such constraint 
is valid.

Using the timestamp (ti ,tf) and considering that ti and tf 
are ground values, the Valid function only needs to compare if 
the condition (tf < current-time) is true to eliminate the respec-
tive constraint. However these timestamps are not useful if 
agents do not know when their activities finish because such 
a temporal value will be a variable. Note that the principal 
advantage that we are looking for in using timestamps is to 
avoid that agents (C’s senders) need to broadcast the infor-
mation that they no longer need that a group of constraints 
holds. Rather, timestamps enables agents (C’s receivers) to 
reason by themselves on the elimination of such constraints. 
An alternative for timestamps, which we intend to investi-
gate, is to link constraints to the partial ordering of the plan 
elements rather than real world time.

One of the principal advantages of the MutualSupport 
function is that it improves the information sharing in 
θx because the sending of information is guided by the 
constraint-based knowledge that each agent has about the 
activities of its partners. In addition, it can also be used as a 
method to avoid conflict between activities because agents 
know which external constraints must be respected. 

5.3. Human interaction aspects

5.3.1. Agents’ autonomy

The use of teamwork ideas supports the performance 

of collaborative planning activities by agents of a coali-

tion. However such ideas do not consider situations where 

agents interact with human users. A first problem that could 

be raised in such situation is that the agent inaction while 

waiting for a human response can lead to potential misco-

Figure 8. Mutual support algorithm, based on Requirement 5.

01. function MutualSupport(µ, C)
02.    while (∃c

j
 c

j
 ∈ C)

03.       if(∃c
j
c
k
c
j
 ∈ C ∧ c

k
 ∈ BEL(µj)∧Conflict(c

j
,c

k
))then

04.             newactivity ← CreateActivity(Goal(c
j
))

05.             if(¬∃ newactivity)then Inform(µ,c
k
) end if

06.             Retire(c
j
, C)

07.          end if
08.          if (∃c

j
 c

j
 ∈ C ∧ ¬Valid(c

j
)) then

09.             Retire(c
j
, C)

10.          end if
11.       end while
12. end function
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ordination with other coalition members3. This problem, in 
particular, enforces the requirement in follow:

•	 Requirement	6:	the human-agent model must enable the 
definition of adjustable methods that complement the deci-
sion making process of human users.

The transfer of control between agents and humans, in 
our architecture, follows a generate-evaluate-choose sequence. 
First an agent generates possible plan options to deal with 
the current set of activities, presenting such options to its 
users. Then users evaluate these options and, if they want to 
make changes, the process returns to the first step where its 
agent generates a new set of options. Otherwise, users choose 
one of the options to be performed.

In this scenario, an interesting research issue is related to 
the support that an agent provides to its human user, so that 
an option can be chosen. We have seen, during the discus-
sion of <I-N-C-A>, that this ontology has a component called 
“Annotation”. Annotations can save the rationale of the plan, 
indicating, for example, plan metrics such as required time, 
and reasons for decisions. A step toward this approach is 
discussed latter on (Explanation Function).

Independently of the support via annotations, the 
generate-evaluate-choose approach is very useful to combine 
the abilities of humans and agents so that they synergistically 
work together. We can say that while users have the ability 
to take decisions based on their past-experiences (case-base 
reasoning), agents are able to generate and compare a signifi-
cant number of options, showing both positive and negative 
points of such options.

Unfortunately, this process also can generate delays in the 
planning process, due to the human reaction/response time. 
An option to decrease the impact of human delays in this 
process is to define contexts where agents choose by them-
selves the option to be performed. Such an approach was 
used in past projects15 and it is very suitable because contexts 
can be redefined by users so that they are still in control of 
the situation.

 In our approach, we are defining contexts associated with 
activities so that if such a context is true, a degree of autonomy 
is applied avoiding or allowing agents to take autonomous 
decisions. Constraints (C8 in Figure 1) that implement this 
idea have their type attribute instantiated with the keyword 
autonomy, and the relation attribute with a degree representing 
the agents’ level of autonomy (Figure 9).

Based on this explanation, consider the following example 
of constraint:
<constraint type = “autonomy” relation=“permission”>
     <parameters> <list>
          <pattern-assignment>
               <pattern><list>
                    <string> speed </string>
                    <symbol> Wind </symbol>
               </list></pattern>
               <value> <list>
                    <symbol> greater-than </symbol> 
    <string> 20mph </string>
               </list></value>
          </pattern-assignment>
    <pattern-assignment>
               <pattern><list>
                    <string> water-tank </string>
                    <symbol> FireBrigadeOne </symbol>
               </list></pattern>
               <value> <list>
                    <symbol> less-than </symbol> 
    <string> 6000000mm </string>
               </list></value>
          </pattern-assignment>
     </list></parameters>
</constraint>

This constraint means that if the wind speed is greater 
than 20 mph and the amount of water in the FireBrigade1 
tank is less than 6000000 mm, then the activity associated 
with this constraint must ask permission to be performed 
by the agent. Note that such a constraint tries to configure 
an inappropriate scenario (low amount of water and violent 
wind) for fire brigade performance. Then the agent must pass 
the final decision to its human user.

Currently we are considering two degree values for these 
constraints: permission and in-control. The first is the default 
value so that if no autonomy constraint is specified, agents 
consider that they have to ask permission to insert (and 
perform if the agent is also an executor) the associated activity. 
The second means that agents can choose and perform 
the activity by themselves. The PATTERN-ASSIGNMENT 
element is defined as ((attribute object), value) so that a list 
of pattern assignments creates a context for possible values 
where the degree must be activated.

A possible expansion of this approach is to implement the 
consult (degree attribute) autonomy constraint. The idea is to 
enable that users specify context where agents must consult 
humans about the instantiation of specific variables. In 
terms of representation, extensions for this approach should 
consider the consult keyword as an option for the DEGREE 
parameter and find ways to indicate which planning vari-
ables are involved in this process. 

Note that using permission constraints, agents only ask 
humans to confirm the choice of one activity. Differently, using 
consult constraints, the process becomes more interactive and 
granular because humans interfere during the configura-
tion of activities. Later on we will see that the consult degree 
is not actually needed because the model already considers 
user preferences on instantiations of variables. However we 
have a slight difference: while the use of consult constraints 
becomes the process dynamic (users must decide for a value 
at runtime), the use of preferences is static because all the pref-
erences are pre-defined by users before the own execution.Figure 9. Autonomy constraint definition.

CONSTRAINT ::= 
<constraint type=“autonomy” relation=“DEGREE” 
sender-id=“ID”>
  <parameters><list>PATTERN-
ASSIGNMENT</list></parameters>
  <annotations><MAP> MAP-ENTRY </map></annotations>
</constraint>
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5.3.2. Users restrictions

The second requirement, associated with the involvement 
of human users during the collaborative planning process, 
tries to avoid problematic local decisions. Note that local 
decisions taken by a coalition member can seem appropriate 
for her/him, but may be unacceptable to the team. Based on 
this fact, we should have the following requirement:

•	 Requirement	 7:	 the human-agent model must provide 
ways to restrict user options in accordance with the global 
coalition decisions.

The idea here is to avoid that users take decisions that 
are prejudicial to the coalition as a whole. For example, an 
user could make the decision of using a road as save point 
for injured civilians. However this road is going to be used as 
access route of a fire brigade. Thus, the former decision must 
be avoided.

Agents can do that by restricting the options of users 
in creating their plans, or performing their activities. The 
natural way to implement such restrictions, considering our 
constraint-based framework, is to define a set of constraints 
(C5 in Figure 1) that cannot be changed by users or their plan-
ning agents. During the planning process, users are able to 
manipulate constraints as a way to customise the outcome 
solutions, as discussed in the next section. However, it is clear 
that there is a group of constraints that users cannot change. 
This group is represented by constraints whose source is an 
external component such as the superior agent, or other team 
members. Based on this idea, the whole set of constraints can 
be divided into two classes: 

•	 Internal	constraints, which users can manipulate (read/
write) and that are generally created by themselves 
during the process of customisation of solutions;

•	 External	 constraints, which users cannot change 
(read-only) because they are assigned by other compo-
nents.

<I-N-C-A> enables a very direct support for such classi-
fication. As we can see in the constraint definition (Figure 3), 
constraints have an optional attribute (sender-id) that speci-
fies the constraint source, or the component that accounts 
for their creation. Thus the semantics associated with such 
attribute is very simple. If the sender-id attribute is assigned 
with the own agent/user identifier, the constraint is internal. 
Otherwise the constraint is external. 

Despite the simplicity of such approach, it also presents 
a serious limitation. For example, suppose that a superior 
agent sends an activity to one of its subordinates. Associated 
with this activity, the superior agent also sends a group of 
constraints with some preferences on how to perform such 
activity. Note that these constraints are only preferences so 
that the subordinate agent is not obliged to follow the options 
expressed by such constraint group. It must do so if it is able 
to. Otherwise it can try other options. However this is not 
possible using our initial approach. As the constraints are 
external, they cannot be changed and planning must respect 
them.

This feature can be relaxed by implementing the idea 
of weak constraints. Weak constraints are, at first, used as 
normal constraints. However, if agents are not able to find 
any solution, they can eliminate weak-constraints, relaxing 
the restrictions on the plan options. Following this approach, 
world-state, resource and temporal constraints should also 
have their weak versions. Thus, the ontology needs to have 
ways to discriminate between normal and weak constraints. 
The next section shows how this discrimination is specified 
in our model.

5.3.3. Users control

The next requirement to be considered is:
•	 Requirement	8: the human-agent model must support the 

definition of mechanisms that intensify the human user 
control and enable the customization of solutions.

This requirement is traditionally investigated in Mixed-
Initiative Planning projects, such as in TRANS6 and O-Plan25. 
Note that it seems to be antagonistic to Requirement 7. In 
fact we are looking for a mutual process of restriction so that 
while agents have constraints (C5 in Figure 1) to restrict the 
options of human users, users can also set constraints (C4 in 
Figure 1) to restrict the behaviour/reasoning of agents.

The approach defined above provides the basis for user 
control. According to that approach, users can set normal 
constraints to force some result, or weak constraints to try 
such preferential solution if they are possible. To implement 
this approach (weak constraints) we have defined a new class 
of constraints (C4) whose type attribute is specified as prefer-
ence (Figure 10) and the relation attribute receives the type of 
a pre-defined constraint such as temporal or resource type 
constraints.

A more practical way to deal with preferences is to asso-
ciate them with the process of variable instantiation. Consider 
that such instantiation can be guided by a specific kind of 
constraint, whose function is to restrict values of constraint 
variables. This new type of preference constraint has its rela-
tion called instantiation and its PATTERN-ASSIGNMENT 
element defined as: ((set-definer-attribute variable), value). 
Possible examples are:

•	 ((>	 ?x),	 10)	 –	 indicates	 preference	 for	 values	 greater	
than 10;

•	 ((set	?r),	R5) – this is the most basic example for discrete 
values, where ?r should be instantiated with the value 
R5;

•	 ((in	?r),	[R4, R3, R5]) – in this case ?r should be instan-
tiated	with	any	value	 that	belongs	 to	 the	set	 [R4, R3, 
R5];

Figure 10. Preference constraint definition.

CONSTRAINT ::= 
<constraint type=“preference” relation=“PREF-TYPE” 
sender-id=“ID”>
 <parameters><list>PATTERN-
ASSIGNMENT</list></parameters>
  <annotations><MAP> MAP-ENTRY </map></annotations>
</constraint>
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•	 ((in-ordered	?r),	[R4, R3, R5]) – in this case ?r should be 
instantiated	with	any	value	that	belongs	to	the	set	[R4, 
R3, R5], but considering that the values are listed in 
order of preference.

The last example is particularly important because it 
demonstrates the expressiveness of the syntax. In this case 
the user is not only setting a specific preference, but a set of 
discrete and disjunctive values listed by order of preference. 
Then if R4 is not possible, the agent must firstly try the next 
option that is R3 and so on. Based on these examples, the idea 
of set-definer-attribute can be expanded to consider diverse 
kinds of delimiters.

Note that autonomy and instantiation/preference 
constraints have different semantics for their parameters, if 
we compare them with the other constraint types. While the 
autonomy constraint parameter characterises a context in 
which a specific degree of autonomy is valid, the instantia-
tion/preference constraint parameter indicates preferential 
values to be assigned to variables.

5.3.4. Explanation function

The last requirement that must be considered is:
•	 Requirement	9: the human-agent model must support the 

generation of explanations about autonomous decisions, 
clarifying the reasons why they were taken.

This requirement is important because human users have 
a strong need of understanding what and why something 
is happening or will be carried out by the agent, mainly 
when critical decisions must be taken. In this way, the idea 
here is to define a function (F3 in Figure 1) that produces 
explanations based on specific events triggered during the 
constraint processing. For example, if an activity becomes 
impossible due to a constraint, this event generates an expla-
nation to the user saying which constraint(s) is blocking the 
plan. In this case the user can, for example, relax or delete 
such constraint (only if it is an internal constraint). In this 
case the set of constraints C7 associated with F3 represents 
all constraints that are being manipulated by the planning 
process. Considering this idea, we must answer three ques-
tions20: which are the agents’ decisions that humans would 
like to have explanations for, which are the events that can 
trigger such explanations, and how can such explanations be 
produced.

To exemplify the explanation function design, consider 
one of the most common events that happens during the 
planning and execution process: the invalidation of an 
activity in a plan. Users are generally interested to know the 
reasons for such invalidation. In other words, explanations 
for this case must be able to answer questions like: “why is 
the plan/activity x impossible?” or “why are we not able to 
perform x?”.

The second step is to identify the constraint processing 
events that can be used to generate explanations for such 
questions. We know that the invalidation of plan options is 
caused by conflict between constraints. Considering that the 
plan is in a stable state, some event must happen to cause 

a conflict. Such an event could be: activity addition, state 
changes and user decisions.

The approach designed to produce explanations it to 
use templates with variables, which are instantiated by such 
events. The idea is to translate the meaning of each event via 
a specific template. A template for the case of activity invali-
dation is: activity is not valid because cactivity is in conflict with 
ctrigger set by source.

For this template, F3 must instantiate four variables: 
activity representing the activity that was invalidated, cactivity 
representing the activity constraint in conflict, ctrigger repre-
senting the constraint that has triggered the conflict and 
source representing the source of ctrigger. Generalising the idea 
used in this example, we can define F3 as follows (Figure 11).

The idea of this function is to monitor the activity/plan 
p while it is valid. Then if some event associated with the 
constraint processing of p happens, the function captures 
such event (step 03) and, if it is an explanation trigger, the 
function gets a predefined template for it (step 05). Then the 
variables of this template are instantiated in accordance with 
several features (type, sender-id, constraint associated, etc.), 
creating the explanation for this event. Finally the function 
sets the explanation to p (step 07).

The explanation function defined here is able to generate 
high-level explanations for simple decisions taken by agents. 
However, the idea provides the basis to support the elabora-
tion of more detailed explanations for questions like: “Why 
has the plan/activity x been chosen?”, “Why is this solution 
better than that?” or “Which are the possible values for a 
specific domain variable?”. Note that while an explanation 
function must capture the notion of comparative parameters 
in the first two questions, the last question requires a better 
understanding of the planning domain.

6. The Implementation Approach

The main role of assistant planning agents is to provide 
actions to decompose nodes until there are only executable 
nodes. For that end, agents consider planning as a two-cycle 
process, which aims to build a plan as a set of nodes (activi-
ties) according to the <I-N-C-A> approach. The first cycle 
tries to create candidate nodes to be included into the agent’s 
plan, respecting the current constraints of the activities, 
which are already in the plan. If the agent is able to create 
one of more candidate nodes, one of them can be chosen and 

Figure 11. Preference constraint definition.

01. function MutualSupport(p)
02     while (Valid(p))
03         event ← CaptureEvent(p)
04          if (∃ event) then
05              template ← GetTemplate(event)
06              explanation ←InstantiateTemplate(template,
    GetFeature(event))
07               SetTemplate(p,explanation)
08           end if
09      end while
10 end function
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its associated constraints are propagated, restricting the addi-
tion of future new nodes. 

A simple way to understand this process is to follow the 
example below (Figure 12). The current agent’s plan contains 
the set of activities that it intends to perform. If the agent 
receives a new activity, it must generate planning actions that 
include this new node in its plan. Each action is a different 
way to perform this inclusion so that different actions 
generate different nodes’ configurations.

We call this process of activity-oriented planning because 
agents provide context sensitive actions to perform activities 
in specific. Common types of actions implemented under this 
perspective are:

•	 Delegation:	action	that	simply	sends	a	node	to	other	
agent that has the capability to handle it. Thus the 
unique work of the sender agent is to wait for the 
result;

•	 Standard	 Operating	 Procedures (SOPs): SOPs are 
sequences of pre-defined activities based on expe-
riences, lessons learnt or carefully pre-designed. 
Depending on the context, agents turn available one 
or more SOPs as actions that decompose nodes;

•	 Dynamic	 Plan	 Generation:	 this	 action	 creates	 a	
dynamic plan, providing more assistance with a “How 
do I do this?” action associated with each node;

•	 Specific	 solver:	 actions	 can	 invoke	 specific	 solvers,	
such as a pathfinder, which are available as plug-ins.

The role of agents is to provide actions to decompose 
nodes until there are only executable nodes. The impor-
tant point in this discussion is to know that each action is 
implemented by an activity handler, which propagates the 
components through constraint managers to validate their 
constraints. For example, the action of applying a SOP is a 
handler that decomposes an activity according to the SOP 
specification. For that end, the handler also causes constraint 
managers to check the conditions in which the SOP can be 
applied, indicating any conflict. 

All agents have a set of activity handlers that they use to 
refine or perform their activities. In a general way, the process 
follows the steps in follow: 

(i) When an activity a is received, the agent’s controller 
component selects a set H of activity handlers, which 
matches the description of a;

(ii) Each handler h ∈ H uses one or more constraint 
managers to return its status (possible, impossible or 
not ready);

(iii) Users choose one of the proposed handlers, commit-
ting to the performance of a;

(iv) During the execution, constraint managers are still 
monitoring the constraints of a, warning in case of 
problems.

The role of constraint managers in this process is to main-
tain information about a plan while it is being generated and 
executed. The information can then be used to prune search 
where plans are found to be invalid as a result of propagating 
the constraints managed by these managers. The principal 
advantage of using constraint managers is their modu-
larity. We can design managers to deal with specific types of 
constraints, such as the types discussed here (e.g., temporal, 
resource, commitment, etc.).

Together, the constraint managers compose the model 
manager of the agent. Each constraint manager considers 
a set of specific constraints in a well-defined syntax, based 
on the <I-N-C-A> formalism. In brief, constraint managers 
provide support to a higher level process of the planner 
where decisions are taken. However, they do not take any 
decision themselves. Rather, they are intended to maintain all 
the information about the constraints they are managing and 
to respond to questions being asked of them by the decision 
making level24.

Further details about this project such as published 
papers, example of application and related links can be 
found in the project resource page: “http://www.aiai.ed. 
ac.uk/project/ix/project/siebra/”. From this page we can 
also download and use the I-Kobe prototype, an I-X appli-

Figure 12. The activity-oriented planning approach.

SOPDelegation Dynamic generation

New activity Current plan

Action 1 Action 2 Action n
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cation to support disaster relief operations in the RoboCup 
Rescue Kobe scenario. The development of I-Kobe was based 
on the ideas presented in this paper so that we could demon-
strate such ideas in a practical way. The I-Kobe manual gives 
details about the features and configuration of this applica-
tion, while The QuickStart is a practical way of setting and 
running the application. 

7. Related Works

Several systems have been developed with the aim of 
supporting the planning and execution performance of joint 
groups. This section summarises the main ideas of some of 
these systems, comparing such ideas with our approach.

The CoAX Project2 demonstrates the use of the agent-
based paradigm as a way to deal with the technical issue 
of integrating different technologies in a coalition organisa-
tion. The principal proposal of this project is to use agents 
to wrap different systems, enabling their integration via a 
common infrastructure. Differently, we have used the concept 
of ontology to integrate components. According to this 
approach, every external component that needs to be inte-
grated to the system must respect ontological commitments 
when receiving and sending information to the coalition.

CplanT16, a multiagent system that belongs to the area 
of war avoidance operations, developed a formal knowl-
edge based approach to the coalition formation problem. 
The principal issue in this approach is that agents may agree 
to collaborate, but they are often reluctant to share their 
knowledge and resources. Thus, negotiation mechanisms 
are necessary to support the various levels of collaboration. 
In our approach we do not discuss any kind of negotiation 
process associated with information sharing. In fact, at the 
current stage, agents must share any kind of information 
that should be important to the performance of other coali-
tion members. Negotiation is very suitable at pre-operation 
moments, when a coalition is involved in discussions related 
to which role will be played by sub-coalitions or members. 
However we are aware that in more complex kinds of coali-
tions, such as multinational coalitions, the idea of classifying 
and restricting the information access is appropriated and 
must be considered.

CODA14 is a system that proposes to improve the coor-
dination process using targeted information dissemination 
among distributed human planners. According to the CODA 
approach, each planner declares interest in different kinds of 
plan changes that could impact his/her local plan develop-
ment. Thus, CODA is based on plan authoring tools, which 
are able to monitor the activities of users so that changes that 
match awareness are forwarded automatically to the person 
who declared interest in them. Our approach implements a 
similar idea, however without the need of users to declare 
which information they want. This information is directly 
extracted from the conditional constraints of each activity 
and analysed by the mutual support function. Similarly as 
happens in CODA, such a function provides an adequate 

way to share information, supporting conflict detection and 
resolution.

DSIPE5 is a distributed planning system that provides 
decision support to human planners in a joint planning 
environment. DSIPE uses the same hierarchical structure for 
agents that we are using, however with a different approach 
to plan decomposition. In DSIPE each planning agent has 
a complete representation of its own subplan as well as a 
partial representation of the subplans being developed by 
other planning agents, with explicit dependencies and rela-
tionships with its local subplan. Thus the project implements 
a specific algorithm for information sharing where each 
agent knows the kind of information that could be important 
to other agents so that they can update their partial represen-
tations. The DSIPE approach certainly increases the system 
complexity because the filter algorithm needs to have specific 
information about other agents and their activities. However 
such algorithm could be interesting for us. Note that our 
proposal for mutual support is based on a broadcast of condi-
tional constraints to a sub-coalition. Probably, some agents 
from this sub-coalition will not use these constraints in their 
process. Thus we could use a filter algorithm to change the 
broadcast for a peer-to-peer process.

APSS11 is a proposal of decision support system that 
seeks to merge planning and execution, and replaces reaction 
to events with anticipation of events. For that, rather than 
choosing a single course of action (COA) and following it to 
conclusion, the system maintains many possible COAs so that 
the plan is considered to be a tree. Nodes of this tree represent 
states and decision points in the plan. The branches represent 
the transition to a new state based on a particular action. As 
new branches are developed, the system will continue plan-
ning along those branches. Thus, anticipatory planning for 
a branch can be done well in advance, rather than reactive 
planning once the branch occurs. The point stressed by the 
APSS project is the importance of the plan information collec-
tion to quickly confirm or deny the viability of branches. In 
our approach we do not try to create and maintain a tree with 
several branches, however we also consider fundamental the 
use of information to anticipate possible failures. Such an idea 
is mainly implemented via reports on execution progress, 
which try to capture the information that could support 
the reasoning of superior agents in detecting and resolving 
possible failures in a sub-coalition plan.

 Note that such main projects in multiagent planning for 
coalition deal with specific problems, such as information 
sharing or plan decomposition. Differently our work proposes 
a framework that could integrate solutions for several coali-
tion support requirements, rather than dealing with a specific 
issue. In some cases, the framework also presents alternative 
approaches for such specific issues, as discussed along this 
paper. 

8. Conclusion and Research Directions
This work suggests a common way to consider several 

requirements related to the definition of a planning frame-
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work for coalition support systems. In fact, several of these 
requirements are already investigated by other researches, 
however in an isolated way. Thus, their integration is not 
an easy task. The advantage of our approach is that the 
implementation of all requirements can be understood from 
a unique perspective and implemented on the same basis 
(using constraints representation and manipulation). 

The main problem of our approach is derived from 
processes associated with the sharing and maintenance of 
distributed knowledge (e.g., persistence of no longer valid 
knowledge inside the coalition), as better discussed in18. In 
a more specific way, these problems are associated with our 
approach for mutual support. Thus, future investigations 
and extensions of this work include:

•	 Development	 of	 experiments	 that	 measure	 the	
usefulness and usability of conditional constraints, 
considering the process of mutual support. The idea is 
to investigate, from the set of all constraints received 
by an agent, which of such constraints are useful 
for the different processes provided by the mutual 
support approach (conflict resolution, information 
sharing and activity generation);

•	 Study	and	implementation	of	mechanisms	that	enable	
the elimination of knowledge which is no longer valid 
from the coalition. Rather than agents exchanging 
messages saying which information must be elimi-
nated, agents should be able to reason about such 
elimination by themselves. An interesting metaphor 
is to think about this process as a garbage collection 
used for some object-oriented languages. In Java, for 
example, each virtual machine uses a specific rule 
(there are no longer any references to an object) to 
eliminate unnecessary objects. In the same way, we 
could implement some rule in each agent so that they 
eliminate unnecessary knowledge;

Another possible direction of this work could consider 
its extension to applications whose features are incompatible 
with our current approach. For example, our approach is not 
compatible with domains that require dynamic and autono-
mous change of roles, and domains that require negotiation 
during the process of activity delegation. Moreover, our 
proposal does not support a direct implementation of reac-
tive behaviour. The closer mechanism to reactive behaviour 
that we have provided is the definition of SOPs (Standard 
Operating Procedures). Probably such pre-planned sequences 
of activities are not enough to cope with the dynamic of coali-
tion domains.
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