Enacting a Decentralised Workflow

Management System on a Multi-agent Platform

Li Guo

Doctor of Philosophy
Artificial Intelligence Applications Institute
School of Informatics
University of Edinburgh
2007

Abstract

This thesis presents sets of technologies for enacting multi-agent based decentralised
workflow systems. Its purpose is to tackle some of the existing problems in the con-
ventional workflow research from the system architectural and engineering point of
view. Some of the problems addressed at the beginning of this thesis have affected
the wide deployment of workflow management system in an open environment (inter-
net). This thesis argues that most of these problems are caused by the huge conceptual
gap and design rationale between high level application requirements and low level
system design/implementation. Specifically, it is argued that the conventional system
architecture of workflow management system (client-server) could be replaced by a
multi-agent based platform which is more open, collaborative and can better reflect
workflow’s distributed features in the open environment.

Combining existing workflow design rationale and multi-agent computing technol-
ogy, a multi-agent based decentralised workflow approach is proposed in this thesis.
The architecture of the intended system removes both the centralised data storage and
the centralised workflow engine from the system. To achieve this goal, approaches
that bridge the gap between business process modelling and multi-agent interaction
protocol production are proposed using three different techniques (namely functional
properties based specifications verification, syntax based language mapping and inter-
pretation based communication) according to the different types of business process
models used. Based on such approaches, the mechanisms for decentralised process
execution are explored. Moreover, our system is also able to be extended to support
incompletely/partially specified processes in a distributed manner. The approach for
handling such incomplete/partially specified processes at run-time are presented in this
thesis

The main contribution of this research is to provide approaches for enabling de-
centralised workflow systems in an open environment based on a multi-agent platform
without changing the conventional workflow design rationale and with maximum use
of existing process models and tools.

Acknowledgements

| sincerely express my deepest gratitude to my supervisor, Dr. Dave Robertson and Dr.
Yun-Huh Chen-Burger, for their seasoned and valuable supervision and continuous
encouragement throughout the course of this work, and for their careful reading and
appraisal of drafts of this thesis. Without their consistent support, | would not have
been able to complete my research and this manuscript.

| thank the University of Edinburgh and the School of Informatics for offering
me full research facilities throughout my doctoral program. | also thank the Centre
for Intelligent Systems and their Applications of School of Informatics for research
publication funding support and for providing me with financial support to attend con-
ferences.

My thanks also go to staff members, research students and research assistants at
SSP and CISA for their help, suggestions, friendship and encouragement, in partic-
ular, Adam Barker, Paolo Besana, and Jarred McGinnis in Office 4.15. Last but not
least, | am deeply grateful to my parents for their love, understanding, patience, en-
couragement, sacrifice and help.

Declaration

| declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Li Guo)

1

Table of Contents

Introduction 13
1.1 Introduction to Workflow Management. 13
1.2 Keylssuesof ThisThesis 15
1.3 Overviewof ThisThesis 17
Literature Review and Problem Analysis 19
2.1 Research Problems Analysis 19
2.2 Conventional distributed workflow approaches 24
221 METUFlow 24
2.2.2 ADEPT e 25
2.2.3 Web service based approaches 25
2.24 DISCUSSION e 27
2.3 Workflow approaches based on multi-agent/peer-to-peer platforms . . 27
23.1 Little-dil. 27
232 PeCo e 28
2.3.3 Anarchitecture based on WWPD and WWP 29
234 SwinDeW 29
235 DISCUSSION 30
2.4 Research related to incomplete process support 31
24.1 WASA . e 31
242 WORKWARE i 31
2.4.3 Pocketsof Flexibility 32
244 DISCUSSION e 32
2.5 RequirementAnalysis. 33
2.6 SumMMary e e e 37

TABLE OF CONTENTS 5

3 Using High Level Formal BPMs For MAS Development 38
3.1 Process Model Based MAS Interaction Protocol Modelling Framework 39
3.1.1 How our framework works for IP’s modelling task? 40
3.2 Highlevel ProcessModel 41
3.3 MAS Interaction Protocol 42
3.4 SystemModeller 44
3.5 Property CheckingModel 45
3.6 Formal Representations: FR1landFR2 46
3.6.1 Deriving representation 1 (FR1) from the process model . . . 47
3.6.2 Deriving formal representation 2 (FR2) from the property check-
ingmodel 50
3.7 Performing Property Checking 51
3.7.1 Issuesforrolechecking 51
3.7.2 Temporalorderchecking 51
3.8 Generating a MAS Interaction Protocol (LCC) From a SPPC Model . 54
3.9 ASimpleCaseStudy, 61
3.10 Prototype Implementations 63
3.10.1 SPPCmodeller 64
3.10.2 Verifier 65
3.10.3 LCC protocolgenerator 66
3.11 DISCUSSION o o o e 66
3.12 Summary ... e e e e e 67

4 Using Executable Formal BPMs For MAS Development Via Language

Mapping 69

4.1 Background Knowledge Of BPEL4AWS 70

4.2 From BPEL4WS Based Conventional Workflow System to LCC Based
Multi-agent Platform o 74
421 ProblemAnalysis. 74
4.2.2 Why choose language mapping? 76
4.2.3 Performing language mapping from BPELAWS to SPPC . . . 77

43 ASimpleCaseStudy 90

4.4 SUMMAIY . . . o o e e e e e e e e 93

TABLE OF CONTENTS 6

5 A Novel Approach of Using Executable Formal BPMs For MAS Develop-

ment 94
5.1 Agent Coordination Using LCC Protocol and
BPEL4AWS Specification 94
5.2 Interpreting BPEL4AWS Specification Using LCC Protocol 97
5.2.1 Interpreting BPELAWS Message Passing Activities Using LCC
Protocol 100
53 ASimpleExample 107
54 AgentDesign 108
5.5 Prototype Implementation 113
55.1 JIXTAP2Pframework 113
5.5.2 Overall prototype framework 114
5.5.3 Implementation of Key System Components 116
56 DISCUSSION 121
57 Summary e e 122
6 Extending Our System For Incomplete Process Support 123
6.1 Causesof Incomplete Processes 123
6.2 ProblemAnalysis 125
6.3 Categories Of Incomplete Activities 126
6.4 Incomplete Activity Instantiation 128
6.4.1 Completing activity properties 130
6.4.2 Instantiation of Controlled Incomplete Composite Activities . 131
6.4.3 Instantiation of Open Incomplete Composite Activities 134
6.5 Summary e e e 140
7 Experimental Evaluations 141
7.1 Case Study 1: Student Registration Process 141
7.1.1 Experimental evaluation of interpretation based approach . . . 144
7.2 Case Study 2: Shipping Service Process 147
7.2.1 Experimental evaluation of language mapping based approach 147
7.3 Case Study 3: HealthCareProcess 149
7.4 SUMMANY o e e e e 151
8 Discussion 152
8.1 Discussion of the Advantages of ThisResearch 152

TABLE OF CONTENTS 7

8.2 Discussion on the Tradeoffs of the Proposed Approach 154
8.3 Discussion on Combination of BPMs and MAS Interaction Protocols
to Support More Complex Workflows Based on MAS Platform 155
8.3.1 Extending BPEL4WS for Negotiation 157
8.3.2 The Agile Negotiation Framework 159
8.4 Discussion on Suitable Application Domains of MAS Based Workflow
Management System Lo 160
9 Conclusions and Future Work 162
9.1 SummaryofThisThesis 162
9.2 Contributionsof ThisThesis 165
9.3 FutureWork 166
A Algorithm Description Language 168
B Representing BPEL4AWS Model in Plain Text 169
C Prolog Definitions For All the Constraints Used in LCC Interpreter 171
C.1 Constraints Used For Rodéreceive(Role),ID) 171
C.2 Constraints Used For Rcééinterpreter(...),ID) 172
C.3 Constraints Used For Rodéreceivé...),ID) 173
C.4 Constraints Used For Rad¢reply(...),ID) 174
C.5 Constraints Used For Rad¢invokeg...),ID) 175
C.6 Constraints Used For Rad¢assign...),ID) 176
C.7 Constraints Used For Radé¢throw(...),ID) 179
C.8 Constraints Used For Rad¢sequence..),ID) 180
C.9 Constraints Used For Radé¢switch...),ID) 181
D Formal Representations Used For Evaluation 182
D.1 Student Registration Process Described by BPELAWS 182
D.2 Re-written Student Registration Process Described by BPELAWS . . 184
D.3 Shipping Service Process Described by BPEL4AWS 186
D.4 LCC Protocol Generated for Shipping Service Process 188
D.5 Health Care Process Described by Extended BPELAWS 189
D.5.1 Initial incomplete health care process model 189

D.5.2 A possible complete health care process instance 190

TABLE OF CONTENTS 8

E Negotiation Protocols For Different Negotiation Strategies 191
E.1 LCC protocol for one-to-one negotiation 191
E.2 Desperate Strategy e e 194
E.3 PatientStrategy 194

F Publications List 196

Bibliography 199

List of Figures

1.1 Conventional system architecture for business workflows 16
1.2 Multi-agent based system architecture for business workflows 17

2.1 From conventional workflow architecture to multi-agent architecture . 34

2.2 Three conceptual layers based framework 35
3.1 Bridging high level formal BPMstoIPs 38
3.2 BPM based interaction protocol modelling framework 40
3.3 Rules for rewriting complex linear temporal logic clauses 49
3.4 Basic algorithm for property checking 54
3.5 Algorithm for pre-processinga SPPCmodel 57
3.6 Inserting connect message for different SPPC structure 58
3.7 Algorithm For pre-processing all the loops defined in a SPPC model . 59
3.8 Algorithm for deriving a LCC protocol from a SPPC model 60
3.9 Salesorderprintingprocess e 61
3.10 AUML model for sales order printing process 62
3.11 Business process model based MAS protocol developing interface . . 64
3.12 XML representationofaSPPCModel 65
3.13 VerificationofaSPPCmodel 66
3.14 LCC protocolgenerator 67
4.1 From executable formal BPMstolIPs. 69
4.2 Executable loan approval process. 72
4.3 The components of a typical conventional workflow server 74

4.4 Connecting workflow systems and multi-agent systems via language
MapPIiNg e 75

4.5 Correspondence between LCC protocol and conventional workflow
Servers components e 75

LIST OF FIGURES 10

4.6 Algorithm for deriving a SPPC model from a BPEL4WSequence-

activity e e 83
4.7 Algorithm for deriving a SPPC model from a BPEL4AWSswitch>

activity e e 84
4.8 Diagrammatical representation okacase> in < switch> 84
4.9 Processed diagrammatical representation otthase> 85
4.10 Algorithm for deriving a SPPC model from a BPEL4WSflow >

activity 87
4.11 Diagrammatical representation ofa SPPCloop 87
4.12 Diagrammatical representation ofavhile > activity 88
4.13 Diagrammatical representation of a SPPC model that is equivalent to

the<while > activityinFigure 4.12, 88
4.14 Algorithm for deriving a SPPC model from a BPEL4WSwhile >

activity e 90
4.15 Stock lookupprocess 91

5.1 The correspondence between the components of the conventional work-

flowserverand LCC 96
5.2 The infrastructure of our generic MAS platform 96
5.3 Algorithm for converting a flow > activity to < sequence- 104
5.4 Diagrammatic representation<offlow > activity 105
5.5 Agent’s coordination for performing the illustrate example. 108
5.6 The essential components of our message package 109
5.7 Theinternal structureofanagent. 109
5.8 The components of agent’s Transitionlayer 110
5.9 The components of agent’'s communicationlayer 110
5.10 The components of agent’s applicationlayer 112
5.11 Overview framework of prototype 115

5.12 Interface for browsing, joining and quitting existing interaction groups 117

5.13 Interface for selecting applicationrole 118
5.14 Interface for browsing existing agentsina Group 118
5.15 Implementation of the components at agent transition Layer 120
5.16 Interface for initialisingvariables 121
5.17 Interface for tracking agent’s messages passing 121

6.1 Thehealthycareprocess 124

LIST OF FIGURES 11

6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6

8.1

8.2

The binding of an instantiation activity and its associated activity . . . 129
The healthy careprocess 131
A framework for incomplete activity instantiation 132

A framework for incomplete activity instantiation 138
Student registrationprocess oo 143
Virtual organisational structure of student registration process 144

Substitute of original student registration process deployed on our system145

The Shipping service process v v v v v v .. 147
The healthy careprocess 149
A possible complete health care processinstance 150

The MAS Based Architecture For Implementing the Negotiation Pro-
cessModel 156
The Agile Negotiating Framework 158

3.1
3.2
3.3
3.4

5.1

List of Tables

Basic Syntaxes of Linear Temporal Logic 47
Representing link notations with linear temporal logic 48
Representing SPPC link notations with linear temporal logic 50
Functional Properties of Primary Activities in Sales Order Printing
Process 61
Translations from BPEL4WS activities to LCC messages 101

12

Chapter 1
Introduction

This thesis addresses the limitations of conventional workflow management systems
based on the dominant client-server distributed system architecture. The research re-
ported in this thesis develops a new framework and coordination technologies for a
decentralised workflow systems based on a multi-agent platform, rather than a con-
ventional client-server based distributed system architecture[AWSO02]. An innovative
workflow management system development approach based on a multi-agent/peer-to-
peer architecture, is presented in this thesis. A system prototype implementation based
on Sun Microsystems JXTA[JXT] is developed for demonstration purposes. Moreover,
the corresponding system mechanisms to support complete and incomplete processes
are designed.

The background, motivations and key issues of this research are introduced in this
chapter. First, an introduction to workflow managementis given in Section 1.1. Section
1.2 then addresses the key issues of this research. At last, Section 1.3 presents an
overview of the structure of this thesis.

1.1 Introduction to Workflow Management

At the heart of any organisations is a more-or-less formalised set of processes, which
reflects the way that organisations coordinate and organise work activities, information
and knowledge to produce products or to provide services [LLO2]. Typical examples
are credit card application process, student registration process and so on, for exam-
ple. Support for processes has become crucial to the success of the organisation as
a whole [JBR99]. Over the past years of process support research, paradigms have
changed from (hard-wired) office automation systems to workflow management sys-

13

Chapter 1. Introduction 14

tems. With the successful use of the internet, Workflow Management (WfM), as an
enabling technology for Business Process Management (BPM), is widely used by dif-
ferent organisations and becoming an important part of them.

A workflow represents the operational/functional features of an underlying process
of an organisation. It reflects the order of activities and the performers (roles) of them;
the information flow that is used to support all the activities defined within the process;
and the monitoring and reporting mechanisms that measure and control them[Yan0O].
A workflow is formally defined as "the automation of a business process, in whole or
part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules to achieve, or contribute to,
an overall business goal’[Coa99]. Although workflows may be constructed manually,
in real life, most workflows are better constructed using a computational system to
support the process automation. Such computer based systems, which also are called
Workflow Management Systems (WfMSs), are designed to improve the effectiveness
and efficiencies of the underlying processes by supporting the automation of the fol-
lowing aspects of the workflow [Coa99]:

e performing work in a proper sequence.

e providing sufficient access to the resources required by the individual work per-
formers, and

e monitoring all aspects of the processes’ execution.

To achieve these, a workflow management system "consists of software components to
store and interpret process definitions, create and manage workflow instances as they
are executed, and control their interaction with workflow participants and applications”
[Coa99]. At the highest level, all workflow management systems may be classified as
providing support in two functional categories[YanOO]:

¢ the design-time functions, considered with defining and representing the work-
flow process and its constituent tasks, and data storage issues, and

¢ the executing-time functions, concerned with creating and managing the work-
flow instances in an operational environment.

Currently, workflow management systems have undoubtedly become the kernel
of organisations, as they are capable of integrating various kinds of resources, such
as heterogeneous systems, existing applications, human beings, and so on [Moh98,

Chapter 1. Introduction 15

Sch99]. It is observed that the proper use of workflow management systems can help
to make procedures more efficient, to reduce costs and flow times, and to increase the
quality of service and productivity.

From the point of views of both research and practical areas, workflow manage-
ment has been one of the most important areas of interest since its appearing. Many
theoretical approaches and research prototypes have been presented and also lots of
contributions have been published [DGS95, JB96, FCP96, Moh97, vdAvHO02, Fis02,
DGCIS95]. A huge number of commercial workflow management products are avail-
able, such as ActionWorkflow (Action Technologies Inc., http://www.actiontech.com),
FlowMark (IBM, http://www.ibm.com), InConcert (InConcert Inc.,
http://www.inconcertsw.com), METEOR (Infocosm Inc., http://www.infocosm.com),
Visual WorkFlo (FileNet, http://www.filenet.com), and so on[Yan02b].

1.2 Key Issues of This Thesis

Although workflow research and practice is quite mature, some problems are still
recognised. The state-of-the art in workflow management has been determined by
the functionality provided in workflow systems so far[GAM97]. Problems like system
performance, reliability, scalability, system openness and incomplete process support
are not considered enough in the development of existing workflow systems [DGS95,
AS96, JGM98, Yan02b]. Therefore, workflow systems often suffer from deficiencies
in these areas, such as bad system performance, one point failure of system, unsatisfac-
tory system openness, and lack of incomplete process support. Some significant work
has been done [GAK95, EGD97, ASHT98, SJS02, YY01, LMCMO1] to address some
of these problems. In addition, from practical point of view, as E-commerce becomes
more and more complex, the collaboration between different enterprises to provide
appropriate services is required. During the collaboration, each participant should be
able to join the collaboration, contribute its services to it and quit from it on the bases
of on its own needs. Some standards, such as BPEL4WS [BPEO3, OWLO01] has been
proposed for this purpose. However, with current approaches which are mainly based
on the conventional workflow architecture (client-server), open scale collaboration can
not easily be achieved and most importantly, the participants of the collaboration lose
their own initiative, which means they can only be invoked and required for certain
services passively by the server as shown below:

As many researchers have noted, most of the above problems are mainly, if not

Chapter 1. Introduction 16

Business Rationale
giecn
[] > sy j—f |

Activity

o
™ o e

e e,

-

,
System Architectime

N
— Worlflow
_.4—

AN

k f‘w 1“"1':\ E o
™ - «

o e
e

Figure 1.1: Conventional system architecture for business workflows

completely, caused by the adoption of a client-server architecture in most conventional
workflow management systems [JGM98, Coo02]. Hence, in order to tackle these prob-
lems properly, a centralised system architecture based on client-server is expected to
be replaced by an open, collaborative, and decentralised architecture that can reflect
increasingly open and distributed features of current workflow more naturally. This
thesis aims at addressing the above problems fundamentally from a point of view of
system architecture without affecting the upper level business rationale, as shown in
Figure 1.1, using the multi-agent based system architecture, which is depicted in Fig-
ure 1.2. Although some work has been done in this area [SPJC97, FK, Yan02b], this
thesis proposes some new solutions to add to and improve on the existing approaches.
A fundamental contribution of this thesis is to adopt new system architecture (multi-
agent) for deploying distributed workflow system in the open environment without
changing existing business rationales that are used by business users. This research
work mainly focuses on the issues of workflow as addressed in Section 1.1, i.e., per-
forming pre-defined tasks in the proper sequence in a decentralised environment through
coordination. Particularly, this thesis starts with the discussion of a coordination mech-
anism using process models for complete processes on multi-agent platforms. The
proposed approaches mainly try to tackle the problems caused by the existence of the
centralised coordination server in conventional workflow management system, with
existing design rationales, tools and models of workflow system kept untouched. This

Chapter 1. Introduction 17

Activity

Activity

.
=4
Z
g
5
-
2
<
=)

, \
! System Architecture 5

Agent Agent

Service Service

H [}
i]
! 1
H)
')
')
1 1
1]
!]
H)
' A,)
')
i Agent :

P 4
1 »]
' Service Agent '
i '
1 '
1 1
')
']
')
1 1
i 1
H T
1 3

\ Service

Agent Agent

Service r
;

Service

Figure 1.2: Multi-agent based system architecture for business workflows

research is then extended to discuss the technologies that support incomplete pro-
cesses under the proposed multi-agent decentralised architecture. The proposed ap-
proaches are expected to be useful for adoption of workflow systems in some new,
non-conventional application domains. The significant result of our research is to pro-
vide a better solution to the existing problems of conventional workflow research as
described above. This can be considered as a paradigm change because the multi-agent
technology provides a new platform.

1.3 Overview of This Thesis

In Chapter 2, research problems existing in conventional workflow systems are anal-
ysed and discussed in detail. Some of the main related work is also reviewed, including
workflow management approaches under aspects of client-server based distribution,
decentralised workflow approaches based on other computing technologies, and re-
search regarding incomplete process support. Chapter 2 also analyses the requirements
for workflow management based on a multi-agent architecture.

The design of a framework for bridging formalised high level business process
models down to MAS interaction protocols (IPs) is illustrated in chapter 3. Checks
of temporal orders between functional properties are performed to make sure that the
functional requirements defined in the formalised high level business process model

Chapter 1. Introduction 18

are achieved by system level specification (MAS interaction protocols), using linear
temporal logic as an intermediate specification.

Chapter 4 describes the language mapping technique that we perform on the trans-
lation between an executable business process modelling language BPELAWS[BPEO3]
and a multi-agent interaction protocol description language LCC[Rob04a]. The MAS
interaction protocols thus can be generated automatically from given business process
models and they, later on, can be used directly for multi-agent based workflow enact-
ment.

Chapter 5 presents a novel approach for using an executable business process
model directly for guiding multi-agent coordination. With this approach, no extra work
is needed once the business process models are constructed. The interaction protocol
is not used directly to guide the agents’ coordination but used as a language interpreter
to tell agents during their coordination what to do according to the attached business
process model.

Chapter 6 further extends the approach that is proposed in chapter 5 to enable
multi-agent based workflow management system for incomplete processes. How to
handle incomplete processes incrementally at run-time is presented for different sorts
of incomplete activities.

In chapter 7, three case studies are given to prove the soundness of our system and
corresponding mechanisms from the point of view of both a conventional workflow
domain (complete process) and a non-conventional workflow domain (incomplete
process).

The prototype implementations for the ideas presented in each of the chapters are
also given at the end of each.

In chapter 8, we discuss the advantages and disadvantages of the proposed ap-
proaches, and the suitable application domains of the multi-agent based decentralised
workflow management system proposed in this thesis. The potential tradeoffs of the
proposed approaches are also discussed in this chapter.

The last chapter, Chapter 9, summarises the ideas discussed in this thesis, the main
contributions of this research, and future research work.

Chapter 2

Literature Review and Problem

Analysis

In this chapter, first, an analysis of the research problems existing in conventional
workflow is given in section 2.1. Then section 2.2 introduces conventional distributed
workflow approaches. Section 2.3 introduces some earlier research on decentralised
workflow based on other computing technologies. Section 2.4 introduces research
work related to incomplete process support. Finally, justification is given for choosing

a multi-agent based decentralised workflow system as the most effective line to follow,
and requirements for designing a multi-agent based decentralised workflow system are
given.

2.1 Research Problems Analysis

Workflow processes within organisations often involve a vast number of resources,
people and tools that are distributed over a wide geographic area. Workflow manage-
ment systems are used to coordinate these elements automatically. Thus, in order to
suit the nature of the application environment and the technology adopted, workflow
applications are becoming distributed [GAK95, JGM98, Yan00, CBL05]. Problems
remain unsolved in current research of distributed workflow system however.

These problems are mainly categorised into two groups as addressed in[YanQQ].
In the first group are those directly related to the centralised system architecture, i.e,
bad performance, vulnerability to failures, poor scalability, user restrictions, and un-
satisfactory system openness. The second group concerns flexibility, i.e, support for
the incomplete workflow process. From the practical point of view, as E-commerce

19

Chapter 2. Literature Review and Problem Analysis 20

becomes more and more complex, the collaboration between different individual en-
terprises to provide appropriate services is required. During the collaboration, each
participant should be able to join the collaboration, contribute its services to it and
quit from it on the bases of its own needs. However, with current approaches which
are mainly based on the conventional workflow architecture (client-server), open scale
collaboration can not easily be achieved and most importantly, the participants of the
collaboration lose their own initiatives. Also, the workflow server in conventional
workflow management systems is abundant because workflow participants might want
to hide some of their private knowledge during their interactions with others. With
the existence of the workflow server, this is hard to achieve since the workflow server
always has global view of what is going on in the whole system. Some conventional
distributed workflow standards such as BPEL4WS even give the workflow server an
application role during the interaction. Under such circumstances, each participant has
to interact with others though the workflow server so that the participants have to ex-
pose their knowledge not only to its business partners but also to the workflow server.
Therefore, for the dynamic collaboration, either is the party that provides workflow
server trusted by all the participants, or should the participants interact with each other
directly. Moreover, as web services and Grid services become more popular as the
reference model for business resources, workflow plays a powerful role in composing
individual services into complex ones. However, a client-server architecture is not suit-
able for such applications where workflow technology is used together with services.
This is because the client-server architecture is rather closed to facilitating external
services (web services) available on the internet|LGCBO04b]. Thus, it is better to have
an open architecture which allows external services to be used more easily.

Besides the above problems that are caused by the centralised system architecture,
lack of ability to support incomplete processes is also a major problem for conven-
tional workflow management system. Workflow research was initially founded on two
assumptions.

e First, a workflow process model is accomplished completely at design-time be-
fore the execution of workflow instances.

e Second, the running instances of a process have to remain unchanged during
their execution.

These two assumptions were reasonable originally since workflow technology was
traditionally used in those domains which were classified by pre-determined, routine

Chapter 2. Literature Review and Problem Analysis 21

based processes. These processes are functionally predictable and repetitive. Recently,
the latter assumption has been undermined, with the argument that workflow processes
are subject to both inside and outside changes [AJOO]. As a result, points of dynamic
workflow change, exception handling and workflow adaptation (some of the today’s
major research topics) have been addressed widely [AJOO, HAQO, SLS99]. More re-
cently, the former assumption that workflow processes are always modelled completely
at build time has also been challenged [Wes02, SSOO01]. "There is substantial evidence
of workflow processes for which trying to define (or prescribe) every step may compro-
mise the process goal. In many cases, the work practices themselves would not fit into
a prescriptive framework and introducing a technology which imposes it would result
in decreased productivity.”[Yan00]. In other words, the processes do not exclusively
belong to the pre-defined class of processes, which are generally not repetitive (de-
pending on instance data), and either represent an administrative level of complexity
or a very high level complexity which is hard to be fully modelled [SSOO01]. Certain
application areas such as health care, insurance claims and customer relation man-
agement have increased possibility of workflow processes that have both ad-hoc and
prescriptive process requirements. However, most of today’s workflow management
approaches lack the capability to support the processes for such application domains.
Research on multi-agent systems emerged as a new area in the early 1990's. The
computing paradigm of multi-agent systems (MAS) has its origin in both distributed
artificial intelligence (DAI) and object-oriented distributed systems. There is no con-
sensus on the definition of software agents or of agency. However, the prevailing
opinion is that an agent may exhibit three important general characteristics: autonomy,
adaptation, and cooperation. Cooperation and coordination between agents is probably
the most important feature of multi-agent systems. Unlike those stand-alone agents,
agents in a multi-agent system collaborate with each other to achieve common goals.
In other words, these agents share information, knowledge, and tasks among them-
selves. The intelligence of MAS is not only reflected by the expertise of individual
agents but also exhibited by emergent collective behaviour beyond individual agents.
From a software engineering point of view, the approach of MAS is also proven to be
an effective way to develop large distributed systems. Since agents are relatively in-
dependent pieces of software interacting with each other only through message-based
communication, system development, integration, and maintenance become easier and
less costly. For instance, it is easy to add new agents into the agent system when
needed. Also, the modification of legacy applications can be kept to a minimum when

Chapter 2. Literature Review and Problem Analysis 22

they are to be brought into the system. Aside from adding communication capabilities
to a legacy application, nothing else is required to change.

However, cooperation and coordination of agents in a MAS requires agents to un-
derstand each other and to communicate with each other to achieve their common
goals. This thus requires certain mechanisms to ensure that the agents in MAS al-
ways behave properly and effectively towards the final goal. A issue that must be
concerned for the development of MAS in the open environment is the standardization
of the communication between agents and the most popular answer to this is the de-
velopment of Agent Communication Languages (ACLs). Today, the two most popular
languages that have been proposed, are the Knowledge Query and Manipulation Lan-
guage (KQML)[FF94] and the Foundation for Intelligent Physical Agents Agent Com-
munication Language (FIPA-ACL)[FIP0O]. Both languages adopt the theory of speech
acts[Aus] for the interaction between the agents. In particular, these languages define
message types such as inform or ask messages for communication between agents.
These message types correspond to performatives which define different speech acts.
The purpose of these languages is to provide a standardized way of knowledge ex-
change between the agents. Although FIPA content language has been proposed to
help define the message contents, standards for specifying the messages sequences
between agents during their interactions are still undefined.

Another issue in order to achieve meaningful interaction between agents is to deter-
mine the conditions under which the interaction takes place. Since a MAS is actually
a society of autonomous agents more or less similar to human societies, the agents
in a MAS have to adopt some conventions and follow some rules in order to be able
to operate as a member of the society. These conventions are said to represent the
social normsof the society and collections of these related to a specific task form an
agent protocol[Fle]. An approache for specifying agent protocols is the Electronic
Institutions (EI)[EIO] and it has attracted the attention of many researchers as it pro-
vides a comprehensible approach to the engineering of MAS. The main concept of El
approach is to represent a MAS as an institution similar to the ones that the humans
form. The features of an electronic institution are the roles, the scenes, the dialogic
framework, the performative structure and the normative rules. The original goal of
this effort as it is stated in[EIO] i¥he design and development of architecturally- neu-
tral electronic institutions inhabited by heterogeneous (human and software) agents
Although the EI approach tackles some of problems in MAS interactions, there are
several weaknesses. Some of these weaknesses are highlighted in[Fle] and [Rob04b].

Chapter 2. Literature Review and Problem Analysis 23

In particular, the lack of a mechanism for protocol dissemination to new agents that
enter the institution, the static definition of the agent protocol which causes problems
when we do not exactly know in advance what the next steps of the protocol should be,
the fact that in practice, administrative agents must be used to ensure the synchroniza-
tion in the Institution and the fact that El approach focuses on the global state of the
interaction and not on satisfaction of constraints on individual agents, are some of the
issues that are considered as drawbacks of the El approach. It is therefore obvious that
although Els are of significant importance for the MAS society, there are still issues to
be solved for the deployment of efficient MASs in an open environment. An interest-
ing approach that promises to overcome these problems is the use of process calculus
for defining a protocol language[Rob04b]. This technique has been further developed
to allow constraints to be applied on the agents and therefore to provide a complete
framework for the coordination of MASs that seems to have desired properties that the
El approach lacks. Several aspects of this technique, such as the application of model
checking techniques to protocols written in the language and the use of the language to
coordinate web services, have been presented in a series of publications, making this
approach even more attractive.

However, an obvious problem is that it is almost impossible to get the overall view
of the underlying process described by a dialogue protocol since the protocol only
specifies the message passing between different participants at implementation level.
For certain MAS based application areas (for instance, auction systems) interaction
protocol oriented approaches have few disadvantages. But for other application ar-
eas; for example, workflow management systems, the users care about not only the
automation of their work, but also the underlying processes’ objective understanding
and analysis. For those analytical purposes, interaction protocol based system specifi-
cations are not enough since they involve too much system level information with high
level business requirements being hidden. Business process modelling languages are
in contrast recognised for their value in organising and describing a complex, informal
domain in a more precise semi-formal structure that is intended for more objective un-
derstanding and analysis. Because of these advantages, they have been widely used
in conventional workflow management systems and many mature techniques and tools
been developed for supporting business process model based workflow system devel-
opment.

However, business process modelling languages are designed specifically for con-
ventional workflow management architecture, they can not easily be adapted for new

Chapter 2. Literature Review and Problem Analysis 24

system architectures like multi-agent systems. Therefore, when building a MAS based
workflow management systems, almost all the existing techniques and tools for sup-
porting conventional workflow management system development are wasted as well as
business process models that are described in formalised business process modelling
languages, which means that a huge amount of repeat work has to be done during the
course of MAS development. For example, verification and validation of formalised
system specifications has to be re-performed even when the existing business process
models have been verified and validated for a conventional system architecture. In ad-
dition, the business process modelling languages used in workflow management sys-
tems sometimes are built with specific features. For instance, BPELAWS[BPEOQ3] is
designed for a web services based distributed workflow system. By using such specific
languages, new platforms can be used to support existing technologies.

2.2 Conventional distributed workflow approaches

Many research efforts have been undertaken on the topic of distributed workflow in
conventional workflow environment. The importance of connecting "workflow man-
agement” with "distribution” has been addressed in [PMG98, EP99, PHM99]. Some
conceptual approaches and research prototypes have been proposed and developed,
which try to solve these problems by making conventional distributed workflow man-
agement systems more sophisticated.

2.2.1 METUFlow

METUFIow[EGD97] is a distributed workflow management system developed at the
Middle East Technical University. This project tries to design a distributed workflow
service which involves several schedulers on different nodes of a network. Each sched-
uler executes parts of process instances. Therefore, such a system could well fit to the
distributed environments, enhance robustness and improve system performance.

The approach proposed in METUFlow is based on the observation that controlling
the occurrence of events provides the coordination of the tasks. This means depen-
dencies between tasks are represented by event dependencies. To enable distributed
execution of workflow computations, each event in METUFlow is made responsible
for controlling its execution to decide on the right time to occur. Required information
for this operation is treated as a guard, which is a temporal expression defined on an

Chapter 2. Literature Review and Problem Analysis 25

event. Occurrences of events are permitted only if their guards are true. Thus, each
node in the process tree is implemented as a CORBA object with an interface for the
guard handler to receive and send messages. Workflow is deployed by these CORBA
objects, with computed guards controlling distributed execution.[Yan00Q]

2.2.2 ADEPT

ADEPT stands for Application Development based on Encapsulated pre-modelled Pro-
cess Templates. This project started in 1996 at University of Ulm with the goal to
build the next generation workflow technology for enterprise-wide and cross-enterprise
workflow management [MRDO3]. One important aspect of the ADEPT project is to
perform distributed workflow control in order to avoid overloading of the workflow
servers and of the communication network. To address the problems, ADEPT reduces
the system load by partitioning workflow definitions and by migrating the control of
workflow instances from one server to another during run-time, i.e., a workflow in-
stance may no longer be controlled by only one workflow server but by several shared
ones. When performing such a migration, a description of the instance states is trans-
ferred between different servers. This description contains information about activity
states as well as workflow relevant data. To avoid unnecessary message transfer be-
tween servers, ADEPT allows control of concurrent execution of workflow instances
independently from each other. Its communication actions can be further enhanced
if variable server assignment expressions are used. These expressions could be de-
cided at design-time, allowing the selection of a suitable workflow server to keep most
of the communication inside it, and require very limited additional effort at run-time.
Moreover, ADEPT supports both static and variable server assignments [BD99]. The
former means appropriate workflow servers are picked for various partitions of a work-
flow definition. In contrast, assignment of variable server allows for dynamic workflow
server assignment in real time, which may improve the system performance hugely.

2.2.3 Web service based approaches

As web services become more and more popular and widely used as organisational
interfaces, several approaches have been proposed to deploy web services based dis-
tributed workflow systems in which web services are clients and a centralised workflow
engine is used to control the whole process that is carried between different web ser-
vices. Two major approaches for such system are business process execution languages

Chapter 2. Literature Review and Problem Analysis 26

for web services (BPEL4WS)[BPEO3] and OWL-S[OWLO01].

2.2.3.1 Business Process Execution Language for Web Services (BPEL4WS)

Business Process Execution Language for Web Services[BPEO3] provides a means to
formally specify business processes and interaction protocols.

BPEL4WS provides a language for the formal specification of business processes
and business interaction protocols. By doing so, it extends the Web Services inter-
action model and enables it to support business transactions. BPEL4AWS defines an
interoperable integration model that should facilitate the expansion of automated pro-
cess integration in both the intra-corporate and the business-to-business spaces.

2.23.2 OWL-S

OWL-S is a OWL-based Web service ontology, which supplies Web service providers
with a core set of markup language constructs for describing the properties and capa-
bilities of their Web services in an unambiguous, computer-intepretable form. OWL-S
markup of Web services facilitates the automation of Web service tasks, including au-
tomated Web service discovery, execution, composition and interoperation. Following
the layered approach to markup language development, the current version of OWL-
S builds on the Ontology Web Language (OWL)[OWLO04] recommendation produced
by the Web-Ontology Working Group at the World Wide Web Consortium. OWL-S
consists of four main classes that specific services should instantiate. (Alternatively,
service providers may create subclasses of the OWL-S classes and instantiate those
instead).

e Service, with some basic concepts that tie the parts of an OWL-S service de-
scription together and holds a textual description of the service.

¢ Profile, which has properties used to describe what the service does; what it
provides clients, and what it requires of them.

e Process, which has properties used to describe how the service works, i.e. what
happens when the service is used. Services can be described as a collection
of atomic or composite processes, which can be connected together in various
ways, and the data and control flow can be specified.

e Grounding, with properties used to specify how the service is activated, includ-
ing details on communication protocols, message formats, port numbers, etc.

Chapter 2. Literature Review and Problem Analysis 27

2.2.4 Discussion

The above approaches put some distribution features on workflow systems and do bring
benefits such as improved system performance, increased robustness and enhanced
openness as they claimed. However, these approaches mainly address the concept of
distribution instead of decentralisation. A common characteristic of these approaches
is that they are still based on and confined by the client-server architecture. There-
fore, these approaches either tackle the problems partly, or need complicated languages
and/or complex algorithms to be defined. The remaining centralised services like cen-
tralised process instantiation and work assignment also make them relatively inflexible

in some application domains. In addition, the openness of system are barely concerned.
As a result, the problems that are relevant to the centralised distributed system archi-
tecture have not been or cannot be addressed completely if the whole workflow system
is built on a client-server architecture.

2.3 Workflow approaches based on multi-agent/peer-

to-peer platforms

The appearance of novel computing technologies such as multi-agent system have pro-
vided new platforms to support process management, while conventional distributed
workflow approaches fail to properly address the problems in the first group described
in Section 2.1, some limited research effort has been put into using these collaborative
and decentralised platforms to support workflow management systems.

2.3.1 Little-Jil

Little-JIL [AWSO00], a language for programming the coordination of agents is an ex-
ecutable, high-level process programming language with a formal (yet graphical) syn-
tax and rigorously defined operational semantics. Little-JIL is based on two main
hypotheses. The first is that the specification of coordination control structures is sep-
arable from other process programming language issues. Little-JIL provides a rich
set of control structures while relying on separate systems for support in areas such
as resource, artifact, and agenda management. The second is that processes can be
executed by agents who know how to perform their tasks but can benefit from coordi-
nation support. Accordingly, each step in Little-JIL is assigned to an execution agent

Chapter 2. Literature Review and Problem Analysis 28

(human or automated): agents are responsible for initiating steps and performing the
work associated with them. This approach has so far proven effective in allowing us to
clearly and concisely express the agent coordination aspects of workflow.

The main features of the language and their justifications are the following:

e Four non-leaf step kinds provide control flow. These four kinds are "sequential”,
"parallel”, "try” and "choice”.

e Requisites are a mechanism to add checks before and after a step is executed to
ensure that all of the conditions needed to begin a step are satisfied and that the
step has been executed correctly when it is completed.

e Exceptions and handlers augment the control flow constructs of the step kinds.

e Messages and reactions are another form of reactive control and greatly increase
the expressive power of Little-JIL.

e Parameters passed between steps allow communication of information necessary
for the execution of a step and for the return of step execution results.

e Resources are representations of entities that are required during step execution.
Resources may include the step’s execution agent, permissions to use tools, and
various physical artifacts.

2.3.2 PeCo

PeCo, which stands for Peer Collaboration, is proposed by Proteus Technologies, LLC.
It is a Java-based collaborative workflow management system that is composed of
peers/agents, core services, applications, and portable plug-ins and enables generic
system integration. It aims at decentralising workflow management using collabora-
tive technologies and concepts while providing a pluggable framework for combining
business process applications and human contributors.

In PeCo, workflow peers are responsible for a particular application role in a work-
flow's enactment. Core services, i.e., group coordinator factory, role coordinator, de-
ployment tool, data extractor factory and administrator, are used for system initiali-
sation and system administration. The important characteristics of the PeCo architec-
ture including agent/peer discovery, fault tolerance, and peer availability awareness are
supported by Jini infrastructure and services. Generally speaking, workflow peers join

Chapter 2. Literature Review and Problem Analysis 29

enactment groups through the interaction with group coordinators and then peers coor-
dinate and interact with private applications, user inboxes, and other peers to perform
workflow tasks, through the use of portable plug-ins.

2.3.3 An architecture based on WWPD and WWP

Another ongoing p2p-based workflow project is conducted at Manchester Metropolitan
University. This project shows a p2p architecture for dynamic workflow management,
which is based on concepts such as Web Workflow Peers Directory (WWPD) and Web
Workflow Peer (WWP)[FK]. The centralised feature of the system is called WWPD,
which provides a peer registration service and maintains a list of active peers and their
profiles. With support of this architecture, peers are allowed to register with the system
and offer their services and resources to other peers. During the execution of workflow
instances, Workflow process administration is achieved by employing a notification
mechanism. Itis claimed that such an approach is adaptive, easily scalable and flexible.

2.3.4 SwinDeW

SwinDeW[J.Y04] is a pure peer-to-peer based system for workflow management. It
removes both the centralised data repository and the centralised workflow engine from
the system. Workflow participants are facilitated by automated peers which are able to
communicate and collaborate with one another directly to fulfil both build-time and
run-time workflow functions. Moreover, SwinDeW is further extended to support
incompletely-specified processes in the decentralised environment. New technolo-
gies for handling incompletely-specified processes at run-time are presented. With
SwinDeW, performance bottlenecks in workflow systems are likely to be eliminated
whilst increased resilience to failure, enhanced scalability, better user support and im-
proved system openness are likely to be achieved with support for both completely-
and incompletely-specified processes. As a consequence, workflow systems will be ex-
pected to be widely deployable to real world applications to support processes, which
was infeasible before. Its extended system SwinDeW-S also supports web services
based service composition based on OWL-S[OWLO01].

Chapter 2. Literature Review and Problem Analysis 30

2.3.5 Discussion

The above approaches give up conventional client-server architecture and adopt a novel
and decentralised architecture to support workflow process management. Especially,
the few efforts that combine multi-agent computing paradigm with existing workflow
technology have opened new ground in workflow, and in the process support area in
general. The distinguished features of multi-agent computing paradigm make it suit-
able to tackle the problems that relate to the client-server architecture. These works
reveal the potential of multi-agent based workflow.

However, it is obvious from the literature review of such research on implement-
ing workflow in a multi-agent platform is still quite immature with many problems
addressed inadequately. The work reported on WWPD and WWP, is only some con-
ceptual ideas about linking workflow with p2p system without any concrete analysis
of the potential system. Approaches like PeCo, mainly concentrate on decentralising
workflow process instances in real time in order to remove potential performance bot-
tlenecks of system and offer enhanced system openness. However, some aspects that
are crucial to decentralised workflow enactment have not been addressed sufficiently
by these approaches. For example, it is not really clear that in these approaches how
the data of process definition are managed so that decentralised agents are able to ac-
cess task information in real time. Also, how the processes are instantiated are not
addressed by these approaches. Issues such as dynamic participants selection, work
allocation also have not been addressed sufficiently. Moreover, incomplete process
support in a decentralised environment is only addressed by SwinDeW.

SwinDeW addresses most of the above problems and offers a good platform for
purely decentralised workflow management. However, the problem for SwinDew is
that it builds everything from scratch. The language it uses is a process oriented lan-
guage in which agents’ coordinating mechanisms are embedded. It thus blurs the busi-
ness level requirements and system level requirements. When new technologies come
out, they can not be easily incorporated. It also ignores all the existing technologies
that are used for supporting workflow management system development and all the ex-
isting models that have been created for conventional workflow systems, which means
repeating established work. This is against the basic software engineering principle.
Little-Jil falls into the same problem category as SwinDeW.

Chapter 2. Literature Review and Problem Analysis 31

2.4 Research related to incomplete process support

Flexible workflow support is one of the important research areas in the development
of workflow management systems. But only a little has been performed so far due
to the difficulties inherited from the conventional workflow architecture and not many
approaches can be discovered in the literature.

241 WASA

WASA workflow [Wes98] is a research project developed at a German University,
Potsdam. This project tries to apply the workflow technology in the domain of scien-
tific application and engineering. A formal language, conceptual design, and prototype
implementation of flexible distributed workflow management systems based on object-
oriented middleware was developed in the WASA project, .

Flexibility is considered as an important research issue in WASA which uses a hier-
archical workflow execution approach based on a set of states and accompanying state
transitions of workflow instances. A composite activity can have a nested structure,
and activity models are created using sets of activity modelling operations. It is also
identified that some unpredictable aspects cannot be modelled completely at design
time. Therefore, incomplete process support should be provided as a new functionality
for a workflow system. Some operations are thus presented to help the workflow meet
the flexible requirements, which contain operations for user intervention and opera-
tions for dynamic change.

2.4.2 WORKWARE

WORKWARE[Hav01]is a project that aims at human-centred solutions. Havard be-
lieves that interactive enactment should be adopted more strongly as a framework to
support flexible workflow modelling. Incomplete workflow models are thus allowed to
emerge.

Their approach shows that the execution of a workflow model should be changed
from completely automated to interactive enactment based, and that interaction can
be a suitable framework for understanding and designing flexible workflow manage-
ment systems. Interactive enactment allows intervened control and activation of an
changing online model so that at the design time the model needs not be completely
accomplished and doesn’t has to be consistent. A general architecture of workflow

Chapter 2. Literature Review and Problem Analysis 32

management system is presented, which has three layers:

e shared workflow models,
e a number of model activators

e and an integrated user interface.

According to the architecture, the model activators adopt the shared workflow models
to provide connecting and activating services using the user interface. This research
also shows the WORKWARE prototype developed, which attempts to re-interpret the

concept of workflow to contain processes with emerging structure.

2.4.3 Pockets of Flexibility

Researchers at the University of Queensland, Australia propose a concept of "Pock-
ets of Flexibility’[SSO01, MS02]. Based on this concept, a process modelling and
enactment approach was presented, which allows capture of both complete and in-
complete process requirements using the same framework. Flexibility in this research
is regarded as the capability of the workflow process to be executed on the basis of
a loosely, or partially specified model, which means that the full specification of the
model can be made in real time, and may vary according to different process instances.
In order to provide a modelling framework that provides real flexibility, the issues that
affect the paths of different process instances together with the process definition are
considered. An approach that tries to make the flexible parts of the workflow process
is developed. With their framework, the concept called open instance that is made of
a core process and several pockets of flexibility are explained. The notation "pocket”
is a distinguished structure within the workflow model, which is consisted of work-
flow fragments, that can represent a single primary business activity, or a complex
sub-process; and a special activity called the build activity, which performs the rules
and constraints with which those fragments can be composed together for a running
instance. Thus, the build activity is the key point of the research and provides the func-
tionality to realise incomplete activities that are defined in the process model at design
time into concrete executable activities for different running process instances.

2.4.4 Discussion

From the above literature, we can see that research on the support of flexible workflow
is at an early stage. The existing approaches discussed above tackle the problems

Chapter 2. Literature Review and Problem Analysis 33

of flexible workflow support mainly from the model construction perspective but say
nothing from the system coordinating point of view. In addition, these approaches are
all based on conventional workflow architectures. Therefore, research in decentralised
workflow environments from the point of view of system coordination might help.

2.5 Requirement Analysis

After analysis of the existing problems in the conventional workflow area and review
of some of the current approaches for workflow management, we believe that solving
the problems that relate to centralised workflow architecture and incomplete process
support has become crucial for the development of future workflow management sys-
tem. Also, "industry trends such as virtual enterprises and flattening of organisational
structures indicate that the future image of business will include distributed groups of
collaborating teams that combine talents and skill sets to create new methodologies
and processes. Therefore, there is growing need for the next generation of workflow
systems to be built in a truly decentralised manner, providing support for both complete
and incomplete processes.”[Yan02a].

The emergence of multi-agent technology provides a good opportunity for the
decentralisation of workflow systems. The few efforts that replace the client-server
architecture with collaborative and decentralised framework of multi-agent/P2P plat-
form have shown potential benefits. More recently, multi-agent/P2P based workflow
systems have also been considered as one of the most important future directions for
workflow research[MS02]. Therefore, decentralised workflow that is based on a multi-
agent/p2p platform might be a valuable solution for future workflow process support.
However, to have a cost-effective and decentralised workflow system based on multi-
agent/P2P, we would expect to adopt the existing work that has been widely used for
conventional workflow systems as much as possible and although a centralised server
is expected to be eliminated, the services conventionally provided by the centralised
data repository and workflow server should remain as shown in Figure 2.1.

To achieve these requirements, a decentralised workflow system should:

¢ eliminate the centralised workflow coordinator to hide the private knowledge of
individual workflow participant,

e adopt a multi-agent based, loosely-coupled architecture and provide a flexible
framework for integrating workflow process applications and end users with the

Chapter 2. Literature Review and Problem Analysis 34

______________________________________ -
| Businesz Process Wodel . |
I Actvity \ I
| " | Worldlow
I Activity Activity [—™ I — Fnei
I \ / I
| Activity |
s]
Derive From
Agent

L e _I

I 1 Agent Agent

b

Agent Agent

Figure 2.1: From conventional workflow architecture to multi-agent architecture

needs of neither a centralised workflow engine for coordination nor a centralised
data storage,

¢ let the distributed nodes (participants) use data that are conventionally stored in
a centralised workflow engine when needed,

e distribute the services that are provided uniquely by a conventional workflow
server to different participants so that the functionalities of the system would be
the same after the change of system architecture,

e provide ways to help service providers and service consumers to communicate
directly to reduce the network traffic,

e try to adopt service-oriented applications, which is the current standard for open
application systems, as much as possible, and

e provide sufficient support for incomplete workflow process, which allows in-
complete processes to be designed at build-time, and instantiated and executed

at run-time.

In addition, from the engineering point of view, when attempting to achieve the above
requirements, it is wise to use existing technologies, tools and formal business process
models as much as possible to reduce repeated work. Itis also easier for the acceptance
of the new system by end users when the whole system is shifted from the conventional

Chapter 2. Literature Review and Problem Analysis 35

architecture to a new architecture seamlessly. As addressed in the literature review,
some existing multi-agent systems can satisfy most of the requirements listed above.
However, the weakness of almost all of the current approaches is that they ignore the
useful work already done on conventional workflow systems.

This research, therefore, builds a pure decentralised workflow management system
starting from existing business process models. It connects the workflow management
world and the multi-agent world together in several different ways. In the three layer
conceptual model given in Figure 2.2, we can see that the business process model and
interaction protocol may or may not be at the same conceptual level. A formalised
business process model that describes high level abstract information sits in the logic
layer. A more detailed process model sits in the implementation layer. However, the
interaction protocol for multi-agent system is always located in the implementation
layer. Therefore, there are three possibilities for the production of interaction proto-
cols for enacting a multi-agent based workflow management systems according to the
framework.

Informal Documents | = Business Layer

l Business Requirements

High Level Formal . - .
= i L ogic Laver —_— COoamon Ont olo v
Business Frocess Models B ’
F 3
l Operationsl Requirements
Detailed Formal Business Process

F 3
4

Models Implementation Layer

F
¥

Muliiagent Interaction Proiocel

L J

Formal

Function Libraries

System Code

Representations

and Systems

Figure 2.2: Three conceptual layers based framework

e Deriving the interaction protocol directly from the informal business require-
ments that is from the top layer in the framework.

e Deriving the interaction protocol from the formally defined abstract business
process model at the logic layer in the framework.

Chapter 2. Literature Review and Problem Analysis 36

e Deriving the interaction protocol from the formally defined detailed business
process model at the implementation layer in the framework.

Since formally defined business process models are widely used in conventional work-
flow management systems, the first possibility is ignored in this research and | focus on
the remaining two. | assume all the given formal business process models are correct
models and are coherent with the informal business requirements.

The key issues of this research are therefore:

e How to use the formal business process models that are defined at different ab-
stract levels for the construction of multi-agent system based workflow manage-
ment systems.

e How to make sure that a multi-agent system that uses the business process model
as its requirement behaves strictly coherently with the BPM.

e How to adapt a multi-agent architecture to solve some of the problems in con-
ventional workflow management systems, for instance, supporting incomplete
processes.

For highly abstract business process models, even for those that are formally de-
fined, it is not always possible to derive interaction protocols from them automatically.
Human intervention is needed. The first part of my research considers how to help the
human modeler produce the interaction protocols given a high abstract and formally
defined process model. A framework for this is defined and a temporal logic is used
as the main tool to ensure the functional equivalence between the input process model
and output interaction protocol of the framework.

For business process models that are defined at the implementation level in the
conceptual framework, because they normally give enough information for system im-
plementation, automatic derivation of an interaction protocol is possible. | use two
approaches to achieve this.

e One is to perform a mapping between the two languages that are used for de-
scribing business process models and interaction protocols.

e Another is to use the business process model (BPEL4WS) directly in the po-
tential multi-agent system to tell agents what they need to do and the interaction
protocol (LCC[Rob04a]) is also used to tell agents how they perform the required
tasks defined in the business process model.

Chapter 2. Literature Review and Problem Analysis 37

2.6 Summary

The motivations of this research have been proposed in this chapter. Some of the
main problems in conventional workflow research, such as bad performance, single
point failure of system, unsatisfactory system openness, and insufficient support for
incomplete process, as well as causes of these problems have been analysed. The
literature on these problems has been reviewed. Based on the problem analysis and
the given literature review, a multi-agent based workflow architecture is suggested to
support both stable and flexible workflow. Detailed requirements for multi-agent based
workflow have also been analysed. To conclude the chapter, we describe the new
platform and approaches that should be able to use existing workflow models and tools
as much as possible and also address possible solution for such requirements according
to a three layer conceptual framework.

Chapter 3

Using High Level Formal BPMs For
MAS Development

As discussed in chapter 2, using formal business process models as requirements to
establish the initial social order of multi-agent system can be performed in several
different ways. In this chapter, the framework for bridging formalised high level busi-
ness process models down to MAS interaction protocols (IPs) is presented[LGCBO04a].
Based on the three layer conceptual framework, high level business process models and
IPs are located at different conceptual levels (one is at the logic layer and one is at the
implementation layer) as shown in Figure 3.1:

Informal Documents P Business Layver

l Business Requirements

Logic Layer —»{ Common Ontology

3

l Operational Eequirernents

Implementation Layer

4
v
Function Libraries Formal
System Code - ' .
and Systems Representations

Figure 3.1: Bridging high level formal BPMs to IPs

38

Chapter 3. Using High Level Formal BPMs For MAS Development 39

This approach is based on linking requirements(business process models) to IPs by
matching the formal specifications derived from both of them to make sure that the IPs
designed manually meet the functional requirements strictly and to make sure they will
remain consistent as requirements change.

In section 3.1, we describe our framework in detail including all the components
in our framework and showing how they cooperate with each other in the IP modelling
task. Components of our framework are explained in section 3.2 and through to section
3.6. In section 3.7, we demonstrate the algorithm for verifying the two linear temporal
logic clauses derived. The algorithm for generating a concrete IP (Lightweight Coor-
dination Calculus) from a verified simple protocol properties checking (SPPC) model
is discussed in section 3.8. Based on the mechanism discussed in the earlier sections,
a case study is used in section 3.9 to illustrate how the framework supports real word
IP production. Implementation and discussion are given in section 3.10 and 3.11

3.1 Process Model Based MAS Interaction Protocol Mod-

elling Framework

Conventionally, a high level process model describes high level requirements whereas
a MAS protocol is a detailed system specification which should be consistent with both
business level and system level requirements. Thus, automatic workflow enactment by
a multi-agent system is difficult since high level process models don’t necessarily con-
tain any system level information. For example, in a business process model, there
might be an activity callegrint papers At requirement level, this only means some
papers need to be printed out, but says nothing about what actions should be performed
in unexpected circumstances, say, when a printer is out of paper. Normally, a MAS in-
teraction protocol is produced manually. How can we make sure that all the properties
defined in a process model are preserved by the MAS interaction protocol properly,
since writing a complex protocol by hand is usually error prone. One way of solving
this problem is to undertake model checking or simulation after the MAS protocol is
completed [WalO4a, NOWO5]. With the support of a formally specified business pro-
cess model, we may be able to verify the MAS protocol automatically and thus reduce
the effort and time that we normally spend during the model checking/simulation pro-
cess. We propose a process model based interaction protocol modelling framework
which is shown in Figure 3.2. There are six main parts of this framework as shown

Chapter 3. Using High Level Formal BPMs For MAS Development 40

Business Process Model

Formal Representation |

Formal Representation 2

pEay

S
Protweol Model For j ; - .
& | Produce > e Cenerate MAS Interaction Protocol

Hystem Modeller

Figure 3.2: BPM based interaction protocol modelling framework

below. We will go through each of them in later sub-sections.

e Business Process Model (depicting a high level business process)

System Modeller (person who builds the IP)

Property Checking Model (built by the system modeller)

MAS Interaction Protocol (define the manner of agents’ interactions)

Formal Representation 1 (linear temporal logic, FR 1)

Formal Representation 2 (linear Temporal logic, FR 2)

3.1.1 How our framework works for IP’s modelling task?

With our framework, the IP modelling task consists of the following steps:

e The business process model (high level formal representation) is loaded and then
all the temporal relationships of functional properties defined in it are translated
into a temporal logic (formal representation 1/FR1). These are the temporal
business requirements.

Chapter 3. Using High Level Formal BPMs For MAS Development 41

e The system modeller uses the process model (which in practice may be diagram-
matical, textual or formal descriptions) and produces a property checking model
for the MAS interaction protocol that is composed of sets of dialogues. The tem-
poral relations of functional properties defined in the process model contained
in each dialogue are translated into a temporal logic representation (formal rep-
resentation 2/FR2) later on.

e If FR1 implies FR2FR1 = FR2), then the system modeller will get some sug-
gestions from the system, which indicate proper actions that the system modeller
should take next or iIFR2 |= FR1 fails, suggestions from the system about why
problems exist(what is the discrepancy between temporal orders of properties)
so that the system modeller can fix the problem as early and quickly as possible.

e After property checking of the model is properly accomplished, it can then be
translated into a standard MAS protocol.

3.2 High level Process Model

A formalised high level business process model gives a logical description of business
processes that obeys and keeps track of business principles and requirements that have
been described in informal business requirements. It depicts the conditions and actions
of processes, the relationships and constraints between them and the data upon which
the processes operate. This formal representation can be used to check for errors in
the model, and it provides a basis for offering advice and a foundation for forecast-
ing organisational behaviour. Processes described at this abstract level are relatively
independent of the deployed technologies, including software and hardware systems,
and therefore are more robust compared to more detailed business process models (at
implementation level). Furthermore, the business process changes less rapidly than
the system specified to support that process. People usually don’'t want to re-write
their requirements only because of the adoption of new technology. Therefore, in our
framework, we use process models as a starting point to avoid unnecessary requirement
re-capture work when we adopt MAS technology for process management.

There are many high level business process modelling languages available to fit
different desires of different organisations. But some common features are required
by almost all business process modelling languages. A high level business process
model is normally composed of sets of activities, which define the basic tasks that

Chapter 3. Using High Level Formal BPMs For MAS Development 42

are undertaken in the process, and sets of links which define the different relation-
ships (sequential, parallel, etc) between the activities. Each activity has several prop-
erties: ID, Role, Input, Preconditions, Postconditions, Outputs, textual descriptions
which describe both functional informatiol), Role, Input, Predoncitions, Postcondi-
tions, Outpu for execution of the activity and non-functional informatiaextual de-
scriptiong for other purposes. The fundamental business process modelling language
(FBPML)[CBR98], for example, is such a high level process modelling language.

3.3 MAS Interaction Protocol

A MAS interaction protocol is the product of our framework, which is ensured consis-
tent with the given process model(describing the temporal business requirements). Al-
though any standard protocol language is applicable for this framework, the lightweight
coordination calculus(LCC)[Rob04a] is used for our work.

The Lightweight Coordination Calculus(LCC) is a language for representing coor-
dination between distributed agents. In a multi-agent system the speech acts conveying
information between agents are performed only by sending and receiving messages.
For example, suppose a dialogue allows an agent a(rl,al) (rl1 represents the role of the
agent and al is the ID of it) to send a message m1l to agent a(r2,a2) and agent a(r2,a2)
is expected to reply with message m2. Assuming each agent operates sequentially, the
sets of possible dialogue sequences we wish to allow for the two agents in the example
are as given below, where M2 Al denotes a message, M1, send to Al, and<4M2
A2 denotes a message, M2, received from A2.

a(rl,al):: (ml=-a(r2,a2)thenn? < a(r2,a2))
a(r2,a2) :: (ml < a(rl,al)thenn2 = a(rl,al))

We refer to this definition of the message passing behavior of the dialogue disthe
logue frameworklts syntax is as follows, whefermis a structured term ardonstant

Chapter 3. Using High Level Formal BPMs For MAS Development 43

Is constant symbol assumed to be unique when identifying each agent:

Framework := {Clause...}

Clause ::= Agent:: Def

Agent = a(TypelD)
Def := AgentMessagefthenDef

|Def orDef|Def parDef
Message ::= M = AgentM =- Agent— C
IM <= AgentM < Agent— C

C = TermCAC|CVC
Type ::= Term
ID := Constant
Constant ::= Term

All the notations in this thesis are defined using BNF meta symbols which is explained

in [MM96]. A dialogue framework defines a space of possible dialogues determined
by message passing, so the protocols allow constraints to be specified on the circum-
stances under which messages are sent or received. Two forms of constraints are per-
mitted:

e Constraints under which message, M, is allowed to be sent to agent A. We write
M = A «— C to attach a constraint C to output message.

e Constraints under which message, M, is allowed to be received to agent A. We
write M <= A « C to attach a constraint C to input message.

For the earlier example above, to constrain agent a(rl,al) to send message ml to
agent a(r2,a2) when condition c1 holds in a(rl,al) we could write=pd(r2,a2)—
cl.

An agent dialogue may also assuommmon knowledgeither as an inherent part
of the dialogue or generated by agents in the course of a dialogue. This knowledge
could be expressed in any form, as long as it can be understood by appropriate agents.
We recognise the importance of preserving a shared understanding of knowledge be-
tween agents but cannot cover this issue in the current paper. As a dialogue protocol
is shared among a group of agents it is essential that each agent when presented with
a message from that protocol can retrievestageof the dialogue relevant to it and to
that message [Rob04a].

Chapter 3. Using High Level Formal BPMs For MAS Development 44

Pulling all the above elements together, we describe a LCC dialogue protocol as
the term:

protocol(S F,K)

Where S is the dialogue state; F is the dialogue framework(sets of dialogue clauses);
and K is a set of axioms defining common knowledge assumed among the agents.

To enable distributed workflow agent to confirm to a LCC protocol it is necessary
to supply it with a way of unpacking any protocol it receives; finding the next moves
that it is permitted to take; and updating the state of the protocol to describe the new
state of dialogue. There are many ways of doing this but perhaps the most elegant way
is by applying rewrite rules (more detailed re-write rules can be found in [Rob04a]) to
expand the dialogues state. This works as follows:

e An agent receives from some other agents a message with an attached protocol,
P, of the formprotocol(S F,K). The message is added to the set of messages
currently under consideration by the agent-giving the messagdwé; set

e The agent extracts fron® the dialogue clause;, determining its part of the
dialogue.

e Applying the rewrite rules in [Rob04a] to give an expressiorCoin terms of
protocol P in response to the set of received messalygsproducing: a new
dialogue claus€,; an output message g8t and remaining unprocess messages
M (a subset oM;). These are produced by applying the protocol rewrite rules
exhaustively to produce the sequence:

M;,Mi; 1,2,0 Mi;1,Miy2,2,0i11 Mn_1,Mn,?,0n
—_—— _

(G

Ci+17Ci+1 Ci+2a "'7Cn—1 Cn>

e The original clauseGi, is then replaced if? by C, to produce the new protocol,
Bn

e The agent can then send the messages i@getach accompanied by a copy of
the new protocof?,.

3.4 System Modeller

A system modeller is someone who performs the IP modelling task based on the given
process models. He/She is responsible for understanding the process models and de-
signing appropriate IPs. Since itis difficult to have automatic translation from a process

Chapter 3. Using High Level Formal BPMs For MAS Development 45

model (at least for a high level abstract one) to an IP because the properties defined
in the process model is a subset of that in the IP as we noted earlier and the gap be-
tween the process model and the IP is too huge to be bridged, human intervention in
the process of IP modelling is crucial in this framework.

3.5 Property Checking Model

A property checking model is a product that is produced by a system modeller which
can then be translated to concrete IPs automatically. The reason why a system mod-
eller needs to first produce a property checking model rather than producing concrete
IPs directly is because not all the protocol describing languages could express proper-
ties or temporal relations between dialogues that are taking place among sets of agents
clearly. For instance, LCC describes dialogues based on the viewpoint of each agent,
which makes it very hard to discover the temporal orders of properties defined in re-
guirements that often specify temporal relations between agents. In order to facilitate
protocol property checking and separate the checking method from a particular proto-
col language, we define a simple MAS interaction protocol modeling language: Sim-
ple Protocol Properties Checking(SPPC) Language to help. A SPPC protocol model is
built based on the message passing taking place between two agents and the constraints
associated with the message. The temporal orders of messages can also be expressed
by SPPC.

e Representing a message in SPP@ny message defined in the SPPC model is
defined by a tuple:

— msg(ID,preconditions, message body, postcondition, sender, receiver)

where amessage bodgnly can be sent out from itsenderwhen itsprecondi-
tion holds and can cause certain effeptstcondition when it is received by its
receivetr

e Temporal order between messagesAthen Bneand3 occurs afteA. InvokgA)
means tha#\ occurs while being invoked, which is used to represent loops.

e Junctions: A junction is a control point in SPPC model. There are two types of
junctions?Par” and "Or” . The two junctions define a one-to-many relationship
between connected messages and indicate conjunction and disjunction points of
a SPPC model.

Chapter 3. Using High Level Formal BPMs For MAS Development 46

The syntax of SPPC is as follows:

SPPCModel ::= {Def,...}
Def := MessagiefthenDefDef orDeflDef parDe finvokgmid)
Message ::= msgmid, pre(C),mb(Term), postC), Agent Ageni
pre(C) = Termpre(C) A pre(C)|pre(C) Vv pre(C)
postC) := TermpostC) A postC)|postC)V postC)
Agent = sendefa(TypelD))|receivefa(TypelD))
C = Term
Condition := Term
mb(Term) = Term
Type = Term
mid ::= Constant
lid = Constant
ID := Constant

SPPC is developed only for the purpose of MAS protocol property checking. In other
words, it is not a protocol language that is intended for use by agents directly. However,
the SPPC protocol can be translated into concrete protocols that are described by other
formal protocol description languages such as LCC etc.

3.6 Formal Representations: FR1 and FR2

Formal representation 1 and formal representation 2 are linear temporal logic represen-
tations derived from the process model and property checking model respectively and
are identical in the phase of SPPC model verification. If they are temporally identi-
cal, we can conclude that the property checking model(system specification) is strictly
consistent with process model(requirement) functionally.

Linear temporal logic is a logic with a notion of time included. The formulas
can express facts about past, present, and future states. Definitions of sets of typical
temporal logic operators are given below:

Chapter 3. Using High Level Formal BPMs For MAS Development 47

¢ ¢ is true in all future moments

<S¢ | ¢ is true in some future moment.

O¢ | ¢ is true in the next moment in time

¢ UY | ¢ is true upuntil some future moment whehis true

Table 3.1: Basic Syntaxes of Linear Temporal Logic

3.6.1 Deriving representation 1 (FR1) from the process model

_ . ID, Rolg [Precondition,...Preconditiom], [Inputy, ..., Inputy],
primary_activity N N
[Output,...,Output], [Postcondition, ...Postconditiog)]
4
A= [(A", associatéRole Precondition)) A (AfLpassociatéRole Input))]

— O(AfpassociatéRole Postcondition)) A (A!_,associatéRole Out put)))

The notatiorprimary_activity above defines a primary activity in a process model.

¢ ID, role, preconditionsinputs postconditionsoutputsare properties associated
with it.

The symbol|} means that the term above it can be expressed by the temporal
logic clauses below it.

Predicateassociate(Role,Propertiedefines the association of role and proper-
ties in an activity.

A" passociatéRole Property) represents the association of an activity's prop-
erty and the role that should perform this activity.

For simplicity, all the activities from a business process model are represented
by the symbolA; wherei € [0,).

The temporal logic clause shown above indicates that the conjunctiprecén-
ditions and Inputsan always imply the conjunction @bstconditions and outputd
some future time.

Beside the temporal relations between the properties defined for individual activ-
ities, a process model also defines the temporal order of different activities. The no-
tationlink indicates how the activities from a process model are connected. Different

Chapter 3. Using High Level Formal BPMs For MAS Development 48

Link Notations Linear Temporal Logic Clauses
link(1D, Precedence.ink, A1, A2) AL NOA2
link(ID, or, A1, {A2, As, ...,A'}) ALAO(AV A3V ..., VA)
link(ID,and, A1, {A2,As, ...,Ai}) ALNOC(ANAZA ... AA)

Table 3.2: Representing link notations with linear temporal logic

link types are given in Table 3.2, suchRsecedencé.ink which represents a sequen-

tial time order between two activities. Table 3.2 also shows how the temporal rela-
tions defined by links in a business process model can be expressed as temporal logic
clauses.

The linear temporal logic clauses derived for representing the temporal order be-
tween two activities are normally in relatively complex forms as follows, for sim-
plicity, we use/A\[’ ;7 to represent the properties defined for an activity, where
assoicatéRole Propertieg:

(/\inzo?l - <>/\rjnzoij) /\<>(/\ck):0?k — <>/\|p:oﬂ)

In the above clause)\Lo? — O ALy P on the left hand side ofi& represents an
activity (A1) and \p_q % — < /\,p:OfH on the right hand side represents the activity

that is defined in a process model right afégrin a sequential order. However, the
above clauses can not be easily used for automated reasoning as basic units. In order
to facilitate the reasoning process, the rules shown in Figure 3.3 are used to re-write
the complex temporal logic clauses into simple ones. SymisodsdB; used in the

rules means the conjunctions of properties defined for process activities.

The rewriterule; is used to represent the sequential temporal relation between two
activities using the temporal relation between certain properties. The basic rationale
underlying this rule is that the temporal order between two activiti€§ on the left
hand side ot can be expressed by the time order betweemthputA postcondition
of former activity and thenput A preconditionof latter activity. The notatiohD; used
above is important for run time property checking. The order défined for the
clauses’IDs must be in a lexicographical order so that we know where to start when
we perform the property checking. When performing property checking, the three
clausegRR) derived usingule; on the right hand side o are checked one by one
strictly according to théD; associated with them. The original claude&R) will be
proved only when all of the three clauses are provae andrules defined are used
to represent the parallel and choice relations between sets of activities using relations

Chapter 3. Using High Level Formal BPMs For MAS Development 49

clauséIDg, P — &Py),

(P— OP)AO(P— OP3) =
clauséID1, P, — OP3)

(ruleq)

clauséIDg, ? — OB),
claus€ID1, P A OP,),
clause...),

(P — CP)ANO((Pr— OP) N ... N (P — OPan)) = | claus€IDp, Py A O Pap), (rulep)
clauséIDp;1, Py — OPy),
clause€...),
claus€IDon, Po — O Pop)

claus€IDg, ? — OH),
clauséID1, P, — OP,),
(P — CP)ANO((PL— OP2) V...V (P — OPon)) = | clausd...),
claus€IDp_1, Py — <OPop),

cIausQIDn, (fPo/\ <>T2) V..V (fPo A <>fP2n))]
(rules)

Figure 3.3: Rules for rewriting complex linear temporal logic clauses

between properties. The re-writing principles fate, andrules are the same as for
rules.

After performing the re-write rules, all the temporal logic clauses derived from a
business process model are of the following form:

Linear Temporal Representations:= {Clause...,Clausg
Clause = claus€ID,A\{LyR)|
claus€ID, ALy B — O ATLoP))|
clauséID, ALy B A O NLo Pj)]
clauséID, \ViLo(AlLo BACATLoP)))

P = associatéRole Property)
ID = startlendTerm
start = Term
end = Term
Role ;= Term
Property ::= Term

A business process model might also contain composite activities that are com-
posed of several primary activities by different links. Using the approach proposed
above, a composite activity can also be represented by linear temporal logic clauses.

Chapter 3. Using High Level Formal BPMs For MAS Development 50

Because after a composite activity is translated into linear temporal logical clauses, the
relationships between its sub-activities are processed in the same way that is used for
processing primary activities.

3.6.2 Deriving formal representation 2 (FR2) from the property check-

ing model

In a SPPC model, each message may have preconditions or post-conditions or both.
The time relation between them is clear. The preconditions of a message must hold
before the message can be sent out and the postcondition cannot effect until the mes-
sage is received. The relationship between two messages is exactly the same as the
relationship between two activities in a process model. Thus, a SPPC model can be
represented by temporal logic clauses using the following mapping:

msg pre([Ad, ..., Am]),mb([B, ..., Bn]), post[Cy, ...Cy]), sende(Role), receive(Role)
\
[A" associatéRole A)
ALoassociatéRole B)))
- v — O NI passociatéRole,C)
(AlLpassociatéRole, B;))

Msg =

One point that has to be mentioned here is the association of properties and roles in a
SPPC model. It is clear that the properties defined in the precondition of a message
should be associated with the message sender and the properties in postcondition of a
message should be associated with message receiver, whereas the properties defined in
the message body are associated with both message sender and receiver in the MAS
protocol. Therefore, in the formal representation derived from it, we have to specify
this explicitly to make sure that the right properties are associated with the right roles.

Table 3.3 shows how the temporal relations defined between messages in a SPCC
model can be expressed by linear temporal logic clauses.

SPPC links | Linear Temporal Logic Clauses
Msg then Msg Msg — CMsg
Msg par Msg Msg A Msgp

Msg or Msg Msg V Msgp

Table 3.3: Representing SPPC link notations with linear temporal logic

Chapter 3. Using High Level Formal BPMs For MAS Development 51

By applying the above rules, a SPPC model can be expressed by linear temporal
logic in following forms:
Linear Temporal Logic Representations= C
C C1 — OCy[MsgMsg — OMsg|
Msag A Msgp|Msa vV Msg

3.7 Performing Property Checking

3.7.1 Issues for role checking

After representing both process model and SPPC model in linear temporal logic clauses,
the relationships between properties can be derived and checked. However, another
issue we have to check in the process model when performing protocol modelling is
whether the right properties are associated with the right roles or not. In a conventional
high level business process model, every activity can only have one role performing
on it for a given business scenario. However, since a MAS interaction protocol model
describes extra system information, which may bring new roles in. Intuitively, if the
role specified in the predicatessociatein requirement is also specified in protocol
specification (or can be matched to the role specified in process model) and the proper-
ties associated with it are the same, we can conclude that the properties are associated
with right role in the final protocol. The assumption we make here is that an ontology
of roles is already available.

3.7.2 Temporal order checking

As explained earlier, both a business process model and a SPPC model can be ex-
pressed by temporal logic clauses. In principle, we can thus prove whether or not the
temporal relationships defined between the properties in a business process model can
be implied by those functional properties that are defined in a SPPC model.

In preparing a problem for our properties checking process, we need to divide our
knowledge into three parts:

e A set of clauses known as tlgwals which defines that goals that need to be
proved. For our problem, the goals are the linear temporal logic clau$es)
derived from business process model.

e A set of clauses known as tiset of support (or sos) which defines the impor-
tant facts about our problem. Every resolution step resolves a member of the set

Chapter 3. Using High Level Formal BPMs For MAS Development 52

of support against another axiom, so the search is focused on the set of support.
For our domain, the set of support it the linear temporal logic clauseky|.

A set ofrewrites applied on SPPC generated linear temporal clauses. Rewrites
are not equations, they are always applied in the left to right direction. The
rewrites that are used for our problem are as follows:

(
(
(
(

A— O(AL — CAY) —— ((ANAL) — OAY) (A=AL1B) (rulep)
A O(A — OAY) BT (A L O(AAAY)) (A=A, B) (ruley)
Ar— O((AaV Ag) — OAY)) T2 (A — O (A — OAY)) (A=AL1B) (rules)
AL — O((AoVAg) = OAY) B (A O(As - OA)) (A=Al R) (rules)

A—OA

Ruleg andrule; eliminate parts of the time relationships between several prop-
erties. IfA; appears afteA andA, appears aftef;, by applyingrule;, we can
conclude that after we get property we will get propertyA; andA; in some

future time. On the other hand, by applyinge,, we can conclude that after we

get propertyA andA;, in some future time we will have properfys. These two

rules are used to deal with the circumstances where the conjuncted properties
for a activity defined in a business process model are used separately in SPPC
model for different messages.

For example, if two propertieg\@ndA;) are defined for a primary activity as in-
puts and a propert#. is defined as its output, based on our proposed translation
principle in previous sections, we will get:

clausélDj, (AANAL) — OA)

However, in a manually produced SPPC model, these three properties might be
used in the manner:

msd pre(]...]),mb(A), post([...]),sendet...), receivel

then

msgmsd pre([...]),mb(Ay), post([...]),sendet...), receivel
then

msd pre(]...]),mb(A2), post(|...]),sendef...), receiven

which after translation, would give us two clauses as follows:

claus€IDi, A — (A — Ap))

Chapter 3. Using High Level Formal BPMs For MAS Development 53

By applyingRule, we could say that the functional properties are used consis-
tently in SPPC with way that they are used in a business process nitalel.
andRule; are used to deal with the properties’ roles checking.

The algorithm for the functional properties based checking is given in Figure 3.4,
which works in the following manner:

¢ All the clauses(goalferived from a business process model are processed one
by one based on thelbs’ order.

e If a clause is in a form ofoal — <goab, goak will be proved first using the
clausederived from the SPPC model and so willgpeab if goal, is proved.

e If a clause is in a form of/ ygoal, all thegoal will be proved one by one
using theclausederived from the SPPC model.

procedurepropertiescheckingsos,goal
inputs: soslineartemporal logic clauessderived fromaSPPC model
goal,alistthat storeslineartemporal logic clauessderived fromabusienss process model
output: true,false
while (goalis notempty
fetchthe firstelemefgoah)
if (goak isinthe formof(goab — <goak)or (goah A Ggoak))
prove(sosgoak,goak),
if (goabhis proved
provegsosgoak, goak)
if (goakis proved
reture true
else
return false
else
return false
elseiflgoak isinthe formy/{' goal
for (iinn)

propertiescheckingsos goat)

Chapter 3. Using High Level Formal BPMs For MAS Development 54

procedureprove(sosgoal;,goab)
inputs: soslineartemporal logic clauessderived fromaSPPC model
goah,isinthe formofA[' jassociatéRole R)
goab,isusedtode fendthe time order between prope(figs, associatéRole Q;))
if (goah # goab)
while (Rin Al ,associatéRole B) are not all proved
if (sos= P)&& (sos any Qingoab)
continue
else
return false
else
while (Qjin AL yassociatéRole Q;) are not all proved
if (sosk= Q)
continue
else
return false

Figure 3.4: Basic algorithm for property checking

3.8 Generating a MAS Interaction Protocol (LCC) From
a SPPC Model

Although the main components of both SPPC and LCOnagesages and constraints
they are built on different concepts. With LCC, the MAS interaction protocol is defined
from the views of different agents where each agent has its own behavior definitions,
whereas with SPPC, the protocol model is built based on the message passing, which
means that the SPPC model is viewed from the aspect of messages but not agents.
However, from the notations of SPPC and LCC we can see that SPPC is eventually
a subset of LCC, so a SPPC model does contain all the information that we need to
construct a corresponding LCC protocdlessage body, sender and receiviem
SPPC model together indicate the message being passed and direction of it in LCC.
Junctionsn SPPC can be used as L@Perators

The notationinvokein a SPPC model indicates the ending point of the loop and
the parameter of it indicates the starting point of that loop. When translating a SPPC
model with loops to a LCC protocol, all the messages betwaarkeand the message
being invoked can be extracted to define the behaviours of a new role for loop, as long

Chapter 3. Using High Level Formal BPMs For MAS Development 55

as the message invoked is not the first message defined for that agent.

One important issue about SPPC modelling is that role dependency between SPPC
clauses must be addressed. Role dependency means that two adjacent SPPC clauses
connected by ghenoperator need to have a same role defined in them if such a SPPC
model is expected to be used for the generation of a LCC protocol as shown below:

msgMID, mk(...),sendefa(Role,ID)), receivefa(Role, D1)))

then
msgMID1,mi(...),sendefa(Role;, ID3)), receivefa(Role, 1D)))

In contrast, the clauses shown below are not translatable, although they might be ratio-

nal:
msgMID, mb(...),sendefa(Role;, 1D1)), receivefa(Role, 1D2)))

then
msgMID,mby(...),sendefa(Role;, ID3)),receivefa(Role;, 1D4)))

The issue of role dependency arises due to the coordinating mechanism of LCC and
the potential system architecture that we are trying to achieve. For agents that use a
LCC protocol for coordination, as we have explained, they have no knowledge of what
the coordinating process is until they receive the LCC protocol that contains the states
of the whole system. If two messages are sent by two agdn&? to two different
agentsa3, a4 at the same time respectively, two separate LCC protocols containing
different system states are sent out also. Thus it is quite hard to keep track on the
whole system states later on unless there is a centralised coordinator which is what we
try to eliminate.

To deal with such cases, the SPPC model has to be pre-processed before being
translated to the LCC framework by correcting the role dependencies. For example,
after pre-processing, the above SPPC clauses become:

msgMID, mK(...),sendefa(Role,1D1)),receivefa(Role, 1D>)))
then
msgMID2, mirun _this),sendefa(Role, 1D>)), receivefa(Roles;, 1D3)))

then
msgMID,mhy(...),sendefa(Role;, ID3)),receivefa(Role;, 1D 4)))

The messageun _this defined above only serves as a connector. Thus, each message
has role dependencies with its adjacent siblings. For different SPPC junctions, the pre-
processing mechanism is different, the algorithm for pre-processing a SPPC model for
later translating is given in Figure 3.5

Chapter 3. Using High Level Formal BPMs For MAS Development 56

proceduresequenceprecessofMi, M2, M3)
inputs: M1, M5, two element conencted b{ter’ operator
outputs: M3, a processed model withall of itsclausesrole dependent oneach other
if (M1isamessag&& (Mzisamessage
if (M7 and Mpdoesrt contain at least one samergle
generate anew messdgdeM) usingrecevier o f Mas senderand sender o Llds receiver
M3 = M;thenTM thenM
else
M3 = M;ithenM
elseif(atleast oneof Mand Myisaor/par structure
or/par_precessofM1, Mz, My)
M3 = Msthen M
elseif(M;isamessag&& (Mzisa”invokemid)”)
fetchthe SPPC messdd#,) thatidentified by mid
if (agentsinvolved inMdort containthe senderof M
insert anew messafids) between Mand invokémid)
usingreceiverof Masitssenderand sender o {ylslsitsreceiver
M3 = Mithen Mstheninvokémid)
procedureor/par_precessofMi, Mz, M3)
inputs: M1, M2, two SPPC element which canbe amessage of parstructure
outputs: M3, a processed SPPC elementwithall of its clausesrole dependent oneach other
if (Mpisamessage&& (Mzisaor/parstructurg
processmsgor/par(My, Mz, M3)
if (M1isaor/parstructurg&& (Mzisamessage

processor/par_.msgMj, Mz, M3)
if (Myisaor/parstructurg&& (Mzisaor/ parstructurg
processor/paror /par(Mi, M2, M3)

procedureprocessmsgor/par(Mi, M2, M3)
inputs: M1, M2, two SPPC elementswhichisamessage and parstructure re pectively
outputs: M3, a processed SPPC element fronwithall of itsclausesroledependent oneachother
initiate alist(L)
for (the firstelemer{€) of eachbranchof W)
if (Mpand E doesftcontainat least one samergle
generate anewmessdadeM) usingrecevier of Mas senderand senderof E asreceivel
putTMinL
Mz =M,
while (Lisnotempty
fetchthe firsteleme(is)inL
M3z = MathenMs

Chapter 3. Using High Level Formal BPMs For MAS Development 57

procedureprocessor/par-msgMs, M2, M3)
inputs: M1, M2, two SPPC elementswhichis g/qrar structure and amessage re pectively
outputs: M3, a processed SPPC element fromwithall of its clausesroledependent oneachother
for (eachbranckB)of M)
pre— precessofB, B1)
retrievethelasteleme()of By
if (Eisnotainvokémid))&& (E and Mpdoesrt containat least one samergle
generate anewmessadeM) usingrecevierof E assenderand sender gflslreceiver
replaceE inBwith”EthenTM
putB;inL
fetchthe firsteleme(is)inL
M3 =Ms
while (Lisnotempty
fetchthe firsteleme(ig)inL
M3z = Mzor/parMg

procedureprocessor/par_or/par(M1, M2, M3)
inputs: M1, M2, two SPPC elementswhicharetwg gar structures
outputs: M3, a processed SPPC element fromwithall of itsclausesrolede pendent oneachother
initiatetwolistgL,L1)
for (eachbranckB)of M)
pre— precessofB,B;)
retrievethelasteleme(E)of By
for (the firstelemer(E;) of eachbrachof)
if (Eisnotainvokémid))&& (E and | doesrt containat least one samergle
generateanewmessadeM) usingrecevierof E assenderand sender gé&&receiver
put TMinL
Mg =E
while (Lisnotempty
fetchthe firstelemefis)inL
Mg = MgthenM;
replace E withMin By
putB;inly
fetchthe firstelemefiBy)inLy
|V|3 = Bz
while (L1 isnotempty
fetchthe firstelemef(Bs)inL
M3 = Mzor/par B

Figure 3.5: Algorithm for pre-processing a SPPC model

Chapter 3. Using High Level Formal BPMs For MAS Development 58

The underlying principles of the above algorithm are:

1> If two SPPC messages (A and B) are connected by "then” and they don't have
at least one same role defined, then a new message (C) is inserted after A and
before B AthenCthenBusingrun_this as its message body , the receiver of A
as its sender and the sender of B as its receiver.

2 > Ifa SPPC message (A) and a SPPC or/par structure (B) are connected by "then”,
the first basic SPPC messagg(of each branch of B is compared with A and
according to the roles defined in them, a list of new SPPC messhgs(e
generated and put after AthenMthen...thenM,).

3> Ifa SPPC or/par structure (A) and a SPPC message (B) are connected by "then”,
the last basic SPPC messdggf each branch of A are compared with B and
according to the roles defined in them, a list of new SPPC messhgsale
generated and put aft€; (CithenM,) and all the branches of A are also pro-
cessed using the algorithm.

4> If a SPPC or/par structure (A) and a SPPC or structure (B) are connected by
"then”, the last basic SPPC messdggpf each branch of A are compared with
the first basic SPPC messad®)(of each branch of B and according to the roles
defined in them, for eadin G;, a list of new SPPC messag®4,) are generated
and put afteC (CthenMthen...thenM,).

| e e ————— -1
1

; *o—@ > @—r i@

i:-: ----------- ; _;:'-; ------ !._._._ FREERIRIERIRIERRE
e —ie —> e—a0—®

: L4 @

E .E E o— :‘é :
T s
E @ i.\ E i .—P.’,,__}-H:ii :.\ E
.\‘.—».7,.::».\‘.—» +‘:-—»§.7.'

Figure 3.6: Inserting connect message for different SPPC structure

Chapter 3. Using High Level Formal BPMs For MAS Development 59

The diagram shown in Figure 3.6 illustrates the above message insert principles,
where solid cycles represent the existing SPPC message node, arrows rdprasent
operator and dashed cycles represent the new message nodes that need to be inserted
in the SPPC model.

In LCC, the only way to represent loops is through use of a(Role,ID).

a(RolelD) :: M = a(Role, ID1)thendRolg D)

For example, the above LCC clause represents a repeated message sendigdlerD)
to a(Role, ID1). In this way, everything defined fa(RolgID) is executed repeat-
edly. However, if we only want parts of the definition of an agent get executed in a
loop manner, a new role must be invented for this purpose as follows:

a(RoleID) :: M = a(Role, ID1)thengloop(Role), D)

a(loop(Role),ID) :: M1 = a(Role, ID3)

What the above LCC protocol means is that ag€Rble ID) keeps sending a message
M; to agenta(Role, ID>) after it sends a messadeto agenta(Role,1D;). The role
a(loop(Role),1D) is purely defined for the purpose of repeated message sending of
M.

In a SPPC model, we use the combinationnvbke mid) andmsgmid, ... to rep-
resent a loop, which has to be translated into a LCC compatible fashion. The loop
processing algorithm in Figure 3.7 shows how to pre-process the all the loops defined
in a SPPC model.

procedureprocessloopsSM,SM,)
inputs: SM,anoriginal SPPC model
outputs: SM,,aSPPC modelthatiswithall of rolesthat arerelativetoloopsreplaced
findthe first SPPC messagé;) that leadstoaloopand the involmid) that pointstoit
extractthe SPPC mod@M,;) betweenthem
alltheroleqa(R,1D))defined in SMhavetobereplaced witi{bbop(R), D)
processloopgSM;, SMy)

Figure 3.7: Algorithm For pre-processing all the loops defined in a SPPC model

The algorithm for generating a LCC protocol from a processed SPPC model is shown
in Figure 3.8.

Chapter 3. Using High Level Formal BPMs For MAS Development 60

proceduregeneratof SM, List)
inputs: SM aSPPC modelthatisusedtoderivealLCC protocol
outputs: List,aLCC protocol list that storesgenerated LCC protocol fromthe given SPPC m
extractalltheagent®(R, j¢,1D;)) defined inthe SM and puttheminalistZ = [a(R;,ID;j)]
while (Lisnotempty
fetchthe firsteleme(&a(R;,ID))in L
generatéa(R;,1D), SM, LM;, List;)
put LM inList
List = merge Listand List
proceduregeneratéa(R;,1D), SM,LM;, List)
inputs: a(R;, ID),isanagentthat we are goingtogenerate aLCC protocol for
SM,aSPPC modelthatisusedtoderivealLCC protocol
outputs: LM;,aLCC protocol thatisgenerated fromthe given SPPC model flRo&g, D)
List,aLCC protocol listthat stores generated LCC protocol fromthe given SPPC mq
if (SMisinthe formof SMDP SM, 1)
generatéa(R;,1D), SM, LM, List)
generatéa(R;,ID),SM1,LMp1,List)
if (LMp = null && LMp1 # null)

LMj = LMny1
elseif(LMp # null && LMp;q = null)
LM; = LM,

elseif(LMp # null && LMp11 # null)

LM; = LM OP LMq+1
elseif(SMisaSPPC messadé;))

if (M containsR)
LM; = LM,

elseif(SMcontainsaéoop(R),ID))
LM; = a(loop(R),1D)
extract the invok@mid) that pointstoM and extractthe
SPPC model defined betweeninvoke and3m)

odel

del

generatofSM, LM;, List)

Figure 3.8: Algorithm for deriving a LCC protocol from a SPPC model

Chapter 3. Using High Level Formal BPMs For MAS Development 61

3.9 A Simple Case Study

We will use a simple example to illustrate how our framework is used to verify an
IP protocol(LCC) based on a business process model. The business process model in
Figure 3.9 shows an very simple printing process from the view oBtilesrole. The

Role: Sales

> Input SA1ES CNTET | o Print sales order _p

Aq,salesInput Sales Ordepreconditiorf[getInputX)]),input([]),
output([saleOrde(X)]), postconditior[]) >
Ay, salesPrint Sales Ordempreconditior{[validInput(X)]), input(]]),
output([]), postcondition|printed(saleOrdefX))]) >
link(precedenceink, start, A;)

link(precedencdink,Ar,A)

link(precedencéink, Az,end)

primary_activity <

primary_activity (

Figure 3.9: Sales order printing process

formal representation of the business process model is defined above. There are two
primary activities in this model which areput salesorder andprint_salesorder and
each of them has several functional properties as shown in table 3.4. The business

Property Input Sales Order Print Sales Order
Precondition | getinput(X),validinput(X) null
Input null saleOrder(X)
Postcondition null printed(saleOrder(X)
Output saleOrder(X) null

Table 3.4: Functional Properties of Primary Activities in Sales Order Printing Process

process model is represented as follows using linear temporal logic: A possible multi-

associatésalesgetInpu(X)),

associatésalesvalidInput(X))
associatésalessaleOrde(X))
associatésales printed(saleOrdefX))),

clausdAq, associatésalesgetinpuiX)) A associatésalesvalidInput(X)) — <associatésalessaleOrde(X))),
clausdAy, associatésalessaleOrdefX)) — <Cassociatésales printed(saleOrde(X)))),

Chapter 3. Using High Level Formal BPMs For MAS Development 62

TR
’J-| wetlnput(X) 1
saleCrten X F=-validinput) :

I
, % piliministrslor
b

ask¥ForHelpi M j=-Ermon ¥

H
4

E!l

E:I“

| N

!
!
I
|
i

1,

o~
printed{suleOrder X) m
[}

!

#

—%

failedisaleOrden X))

l

response X)

o
.4:——&————.

—aF

Figure 3.10: AUML model for sales order printing process

agent platform that is used to realise the above business process model is illustrated
in Figure 3.10 using an AUML model which expresses the message passing sequence
between several agents.

The SPPC model for this scenario is given below. It might be noticed that in the

msgm.1, migetinputX)),sendefa(il, Inputdevicg), receivefa(sl, Sales))

then
msgm.2, pre(validInput(X)), mb(saleOrde(X)), sendeta(sl, Sales), receivefa(pl, Printer)))
then
msgm.3, mb(printed(saleOrde(X))), sendefa(p1, Printer)),receive(a(sl, Saleg))
or
msgm.4, pre(err(Y)),mi(askForHelgHel p)),sendefa(pl, Printer)), receivefa(al, Admin)))
then
msgm.5, mh(responséHelp)),sendefa(al, Admin), receivefa(pl, Printer)))
then
msgm.6, mh(failed(saleOrdefX))),sendefa(pl, Printer)), receivefa(sl, Sales))
then
invok&m.2)

SPPC model shown above there are several agents which are not defined in the example
business process model. The reason for this is that when we build a multi-agent system
we try to use the existing agents as much as possible instead of building new ones
to fit the input business process models every time. Thus, we have to consider the
availabilities of the agents we needed and the capabilities of those agents. The scenario
we try to handle is that all the agents that coordinate to perform the system are already
available. In our example, ageritgutdevice, Sales, Printer, Admame picked up by

MAS protocol modeler to perform the intended business process model. The linear
temporal logic clause derived from the above SPPC model is:

Chapter 3. Using High Level Formal BPMs For MAS Development 63

(associatéinputDevicegetinpuiX)) v associatésalesgetinput{X))) — <

(associatéSalesvaildInput(X)) — <(associatéSalessaleOrde(X)) v associatéPrinter, saleOrde(X)))) — <

(associatéPrinter, printed(saleOrdefX))) v associatéSalesprinted(saleOrde(X)))) — <
associatéPrinter,askForHelgHelp))v

associatéAdmin askForHelgHelp))) -

(associatéAdminrespong@iel p)) v associatéPrinter,responséHelp))) — <

((associatéPrinter, failed(saleOrdefX))) v associatésales failed(saleOrde(X)))) — <)

associatéSalessaleOrde(X))V
associatéPrinter, saleOrde(X))

associatéPintererr(Y)) — < <

< associatéSalesvalidInput(X)) — < (

The linear temporal logic representations derived from the example business pro-
cess model and SPPC model are then matched using the algorithm proposed in section
3.7. The final LCC protocol derived from SPPC model after the verification is as fol-
lows:

a(i1,Inputdevice :: getinpu(X) = a(sl,Salegthendil, Inputdeviceg.
a(sl,Sales :: getinpuxX) < a(i1,Inputdevicgthengloop(X), Sales.

a(loop(X),Sales :: saleOrde(X) = a(Printer, p1) < validInput(X)then
(printed(saleOrde(X)) < a(pl,Printer)thengsl, Saleg) or
(failed(saleOrde(X)) < a(pl, Printer)thengloop(X), Sales) '

a(pl,Printer) :: saleOrde(X) < a(loop(X), Salegthen
printed(saleOrde(X)) = a(loop(X), Salegor
askForHelgHelp) = a(al,Adminthen
responséHelp) < a(al, Adminthen
failed(saleOrde(X)) < a(loop(X), Salegthen& pl, Printer)

a(al,Admin) :: askForHelgHelp) < a(pl, Printer)thenrespongglel p) = a(pl, Printer)

3.10 Prototype Implementations

The prototyping system for supporting the proposed framework is demonstrated in this
section. It helps system modellers to build SPPC models, check the relationships of the
functional properties defined in the input process model and then translate the SPPC
model to LCC protocol automatically. The system consists of three parts which are
discussed in the following sub-sections.

Chapter 3. Using High Level Formal BPMs For MAS Development

3.10.1 SPPC modeller

64

SPPC modeller is used for building a SPPC model. It provides a graphical interface,

by which a SPPC model can be build using graphical notation and then can be trans-

lated into linear temporal logic clauses for verification purpose using verifier or can be

translated into a concrete LCC protocol using LCC protocol generator. The snapshot

of itis given in Figure 3.11. This unit is adopted from the general graphical modelling

tool INGENIAS http://ingenias.sourceforge.net/

File Edit Project Tools

rProject view:
7 Project

& SPPC

[) Y

Propertis view
[ﬂ Messages
? I Message ID:m_B
[} Message Body: failed(saleOrd
D Message Sender alprinter pl]:
D Message Receiver afsale:
P 3 Message ID:m_5
[Message Body: reponse(H) |-
D Message Sender. a{admin,al];
D Message Receiver: ajprint
P [J Message ID: m_4
[message Body: askForHelp(H:
[} Precondition: er(E) :
[Message Sender. aprinter,p1];
D Message Receiver afadmin,a|;
? [J Message ID:m_3 ;
[Message Body: printecisaleOf
D Message Sender. alprinter,pl
D Message Receiver alsales s
? [JMessage ID:m_2
4 bt 1o Bache 2al

(=2

System Suggestions

- [=]]
2¢|[o]s]a] [a]s]]
1 8vec |
start Edit m_1 %)
Message I0: m_1
o ‘14' Ml Message Body: getinput(®)
N] Precondition:
I Effects: é
Y Sonser [sosiovees |
ny 2 Message Receiver: alsales,st)
Invoke ‘L Ok ’m
OR_Start
/ \ Invoke
3
nr 4
e 5
e
6
SPPC |

Figure 3.11: Business process model based MAS protocol developing interface

Chapter 3. Using High Level Formal BPMs For MAS Development 65

A SPPC model generated as a graph by this definition tool can be converted into
XML format and saved as an XML file automatically as shown in Figure 3.12

2 E:\code\IDK\sppc.xm - Microsoft Internet Explorer B EE
I
Ll

File Edit Wiew Favorites Tools Help

d E] ;; /-‘search 5. Favorites <) - ',_‘, 9] - @& E H ﬁ 3

Address |] ExcodetIDKlsppe.sanl v Bl ek 2 - MABEAT | Qees -
(1) To help protect your security, Internst Explarer has restricted this Fle From showing active content that could access your computer, Click here For options... X
= TE="ERTENSTON FIOUUTE FOTier vaie="gxe oup="FOlIer Where the T0E W CICSTTER ~

modules" /=
</projectpropertiess
=leafpackages />
- <ohjectss>
- <object id="8tart" type="ingenias.editor.entities.Goal">
<mapproperties />
</objects
- <object id="m_1" type="ingenias.editor.entities.Goal">
=messagebody=getInput{*X')</messagebody >
<sender=alinputdevice,il)</sender>
<receiverza(sales,s1)</receivers
<mapproperties />
</objects
- <object id="m_2" type="ingenias.editor.entities.Goal">
<messagebody-saleorder('X')</messagebody>
<precondition=validIinput{"X")«/precondition:
<sender-a(sales,s1)</senders>
<receiver=a(printer,pl)</receivers
<mapproperties />
</object>
- <object id="m_3" type="ingenias.editor.entities.Goal">
<messagebody>printed{saleOrder("X'))</messagebody:
<sender=alprinter,pl)=/sender>
<receiver-a(sales,sl1)</receivar:
<mapproperties /»
</objects
- <object id="Invoke" type="ingenias.editor.entities .Goal">
<mapproperties /=
</objects>
- <object id="m_4" type="ingenias.editor.entities.Goal">
<messagebody>askForHelp("H")</messagebody >
<precondition=err{'E')</precondition>
=sender=alprinter,pl)</sender>
e e e s e

13} Done ' My Computer

Figure 3.12: XML representation of a SPPC Model

3.10.2 Verifier

Verifier is responsible for matching the two sets of linear temporal logic clauses de-
rived. It takes a business process model and a SPPC model as its inputs, translates
them into linear temporal representations respectively and then tries to match them.
The matching process is carried by automated theorem proving. We use SISCtus Pro-
log (http://www.sics.selisl/sicstuswwwi/site/index.html) for the implementation of the
verifier. All the linear temporal logic clauses derived from a business process model
and a SPCC model can be directly mapped to the facts in prolog. The verifier interacts
with the SPPC modeller using SISCtus Jasper. Figure 3.13 shows the verification of
the SPPC model that we used in case study section.

Chapter 3. Using High Level Formal BPMs For MAS Development 66

£ Project:E:\codeNDKisppc. xml

File Edit Project | Tools

rProject view: LCCGenerator

o dle|[nfeju|[a]a]a]
T Froject PerformV
F sprC 3 || () SPPC |
% Start
g "
y
o 2
D v 8
[Messages Invake
@ T Message ID:ri_6 (@]
D Message Body: failed(sale 0|
OR_Start
D Message Sender: aiprinter,p
D Message Receiver alsales,; / Invoke
@ [Message ID:m_5
D Message Body: reponsei’H) Iy
D Message Sender: a(admina
SPPC
D Message Receiver. alprinter,| ‘
@ [Message ID;m_ System Suggestions
[Message Body: askForHelp(| Perfarm Yerification
[Precondition: er(E) Verifitation i5 done.
D Message Sender: afprinter,p The SPPC model ig functional conformed to the orginal businese procese model.
D Message Receiver. aladmin,|
@ I Message ID:m_3
D Message Body: printedisale
[Message Sender: alorintern
D Message Receiver. alsales,
@[Messaoe ID: m_2

Figure 3.13: Verification of a SPPC model

3.10.3 LCC protocol generator

The LCC protocol generator is used to generate LCC protocols from given SPPC mod-
els. After a SPPC model is verified by the verifier, it can be translated automatically to
a LCC protocol. The snapshot of LCC generator is shown in Figure 3.14.

3.11 Discussion

With our framework, the temporal relationships of all the functional properties defined

in a business process model can be checked when those properties are used in the
property checking model. Therefore, the system modeller no longer needs to worry
about what process the functional properties are associated with, but instead, he/she
only needs to care about the temporal relations between the properties being used in
his/her protocols. Although in the final protocol it is still hard to get an overall view of

the business transactions defined in the given process model, the protocol does perform
the task that the process model intends to do. Thus high level business process models
can be bridged down to IP and can lead to many totally different IP by different system
modellers according their preferences.

Chapter 3. Using High Level Formal BPMs For MAS Development 67

kb - [=]x]

File Edit Project Tools

rProject view:
=7 Project

& GPPC

dJe|[njajul[a]a]a]

|(X] SPPC |

o]
O]

£ LCC Generator
LCC Generator |

EEX

Import Source SPPC Model
Import a BPELAWS model
Read a LCC File

Save LCC Protocol

Exit

P v
[Messages
@ [Message ID: m_|

[message Bo
[} Message Sel
[} Message Re
@ [Message ID: m_t
[message Bo
[message Se
[} Message Re
@ [Message ID: m_;
[} Message Ba
[Precandition:
[} message se
[} message Re
@ [CJ Message 1D:m,
D Message Body: printedisale
[Message Sender: alorintern
D Message Receiver. alsales,
@ [Message ID: r_2 5
& T hpssane 0 m

Figure 3.14: LCC protocol generator

With our framework, the process model is used as requirement and all the prop-
erties defined in it will be verified computationally. It helps the system modeller to
generate the right design at the end of the IP modelling process. Thus, in the late test-
ing phase, we only need to concentrate on system level errors without considering any
problems from the requirement level, which largely reduces the amount of properties
that need to be checked and thus promotes the efficiency of IPs construction.

In an evolutional environment (where requirements change), our framework has
an advantage over other software engineering approaches. Any change to the require-
ments(process models) will be immediately reflected in the temporal logical represen-
tation so that inconsistencies between the new process model and old property check-

ing model can be discovered and fixed by a system modeller according to the system'’s
suggestions.

3.12 Summary

In this section, We propose a framework for modeling multi-agent system protocols
starting from a high level process model. With our framework, a process model can
be used as a base for protocol properties’ verification. A simple language SPPC is de-
fined for property checking purposes and any protocol model defined by SPPC can be

Chapter 3. Using High Level Formal BPMs For MAS Development 68

translated into an existing protocol language(in this case LCC). Using our framework,
much effort can be saved in the process of MAS protocol modeling since requirements
level errors can be discovered using automatic verification, which is different with the

typical protocol modeling engineering method. Furthermore, using our approach, any
revision to an existing protocol can also be checked in real time to make sure all the
business logic level changes are correct and compatible with the former specification.

Chapter 4

Using Executable Formal BPMs For
MAS Development Via Language
Mapping

Chapter 3 discussed how to bridge from high level business process models to multi-
agent interaction protocols so that existing formal business process models can be
adopted in the development of multi-agent system. As well as high level business pro-
cess models, executable business process models have been well developed and used
in conventional workflow management systems. Based on the three layer conceptual
framework introduced, executable business process models and multi-agent interaction
protocols are at the same conceptual level (implementation level) as shown in Figure
4.1:

Informal D ocunents —— Business Layer

l Business Reauirements

High Level Formal |

Business Process Models

A 4

Logic Layer —p Cominon Ontelogy

r

l Operational Requirements

Implementation Layer

L 2

v

Function Libraries Formal
— System Code — .
and Svsteins Representations

Figure 4.1: From executable formal BPMs to IPs

69

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping70

Since executable BPMs are at the same conceptual level as MAS IPs, they con-
tain enough information on both business level requirements and system level require-
ments to make automatic generation of MAS IPs possible. In this chapter, we will
discuss how to connect executable business process models and MAS IPs via language
mapping technique in detail by performing it between two concrete specification de-
scription languages (BPEL4WS and LCC)[LGCBO05b]. In section 4.1, the necessary
background knowledge of BPEL4WS is given. Section 4.2 gives the detailed syntax
translation from BPEL4WS to SPPC using language mapping techniques, in which the
main concepts that are involved in almost all conventional business process modelling
languages are considered. A simple case study is given in section 4.3 to help in under-
standing of the approach proposed in this chapter. The problems that we encountered
during the language mapping are discussed in section 4.4.

4.1 Background Knowledge Of BPEL4AWS

The Business Process Execution Language for Web Services (abbreviated to BPEL4WS)
Is a notation for specifying business process behaviour based on Web Services. Pro-
cesses in BPELAWS export and import functionality by using Web Service interfaces
exclusively. Business processes can be described in two ways. Executable business
processes model actual behaviour of a participant in a business interaction. Business
protocols, in contrast, use process descriptions that specify the mutually visible mes-
sage exchange behaviour of each of the parties involved in the protocol, without reveal-
ing their internal behaviour. The process descriptions for business protocols are called
abstract processes. BPEL4WS is meant to be used to model the behaviour of both ex-
ecutable and abstract processes. It provides a language for the formal specification of
business processes and business interaction protocols. By doing so, it extends the Web
Services interaction model and enables it to support business transactions. BPEL4WS
defines an inter-operable integration model that should facilitate the expansion of au-
tomated process integration in both the intra-corporate and the business-to-business
spaces. BPEL4WS fits into the core Web service architecture since it is built on top
of XML[XMLO06a], XML Schema[XMLO06b], WSDL[WSDO01], and UDDI[UDDO2].

Some of the key BPEL4AWS syntax is given and explained below:

e < partners>: contains a list of participants (web services) involved as part of
the BPEL4WS workflow

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping71

< variables>: contains the variables that are used in the workflow

< invoke>: invoke a particular service as requested

< receive>: receive a service invocation message

< reply>: reply a message to service requestor

< assign>: assigns a value that might be from a received message to a variable

< sequence-: executes the activities nested within it in a sequential order

< flow >: executes the activities nested within it concurrently

< switch>: executes the activities nested within one of the branches defined in

it, when the condition for that branch holds during the execution

< while >: implements a loop when the conditions defined for the loop hold

Currently, BPEL4WS is well accepted by industry and has become a de facto stan-
dard for deploying web services based distributed workflow system and that is why it is
chosen for our work as we try to get our research as close as possible to real life applica-
tions. Some new softwares that are built based on BPEL4WS have been released, such
as BPEL4WS Java Runtime (BPWS4J) (http://www.alphaworks.ibm.com/tech/bpws4j)
platform.

We use a simple exampléo show how a BPEL4AWS execution model is con-
structed. In this example (see Figure 4.2), a customer sends a request for a loan; the
request gets processed, and the customer finds out whether the loan was approved. Ini-
tially, the middle step will involve sending the application to a Web services enabled
financial institution and telling the customer what it decided. From the customer’s
point of view, the process will consume his application and then send him an answer.
The diagram below shows this external view of the loan request process.

BPEL4WS compositions rely heavily on WSDL (http://www.w3.0rg/TR/wsdl) de-
scriptions of the involved services in order to refer to the messages being exchanged,
the operations being invoked, and the portTypes these operations belong to. For any
BPEL4WS process, we will need the description of the appropriate information and
the process itself. After all the requirements are now available for creating the pro-
cess. we begin the definition with the process> element, and include the names-
paces that will allow it to refer to the required WSDL information, where the message

1This example is taken from http://www-128.ibm.com/developerworks/library/ws-bpelcol1/

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping72

Financial
Institution's
Web service

(lo
approver)

Figure 4.2: Executable loan approval process.

definitions are defined (http://..../loandefinitions), the target namespace of the loan ap-
prover (http://.../loanapprover), and the target namespace of the process’s own WSDL
(http://.../loan-approval). The process is now able to use the loan approver service as
a component. The next step is to declare the parties involved. Named partners are de
fined, each characterised by a WSDL serviceLinkType. For this example, the partners
are the customer and the financial institution. The myRole/partnerRole attribute on a
partner specifies how the partner and the process will interact given the serviceLink-
Type. The myRole attribute refers to the role in the serviceLinkType that the process
will play, whereas the partnerRole specifies the role that the partner will play. This is
illustrated in the partner definitions below. The loan approval process offers the func-
tionality of the loanApprovalPT to the customer, and the financial institution in turn of-
fers that functionality to the process. This relationship can be seen in Figure 4.2 above.
A process may contain only one activity, which in this case will betrs=quence- .

< processname: "loanApprovalProcess

targetNamespace "http: //acmecomnysimpleloanprocessirig

xmins="http: //schemasmlsoaporg/ws/2002/07/business- procesg”

xmins: Ins="http: //loansorg/wsdl/loan—approval

xmins: loandef="http: //tempuriorg/servicegloande finition§

xmins: apns="http: //tempuriorg/servicegloanapprovet >

< partners>
< partnername="customet

serviceLinkType-="Ins: loanApproveLinkTyge
myRole="approvel / >

< /partners>

The sequence contains a receive activity that can take the customer’s message. The

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping73

definition of a receive activity must include the partner that will send it its message,
and the port type and operation of the process to which the partner is targeting this mes-
sage. Based on this information, once the process gets a message, it searches for an
active receive activity that has a matching partner-portType-operation triplet and hands
it the message. In order to avoid confusion, the specification states that there may not
be multiple received activities with the same partner-portType-operation triplet that are
active at the same time. We start the sequence activity, and add the receive to it. The
next step is to ask the Web services-enabled financial institution whether or not it will
accept the loan. This is done with a regular Web services invocation, defined in the
process by an Invoke activity. When this activity runs it will make the specified in-
vocation to the Web service using the message in its input container, put the answer
it gets into its output container, and end. Note that the call will be made on the "ap-
prover” partner to perform the approve operation. In order for the process to respond
to the customer’s request, it uses a Reply activity. Once a reply activity is reached, the
partner-portType-operation triplet it contains is used to figure out whom to send the re-
ply to. Therefore, in order to reply to the message that arrived through theeive>

activity, we would need a Reply activity with the same triplet. In this case, we want to
tell the customer what the financial institution decided, so the message to be sent will
be found in the output container of the invoke: approvalinfo.

< sequence-
< receivename-= "receivel” partner="customeft portType= "apns: loanApprovalPT
operation= "apprové container= "request createlnstance- "yes / >
< invoke name= "invokeap proverpartner="approvef
portType= "apns: loanApprovalPT operation="apprové
inputContainer= "request out putContainee="approvallnfd / >
< replyname="reply’ partner="customet portType= "apns: loanApprovalPT
operation="approveé container="approvallnfd / >
< /sequence

< /process>

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping74

4.2 From BPEL4WS Based Conventional Workflow Sys-
tem to LCC Based Multi-agent Platform

4.2.1 Problem Analysis

If we consider the interaction described in a BPEL4AWS process model from the multi-
agent point of view, it involves two sorts of agents: service providing agents (substi-
tutes/proxies of web services) that is in the rolecomyRole> or < partnerRole>

and a coordinating agent (substitute for a workflow server) that is defined implicitly in
BPEL4WS.

Although a conventional BPEL4WS process model based system can be under-
stood as a multi-agent system, the responsibility given to the coordinating agent (work-
flow server) as addressed in the previous section is too heavy and, correspondingly, is
too light on the service providing agent on the contrary. This is understandable because
BPEL4WS was initially designed for the coordination of web services which only
have very limited computing capabilities. However, with agents that have stronger
computing capabilities, the burden on the coordinating agent can be shared, which
gives us the possibility of eliminating the coordinating agent. If we can dispatch the
tasks that are performed by the workflow server (coordinating agent) based on con-
ventional client-server architecture to service providing agent, the process models that
are used in conventional workflow system then can be used in multi-agent based sys-
tem. Thus, to enable the MAS based distributed workflow system, the first step is to
decide what sorts of tasks are performed by the workflow server and how they can be
dispatched to agents. Figure 4.3 shows the minimum components that are required
by a BPEL4AWS based conventional workflow server and those components should
have correspondences in new system. As introduced earlier, the main concern of LCC

The Components mside a Typical Conventional Worldflow Server

BPEL4WS Process Model
' Read the model

Workflow Engine Program
l Update the States

States of Current Rimning

l Update the Data
Data Used in the
Rimning Process

Figure 4.3: The components of a typical conventional workflow server

BPELAWSProcess Model

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping75

protocol based MAS is the production of protocol rather than the design of agents (ac-
tually, in a LCC based MAS, the agents are usually dummy agents). If we can find an
approach that keeps those components in the LCC protocol, BPEL4AWS model based
workflow systems can then be deployed on a functionally equivalent MAS platform.
This mechanism is illustrated in Figure 4.4:

I iomal 1
| Executable Business Process Model I::> oo e
= System

Derive Thaough

Language Mapping

MAS Interaction Protocol |::>
=

Figure 4.4: Connecting workflow systems and multi-agent systems via language map-

ping

Figure 4.5 shows the correspondences between conventional workflow server com-
ponents and the LCC framework, from which we can see that all the components of

The Corponents inside a Typical Conventional Worldfbw Server L CC Protocol

BPEL4WS Process Model
' Read the model
Workflow Engine Program

1 Update the Data 1 Update the States

States of Current Rimning
Data Used in the BPELAWS Process Model
Rurming Process

A0 MIUIB.L] [02070.0J DT

Common Knowledge States of I.CC Protocol

Figure 4.5: Correspondence between LCC protocol and conventional workflow server’'s

components

a conventional workflow server are retained in a LCC based multi-agent system. The
correspondence of "workflow engine program” is the program that each agent uses
for processing the received LCC protocols. The states of running business process in-
stances is corresponding to the states of LCC protocol instances. BPEL4AWS model
and the data used for the running workflow instance can be replaced by LCC protocol

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping76

framework and common knowledge. From the above analysis, we can see that it is
possible to use a LCC based MAS for distributed workflow deployment.. We will then
discuss how to connect the two systems that are based on different architecture.

4.2.2 Why choose language mapping?

The most widely used technique for connecting two different specification based sys-
tems is through syntax based language mapping. After the two languages, which are
used for describing the specifications in different system, are mapped, specifications
that are written in one language can be translated into another automatically and can
thus be used in another system.

A BPEL4WS process model defines four main concepts which are:

e Partners: define the roles that participate the interaction. It should be noticed,
partner notation in BPEL4AWS defines the partner from the point of view of a
centralised workflow server. All the participants that can interact with a work-
flow server are defined as partnetsartnerRole>) of it and workflow server
Is able to change its rolemyRole>) in order to interact with different partic-
ipants.

e Message passing activity: defines the message passing that takes place between
two participants. Such activities are:receive>, < invoke> and< reply >.

e Computing activity: carries the real workflow computation. Such activities are:
< assign>, < terminate> etc.

e Structure activity: controls the execution order of message passing activities and
computing activities. Such activities are:sequence-, < switch>, < while >
etc.

Except forPartners execution of all these sorts of activities are all undertaken by
the workflow server. When executing a message passing activity, what the workflow
server does is simply to pass and to forward the messages from/to participaausl (

P>). Actually, if P andP, know the information about each other and know the in-
tended order of messages being passed, the workflow server is not required at all for the
message forwarding purpose since as agents, they could communicate directly. Struc-
ture activities define only the execution order of basic activities and if the IP protocol
language (such as LCC) has the syntax to describing such information, the workflow

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping77

server can also be removed since the control of time order is built in the protocol. When
the protocol is passed between agents, such information is also transferred. However,
problems arise for computing activities. In a BPEL4AWS specification based workflow
system, the computing activities must be executed by the workflow server and such
activities cannot easily be dispatched to distributed agents. The following BPELAWS
partial model shows the problem. For simplicity, it is expressed using plain text:

sequence

{
a=bh,
Prsend MtoR,,
c=d
}
Three roles are defined in the above chukk P, are defined explicitly and the work-
flow server is defined implicitly). If we want to eliminate the role of the workflow
server in the desired MAS, the assign clauses, b andc = d have to be executed
by P1/P, wholly or separately. To decide deterministically which agent should execute
what computing activity is impossible without more information. Therefore, in order
to translate a BPEL4WS specification to a LCC protocol, the BPEL4AWS model must
be specified in a more stylised way, say, the computing activities must be defined be-
fore at least one message passing activity so that the sender of the message passing
activity can perform the computing activities before sending a message out.

Based on the above analysis, we can see that all the tasks performed in a BPEL4WS
based conventional workflow system can be completely or partially realised by a MAS
also if the BPEL4WS specification is represented by the MAS interaction protocol
especially in LCC. In the following sections, we will discuss in detail how to perform
the language mapping from BPEL4WS to LCC.

4.2.3 Performing language mapping from BPEL4WS to SPPC

We observe that syntactically, a BPEL4WS model is close to a SPPC model but is rel-
atively far away from LCC protocol. We have designed algorithms in chapter 3 to gen-

erate LCC protocols from SPPC models. Therefore, if we can translate a BPEL4AWS
model into a SPPC model first, it can be then translated into LCC protocol directly

using our existing algorithms. We will discuss in this section how to translate the

notations, as classified above, from BPEL4WS to SPPC.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping78

4.2.3.1 Translation from partners defined in BPEL4WS to SPPC roles

All the participants defined ir. partnerLinks> in a BPEL4WS model can be directly
mapped to the agents (sender and receiver) no matter whether theynay®ole>
or < partnerRole>. For example, for the loan approval scenario that we used, the
definition of all participants involved in a process is:
< partners>
< partnername="customet
serviceLinkType-="Ins: loanApproveLinkTygde
myRole="approvel' / >
< /partners>
From the above definition, we know there are two roles participating in the interac-
tion and in the derived SPPC protocol. We will have two ageatsustomerD),
a(approverlD1)) directly related to them.

4.2.3.2 Translation from message passing activities defined in BPEL4AWS to SPPC

message

BPEL4AWS message passing activities as classifiedcaeceive>, < invoke> and
< reply>. The translating principles for them are different.

e The activity< receive> in BPELAWS means that a web service operation will
not be invoked until certain requests (inputVariable of web service operations)
arrive. The complete definition for it from BPEL4AWS is:
< receive partnerLink= "ncnameé portType= "gnamé operation="ncnamé
variable="ncnamé&? createlnstance- "yesnag’?
< /receive>
From multi-agent point of view, the semantic of this activity is quite simple: a
message sender (partnerRole) sends a message to a service provider (myRole).
Thus this activity leads to a basic SPPC message that is:
mid, pre([]), mb(portType: operation: inputVariable,
mb| post [updatdinputVariable,storg portType: operation: inputvariableD)])
sendefa(partnerRolelD;)),receive(a(myRolg,ID)
One point that needs to be mentioned here is that in a conventional BPEL4AWS
based workflow system, the variable values are stored in the centralised work-
flow server and can be used and updated at any time needed. However, ina LCC
based multi-agent system, there is no centralised data store, thus, the values of

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping79

all the variables have to be passed together with the LCC protocol (defined in
LCC common knowledge) and messages between the agents.

The post-conditioupdatéinputVariable defined in the above SPPC message

is used to record/update the value of the variable involved in the incoming mes-
sage in LCC common knowledge. It is used as a constraint for all the incom-
ing messages for receivers. We will not specify it in every SPPC message
for simplicity. The post-conditiorstorg partnerRole: protType: operation:
inputVariableID) is used to record the the ID of the message sender so that
later on, the proper response will be sent back to the right agent. This constraint
Is used to represent the relation betweereceive> and< reply > activities in
BPEL4WS.

e The< reply > construct allows the business process to send a message in reply
to a message that was received through geceive>. The combination of a
< receive> and a< reply > forms a request-response operation on the WSDL
portType for the process.
< reply partnerLink="ncnamé portType= "gnamé operation= "ncnamé

variable="ncnamé&? faultName="gnamé&?
< /reply >

The SPPC message farreply > derived is

mid, pre([fetch partnerRole portType: operation: variable 1D1)]),

mb| mb(portType: operation: variable), post([]),

sendefa(myRolelD)), receivefa(partnerRolg, D)
The constrainfetch partnerRole portType operation: variable 1D1) is used
to find the propelD of the agent that sent request, which, together with con-
straint fetch partnerRole protType: operation: inputVariablelD), are used
to keep the semantic of combination afreceive> and < reply > activities
defined in BPEL4WS.

e The < invoke> construct allows the business process to invoke a one-way or
request-response operation on a portType offered by a partner.
< invoke partnerLink="ncnamé portType= "gnamé operation= "nchamé
inputVariable="ncnamé@? out putVariable= "ncnamé?
< /invoke>
The corresponding SPPC might be one message or two messages connected by
"then”, which depends on wether or not thet putVariables defined. Ifitisn't

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping80

defined, the corresponding SPPC message is:

b mid, pre([f etch.variable(inputVariablg]), mb(port Type: operation: inputVariable,
post[]),sendefta(myRolelD)),receivefa(partnerRoleg,|1D1)

If the out putVariableis defined, the SPPC messages are:

mb(mid, pre([f etch.variable(inputVariable]), mb(port Type: operation: inputVariable,)
post[]),sendefta(myRolelD)), receivefa(partnerRolg,|1D1)
then
mid, pre([fetch.variable(out putVariablg]),
mb| mb(portType: operation: inputVariable: out putVariable,
post [updatéout putVariablg]),sendefa(partnerRolelD)), receivefa(myRole, D)

From the above analysis, we can see that all the message passing activiéesiye>,
< invoke>,< reply >) in BPEL4WS can be translated into SPPC messages.

4.2.3.3 Translation from computing activities defined in BPEL4WS to SPPC con-

straints

The computing activities defined in BPELAWS ateassign>, < wait > etc. Since

the translating principle for all of them are the same, we only discuss the translation of
< assign> in detail. The activity< assign> in BPEL4AWS specification defines in-
ternal variables assignation in the BPEL4WS workflow engine and it gives BPEL4AWS
computational ability.

< assign>
< copy> +
from—spec
to—spec
< /copy>
< /assign>
In SPPC, constraints (post-conditions and pre-conditions) are the places where the con-
crete computation takes place. Therefore, the computation carried by the centralised
server, as addressed earlier, should be dispatched to the agents in the multi-agent sys-
tem as constraints. Eventually, which agent execute what constraints doesn’t matter too
much. The only issue is how the execution order between the computing activities and
the other activities is kept in the generated SPPC model, which requires consideration
of the translation of structure activities also.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping81

4.2.3.4 Translation from structure activities defined in BPEL4WS to SPPC model

BPEL4WS structure activities control the execution orders between the activities (mes-
sage passing activities, computing activities and structure activities) that are nested
within them explicitly from the point of view of activities. SPPC, however, uses oper-
ators to control the temporal orders between message clauses and the temporal order
between computing clauses and message clauses is represented by the relation between
messages and their constraints. Therefore, a BPEL4WS structure activity might be rep-
resented by two SPPC notations togethers SPPC operators arti>combinations

of constraints and messages. The principles of when the content of a structure activity
should be translated into SPPC using operators and when they should be represented
by the combinations of messages and pre-conditions/post-conditions in SPPC, are dif-
ferent for different BPEL4WS structure activities.

e The < sequence- activity allows us to define a collection of activities to be
performed sequentially in lexical order in BPEL4AWS.

< sequence standardattributes>
standard— elements
activity +

< /sequence-

If we only consider message passing activities and structure activities, it is quite
simple to derive a SPPC model from it since BPELAWS and SPPC have simi-
lar notation for sequence. However, it becomes much more complex when the
computing activities are considered since we have to decide how the computing
activities should be used as pre-conditions/post-conditions of SPPC messages
during the translation with the initial time order defined<irsequence- kept.

Using the SPPC "then” operator, the relation between message passing activities
and structure activities can be kept without changing anything. To represent rela-
tions between message passing activity/structure activity and computing activity
In a < sequence-, certain re-write rules have to be applied:

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping82

(AlthenAz) N (El R C) it A A;isamessage passmgactlvn\é17 (rulel)

Ao Ay |sacomput|ngact|V|tyC
) A) L

(ArthenA) = (C1 A Cy) if A, fuisacomputingactviy (ruley)
Ao Ap isacomputingactivityc2

(AlthenAz) - (Cl _ EZ) it A AllsaCOmpu[IngaClIVItyCl (ruleg)
A2 Az isastructure activity E2

(Acthen”) = ((EithenB) orEp) if A Aais<while> activity, E1 (rules)

Agisnotacomputingactivity

Az Ez

(C1 — (Eqor/par..or/parE,)) = (Eior/par..or/parE;n) if (Ci—E1)=E,..,(C1t —En) = Ei4n (rules)
((Eqor/par...or/parEn) — C1) = (Ejor/par..or/parE4n) if (Et—Ci)=E,...,(En—C1)=Ei4n (ruleg)

C1 — A; andA; — Cq inthe above rules meafs is used as the precondition/post-
condition ofA;. Rule andrule; means that a computing activity that is defined
before/after a message passing activity iRt &quence> can be used as the
pre-condition/post-condition of the SPPC message that is derived from the mes-
sage passing activityE represents the possible SPPC clauses that are derived
from non-computing BPEL4WS activities. The re-write rules for dealing with
the computing activity defined before/after a structure activity are expressed in
rules. Rulg is used to deal with a special case where &hile > activity is in-
volved in a< sequence-. The time relation between while > and the activity
defined after it ink sequence- is not a sequential order but is an exclusive "or”
order. Theconditionspecified for the< while > activity actually controls the
execution of it. If theconditionholds, the< while > activity is executed repeat-
edly and only when theonditionfails can the activity specified after while >

get executedRule; andruleg are used to assign the pre-condition/post-condition
to the SPPC messages which are connected by "or"/"par”.

The algorithm for translating a sequence- into SPPC clauses is shown in
Figure 4.6.

Using the algorithm, it should be noticed that a computing activity can never be
used as the last element okasequence- activity as discussed earlier. Other-
wise, the translation is not possible. Therefore, not all the existing BPEL4AWS
models can be directly translated into SPPC models using this language mapping
approach.

e The<switch> construct allows you to select exactly one branch of activity from

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping83

proceduretranslate sequencgSequenceCL SPPQ
input: Sequencghe BPEI4W S < sequence- activity
CL, alistthat storesall un- assigned conditions
output: SPPC SPPC clausesderived fromgivensequence- activity
initiate a, pointer(P;),and letit pointtothe firstelement o f Sequenceand CL
while (P;isnot pointingtothelast element of Sequence
fetchtheactivityA) that R is pointingtoin Sequence
if (Aisacomputingactivity
translate Aintoconditionsand putitattheendof CL
make I? pointto next activity
else if(Aisamessage passingactivity
fetchallthe conditioninCLusethemas preonditionso f the SPPC messé8e
derived fromA
emptyCL and makgmpointtonextelmentof CL
SPPC= SPPCthenS
elseif(Aisastructure activity
translatestructureactivity(A,CL, SPPG)
SPPC= SPPCthenSPRC

Figure 4.6: Algorithm for deriving a SPPC model from a BPELAWS < sequence>

activity

a set of choices.
< switch standard- attributes>
standard— elements
< case condition="bool—expr’ > +
activity
< /case>
< otherwise>?
activity
< /otherwise>
< /switch>
In < switch>structure, eack: case> can possibly has four kinds of direct child
elements: basic activities (message passing activities and computing activities),
< sequence- structure < switch> structure < flow > structure ané< while >
structure. The execution of each branch is controlleddnyditionCo) defined

for each< case>. A < switch> activity can be represented using SPPC "or”
notation in the following format,

(Cop— Ag)or(Cop — Ag)or...

whereC; means the conditions defined farcase> in < switch> andA; rep-

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping84

resents the activities that are defined as the content for eacdse> which
could be basic activities or structure activities. The translation of the content of
each< case> is depended on the types of them. Tdomditiondefined for each

< case> can be translated using the following re-write rule together with the
rules defined fok sequence-:

(Coo—A)= (Cop—E) if Aij=E (ruley)

The algorithm for translating a BPEL4WS switch> activity to a SPPC model
IS given in Figure 4.7.

proceduretranslateswitch(Switch CL, SPPQ
input: Switch the BPEIUW S < switch> activity
CL, alistthat storesall ur- assigned conditions
output: SPPC SPPC clausesderived fromgivenswitch> activity
for (eachbranciB) of switch
extractthe conditionsdefined foreachbranchand putinCL
extractthe content€)of B
translatestructureactivity(C,CL, SPPQG)
SPPC= SPPC or SPPC

Figure 4.7: Algorithm for deriving a SPPC model from a BPEL4WS < switch> activity

__

e ti‘Vit.‘Y
(ondition A \

e oY
B \ O

activity

Figure 4.8: Diagrammatical representation of a < case> in < switch>

Figure 4.8 shows the diagrammatical representation afcase> defined in

a < switch> activity. After applying our algorithm, the diagrammatical rep-
resentation of the generated SPPC model is shown in Figure 4.9 in which pre-
conditions are translated from the conditions and message A, B and C are trans-
lated from the activity A, B and C defined # case> in Figure 4.8.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping85

--'-- hI@SSﬂg?B --——

A Message C /
V
Pre-condition A

Message A

Figure 4.9: Processed diagrammatical representation of the < case>

e The < flow > construct allows us to specify one or more activities to be per-
formed concurrently. Links can be used within concurrent activities to define
arbitrary control structures.

< flowstandard- attributes>
< links >?
< linkname="ncnamé > +
< /links >
activity+
< /flow >
A < flow > activity creates a set of concurrent activities directly nested within
it. It further enables expression of synchronisation dependencies between activ-
ities that are nested directly or indirectly within it. The link construct is used
to express these synchronisation dependencies. A link has a name and all the
links of a flow activity must be defined separately within the flow activity. The
standard source and target elements of an activity are used to link two activities.
The source of the link specifies a source element specifying the link’s name and
the target of the link specifies a target element specifying the link’s name. The
following example shows that links can cross the boundaries of structured activ-
ities. There is a link named "CtoD” that starts at activity C in sequence Y and
ends at activity D, which is directly nested in the enclosing flow. This synchro-
nisation link confines the execution order of activity C and activity D. Under its

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping86

control, activity D must be executed after the execution of activity C.

< flow >
< links >
< linkname="CtoD"/ >
< /links >
< seqguencename"Y” >
< receivename="C" ... >
< sourcelinkName="CtoD"/ >
< /receive>
< invokename="E".../ >
< /sequence
< invoke partnerLink="D" ... >
< targetlinkName="CtoD"/ >
< /invoke>
< /flow>
In a conventional client-server based workflow system, the execution of con-
current activity and control of the synchronisation link are possible because the
workflow server can control the state of all the branches in a concurrent activity.
However, in a multi-agent based open environment, the centralised coordinator
is eliminated. Thus the only way for agents to coordinate with each other is
again, through message passing, which means all the synchronisation links have

to be controlled by message passing between agents as well.

Figure 4.10 shows the algorithm that we use to turn all the synchronisation links
defined in a< flow > activity into SPPC messages. Using this algorithm, a

< flow > activity can be represented by a SPPC model. It should be noticed
that when a SPPC model is translated into a LCC protocol, the SPPC messages
generated for synchronisation links are only partially translated. The message
that is derived for the "source” of a synchronisation link in SPPC is only used
for the message sender’s LCC protocol generation. In contrast, the message that
Is derived for the "target” of a synchronisation link in SPPC is only used for the
message receiver’'s LCC protocol generation. Thus the algorithm for generating
LCC protocols from SPPC models have to be revised to be used for dealing with
SPPC models derived from BPEL4WS specifications.

e The < while > construct allows us to indicate that an activity is to be repeated

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping87

proceduretranslate flow(Flow,CL, SPPQ
input: Flow, the BPEUW S < flow > activity
CL, alistthat storesall ur- assigned conditions

output: SPPCthe SPPC clausesderived fromgivenflow > activity

initiate a publiclist(L) //publiclist canbe accessed by any procedure

extractalllinksde finedinFlowand puttheminL

for (AllthelinkgLz)inL)
scanthewholeFlowand find outthe actiiythat de finesthe< source> of Ly
scanthewhole Flowand find out the acti\iify) that de finesthe< target > of L;
replace AwitH Athen Ainwhich A isamessage sended fromthereceiverof Atosenderof|A

>

replace A with”Agthen Alinwhich Asisamessage sended fromthereceiverof Atosendera
for (Allthebranche&)of FLow)

translatestructureactivity(B,CL, SPPG)

SPPC= SPPC par SPPC

Figure 4.10: Algorithm for deriving a SPPC model from a BPEL4WS < flow > activity

until a certain success criteria has been met.

< while condition= "bool — expr’ standard- attributes>
standard— elements
activity
< /while >
The notation that is used in SPPC for repeated execution of messages is the com-
bination ofinvokemid) and the SPPC messadé(that theinvokepoints to as
shown in Figure 4.11. Whether the loop is executed is controlled by the precon-
dition defined for theM;. However, a BPEL4AWS: while > activity represented

Figure 4.11: Diagrammatical representation of a SPPC loop

loop might start with a message passing activity, a computing activity or a struc-
ture activity and the execution of the its content is controlled bycthredition
associated with it as illustrated in Figure 4.12.

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping88

=while:-

Cond itios -

Figure 4.13: Diagrammatical representation of a SPPC model that is equivalent to the

< while > activity in Figure 4.12

The SPPC model that is semantically equivalent to <heshile > in Figure

4.12 is shown in Figure 4.13 in which the pre-conditions for message A,B and
C are derived from the condition define ferwhile > and message A,B and

C correspond to the activity A,B and C in Figure 4.12. In addition, at the
end of message A, B and C in the SPPC model, three invokes are added (in-
voke(A),invoke(B) and invoke(C)) to represent the repeated execution of the
three messages. The above example shows the basic idea of translating a
while > into SPPC clauses, which involves two parts: the translaticodition
defined and the re-write of contentafwhile >. The principle of processing the
conditionsdefined for< while > structure activity is complete same with that

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping89

of < switch>. The re-writing of< while > highly replies on the first and last
elements defined for it. Several re-write rules are thus defined for different sorts

of content
(Asthen..thenA) = if Ai=E;..A=E (ruleg)
(Exthen..thenk,) (Ei — generateinvokgE;1)) = E;
(Aqor/par..or/parA) = if Ai1=E,...A=E, (ruleg)
(Eit10r/par...or/parEiin) (Ex — generateinvokeE;)) = Eii1, ...,

(Ei — generateinvokdE;)) = Ej;n

(Ej — generateinvokgE;)) = (Eithenk) if generateinvokdE;) = E; (rulego)
generateinvokeE;) = if the firstelementof E (rulegy)
(generateinvokeEy) or/ par...or/ par generateinvokeEy)) is(Exor/par...or/parEp)
generateinvokg E1) = invokgEy) if thefirstelementE;)of E; (ruleg)

isasingle SPPC message

By applying the above re-write rules,<awhile > activity can be represented
using SPPC notations. The algorithm fomwhile > activity translation is given
in Figure 4.14.

proceduretranslatewhile(W hile, CL, SPPQ
input: While the BPEI4AW S < while > activity
CL, alistthat storesall un- assigned conditions
output: SPPC SPPC clausesderived fromgivenwhile > activity
extractthe conditionsdefined forWhileand putitattheendof GL
extractthe content€) of While
translatedstructureactivity(C,CL, SPPG)
invokegeneratof SPPG, Invoke
loop_generato(SPPG, Invoke SPPG)
SPPC= SPPG
procedureinvokegeneratof SPPGInvoke
input: SPPCSPPC clauses
output: Invoke aninvoke or setso f invokes connectetidoy par”
extractthe firsteleme(E)of SPPC
if (EisaSPPC message
Invoke= invokeE)
else
for (eachbranckB) o f E connected bfor/ par”)
invokegenerato(B, Invoke)

Invoke= Invoke oy par Invoke

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping90

procedureloop_generatof SPPG, Invoke SPPG)
input: SPPG, SPPC clauses
Invoke ainvoke or sets o f invokes connecteddry par”
output: SPPG, SPPC clausesthat representloop
SPPG = SPPG
extractthelasteleme(E)of SPPG
if (EisaSPPC message
replaceit with’E then Invokgé
else
for (eachbranciB)of E)
loop_generato(SPPG, Invoke SPPG)
SPPG = SPPG

Figure 4.14: Algorithm for deriving a SPPC model from a BPEL4WS < while > activity

4.3 A Simple Case Study

In the previous sections, we discussed how the fundamental notations of a business
process model (basic activity and temporal order between basic activities(sequence, or,
parallel and loop)) can be translated into SPPC clauses using some of the BPEL4AWS
syntaxes through language mapping. We use a simple example to show how a SPPC
can be derived from a BPEL4AWS specification, which starts from an example work-
flow encoded in BPEL4AWS. The example workflow described below consumes two
parameters, a stock symbol and a country name. The result of the workflow is a quote
for the stock localised into the currency of the given country. It has been simplified by
removing attributes that do not help clarify the exanle.

< process>
< partners>
< partnername="requestot/ >
< partner name="stockProvidet/ >
< partnername="currencyProvidet/ >
< partnername="simpleProvidet/ >
< /partners>
< variables>
< variablename="request/ >
< variablename="responsg/ >
< variable name= "stockReques{ >
< variable name= "stockResponsg >
< variablename="currencyRequesy >
< variablename="currencyRespons¢ >

2The original scenario for this example is taken from [BV04].

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping91

< variablename="simpleRequesy >
< variablename="simpleRespon&¢ >
< /variables>
< sequence
< receive portType- "request partner= "requestof operation= "requestLookufvariable= "request >
< /receive>
< assign>
< copy>< fromvariable="request/ >< tovariable="stockReque%f >< /copy>
< copy>< fromvariable="request/ >< tovariable="currencyRequesf >< /copy>
< /assign>
< flow >
< invoke portType= "getStockQuotepartner= "stockProvidet operation="getQuoté
inputVariable= "stockRequesbut putVariable= " stockResponse>
< /invoke>
< invoke portType="getExchangeRatgartner="currencyProvidet operation="getRaté&
inputVariable= "currencyRequebbut putVariable= " currencyResponse-
< /invoke>
< /flow>
< assign>
< copy>< fromvariable="stockRespon&¢ >< tovariable="simpleReque%f >< /copy>
< /assign>
< invoke portType="multiplyFloat’ partner="simpleProvidet operation="multiply’
inputVariable="simpleReque$but putVariable= "simpleResponse>
< /invoke>
< assign>
< copy>< fromvariable="simpleRespons¢ >< tovariable="responsg/ >
< /copy>
< /assign>
< reply portType= "request partner= "requestot
operation= "requestLookufwvariable= "responsg >
< /reply >
< /sequence-
< /process>

Figure 4.15, provides a graphical view of the structure of the workflow. Internally,

GetStockQuota

MultiplvFloat ™| Response

Request

GetExchangeRate

Figure 4.15: Stock lookup process

the workflow definition coordinates the interaction of the five participants named: re-
guestor, stockProvider, currencyProvider, simpleProvider the role of workflow engine
itself (called mainServiceProvider for simplicity). The SPPC model derived from it is:

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping92

msg midy, pre([]), mb(request requestLookupreques}, sendefa(requestoyiD)), receivefa(mainServiceProvidelD1))
then

midp, pre([stockRequest requestcurrencyRequest reques}),

msg| mb(getStockQuotegetQuote stockRequegt
sendefa(mainServiceProvidelD1)), receivefa(stockProvidedD>))
then
mids, pre([stockRequest requestcurrencyRequest requesy),

msg| mb(getStockQuotegetQuote stockRequeststockRe ponge
sendefa(stockProvidenD>)), receivefa(mainServiceProvidelD 1))

par
mids, pre([stockRequest requestcurrencyRequest requesy),

msg| mb(getExchangeRategetRate currencyRequest
sendefa(mainServiceProvidelD1)), receive(a(currencyProvideiD3))

then
mids, pre([stockRequest requestcurrencyRequest requesy),
msg| mb(getExchangeRatggetRate currencyRequestcurrencyReponge

sende(a(currencyProvideidD3)), receivefa(mainServiceProvideiD1))
then
ms (mids, pre([simpleRequest stockRespongsemb(multiplyFloat: multiply : simpleRequest >
sendefa(mainServiceProvidelD1,1D1)),receivefa(simpleProvided D))
then
< (midy, pre([]), mb(multiplyFloat: multiply: simpIeRequestsimpIeRespon$e>
sendefta(simpleProvidelD4)), receivefa(mainServiceProvidelD1,)

then
m midg, pre([response= simpleResponggmi(request requestLookupresponsg,
sendefa(mainServiceProvideiD1)), receive(a(requestoriD))

This SPPC model can thus be translated into LCC protocol using the algorithm pro-
posed in chapter 3.

a(mainServiceProvidelD1) :: request requestLookuprequest< a(requestofiD)
getStockQuotegetQuote stockRequest- a(stockProvidedDy)
«— (stockRequest reques} and(currencyRequest reques}
then
getStockQuotegetQuote stockRequeststockResponse- a(stockProvidedDy)
then| par
getExchagneRategetRate currencyRequest- a(currencyProvidedD3)
— (stockRequest requesj and(currencyRequest requesy
then
getExchagneRategetRate currencyRequestcurrencyResponse: a(currencyProviderdD3)

multiplyFloat: multiply(simpleReque$t=- a(simpleProvideiD4) < (simpleRequest stockResponge
then| then

multiplyFloat: multiply: simpleResponse- a(simpleProvidefdD4)
then
response= a(-,-) < (response= simpleResponge

Chapter 4. Using Executable Formal BPMs For MAS Development Via Language Mapping93

a(stockProvidedD>) :: getStockQuotegetQuote stockRequest a(mainServiceProvidelD 1)
then
getStockQuotegetQuote stockRequeststockResponse- a(mainServiceProvideiD)

a(currencyProviderdD3) :: getExchangeRategetRate currencyRequest= a(mainServiceProvidelD 1)
then
getExchangeRategetRate currencyRequestcurrencyResponse- a(mainServiceProvidetD 1)

a(simpleProvidendD4) :: multiplyFloat: multiply: simpleRequest a(mainServiceProvidelD)
then
multiplyFloat: multiply: simpleRequestsimpleResponse- a(mainServiceProvidelD1)

a(requestoriD) :: request requestLookuprequest= a(mainServiceProvidelD 1)
then
request requesetLoopkuprequest response= a(mainServiceProvideiD1)

4.4 Summary

In this chapter, we discussed how to develop protocol based multi-agent systems us-
ing executable business process models. Language mapping is performed between a
business process modelling language (BPEL4AWS) and an IP (LCC) to generate the
protocol used in a MAS from a business process model. Since the gap between them
is large, we use another modelling language (SPPC) as an intermediary. Thus a SPPC
model derived from a BPEL4WS specification can be translated into an LCC protocol
automatically using the existing algorithm.

During the language mapping process, we found that although most of the main
concepts from business process modelling language (BPEL4WS) and SPPC match,
some particular notations from the business process modelling language cannot be
seamlessly represented by a another modelling language which is based on different
paradigm. For example, the computing activities nested at the ene: aegjuence-
activity in BPEL4WS can not be easily translated in to SPPC clauses as addressed
earlier and also, the translation for the synchronisation links definedfirow > re-
quires the revision of LCC protocol generation algorithm from SPPC. Such restrictions
mean only some BPEL4WS specifications (those conforming to the language mapping
rules) can be used for interaction protocol guided MAS development, which makes
the approach discussed in this chapter incomplete. In fact, such language mapping
based completeness is very hard to achieve (even for particular business process mod-
elling languages) since different business process modelling languages and protocol
modelling languages may be based on different computing paradigms.

Chapter 5

A Novel Approach of Using Executable
Formal BPMs For MAS Development

In chapter 4, we discussed the automatic generation of a LCC protocol from a BPEL4AWS
specification using syntax based language mapping technique and concluded that such
an approach can only provide a partial solution for the problem (using executable busi-
ness process model for MAS development) because of the lack of an implicit role
workflow server in MAS and also the gap between the computing paradigms of the
two different languages is too great.

Therefore, in this chapter we propose another approach for our work[LGCBO5a,
LGCBO5c]: producing a LCC protocol, which acts as a BPEL4AWS interpreter. The
BPEL4WS specification and the LCC protocol (BPEL4WS interpreter) are passed to-
gether between the agents to enable their coordination. BPEL4AWS specification de-
fines the tasks that agents need to perform and the LCC protocol tells agents how to
interpret BPEL4AWS specifications received. Based on this idea, a BPEL4WS specifi-
cation that is defined in any fashion can be interpreted neatly by a LCC protocol when
they are passed together in the multi-agent system.

5.1 Agent Coordination Using LCC Protocol and
BPEL4WS Specification

From the purely technical point of view, a BPEL4WS model is nothing but a XML
document that is composed of certain syntaxes which can be understood by comput-
ing software. The BEPL4WS workflow engine is software that is designed and im-

94

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development95

plemented to understand the syntax used in a BPEL4WS specification and is used to
process them to perform tasks described. In a MAS, if each agent is given the knowl-
edge of how to process the BPEL4AWS document and if the states of a running process
instance are provided, the centralised workflow server is not needed any more at least
for executing the business process model. There are two ways to give an agent the
capability to perform a task:

1. embedding the business process model processing capability inside the agent
which means the agent knows how to do things when itis initially created. This is
the way that the conventional workflow is implemented and we are not interested
in this approach since making each agent additive to particular business process
modelling language loses generality.

2. assigning the capability to the agent dynamically, which means the agent can
only have the ability of performing certain tasks, for instance, processing BPEL4AWS
models, when it is given such knowledge at run time. This approach, compared
with the first one, is more generic because MAS is simply used as a platform
to provide a pure distributed architecture and is separated from a particular ap-
plication (workflow management) deployed on it. Therefore, for our work, we
concentrate on this approach.

The crucial issue that we need to consider for the second approach then is how we
can dynamically assign a capability to an agent. It is noticed that one of the design
principles of LCC is to specify and to tell agents what to do and how to do the tasks
specified. Therefore, if we can use an LCC protocol to tell agents in MAS how to pro-
cess BPEL4AWS, BPEL4WS specifications can be used directly in MAS. In this way,
the LCC protocol acts as a language interpreter, which understands all the BPEL4WS
syntaxes and their semantics, and this interpreter is given to each agent dynamically
during their interaction. In agents’ interactions, BPEL4WS is used to tell agents what
are the currently requested tasks and the LCC protocol tells how to perform the tasks
specified by BPEL4WS. In addition, the states of the BPEL4AWS model attached in a
LCC protocol are also recorded. Figure 5.1 shows the new correspondences between
the components of a conventional workflow server and a LCC protocol, from which
we can clearly see that all the components that compose a workflow server can be
assumed by a LCC protocol. In other words, with these correspondences, the LCC
protocol passed between agents gives agents the ability to act as a "conventional work-
flow server” at the moment when they hold the received message packages.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development96

The Conponents nside a Typical Conventional Workflow Server LCC Protocol

BFEL4WS Process Model Embedded in

' Read the model
Workflow Engine Program Represented by

1 Update the Data 1 Update the States

States of Current Running .
s = Embedded
Data Used in the BPELAWS Process Model
Rurming Process
Common Knowledge States of LLCC Praotocol

Figure 5.1: The correspondence between the components of the conventional workflow

I[I0 MOWIR.LY [030)01g DD

server and LCC

The infrastructure of the system based on the new idea is given in Figure 5.2. Based
on this infrastructure, the multi-agent interaction protocol, BPEL4WS specification
and interacting messages are packed and passed together between the agents. Once an
agent receives the package, it processes: the incoming message (initiating appropriate
behaviours), interaction protocol and BPEL4WS (resolving the next action it needs to
take), then it sends out a new package to the next agent to continue the coordination.
Besides the LCC protocol, BPEL4AWS model and messages, the package that is passed
between agents in MAS also contains all the values of the variables that are used for
the attached BPEL4WS model, which means the storage of data is also decentralised.

LC C Protocol BPEL 5p ecification . Message

Figure 5.2: The infrastructure of our generic MAS platform

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development97

5.2 Interpreting BPEL4WS Specification Using LCC Pro-

tocol

Normally, a LCC protocol framework is written based on the roE&6le D)) in-
volved in the potential interaction. ThHRoledefined reflects the semantics of real role
in the application domain (customer, seller etc.). When an agent receives a LCC proto-
col, it checks for the LCC clauses defined for its rdk®le and extracts the next action

it needs to perform from the LCC definition. However, for a BPEL4AWS specification
based MAS interaction, the way of writing LCC protocol is quite different. Each role
defined in the LCC protocol framework does not correspond tcagi@ication role
anymore but to a BPEL4WS syntax that is name®®EL4WS syntax roleThe ap-
plication roleof an agent is used as one of the arguments oBPEL4WS syntax role
defined in the forna(BPELSyntakArguments, ID), whereBPE LSyntaxorresponds

to the BPEL4AWS syntax andrgumentsrepresents five arguments that are used for
everyBPELSyntaxole:

e Model is a part of BPEL4AWS model and represents the tasks that need to be
processed.

e MList: stores all the unprocessed parts of a BPEL4AWS madelst is used to

mark the states of the BPEL4WS model being processed. The BPEL4WS speci-
fication is organised in a tree structure with its branches formed by the structure
activities and nodes formed by the basic activities (message passing activities
and computing activities). The tree structure is processed using a depth first
search algorithm from left to right when it is passed between agents. Once a
BPEL4WS message passing activity (leaf of a tree) is reached while an agent
processes the BPEL4AWS model (treated as a tree), the agent starts a new dia-
logue based on the activity and all of the unprocessed BPEL4WS model stored
in MList has to be passed to the next agent.

e VList: is the place where all the concrete values of the variables that are used
in workflow enactment are stored. In the centralised environment, all the infor-
mation about the variables are controlled by the central server, whereas in the
distributed environment, all such information has to be passed around.

e IDList: is used to connect a receive activity and its corresponding reply activity.
This parameter is designed to fit the BPEL4WS in particular to keep to semantic

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development98

of the pair of< receive> and< reply > activities.

¢ Role represents the participants (application roles) in the interaction defined by
< partnerLink> from BPEL4WS.

From the coordination point of view, each agent in our system is a generic agent.
When an agent receives a BPEL4AWS model from the others, it doesn’t know the type
of the BPEL4AWS model; neither can it choose the riBRELSyntaxole to process

the received model. Therefore, we must provide a mechanism to help agents recognise
the type of received BPELAWS model that is requested to be processed. To serve this
purpose, two general rolegreceivefRole),ID) anda(interpretefArguments$, ID)

are defined in an LCC protocol besid@BE LSyntaxoles. Rolea(receivefRole),1D)

is taken by an agent whenever it receives a package from the others. When an agent is
in the rolea(receivefRole), D) the incoming messages that it can recognise can only

be of two forms:

messagg@un_this,Model, MList,V List, IDlist, Role) (formil)
messag@veb serviceinvocationmessadgodel, MList,V List, IDList,Role) (form2)

The only difference between these two forms is the first element defined. For form
one, the first elementiin_this’ means the receiver of this message should process the
model that is defined by the second eleméwbdel) of this message while for form
two, the first element of it contains all the information for a web service’s invocation.
Agent should perform a web services invocation before starting to procestoithel.
According to the different incoming messages, the agent may perform two type of
operations in role(receivefRole),ID):

e It provides a service to the requestor if the incoming message is a service request
message (contains information for web services’ invocation) and may also pro-
cess the received BPEL4WS model. The only case for this operation is that the
incoming message is from an agent that is in the robe iokokg Arguments, ID).

Since according to the BPEL4WS definitioninvoke> activity is the one and
the only one that carries real web service computation and may generate re-
sponse on the service provider side.

e It processes the received BPEL4AWS modébfiel) only.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development99

The LCC definition fora(receivefRole), ID) is given as follows:

a(receive(Role), D) :
messagéM, Model MList,V List, IDList, Role) <= a(AnyRolelD1)
then
a(interprete(Model, MList,V List, IDList, Rol€),ID) « M =" run_this”
or
messagiM1, Model, MList,V List;, IDList, AnyRol¢ = a(AnyRolelD1)
AnyRole=" invoke’ and hasout puf Model)
. < and per forniM1,Mz) and updatevariable(My,V List,V List;) >
or

a(interpretefModel, MList,V List;, IDList, Role),ID) «—)))
and updatevariable(M2,V List,V List;)

per form Mz, My) >

The above LCC clauses indicate that when an agent receives a package in the role of
receiver it first processes the messad) (n the package. IM is "run_this’, the agent
then changes its role toter preterto process the attached BPEL4AWS modeMIis a
web service invocation message from the others, the agent first performs the required
service and then forwards the result of service invocation to the service requestor if
there is a returned result from the web services that was just invoked. Otherwise, the
agent changes its role faterpreter and starts processing the BPEL4AWS model it
currently holds.

Several constraints are defined in the above clauses also.

e PerformMi,My): performs the real service invocation on the requested ser-
vices according to the incoming messadeby agent and returns the resiMp
from the service.

e hasoutputModel): checks if the BPEL4WS activity (indicated bjodel) has
aoutputVariable It is usually used with ar: invoke> activity only.

e updatevariable(M,V List,VList): is used to update the value of the variable
involved inM in V List.

The complete definitions for all the constraints written in Prolog that we defined for
our LCC interpreter can be found in appendix C and in later discussion we will ignore
the low level technical details of them.

Role interpreteris used to help agent recognise the type of BEPL4AWS model
it received and accordingly make it change its role properly to process the current
BPEL4WS model.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development100

The LCC definition fora(interpretefModel, MList,V List, IDList,Role),ID) is

a(interpreter(Model, MList,V List, IDList, Role), A;) ::
a(invokgModel, MList,V List,IDList,Role), A;) < is_invok€Model, Role)
or
messag@un_this,Model MList,V List, IDList, Roe}) = a(receivefRole), A2)
— is_invokgModel,Rolg)
or
a(receivéModel, MList,V List,IDList,Role),A;) < is_receivéModel, Role)
or
messagg@un_this,Model MList,V List, IDList, Roe}) = a(receivefRole), A2)
— is_receivéModel Role)
or
a(reply(Model MList,V List, IDList, Role),A;) < is_reply(Model, Role)
or
messagg@un_this,Model MList,V List, IDList, Roe}) = a(receivefRole), A)
— is_reply(Model, Role)

or
a(sequenc@Model MList,V List, IDList, Role), A;) <+ is_sequencgModel)
or

a(flow(Model MList,V List, IDList, Role), A1) < is_flow(Model)

or

The constraintss_receive'reply/... play important roles irinterpreters definition.

They are the real functions that perform BPEL4WS model recognition. If the BPELAWS
model being processed is a message passing activity, the agent also needs to check if
its own application role matches the role required by the activity. If so, the agent starts
processing the activity or, if not, the agent forwards the BPEL4AWS model to another
agent whose application role matches the required role. The mechanism by which the
agents search/locate each other is not a research issue of this thesis and is assumed to
be available. In the following sub-sections, we will explain in detail how to use an
LCC protocol for interpreting the main BPEL4WS syntax.

5.2.1 Interpreting BPELAWS Message Passing Activities Using LCC
Protocol
The only way for the agents to coordinate with each other in a multi-agent system

Is through message passing. Therefore, when adopting a BPEL4WS specification in
a multi-agent system, the first thing we need to do is to relate the BPEL4AWS syn-

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development101

tax to message passing. The relations between BPEL4WS message passing activities
and LCC messages are shown in table 5.1. The rationale for the translations in table

BPEL4WS Message Passing Activities LCC Messages

< receive partner=" R’ portType=" P” operation=" 0" variable="V"/ > | messagiP:0:V,...) = a(R D)

< invokepartner=" R’ portType=" P” operation=" 0" messagéP: O: 1V,...) = a(R ID)
inputVariable=" IV” out putVariable=" OV"/ > then

messageP: O: IV : 0V,...) < a(R ID)
< reply partner=" R" portType=" P operation=" 0" variable="V" / > messagP: 0:V,...) = a(RID)

Table 5.1: Translations from BPEL4WS activities to LCC messages

5.1 is clear. All the agents in our system act as the proxies for web services. Thus

all the information that relates web services’ invocation needs to be contained in the
messages that are passed between agents also. The way that agents process the incom-
ing/outgoing message is different according to different BPEL4AWS message passing
activities. There are three sort of message passing activitiesgeive>, < inovke>

and < reply > in BPEL4WS as classified earlier in chapter 4. The LCC clauses for
interpreting them are given below respectively.

5.2.1.1 Interpreting < receive> activity Using LCC

a(receivéModel MList,V List, IDList, MyRolg, A) ::

ID,V List, IDList,V Listy, IDList;
«— PortType: Operation: Variable < a(PartnerRolelD)

PartnerRolePortTypeOperationVariabl
processreceivemessag< ¢ ypeop n e)

then
a(receivéModel, MList,V List,IDList,MyRole, A7)
(— —checkreceivéModel, PortTypeOperationVariable PartnerRole)
a(interpreterHead RestV Listy, IDListy,), A1)
or | « checkreceivéModel, PortTypeOperationVariable PartnerRole
and MList= [HeadRest
or
null — MList = []

If the BPELAWS model that an agent needs to process<igeceive> activity, the

agent waits for an incoming message and checks if this message is the right one (A
message is a right one only if it is sent from the rigtartner of current agent and

it is defined with the right message type). If the message is not what the agent is
waiting for, the agent keeps waiting until it receives the proper one. After an agent
receives a correct message, it changes its ralgéopreterto process the unprocessed

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development102

BPEL4WS model ilMList (the checking for the right incoming message is performed
by the constraintheckreceive...)).

The update ofDList is used to record the information about the service requestor
and the service they invoke, so that later on, the result of service invocation will be sent
to the right agent.

5.2.1.2 Interpreting < invoke> activity Using LCC

a(invokgModel, MList,V List,IDList, Roley), Aq) ::
messagéPortType: Operation: InputVariable Model, MList,V List, IDList, Role) = a(receivefRoley), A2)
«— processinvokgModel, Port Ty pe O peration InputVariable Role)
then
null — Model= ..[_, partnerLink_), portType_), operatior(_),inputVariabl€_),
outputVariablénull), sourceLinK_), targetLink-)]
or
messaggPort Ty pe: Operation: InputVariable: Out putVariableModel, MList,V List, IDList,Role)
< a(receivefRoley),Ap)
then
null — MList =]
or
a(interpreteHead RestV Lists, IDList, Role), A1)
— MList = [HeadResfandV Lis§ = [Out putVariablelnputVariableV List]

When an agent is of the rolavoke it extracts the necessary informatidPortType
OperationandinputVariablefrom the current BPEL4AWS: invoke> activity (Model)

and sends it out to the next agent that is in the role(céceivex...), D) for web ser-

vice’s invocation. If theout putVairables defined in the current invoke> activity, it

will be a response from the message receiver later on. After the sender receives the re-
sponse, it will changes its role toterpreterto continuously process the unprocessed
BPEL4WS model. The constraiprocessinvoke...) is used to extract the necessary
information from< invoke> activity that needs to be processed.

5.2.1.3 Interpreting < reply > activity Using LCC

a(reply(Model,MList,V List, IDList, myRole, A) ::
processreply(Model, Partner PortTypeOperationVariable, _)
and
Variable; => a(PartnerID) < | getID(PartnetrPortTypeOperation|DList,Variable D)
and
look_up(V List, Variable Variabley)

processre ply(Model, Partner Port Ty peOperationVariable Fault)
Fault => a(PartnerID) — | and
getID(Partner PortTypeOperationIDList,Variable ID)

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development103

An agent sends a message in reply to a message that was receivedRaotmer ID).

The Partner and ID is stored inIDList to make sure that the message is sent to
the right partner. Constraingrocessreply is used to extract the necessary informa-
tion from < reply > activity andgetID(...) is used to find out the corresponding
service requestor’s information that is previously stored in the LCC common knowl-
edge to make sure that the resMa(iable;) will be sent to the right receiver. Con-
straintloop_up(V List, Variable Variable,) fetches the valuédariable;) of the outgo-

ing variable Yariable) defined in< reply >.

5.2.1.4 Interpreting < sequence- activity Using LCC

a(sequencgModel MList,V List, IDList),Aq) ::
a(interpreteModel, [Modeb|MList],V List, IDList, Role), A7)
«— processsequencégModel Modeh,Modeb)

a(sequencgModel, MList,V List, IDList),A;) corresponds to the BPEL4AWSsequence-
activity. When an agent is in this role, it first gets the first child elenMatel of

Model, stores the left children elemert&odeb in MList and then changes its role to

inter preterto procesModelk recursively. In this way, the elements okesequence-

activity can be processed one by one in a sequential order thus keeps the semantics of
< sequence- from BPEL4WS.

5.2.1.5 Interpreting < switch> activity Using LCC

a(switch(Model, MList,V List, IDList),ID) ::
a(interpretefModel 1, MList,V List, IDList,Role), ID) < processswitchModel Model)

The underlying principle for processingaswitch> activity using a LCC protocol is
that all the branches<(case>) defined are processed one by one from the leftmost
one to the right by the constraiptocessswitchModel Modekh). The branch whose
conditionis true (depending on current process instance) is extractbtbdsh for
further processing.

5.2.1.6 Interpreting < flow > activity Using LCC

The < flow > activity represents the concurrent execution of several activities that are
nested in it. In a system that has a centralised server, it is not difficult to implement

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development104

this since all the states of the activities that are enclosed<inféow > activity can
be recorded such that the time order between them can be controlled properly. But
in a multi-agent system, all the activities have to be executed in a sequential order
because there is no way to collect the states of all the activities without a centralised
controller. So if we want to use BPEL4WS in a pure decentralised manner, we first
need to represent concurrent structure activities (fikélow >) in sequential order
without affecting the result of the process.

The algorithm for converting a flow structure to a sequence structure is based on
the breath-first search. We implement this search using dgsnandclosed to keep
track of progressopen lists states that have been generated but whose children have
not been examined. The order in which states are removed dmen determines
the order of the searcltlosedrecords states that have already been examined. The
complete algorithm is given in Figure 5.3.

procedureconvert flow2sequencg@-low, FS)
inputs: Flow,a < flow > activitythat needstobe converted
outputs:FS a < sequence- activitygenerated fromtheinput flow >
initiatestwolists open= [Start], closed= ||
while (open [])
if (the current nodeisastructure activity))
expandsthe current node and putsallitsnested activitiesinlist open
elseif(thecurrent nodeisabasicactivit®))
if (Bhasneither< sourceLink> or < targetLink>)
removesit fromthelistopenand p@mthelist closed by FIFO principle
elseif(Bhas < targetLink>)
updatethe commonknowledgeto makethmrgetLink> public
and putBinthelist closed
elseif(‘Bhas < sourceLink>)
check forthe corresponding targetLink> incommonknowledge
if (the corresponding< targetLink> existg
removesit fromthelistopenand p@thelist closed by FIFO principle
elseif(the corresponding< targetLink> doesrt exist)
ignoresthe current nodgoesbacktoits parentleveland
triesthesiblingof its parentinopen

Figure 5.3: Algorithm for converting a < flow > activity to < sequence-

Figure 5.4 shows the structure of a simpgleflow > activity, in which a solid box
represents the basic activity, a dashed box represents the sequential structure activity

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development105

Figure 5.4: Diagrammatic representation of < flow > activity

and a solid arrow indicate the synchronisation link defined between activities. Apply-

ing our algorithm to the flow example:

10.

11.

12.

. The flow activity is expended and all its nested activities are putopen (JA then B

then C,H,D then E then F]).

. The leftmost element is taken out frompen and because it is a sequence activity and

first element is then extracted and all the remaining elements are used to form a new
sequence activity (B then C). The new sequence activity is then appended at the end of
open(H,D then E then F, B then C). Because the extracted element A is a basic activity
and has neither source link nor target link, it is put ioknsed([A]).

. His taken out fromopen However, it has a incoming source link. It has to be appended

at the end obpen (D then E then F, B then C, H).

. Repeating the step 2, the contentopénare [B then C, H, E then F]. The content of

closedis [A,D].

. Repeating the step 2, because B has a incoming source link from H. There is no new

element ofclosedat this stage.

. Repeating step 3.
. open[B then C, H, F],closed[A,D,E]
. Repeating the step 2.

. Repeating the step 3.

open[B then C,H],closed[A,D,E,F]. 11 > Repeating the step 2.
open[B then C],closed[A,D,E,F,H].

open|[C], closed[A,D,E,F,H,B]

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development106

13. open|], closed[A,D,E,F,H,B,C]

The LCC protocol for interpreting & flow > activity is thus:

a(flow(Model, MList,V List,IDList,Role),ID) ::
a(interpreteModek, MList,V List, IDList,Role), ID) < processflow(Model, Model)

where constrainprocessflow(Model, Model) performs the above converting algo-
rithm and generate & sequence- activity Model.

5.2.1.7 Interpreting < while > activity Using LCC

a(while(Model MList,V List, IDList,),ID) ::
a(interprete(Modek,MList;, V List, IDList,), ID)
extractactivity(Model, Activity) and
— | Activity=..[_,Condition Modek]and Conditionistrue
and MList = [ModelMList]
or
a(interpretefHead RestV List, IDList, _),ID) < MList = [HeadRest
When an agent processescavhile > activity using the above LCC protocaol, it first
checks if the conditions associated withwhile > are satisfied and if so it extracts
the direct nested activity defined in tkewhile >, changes its role tmterpreterand
starts processing it. THdList also has to be updated using currenivhile > activity
as its first element. The reason for this is because the child elemenwbile > has to
be processed repeatedly until the conditions no longer hold. Thus, the next agent that
receives the package also has to check the conditions to decideliile > activity
has to be performed again. If the conditions don’t hold, the agent starts processing the
first element stored in the un-processed BPEL4WS modeMikigt).

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development107

5.3 A Simple Example

We use a simple example to illustrate how our approach works. The definition for the
input BPEL4WS specification is given as follows with all the irrelevant parts ignored:

< processname: "loanApprovalProcess>
< /variables>
< variable name="request messageType "CreditInfoMessade/ >
< variablename="approvallnfd messageType "approvalMessade >
< /variables>
< partnerLinks>
< partnerLinkname="customef partnerLinkType="LinkTypé& myRole="approvef / >
< partnerLinkname="approvef partnerLinkType="LinkTypé partnerRole="approvef / >
< /partnerLinks>
< sequence
< receivename= "receivé partner="customef portType= "approvalPT
operation="approve variable="request >
< /receive>

< invoke name= "invokeapproverpartner="approvef portType="approvalPT
operation="approve inputVariable= "request out putVariable= "approvallnfd >
< /invoke>
< replyname="reply’ partner="customet portType= "loanApprovalPT
operation="approve variable="approvalInfd >

< /reply >

< /sequence

< /process>

The basic steps for the agents in our system to coordinate using the above BPEL4AWS
model and LCC protocol are illustrated in Figure 5.5 and are explained below:

e An agent, 4, receives the BPEL4AWS specificatiofi,together with the LCC
protocol,?. It takes the role o&(interpreterB,[],[],[],-),41). It then tries the
clauses that are defined i to find the type of theB by using the constraints
is_sequenc@s_invoke ...) to determine the next BPEL4AWS operator. For our
example, the dominant operatorhis asequenceactivity. 4; changes its role

to a(sequenc(aB, “7 Hv H) *)7 ,‘2[1).

e 7; processe®B in the role ofa(sequences,], [],[],-),41) by using the con-
straint processsequenceB, B, B,) and gets the first elemers, of B and the
left elementsB, and then changes its role aginter preten B, [B2],[],-), A1) to
repeat the first step.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development108

I NMulti-agent platform

[N . S, approve T appmve: request

1 , P !
i ! | ™ . H
. ' - h 'lE:I';CI ate 1

E irrmke i approveP Tapprove yequestapprovallfo | Rk in T H
1 1

: 1 1 1

Fy

Figure 5.5: Agent’s coordination for performing the illustrate example.

e By repeating the first stepg; changes its role ta(receivé B, [B,],[],approve, 4;)
and waits for the messagrtType: Operation: request OnceA; receives the
message, following the instructionsf it changes its role to
a(inter preter(‘Bs, [B4], [reques}, [Port Ty pe: Operation: Customer. CustomeriD,), 4;) IN Which Bz is the

first child element ofB, and B, contains the remaining child elements®.

e By repeating the previous stepg; changes its role ta(invokd...),4;) and
sends a appropriate messageto an agent?, together with?;. 4, starts pro-
cessing theB, after it receives the?, and. The coordination continues, until
the processing o8B is finished.

5.4 Agent Design

The agents that participate in the interaction on the BPEL4AWS model based MAS plat-
form are proxy agents, which means the agents themselves don’'t need to make com-
plex decision making processes but simply follow what the LCC protocol asks them
to do and perform some of the computational functions. Therefore, the design issues
of such agents are mainly about how to enable the agent to conform to the protocol
received and to perform proper actions. The contents of the package passed between
agents have to be discussed before we get into the agent’s design since the rationale of

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development109

the agent design relies on this. Figure 5.6 shows the inside structure of the message
package that is used between agents based on our approach. For simplicity, the dia-
gram only shows the essential components of the message package. The components

Message Package

Physical Address of Target A gend Agent Capahility Descriptions

=
&
P
FTTIT LT

RN [——

id

Figure 5.6: The essential components of our message package

located at the communication layer have been discussed earlier. The transition layer
contains two forms of agent verification information. "Physical agent address” defines
the real location of the agents in the system, which might be a URL etc. "Agent ca-
pability description” describes the intend message receiver’s capability. Thus when an
agent receives a message package, it is able to decide if it can process this package
before further expanding it.

According to the message package contents, the internal structure of the agents
based on our approach is shown in Figure 5.7:

__

Application Layer

I L I

Communication Layer

Figure 5.7: The internal structure of an agent

e Transition layer: is responsible for the underlying message passing between
different agents. It controls the message passing at the lowest level of our sys-
tem. It receives the processed outgoing messages from communication layer
and forwards the received messages from other agents to communication layer.
The basic components of transition layer is shown in Figure 5.8 The "incoming

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development110

Communication Layer

Transition L ayer ' '
Incoming Message Queue Cuigping Message Quene

Stores Message ' Feiches Message
Message Receiver Message Sender

Figure 5.8: The components of agent’s Transition layer

message queue” and "outgoing message queue” are used to store the message re-
ceived and the messages that are going to be sent out. These two message queues
are operated by "message receiver” and "message sender” in a first in first out
manner and are used as a channel for the communication between the transition
layer and communication layer. Once a "message receiver” receives a message
package from others, it puts it in in the end of “incoming message queue” while
"message sender” fetches the first message in the "outgoing message queue” and
sends it out. The main task that "'message receiver” needs to perform is filtering
transition level information of the received package such as the if this message

is intended for it or if the agent it represents for matches the agent’s capability
description attached in the message package. In contrast, "message sender” adds
to transition layer to the outgoing message package according to the information
derived from the communication layer.

e Communication layer: is responsible for unpacking the received messages
from the transition layer and producing the outgoing messages according to the
protocol attached with the received messages. Figure 5.9 gives the inside look
of the communication layer. "Incoming message processor” is used to judge

Application Layer

Communication Layer

Protocol Exp arder

o
Incoming Message Processor - Outgoing Message Processor

Transition Layer

Figure 5.9: The components of agent’s communication layer

whether the message that is fetched from "incoming message queue” is the one

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development111

that is required by the "protocol expander”. If so, it passes it to "protocol ex-
pander”. Otherwise, "incoming message processor” put this message and every-
thing that is attached with it at the end of "incoming message queue” for later
processing. "Outgoing message processor ” receives information from ” pro-
tocol expander” and puts them at the end of "outgoing message queue”. Proto-
col expander” communicates with “incoming message processor” and "outgoing
message processor” in following ways:

— Ifitdoesn’t hold a LCC protocol at the moment, it asks the "incoming mes-
sage processor” for a message package. Once it receives it, it unpacks the
message package, performs the required tasks, re-generates a new message
package and sends it to "outgoing message processor” using the following
protocol expanding and re-write rules[Rob04a]:

Mi,Mo,?,0
e

Az B MMPO A if B E (ruley)
ArorA MiMo 2,0, E if —closedAz) AAL MiMo. 20, E (rule)
AjorA; Mi Mo, 2.0, E if —closedAr)AAz MiMo 2.0, E (rules)
Arthens MMoPO Eihena it A MMoTO g (ruley)
AithenA MiMo, 2,0, AithenA if closedA1) AA2 MiMo. 2.0, E (rules)
Ay parAp MiMoP01U02 e o e, it Ay MMoTOL e 4, MiMOPO2 B yeg)
CoAeMIMMEATE M~ A) if (M« A)eM AsatisfyC) (rule;)
M éAHch(M =A) if satisfiedC) (ruleg)
a(R,I)HCMa(R,I) B if clauséP,a(R1)::B)AsatisfiedC) (ruleg)

Rule means the definition for a given agent may be re-written by re-writing

the components of that definitioRule andrules means that if any branch

of a”or” operator is properly expanded, processed and closed, the process-
ing of "or” operator is then accomplished. In order to exparidher’
operator according to its sequential semantigke, andrules together in-

dicate that the clauses defined beforéler’ operator must be expanded
before the expansion of the clauses defined aftefttheri’ operator. Paral-

lel execution in LCC in controlled by operator "par” for which the re-write

rule is defined byuleg. Rule; andruleg are used to tell agent how to be-

have when it receives a message and sends out a message. When dealing
with message passing, each agent has to process the constraints associated
with the messages accordingnale; (checks if the received message is

the message that it waits for and then processes the constraints)lesd
(checks if the constraints are satisfied before it sends out the message and
close the clause)Rulg defines the re-write procedure for agent role’s

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development112

changing. According to it, if the constraints defined for agent role’s chang-
ing is satisfied, agent then fetches the clauses defined for new role and
starts executing them according to the other re-write rules. A protocol term
is decided to be closed as follows:

closedc(X))

closedAorB) — closedA) Vv closedB)

closedAthenB «— closedA) A closedB)

closedA par B) — closedA) A closedB)

closedX :: D) « closedB)
satisfiedC) is true if C can be solved from the agent’s current state of
knowledge. satisfyC) is true if the agent’s state of knowledge can be
made such tha&l is satisfiedclaus€ P, X) is true if clauseX is the dialogue

framework of protocolP, as defined earlier.

— If it holds a protocol and is waiting for a message, it asks "incoming mes-
sage processor” for the message and blocks itself until it receives the re-
quired message.

During the process of protocol expansion, all the constraints involved are sent to
"constraints solver” in the application layer for further processing.

"Outgoing message processor” simply forwards the message package that it re-
ceives from "protocol expander” to "outgoing message queue” currently. Itis a
place holder for outgoing message processing. For example, the message pack-
age may have priorities. In such case, the "Outgoing message processor” is
responsible for sorting the messages in outgoing message queue” accordingly.

e Application layer: is the place where the constraints defined in an LCC proto-
col are solved. It contains at least two components, web services invoker and
constraints solver, as shown in Figure 5.10 "Web services invoker” takes care of

Application Layer

o

Communication Layer

Figure 5.10: The components of agent’s application layer

all the issues of web services invocation including: invoking a web service ac-
cording to the received messages; handling the returned message from invoked

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development113

web service and converting them into agent's messages. "Constraint solver”
provides a container for executing the constraints that are requested by the "pro-
tocol expander”. The way for solving the constraints might be attached to the

LCC protocol or purely solved by the local methods.

5.5 Prototype Implementation

5.5.1 JXTA P2P framework

The JXTA project (http://www.jxta.org) is a project proposed by Sun Microsystems,
which is used to tackle current problems existing in the p2p world and provides a basic
p2p platform. JXTA provides sets of open, generalised p2p protocols and services that
help devices on the network to communicate and coordinate with each other. For the
purpose of inter-operability, the project does not limit itself to any particular company,
programming language, system or network infrastructure and tries to provide platform-
independent solutions for p2p applications.

For developers, it provides a set of construction components that support funda-
mental infrastructure for distributed applications. JXTA promises to support common
functions that are required by all the p2p applications such as discovery, message rout-
ing i.e.. Therefore, users can concentrate on the high level application itself rather
than low level system infrastructure. On the JXTA platform, a peer may be any net-
worked device that implements one or more of the JXTA protocols. Peers decide to
join peer groups on their own initiatives. A peer group is a collection of peers that
have agreed on a common set of services and want to collaborate with each other to
chase some common goals. To enable peers to advertise themselves and discover each
other, to communicate and route messages to the proper target, six JXTA protocols are
supported by the current JXTA standard, which are:

e Peer Discovery Protocol (PDP) is the protocol that is used by peers to advertise
their own resources and discover resources from other peers within a peer group.

e Peer Information Protocol (PIP) is the protocol that provides a set of messages
for peers to use to obtain the status of them.

e Peer Resolver Protocol (PRP) is the protocol that enables peers to send a generic
query to one or more peers and receive a response.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development114

¢ Pipe Binding Protocol (PBP) is the protocol that is used by applications and
services in order to communicate with other peers. It helps peers to build up a
virtual communication channel with others for message exchanging.

e Endpoint Routing Protocol (ERP) is the protocol by which a peer can discover a
route (sequence of hops) to send a message to another peer potentially traversing
firewalls and NATs

e Rendezvous Protocol (RVP) is the protocol that is used for propagation of mes-
sages within a peer group. The Rendezvous Protocol provides mechanisms
which enable propagation of messages to be performed in a controlled way

JXTA is a popular, open-source, royalty- and license-free p2p framework which
has a large number of registered members of the development community. Actively
supported by a growing community of p2p developers, JXTA technology has seen
strong growth in its adoption, and some commercial applications are now emerging.
For these reasons, our prototype system is built up adopting the JXTA framework.

5.5.2 Overall prototype framework

The current prototype is produced in Java using J2SE version 1.4 API. This prototype
uses the JXTA grouping feature for virtual community management. Communication
between agents relies on JXTA messaging protocols such as advertisement and pipe.
The messages that are passed between peers are in XML format. This prototype con-
sists of two main components which perform business workflow functions and p2p
functions, respectively as illustrated in Figure 5.11.

The core services of JXTA include the group service, the peer service, the pipe
service, the discovery service and the advertisement service. A summary of the core
services is as follows:

e Group service: this service deploys the grouping concepts of p2p applications.
Each group can have policies of membership. For example, all the participants
involved in a BPEL4AWS interaction model is a group and actually, in our proto-
type, each BPEL4AWS process model is used to organise a JXTA group, which
means a JXTA group is built up according to a given BPEL4WS model. The
group service provides peers with the capability to discover groups, fetch infor-
mation about all the participants in a group, create a pipe to communicate with
others in a group, join a group and leave a group, etc.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development115

Agent Agent

[E

| | !

JXTA Services' Interfaces

x -, Discovery
Service

-

1

1

1
Growp Service g ——— drmmmar -» Pipe Service Y
1 - ;

i .
= A e 1 Advatise) r :
S 1 ’,

“ rd 1
A ¥ » i
Advertise -) 1
Advertisement LB d
Service Ao mmmmmmmmm s mmmmmmm e o

Figure 5.11: Overview framework of prototype

e Pipe service: this service has capabilities of managing the communication be-
tween peers. The service can help peers search for a pipe advertisement using
the discovery service. This service consists of two sub-services:

— the InputPipe service that is used to enable peers to send messages to others
and

— the OutputPipe service that is used to help peers to receive messages from
others.

Also, pipes offer two sorts of communication styles, point-to-point and broad-
cast, which can be used for different circumstances. For our prototype, each
agent has a binding input pipe for receiving messages. The connection between

an agent and its input pipe is through the connection of the agent’s advertisement
and the input pipe’s advertisement.

e Advertisement service: this service is used to publish resources in the JXTA
virtual network. There are several different advisement types defined in IXTA
such as:

— peer advertisement: describes the basic information of a peer/agent, in-
cluding its physical JXTA ID, its application role, its capabilities and the

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development116

information of its incoming pipe that is used receive message from others.

— peer group advertisement: describes the basic information of existing peer
group, including its JXTA ID, its name and the information of its associated
BPEL4WS model.

— pipe advertisement: describes the basic information of the pipes created
within a peer group for sending and receiving messages.

e Discovery service: this service is used to help peers search for advertisements so
that resources associated with advertisements can be used.

5.5.3 Implementation of Key System Components

The implementation of the key components of the LCC based decentralised workflow
management system are described in the following sections.

5.5.3.1 Implementation of agents group

Our prototype system uses the concept of an agent group to enable agents’ interaction
in an organised manner. Each agent group, as explained, is organised according to its
associated process model. Any agent that is willing to participate in the interaction
specified by a process model can join or quit its group. Once an agent joins a group, it
must take one of the application roles defined in the process model. In order to carry a
valid interaction, each group should be composed of at least one agent for each of the
application roles that are required by the process model. More agents that act for an
individual application role are allowed in our system, since any of them can be selected
as interaction partner by others for a particular process instance during the interaction.
The agent group in our prototype is realised by a JXTA group service. When an agent
joins a group, it needs to publish its peer advertisement and its input pipe advertisement
so that other agents in the group can discover and communicate with it.

Figure 5.12, 5.13 shows the web interface for browsing,joining and quitting exist-
ing interaction groups.

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development117

) A simple frameset document - Mozilla Firefox

THE) WIBE) EFW) WG #EE) TAT #HiH)

e)) @ O & files/{1:f code/MAS 1HTMLINterface/indlex.htm

2 ©)
9 Customize Links 9 Free Hotmal 9 Windows Markstplace & Windows Media 9 Windows
Browse [Selection [Esisting Groups [Process Nodels |
Start l [3] I Buy Item Group I BuyTten.xal |
Interaction

Figure 5.12: Interface for browsing, joining and quitting existing interaction groups

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development118

) A simple frameset document - Mozilla Firefox

TfFE) EE) BV RBIG HEE) TAD #BH)

& > @ © @ flex/11/code/MAS1HTMLInterface/incex Htm v @
9 Customize Links 9 Free Hotmal 9 Windows Marketplace 9 Windows Media 9 Windows
Erouce Agent Initialisation
Start
Interacti Role: | seller v
=t
Figure 5.13: Interface for selecting application role

After joining in an agent group, an agent is allocated with an application role as

shown in Figure 5.14

* A simple frameset document -

Mozilla Firefox

THEE) WEE) BN #IQ

HEE) TAD B

(<IPICIEEA

fle:1/1:fcode/MASL/HTMLInterface/index htm

9 Customize Links & Free Hotmal

9 Windows Marketplace @ Windows Media 9 Windows

Figure 5.14: Interface for browsing existing agents in a Group

5.5.3.2 Implementation of

agent kernel

At the heart of our prototype, the agent kernel of each of the distributed agents col-
laborates with others to achieve their common goal (automation of workflow process).
In general, each agent works independently in the system, according to the workflow
definition, and contributes to the operation of the whole workflow system. In the pro-
totype, the interaction between two agents is realised through message exchange and
the implementation of each layer inside an agent is discuss as follows:

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development119

e Transition layer: provides the message passing mechanism at the lowest level
as explained earlier. When an agent is first created, it has two fixed properties:

— a JXTA Peer ID. Each agent/peer in JXTA can only have one unique physi-
cal ID. However, this unique ID can be mapped to multi IDs that are adver-
tised for the JXTA peer in different peer advertisement in a JXTA group.
Thus, it gives us the flexibility of using one physical agent to realise many
agents that are defined in a LCC protocols since when the agents in our sys-
tem communicate with each other, they locate each other solely using the
IDs that are published in the peers’ advertisement rather than their physical
one.

— a JXTA input pipe. Each agent/peer in our prototype has a unique JXTA
input pipe which is used to receive messages from others. In JXTA, if a
peer tries to send a message to another, it must know how to connect with its
partner’s input pipe using its output pipe. This is the common way in JXTA
for agents/peers to communicate with each other. However, in LCC, agents
don’t care how the underlying message passing is done. All they need to
know for the message passing is the recipient’s ID. Therefore, when using
JXTAto realise LCC protocol based agents’ communication, the agents’ ID
must be associated with the concrete message transferring mechanism (pipe
service). The simplest way to realise such association in JXTA is using
its advertisement service. In our prototype, each agent’s ID is published
also in its input pipe advertisement. Thus, when an agent tries to send a
message to its partner, it fetches its partner’s ID in the message package
and according to the ID, it uses JXTA discovery service to discover the
proper input pipe that is associated with the ID and then it creates its own
output pipe to connect with the input pipe discovered. After the connection
is built, messages are then passed through the channel.

Figure 5.15 shows the construction of a message channel between two agent’s
transition layers on a JXTA platform.

e Communication layer: handles all the LCC protocol related operations. The
LCC protocol interpreter is based on the logic programming language Prolog.
Although any LCC protocol can be mapped directly to Prolog syntax and thus
can be easily processed by a Prolog engine. Prolog is little used by industry

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development120

Agent Transition L ayer

Incoming Message Quene Outgping Message Queue
Stores Message t Fetches Message
Message Receiver Message Sender
-

0% cef
o

v

|

JXTA Input Pipe
Advertisement

s

»
£
if

Agent Transition Layer ™ Message Receiver

Message Serder
Hores Message l

‘. Feiches Message Incoming Message Queue
Outgoing Message Queus

JNTAEnvironment % .:’ "-e,}'

Figure 5.15: Implementation of the components at agent transition Layer

at present. Therefore, we develop a Java based engine which only understands
the concepts that are from LCC. This engine is the core component, namely a
protocol expander in communication layer. It processes the LCC protocol in the
same way as the Prolog engine. It is able to process the predicates with multiple
arguments that are designed for LCC and returns multiple results accordingly.
Thus, the existing mechanisms and algorithms that are used for a Prolog based
LCC processor, can be adopted in directly for the Java based version.

e Application layer: is responsible for handling the execution of computational
functions. In our system prototype, the computational functions are implemented
in three ways:

— web services;

— locally stored functions;

— and functions that are passed from the others.
Web services provide the business application functions that are required by the
BPEL4WS process model. Locally stored functions; the functions passed from
the others are used for LCC protocol constraint solving. The reason for us to

design both local functions and communicated functions is because some of
the functions, especially for those that are independent on any of the particu-

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development121

lar agents, can be re-used if they can be passed between agents and thus reduce
the complexity of individual agents.

Figure 5.16 and Figure 5.17 show the interface for the variables’ instantiation and for
tracking the messages passed between agents.

B@EY

ZHE) WAE) FTEW #RE PEE IAD BHE

Y S 4 —— : -
0 © O T s pmstcsinecre o<
9 il

aaaaaaaaaaaaaaaaaaaaaaaaaaa s Marketzlace @ Windows Meda @ Windows

ccccccccccccc

uuuuuu

Figure 5.16: Interface for initialising variables

) A simpla frameset document - Molla Firafox B‘E@
THE) WEE) FEW WHE) HEE) IRD FhE) G
SO © © T3 weinimmmsipmateixn @ T

9 Free Hotnal 9 windows Warketelace Windows Meda & Windows

Figure 5.17: Interface for tracking agent’s messages passing

5.6 Discussion

Our approach provides an opportunity to build a multi-agent based distributed work-

flow system starting from a business process model rather than from an interaction
protocol, which narrows the gap between the high level requirement and system speci-
fication in the development of multi-agent system and connects the business workflow
community and the multi-agent community. Thus, business users can produce their

Chapter 5. A Novel Approach of Using Executable Formal BPMs For MAS Development122

own business process models that can be used directly in the multi-agent system. Fur-
thermore, since there are many available techniques and tools for business process
modelling, these can be adopted directly for building multi-agent systems based on
our approach.

The LCC protocol used to interpret BPEL4WS models is independent of any spe-
cific message passing infrastructure, although we have described it with respect to a
distributed and multi-agent based system infrastructure, it could equally well be de-
ployed in a more traditional server based style. Different styles of deployment are
described in detail in [Rob04a]. Furthermore, the protocol can be used prior to deploy-
ment in order to predict behaviours and possible errors in interaction[Wal04b]. An-
other advantage is that the workflow engine built using our approach is a real generic
server. The only specific knowledge it contains is how to process the LCC protocol and
how to invoke the web services but not how to process the particular business process
modelling language, which gives us a very efficient and lightweight way for system
re-design and re-implementation.

5.7 Summary

In this chapter, we proposed a novel approach for using BPEL4AWS specification to
guide multi-agent interactions. In this approach the LCC protocol is used as a language
interpreter to enable agents to understand the BPEL4WS syntaxes.

A system prototype based on the proposed approach is shown. It uses JXTA as the
underlying infrastructure and uses our proposed coordination mechanism for agents’
interaction. Web services are also conscripted as computing units to enable real appli-
cations to be accessed our system.

Chapter 6

Extending Our System For Incomplete

Process Support

6.1 Causes of Incomplete Processes

Workflow management systems that support traditional application domains (office
work, banking industry, etc.) are usually mature and fixed. Processes’ goals, the ac-
tivities that lead to each goal and the details of each activity are normally pre-defined.
Hence, process modellers often can completely see and formally specify the bound-
ary of a process in advance. As a result, traditional workflow management systems
conform to the principle of defining first and executing thereafter.

The workflow system starts the execution of the instances of a workflow process
only after the process is modelled and specified completely. The build-time func-
tions that act on process modelling, representation and storage issues and the runtime
functions that perform the execution of process instances are conducted respectively.
However, in some application domains such as scientific computing, health care, the
process specification obtained before-hand only describes the workflow process in a
rough and incomplete manner. The main activities, products, roles and the structure of
the process model can normally be articulated. However further elaboration and elic-
iting of the process are required to be accomplished during the execution of process
based on process instance data [SJT97, Sie99]. These sorts of processes are known as
incomplete processes. A simple but typical incomplete process scenario is illustrated
in Figure 6.1.

The process model in Figure 6.1 shows an incomplete process representing a typ-
ical diagnostic process for investigation of patients in hospital. A new patient coming

123

Chapter 6. Extending Our System For Incomplete Process Support 124

Create Initial Examine Make Final Make End
. . — > ~ [.) > —
Patient Profile Diagnosis Patient Diagnosis Payment

I| Mam ogram || X Ray |
1

1
1
1
'
! i
1 . .
! Ultra Sound Second '

1 - -
Diagnosis

Figure 6.1: The healthy care process

into the centre will first be created a profile according to his/her current status by using
registration service. All patients then consult with an attending physician for the first
diagnosis, who will determine what tests need to be performed, on a case-by-case ba-
sis. This brings the flexibility for the process. After the tests, the patient is called again
by the attending physician who explains the results of the tests and makes a diagnosis.
The patient is then required to report to accounts to make the required payments before
leaving the centre. In this process, the activity that is depicted in the gray box is an
incomplete activity. It can not be pre-defined until the physician sees the real situation
of the patient. For such flexible workflows, a conventional client-server workflow ar-
chitecture is not perfectly suitable. Because the execution of the workflow relies highly
on the individual decision making process of each participant.

Normally, incomplete processes exists because of the following:

1. Processes in some domains are much more complicated than those in other. The
increased complexity makes a process very difficult to be completely designed
before its execution. At design-time, only the main process structure and a few
activities can be determined, while others remain unspecified and need to be
accomplished during process execution. For example, in the domain of health
care where the entire task is modelled as a complex process, some instance data
based activities may not be finalised until that information is fetched. Normally,
this part of the process is modelled generally as composite activities (with some
sub-activities missing) during the process modelling period. These composite
activities need to be further refined to concrete activities at run time when process
execution reaches a certain level, considering the result of some of the completed
activities.

2. Also in some domains, processes are more flexible than those in other. Differ-
ent instances may not follow pre-defined process rules precisely but have small

Chapter 6. Extending Our System For Incomplete Process Support 125

deviations. In particular, the possibilities to complete a task in various cases
may be very different. To foresee and to model of all these possibilities is either
impossible or at least not necessary. Therefore, it is hard to define a complete
process model in advance which describes all the situations that the instances
may fall in. A typical example of this case is, again, in a health care process,
where inpatient treatments are prescribed uniquely for each case[SSOO01].

3. In some cases, it is hard to get essential information to model processes com-
pletely before-hand, especially in application domains like scientific research,
invention and the laboratory environment. Modelling such exploratory work is
a difficult task because very limited information is available or can be used for
reference[JWB96, SV96]. In particular, some modelling information is com-
pletely unknown until the process instances are executed to a certain stage.
Therefore, the complete process definition of tasks at a later stage cannot be pre-
defined because the outcomes of tasks at early stages are unclear. As a result, a
complete workflow process cannot be obtained at design time.

6.2 Problem Analysis

Incomplete process support is the capability of a workflow system to execute a pro-
cess model before it is complete specified, where the full specification of the process
can made at runtime, and may vary for different instances. Some requirements have
been described for workflow management systems that support incomplete models and
which are not fulfilled in conventional workflow research[JYRO04].

1. Incomplete parts of workflow processes have to be specified explicitly as incom-
plete at build-time.

2. A workflow management system uses a different execution mechanism, where
execution of the process instances can be performed even if the process is not
specified completely.

3. An automated run-time facility should be provided, which enables further ar-
ticulation of the workflow processes at run time without affecting the current

running instances.

In a decentralised workflow management environment, for instance, a MAS based
workflow system, some extra requirements are needed:

Chapter 6. Extending Our System For Incomplete Process Support 126

4. An incomplete process definition can be divided into task partitions and task
partitions can be distributed to relevant agents appropriately.

5. Real time incomplete process support can be carried out in a decentralised envi-
ronment so that process elaboration can be performed at the right time and the
right place by the right participant.

For the above sorts of requirements, a conventional centralised workflow architecture
(client-server) cannot easily be adopted since all the client end participants can only
be invoked passively and have no authority to revise the workflow model. Of course,
to fulfill the first three requirements, the process modelling language that is used to
describe the process models used in conventional workflow management system can be
revised. However, the fourth and fifth requirements can not be satisfied easily anyway
because the fulfillment of incomplete activities has to be carried in a distributed manner
since the private knowledge of each participant is needed.

On the contrary, our approach proposed in chapter 5 could satisfy all the above
requirements perfectly with minor extension. Based on our proposed architecture (
a decentralised multi-agent platform), all the participants (agents) are equal and have
their own initiatives. Each activity in the pre-defined workflow model is executed by
a corresponding agent and the whole process model is passed between agents in a se-
quential order, which means that the agents can instantiate the incomplete activities
defined in the process model appropriately since all the states of the running process
instance are clear to the agent when it holds the process instance. In the following sec-
tions, we will discuss different sorts of incomplete activities in incomplete processes
and how they can be instantiated by our agents.

6.3 Categories Of Incomplete Activities

As discussed earlier, the reason processes are incomplete is because some of the ac-
tivities/infomation inside/of the processes are missing. Those missing activities or
activities with some of their properties missing are known as incomplete activities.
Incomplete activities in incomplete process can be of two sorts:

e A property missing activity: is an activity that has some of their properties unde-
fined at build time and those missing properties have to be decided at run time.
A properties missing activity can be either a basic activity in a process model or

Chapter 6. Extending Our System For Incomplete Process Support 127

a composite activity as shown in the following example:
basicactivity({role,role}, activity_name {unknowr}, { postcondition$)

In the definition of the above activity, only thiele and thepostconditionsare
pre-defined and the information of all the other properties are missing (input,
pre-conditions and outputs). These attributes need to be articulated before the
execution of activity instances starts.

e A component missing activity or an incomplete composite activity: is a com-
posite activity with some/whole of its sub-activities missing. For example, a
sequence activity might be defined with some unknown activities as its elements
shown as follows:

procesgsequencgmameunknownactivity, basicactivity(...), unknownactivity, ...)

For an incomplete composite activity, some/all of its sub-activities are missing
at the design time and have to be fulfilled at run time. An incomplete com-
posite activity is a "black-box” defined in the process model. Each composite
activity represents a piece of work which is filled by executing a set of sub-
activities. These sub-activities, each of which can be either atomic or composite,
can also be partially specified, forming a sub-process. A composite activity has
a predictable contribution to the whole process. In other words, the objective
of a composite activity, its position within the process, and its input and output
should be all pre-defined. But the details about how to fulfil composite activities,
I.e., how to convert input parameters into output parameters remain uncertain be-
forehand. The full specification of the composite activity needs to be made in
real time. The construction of a composite activity will not affect those activities
which feed it with inputs or use its outputs. According to the ways in which
an incomplete composite activity is instantiated, incomplete composite activities
can be further classified into two categories:

— An open composite activity: intergrates pre-determined and open activities
within a single workflow [NH94]. In this case, a pre-determined workflow
is used as the main process structure but some of the composite activities
of it are unknown completely. What we mean by "unknown” here is most
of its information is not available and needs to be built up at run-time.
At a particular step of the execution of the process, several participants

Chapter 6. Extending Our System For Incomplete Process Support 128

will coordinate with each other for the completion of unknown composite
activities.

— Acontrolled composite activity: "is characterised by integrating some types
of activities into predefined workflows that are somewhat more pre-determined
than completely open process elements’[NH94]. In particular, a controlled
composite activity has a set of components, where each component may
consist of either an atomic activity or is a composite activity. Normally, the
fulfilment of a controlled composite task requires the execution of some of
the components in a certain sequence. However, this sequence remains un-
certain beforehand and needs to be determined in real time by the activities’
performer.

Other sorts of incomplete activities that are more complicated and are more difficult to
address can exist. For instance, an activity that may have both missing properties and
unclear relationships with other activities. It is almost impossible to start executing
such incomplete processes with an expectation to elicit them properly later on. There-
fore, we believe that support for the above incomplete activities is enough for real life
applications.

6.4 Incomplete Activity Instantiation

The instantiation of incomplete processes, in general, can be performed in one of the
following ways:

e Semi-automated or manual support: The instantiation task requires an agent to
define new activities or adapt some information and then build the sub-activities
from the new/existing activities.

e Fully automated support: The instantiation task automatically makes a complete
specification of an incomplete composite task by composing the existing activi-
ties based on the instance data and given constraints.

Several questions have to be answered in order to instantiate incomplete activities
at run-time regardless of the underlying system architecture:

1. When will an incomplete activity be instantiated?

2. Where will the instantiation of an incomplete activity occur?

Chapter 6. Extending Our System For Incomplete Process Support 129

3. How will an incomplete activity be instantiated?

For different incomplete activities that have different information missing at build time,
the answers for the above questions are different. For those incomplete activities that
have some of their properties missing (inputs, performers, outputs, etc..), the informa-
tion of the missing properties must have to be fulfilled before they are processed. How-
ever, for those incomplete composite activities which have all their properties defined
properly but say nothing about how to achieve the transition between the properties,
they can be instantiated during execution time.

To fulfill the incomplete activities have with some of the properties missing, a
special managerial activity, known as an instantiation activity, is designed. What the
instantiation activities do in an incomplete workflow process model is that they are
used to instantiate particular incomplete activities that are associated with it as depicted

in Figure 6.2:
! Bind together :
Complete » i Instantiation i »
Activity E Aciity i
1 1
i]

Figure 6.2: The binding of an instantiation activity and its associated activity

An instantiation activity is only used to complete the missing properties of the
incomplete activities but doesn’t care about how the incomplete activity is made com-
plete. The description of an instantiation activity is as follows:

e Responsibility: An instantiation activity is carried out by a certain participant
who offers special services to model processes, such as a process engineer or a
project manager.

e Inputs: The inputs of an instantiation activity are the existing information of the
incomplete activities that it needs to instantiate as well as the information about
the current states of the whole process. Given this information, the instantia-
tion activity is able to decide how to complete missing properties of incomplete
activities.

e Output: The single output of an instantiation activity is a complete specification
of the properties of its associated incomplete activities. If output activities are

Chapter 6. Extending Our System For Incomplete Process Support 130

incomplete basic activities, they can then be executed directly while being in-
voked. If output activities are composite activities, their sub-activities have to be
completed before execution.

By using instantiation activities, the instantiation questionéwatiere and whehfor
properties missing activities can be answered. An incomplete basic activity is instanti-
ated by the execution of an instantiation activity that is defined before it in the process
model. Such instantiation takes place in the space of the instantiation activity’s per-
former’s space. For incomplete composite activities, instantiation is achieved in two
phases. In phase one, the missing properties are instantiated by the instantiation activ-
ity with which they are associated and in phase two, the components of them and the
orders between them are decided by all the participants involved.

Technically, there are many ways of indicating the notations of both incomplete
activity and instantiation activity in a process model; the simplest way might be the
revision of the process modelling languages. New syntax is adopted to distinguish
complete and incomplete activities so that when the workflow participants are execut-
ing activities, they know what actions need to be performed accordingly. We use the
following notation:

activity(NamelD, Instantiation Activity , Associated Incomplete Activity Out putg
activity(NamelD, Incomplete Activity, Inputs Out putg

In the following sub-sections, we will explain for different sorts of incomplete
activities anchowthey are instantiated.

6.4.1 Completing activity properties

Completion of missing properties of activities , as we have discussed earlier, is per-
formed by instantiation activities. We assume that if an instantiation activity is reached
during process execution, the missing information at build time for the completion of
its associated activity is all available. Thus, the agent that executes the instantiation ac-
tivity can use such information to complete the missing properties of the activity. An
instantiation activity can be understood as a place holder to tell when the information
for completing incomplete activities’ properties is available.

How the agent that processes the instantiation activity completes the missing prop-
erties is domain specific and varies for different applications so is not the issue that we
address in this thesis. The more general point that we address is how missing properties
articulating a process are undertaken based on our existing decentralised platform. In

Chapter 6. Extending Our System For Incomplete Process Support 131

general, the instantiation activity performing agent might use its own knowledge and
the available information to instantiate incomplete activities or it can communicate
with other agents to make the decision together.

As explained in the previous chapter, the whole process model is passed between
agents and is processed in a linearised manner. Thus, after an instantiation activity is
executed, the result of the execution (an activity with all its missing properties com-
pleted) is fully available to the following agents who are going to process the incom-
plete activity. Whenever an agent executes a property missing activity, it looks in its
received package for the completed replacement of this activity and executes it. Figure
6.3 shows the basic process.

A;Emge Paclage \\

Process model
Complete Instantiation Fncomplete Achivity &
Acinvaty Activity VWithmissing properties
F Y
execites

/I:Ie-ssrge Paclage

processes

Aty A with issng
opaies completed

Corplete Instantation B conplete A chivity A

Actividy Artivitr Viathmissing properties

Process nodel

Figure 6.3: The healthy care process

6.4.2 Instantiation of Controlled Incomplete Composite Activities

A controlled incomplete activity, as explained earlier has already got all of its sub-
components available at design time. Normally, the performer of this sort of incom-
plete composite activity instantiation is pre-defined and all we need to do during the in-

Chapter 6. Extending Our System For Incomplete Process Support 132

stantiation process is to decide the proper sequence between those components. When
a designated agent receives such an activity, it starts processing it using its own knowl-
edge according to the existing evidence. A critical question however is, how we can
ensure that the composition of the selected sub-activities for the incomplete compos-
ite activity is a valid one, where validity relates to the semantic correctness of the
composition in relation to the process under consideration. Valid composition must
be ensured through the build rules captured that are associated with the instantiating
activities.

In order to tackle the problem addressed above, a framework is proposed as shown
in Figure 6.4. In this framework, after the agent receives a message and an attached

>
=

Message, BPELAWS mwodel with Message, BPELIWS model with

inconplete activiies incomylete activities replaced

e R

+ Organisational Enviromment Y
I 1
: : [Agent W 5

]
i Updates ;
H i
| v]
i Decide Web Services Replacethe incomplete :
1]
: Events | - activities E
1 !
1]
1]
1]
| ¥ Decide Rules :
| Selected Activities ————| & Selecting Rules |
B + Comnosition Rules ,'r

Figure 6.4: A framework for incomplete activity instantiation

instantiating activity,

1. Itfirst requires the end users to select activities from the available basic activities
(webservicesaccording to the run-time instance information.

2. Then it checks whether treelected activitiesonform to theselectingrulesle-
fined associated with the instantiating activity.

3. If the selection is valid, the activities are composed into a sub-process manually
by end users or automatically by algorithm.

Chapter 6. Extending Our System For Incomplete Process Support 133

4. After the agent checks whether the composition complies withdhepositionrules
it sends the instantiated activities to next agent.

The basic elements that are used in the framework are:

e Web Services(): is a set of web services that are available to the agent inside
an organisation, which is expressed in the fornvBf= {w1,wo, ..., wn}.

e Selected Activities(): is a set of activities that are made up by the agent using
the existing?/, which is expressed in the form ol = {a;,ay,...,an}. The
activities in 4 can be a basic activity, composite activity or even incomplete
activity.

e EventsE): is the information about the data that is created by the instantiating
activity (inputs/outputs). It may come from the messages captured and inter-
preted by the agent. For example, two possible events of the invocation on a
BPEL4WS invoke activity can be interpreted by an agent as the facts below:

eventactivity_type PortType: Operation: InputVariable

event activity type PotyType Operation:
InputVariable: Out putVariable

Each event enacts at least an action that determines/helps the users to determine
the sub-activities of the incomplete activity:

eventA E) = 4 = {selecteda;),selecteday), ..., selectedan) }

e Selecting rules:defines the basic principles for agents to pick appropriate activ-
ities for fulfilling the incomplete activities. The selecting rules are constructed
from the following basic operation©P):

— selecteda): activity a is selected for the instantiation of the incomplete
activity.

— —selecteda): activity a cannot be selected for the instantiation of the in-
complete activity.

— selecteda) v selectedb): only one of the activities a and b can be selected
for the incomplete activity’s instantiation.

— selecteda) A selectedb): both of the activities a and be can be selected
for the incomplete activity’s instantiation.

Chapter 6. Extending Our System For Incomplete Process Support 134

A Selecting rule is defined as:
OP|AOP[, VOP],...]]] = OP[AOP[, AOP],...]]|
For example, the following selecting rules
selecteda) v selectede) = (—selectedb)) A (selectedc) A selectedd))

means if activity a or e is selected, activity b cannot be selected, and only one
activity between ¢ and d should be selected.

e Composition rules: indicates how the selected activities are composed for the
incomplete activities (sequences among selected activities).

— or(a,b): If both activity a and b are selected, a can be executed before or
after b no matter whether they are adjacent or not.

— beforda,b): If both activity a and b are selected, a must be executed before
b no matter whether they are adjacent or not.

— sequencg, b): If both activity a and b are selected, a must be executed
before b and the two activities must be adjacent.

We can't explicitly define parallel structure in the composition rule because of
the architecture of our system. Both of the selecting rules and the composition
rules can be defined manually or generated automatically based on the infor-
mation of activities, for example, data dependence between two activities. The
automatic composition of a given set of selected activities {a;,ap,...,an}

using a set of composition rulgd®_ = {cry,crp,...,Cry} that are relative to1 is
possible.

6.4.3 Instantiation of Open Incomplete Composite Activities

As defined earlier, an open incomplete composite activity is the activity that involves
several different participants as its instantiators. In a multi-agent based environment,
like ours, the process for instantiating open incomplete activities can be understood as
a negotiation process among different participants. A negotiation process is viewed as
a distributed search through potential compromises where each agent brings into the
negotiation specific constraints on what it considers an acceptable resolution. For our
system, the input to the negotiation process is an incomplete composite activity (with
some of its properties or sub-activities missing) and the final output is a completed

Chapter 6. Extending Our System For Incomplete Process Support 135

composite activity (with all its properties and sub-activities fulfilled). In order to enable
such a negotiation process, the definition of the open incomplete composite activity at
least needs to have the following three properties:

¢ Inputs/pre-conditions that are used for starting the activity.
e Outputs/post-conditions that this activity should produce.

e Agents that should be involved in the instantiation process for the incomplete
activity. Also it has to be ensured that these agents have the ability to contribute
to the activity’s instantiations.

After the open incomplete activities are equipped with the above properties, the in-

stantiation problem then becomes a distributed planning problem. The final goal of the
system is to produce a complete plan for executing the required task. Much research
has been done for the distributed planning problem much of this relies on a centralised
planner, which is what we try to remove for an open system. Therefore, a decen-

tralised distributed planning mechanism has to be used. To build such a cooperative
distributed planning system in an open manner, some of the key questions we must
address include:

e How is the overall planning problem decomposed and allocated to the agents?

e How are the sub-plans of individual agents concatenated to produce the overall
plan that can be executed coherently and effectively?

e How do agents communicate with one another during planning?

With the approach proposed in chapter 5, all the above questions can be answered. For
the problem/goal decomposition and allocation question, the simplest solution might
be using goal transformation, where a given goal is transformed into the another that
is similar to the first or that is a sub-goal of the given goal. For example, if an agent

in our system cannot achieve a goal by itself, it can transfer the goal into one that is
achievable through coordination with others. In the other words, to solve a@oal
solve instead a goa}’ that generates a sub-solution, and then pass the remainder of
the goal (i.e.,G minus G’) to another agents. To achieve a particular goal state

an agent must have an appropriate operator (internal functions or valid web services
in our case). Thus, all the goals/sub-goals that are passed between agents are split
into two sets. Set one contains the states for which the agent has an operator, and set

Chapter 6. Extending Our System For Incomplete Process Support 136

two contains those states for which it does not. The agent solves all the states in set
one, and then it requests other agents to solve each state of set two. In the following
sub-sections, we will explain in detail how our distributed planning mechanism works.

6.4.3.1 Round Table Coordination For Distributed Planning

Basically, for almost all planning systems, there are three necessary elements, which
are:

¢ Initial State: describes what we have to start a plan. For our work (instantiating
incomplete activities), the initial state of the planning system is the inputs of the
activities.

e Goal State: describes what the final plan needs to achieve. As with the initial
state for our system, the outputs of the incomplete activities are the goal state.

e Operators: is a set of activations that make up the plan that leads us from initial
state to goal state.

However, despite the above common features of planning system, there is a clear differ-
ence between conventional planning systems and distributed planning systems, which
is that the operators in distributed planning systems are available only to those agents
who own them. For our work, such operators are the complete activities that each agent
knows and are represented as follows for later planning purposes:

Op(Action: activity_.namePrecondition: activitiesinputs E f fect: activitiesout putg

The selection of proper operators (activities that each agent owns) for particular states
are not possible since the operators are distributed and located in different agents. Al-
though a centralised planner works as discussed in others’ work [Geo88][NRdWO05] for
solving distributed planning problem, this violates our initial idea of building an open
system. Therefore, for our system, to undertake the planning task without adopting a
coordinator, it must select appropriate operators among all the participating agents. As
we know, the planning process can be viewed as a search process for finding the paths
that connect the initial state and goal state in a tree structure. States are the nodes of
the branches and the operators are the links that connect the states. A complete plan
can be achieved as long as we can build up the complete tree structure using all the
operators. According to this, we propose a mechanism called "round table coordina-
tion”. The general idea of this approach is that a plan package that contains all the

Chapter 6. Extending Our System For Incomplete Process Support 137

un-solved states for a plan is passed between all the agents in a cyclical manner. Dur-
ing the process, all the agents look up each of the un-solved states and try to contribute
their operators to make them evolve to new states. The basic representation of a plan
package is given below:

Current State {statg AgentlD S,), ...,statg AgentID) }

Final State: {S,}

Operators: {07 : Op(...),02:0p(...),...,On: Op(...)}

Links: {S O, S, ...}

In the above representation, a plan package is composed of four child elements:

Plan

e Current state: defines a set of states that currently need to be solved. Each state
is of the form: statg AgentID,S;) in which agentIDindicates that which agent
generates this state and can not make further evolvement on it. This concept is
used to record the evolving process of the un-solved states. For our work, the
un-solved states here indicate those inputs/outputs of certain activities that have
no matches from other activities’ outputs/inputs.

e Final state: defines the last state that indicates the completion of the plan.

e Operators: define a group of operators that can be used for the solution of the
un-solved states.

e Links: defines a set of causal links. A causal link is writterﬁaé)& Sj. Causal
links serve to record the purposes of operators in the plan: here a purpOge of
is to achieve the states changing fr&@o .

By passing around the plan package, a complete plan can be generated by the agents if
it is obtainable. Whenever an agent receives the plan package from the others, it first
checks the current state list and deletes all the states that are marked by itself. Then
it checks all the remaining states that are generated by other agents and tries to use its
own operators to make them evolve. All the new states after the evolvement should be
marked by itself and added into the current state list. Also the operators and links’ list
are updated. One the agent has nothing more to do, it passes the updated plan package
to the next agent for further processing. This process continues until the goal state is
solved. An example distributed planning process is illustrated in the diagram below:

In the example shown in Figure 6.5, there are three agen®, andAgz that are
involved in the planning process. The initiate state of the whole planning process is the
existence of a variablle and the goal state of it is the existence of varial@gs\ O,.

Chapter 6. Extending Our System For Incomplete Process Support 138

Agerts StatesinPlan Package
Q" ®:
O () &
/f;gents StatesinFlan Package
A’|

=

O
N

b O a @ .
N
/A rts Statesin Plan Packa, \\
= =
&)
f SJ ﬁ. S;
= D O £ ® 5
_ /
/Agents States in Flan Package \
B
Q N
\ S_‘ ? S+
& () () & . ® @
. /

Figure 6.5: A framework for incomplete activity instantiation

The "round table coordination” process starts frAm BeforeA; contributes anything
to the plan, the plan package’s content is as follows:

Current State {statgStart 1)},
Final State: {On, On},
Operators: {},

Links: {}

Plan

and onceA; receives the package, it tries to evolve the states in current state list using
its own operator,

Op: {Action: actiom, Precondition: 11, E f fect: Oy}

Chapter 6. Extending Our System For Incomplete Process Support 139

and update the current state list, operators list and links list in the plan package. The
content of the new plan package affars processing is:

Current State {statgA;,01)},
Final State: {Om,On},
Operators: {action },
Links: {1; 2™, o;}

Plan

A; then passes the plan packagéido solve the remaining state&, then updates the

plan package using its operators and after its processing, the plan package becomes:
Current State {statgA;,01),statgAy, 0,),stategAy, O3) },

Final State: {Om,On},

Operators: {action,actiorp, actiors},

. actio actio actio
Links: {I; =% 0,0, 2% 0,, 0, 2%, 05}

Plan

OnceAs grabs the above plan package, it finds that it can only contribute its operators
to statg A1, O1) to make it evolve and can not do anything for those two states that are
generated byA,. The content of plan package is thus updated to: after its processing,
the plan package becomes:

Current State {statgA;,01),state€Az,0,), state Ay, O3), stat€ Az, 04) },

Final State: {Om, On},

Operators: {action,actiorp, action, actions },
Links: {'1 actiom 01,01 actionp 05,0, actions 03,0 actiony 04}

Plan

The round of the coordination that is lead Ay terminates afteA; receives the plan
package againd; deletes all the states that are marked by itself in the current state list
to make sure that these states will not be evolved again since all the other agents in the
planning process have processed them already. It then starts adding operators to evolve
those states that are generated by others. In this way, we can see that a search tree for
a complete plan is grown during its passage between the agents and we can ensure that
the final plan that we get after the coordination is a complete plan since with the "round
table coordination” mechanism, all the possible states during the planning process are
checked and are evolved if possible by all the planning participants. The simple LCC
chunk given below is used to ensure that the plan package is passed between agents in
a cyclical manner.
a(planner(Plan_package[Head role;|Res}, role),ID) :
solveit (Plan_package, roleList;) = a(planner(_,roleList;,role;),I1D1)
— updatéPlan_packagePlan package)and roleLis§ = [role;, RestHead
How the agents choose to contribute their actions/operators to make a complete plan
relies completely on their internal design and in this thesis, we are only interested

Chapter 6. Extending Our System For Incomplete Process Support 140

in the architectural and communication issues. We don’t discuss the agents internal
intelligent decision making issues here.

6.5 Summary

In this chapter, our decentralised multi-agent platform has been extended to support
incomplete processes. The causes of incomplete processes have been identified and
conventional workflow system’s inability to support incomplete processes has been
analysed.

By introducing the instantiation activities, run-time instantiation of missing prop-
erties activities is modelled as an essential step in the process and integrated into the
decentralised architecture. The missing components can then be filled up using an
agent’s internal intelligence or the cooperation of a group of agents. From a system
coordination viewpoint, the instantiation tasks are distributed, instantiated and sched-
uled to be executed as an ordinary task. Thus, process modelling at run-time can be
performed with the support of the mechanisms for completing processes, at either in-
stance or process level.

Chapter 7
Experimental Evaluations

Based on the system design and the corresponding mechanisms discussed in Chapters
4, 5 and 6, we use several real-world workflow applications in this chapter to illustrate
how our approaches and system support workflow processes in a decentralised man-
ner for evaluation purposes. The first case, discussed in Section 7.1, is a process for
handling university student registration, which can be considered as a conventional,
complete workflow process and is used to test our interpretation based approach. The
second case describes a shipping service process, which contains almost all the im-
portant BPELAWS syntax and thus can be used to test our language mapping based
approach. The third case discusses how our approach supports a heath care process
that is first given in Chapter 6 , which is normally viewed as a non-traditional, incom-
plete workflow process.

7.1 Case Study 1: Student Registration Process

The student registration service processes the registration of students, which may in-
clude the activities of courses’ registration, changing of schedule, quitting a course,
paying tuition fees, and so on. This process is normally well defined and can be seen
as a fixed activity process. Thus, workflow solutions are well suited to this scenario. A
typical scenario of the student registration process would be the following:

e A student submits a completed registration form to the student’s course advisor
for approval. The course advisor views the information in the registration form
and starts approving it. If the request is approved, the registration information
will be sent to an enrolment officer for recording and if the request is rejected,
the registration form will be sent to an enrolment officer to close this request.

141

Chapter 7. Experimental Evaluations 142

e The enrolment officer updates the student’s course information if the request is
approved and sends a payment form to the financial section for billing. The
registration information is also sent to university technical staff to setup up a
computer account for the student.

e The officer in the financial section and the technical staff deal with the payment
and computer account and inform an enrolment officer who doesn’t have to be
the same person that sent them the student’s registration form.

e The enrolment officer collects notifications from both the financial section and
the technical staff to complete the present registration service request.

¢ Finally, an enrolment officer advises the student of the outcome of the request
and closes this request.

Three characteristics of the student registration service which need to be addressed
properly are illustrated in this thesis:

e First, as we can see, the student registration service is physically distributed.
To carry out the whole registration process, staff from different departments
are involved. For example, course advisors approve the registration requests
of courses, technical staff sets up the computer accounts of students, the finan-
cial section handles payment, and enrolment officers carry out all paper work
and some of the coordination work. These distributed staff, in terms of phys-
ical location and administration, should be able to collaborate with each other
efficiently to provide the registration service to the student without the need of a
centralised coordination mechanism.

e Second, due to the large number of students, the student registration service
would experience a heavy load. Students, may send their registration requests
at anytime during the time period (just before the deadline for example). Thus,
performance has to be considered as a main issue when the system is designed.
The system is expected to handle a large number of requests in a relatively short
period of time. A pure decentralised coordination mechanism is clearly helpful
for this purpose.

¢ Finally, although this scenario can be modelled as a workflow process and repre-
sented as a process model easily as shown in Figurktfid formal BPEL4WS

1Al the diagrams depicted in this chapter use FBPML[CBR98] notations

Chapter 7. Experimental Evaluations 143

process model specified for this example can be found in appendix D.1), to rep-

resent it using a multi-agent interaction protocol is hard or almost impossible for
non-technical users.

Registration Pre-examine
—_— —_—
Form submission registration form I

Al

A2
Registration form
Close Request " <
approval

A4 ‘ A3
Recording Issues Setting up
o information Payment form Computing account

1 AS A6 AT
@ Collect Payment Collect Account
confirmation confirmation
A9

Inform student

registration outcome

A0

Figure 7.1: Student registration process

The above characteristics of student registration service, make the approaches de-
scribed in this thesis attractive. This process consists of a set of tasks which need to
be executed in a certain order. Also, this process involves participants such as enrol-
ment officers, course advisors, technical staff and treasurers. The virtual organisational
structure based on a multi-agent point of view is given in Figure 7.2.

Chapter 7. Experimental Evaluations 144

i ’ y
i I i
I ! 1
1
' emmmmmmmm———— Enxchnent OCE Lememm ., '
1 - ' e 1
H - 1 ' \ 1
! F; i 1 4 H
! ¥ i 1 Y H
i i 1 1 1 '
! 1 1 i ' '
H 1 1 ' H H
1 1 (] 1 1 1
! 1 i 1 1 1
H H i 1 1 '
L 1 i 1 ! !
. 1 o L H ;
T p— | S ———— L 1 -
yoomEEEEEesEEEm—— 0 e mmm——-—. Fmm———
H 1
! 1
! |
1
i
1 - -
L ™=
! s==- Treasmumer - ¥ Techmic al Staff .
1
1
1
1
1
i

"

o el e
\.a
s

R L L L

Figure 7.2: Virtual organisational structure of student registration process

Once a new registration request is received, a process instance following the pro-
cess model depicted in Figure 7.3 is created to handle this request. Various agents col-
laborate with one another to create a process instance, using the mechanisms described
in Chapter 5. Each agent in this virtual organisation has no overall knowledge of how
the coordination process is organised and only performs the tasks when requested.

Five agents, namelgtudent, enrolment officer, course advisor, treasurer and tech-
nical staff are created to deploy the process for evaluation purpose.

7.1.1 Experimental evaluation of interpretation based approach

When this example process is deployed on our system using the interpretation based
approach proposed in Chapter 5, it is first re-written into a substitute (as shown in
Figure 7.3 that has no concurrent computation structure defined (see Chapter 5 for
detail). With support of the system developed in chapter 5, this re-write process is
generated automatically (formal representation is listed in appendix D.2):

With the substitute process, when

e triggered by an approved student registration form, the scenario is enacted by
our decentralised and LCC interpretation based system as follows:

— After enrolment officereceives a registration form frostudent(execut-
ing activity A.0), it first: performs the activity defined in the process model

Chapter 7. Experimental Evaluations 145

—
Csan e[a0 [_+ 2 ol e

AS

X

‘\ AR |W— AT

Figure 7.3: Substitute of original student registration process deployed on our system

internally; re-forms the registration form; and then passes the revised reg-
istration form and un-processed modelctourse advisoffor further pro-
cessing (executing activit.1).

— Course advisokeeps processing the received document and process model.
After it finishes its processing, it returns the result and process modalto
rolment officer

— Since the given data at the beginning is an approvable registration form,
enrolment officewill execute task sequences fAccount— management
andPayment handlingA.2,A.4,A.6,A.5 A.7,A.8). The un-processed ac-
tivities defined in the process model are passed betweeriment offi-
certreasurerandtechnical staffaccordingly in a sequential order and at
the last stage of the coordination process, a messagstfrationSuceed
is sent back to the student.

e it is triggered by an un-approved student registration form, the scenario is en-
acted by our decentralised and LCC interpretation based system as follows:

— After enrolment officereceives a registration form frostudent(execut-
ing activity A.0), it first: performs the activity defined in the process model
internally; re-forms the registration form; and then passes the revised reg-
istration form and un-processed modelctmurse advisoffor further pro-
cessing (executing activiti.1).

— Course advisokeeps processing the received document and process model.
After it finishes its processing, it returns the result and process modal to
rolment officer

— Since the given data at the beginning is an un-approved registration form,

Chapter 7. Experimental Evaluations 146

enrolment officewill execute taskA.3 and a messagegqgistrationFailed
is then sent back to the student.

From this experiment, we can see that based on the two different sort of inputs (ap-
proved student registration form and un-approved student registration form), our sys-
tem the intended task (defined by the original process model) well. Comparing with
the execution performed by conventional workflow system, the only difference is that
our system has to execute the parallel structure in the process model in a fixed man-
ner, which is not as flexible as a conventional workflow system although the results of
execution are the same.

In this case study, an unavailable agent (staff) exception can be detected and han-
dled automatically. For example, if the delegatéficer of financial sectiobbecomes
unavailable before executing the payment function for billing, this task instance can
be re-allocated to anothénancial officerquickly if there is one available, using the
mechanism discussed in chapter 5.

Some benefits of our interpretation based approach and decentralised system are
reflected using this case study.

e First of all, direct interaction between different agents would decrease commu-
nication delay, reduce the traffic of network and thus may achieve good per-
formance. With conventional workflow systems, the messages between all the
participants have to be forwarded to each other through the centralised work-
flow server. As addressed previously, when the number of registration students
increases during busy period, the server will be overloaded and thus the perfor-
mance of the whole system is affected.

e Secondly, system robustness s likely to be enhanced because failure of any agent
would not cause the failure of the whole system. For example, when an agent that
represents an enrolment officer is broken, the work assigned to this agent can be
quickly reassigned to another enrolment officer for execution using certain fault
discovery mechanisms. With conventional workflow, once the workflow server
Is down, the whole system is dead and maybe not recoverable.

e Thirdly, the system is much more open as new staff members can join the sys-
tem more easier to offer better processing capacity. For a centralised workflow
system, this feature is not easy to achieve because once the workflow server is

Chapter 7. Experimental Evaluations 147

designed, the capabilities of the system are fixed and the dynamic extension of
the system’s capacity during run time is hard.

e Finally, our system may satisfy staff members better. For example, enrolment
officers can be involved in different process instances. They are not required
to stick to any particular process and what they are requested to do completely
relies on the messages they receive from others and their own initiative. In a
conventional workflow system, all the staff members are only allowed to be allo-
cated tasks and invoked for providing their services passively. In addition, they
have very limited capability to take part in the management of the whole process
during run time once the execution of some process instances have started.

7.2 Case Study 2: Shipping Service Process

7.2.1 Experimental evaluation of language mapping based approach

This case study uses a rudimentary shipping service described by BPEL4AWS (formal

model is given in appendix D.3) as a test bench to prove the soundness of our language
mapping based approach. This service handles the shipment of orders and offers two
types of shipment as shown in Figure 7.4: shipments where the items are held and

shipped together and shipment where the items are shipped piecemeal until all of the
order is accounted for. Two participangh{pping service customandshipping ser-

Recere

E—E=h

AD

Upd ate Iiem
Ship Notice numher

Al A2

¥

Ship Notce

AZ

Com a—(on) ;
\ Update Shipped

Item number

Ad

Figure 7.4: The Shipping service process

Chapter 7. Experimental Evaluations 148

vice providerare involved in the process and interact in the following way:

e After a shipping service providereceives a ship order fromshipping service
customeyit starts processing the shipping request.

e Theshipping service provideships the items away and keeps sending ship no-
tices toshipping service customeusitil all the items are done.

This process is chosen as a test of our language mapping based approach because
that it covers most of the important BPEL4WS syntaxréceive>, < invoke>, <
assign>, < sequence-, < switch>, < while >) although it is not complicated and it
is well written (it is translatable according to the principles give in Chapter 4. The
automatically generated LCC protocol using our system is given in appendix D.4. The
generated LCC protocol is tested on a Linda server[Rob04a] that is a Prolog based
multi-agent simulation platform (message passing is performed locally). Two types of
testing are undertaken:

e One-to-One based interaction: Only two agents, nastalyping service provider
andshipping service customedire created and different data instances are used
to prove the correctness of the LCC protocol generated when it is used to guide
the interaction. Branches and iterations as defined in the original BPELAWS
process model are all well performed by the two agents. Desired outputs are
through the agents’ interaction based on different inputs.

e Many-to-one based interaction: Oskipping service provideagent and many
shipping service customegents are created. Differeshipping service cus-
tomeragents send shipping requestsh@pping service provideagent randomly
(shipping service provideagent may receive requests from different customer
simultaneously). Results of the interactions that takes place betstgeping
service providerand eaclshipping service customeire also proved to be cor-
rect.

From this case study we can conclude that for those translatable BPEL4WS process
models, using our language mapping based approach, the LCC protocols derived can
be finely used to guide multi-agent interactions.

Chapter 7. Experimental Evaluations 149

7.3 Case Study 3: Health Care Process

In Section 7.1, we discusses how our system supports complete workflow processes.
In this section, support for incomplete workflow processes is demonstrated using a
case of health care process, which is also used as an example to explain the concept of
incomplete process in Chapter 6.

Create Initial Examine Make Final Make End
. " ™ > . " . . > —
Patient Profile Diagnosis Patient Diagnosis Payment

I| Mamn ogram || X Ray |
1

1
'
1
'
- :
E Ultra Sound Second !
i Diagnosis E

Figure 7.5: The healthy care process

Figure 7.5 shows an incomplete process representing a typical diagnostic process
for investigation of patients in hospital (the initial BPEL4AWS model with the syntax
that supports incomplete process of scenario can be found in appendix (D.5). A new
patient coming into the centre will first have a profile created according to his/her
current status via a registration service. All patients then consult with an attending
physician for the first diagnosis, which will determine what tests need to be performed,
on a case-by-case basis. This introduces the flexibility into the process. After the tests,
the patient is called again by the attending physician who explains the results of the
tests and makes a diagnosis. The patient is then required to report to accounts to make
the required payment before leaving the centre. In this process, the activity that is
depicted in the gray box is an incomplete activity. It can not be pre-defined until the
physician sees the real situation of the patient. Our system can serve as an effective
platform for the health care process for the following reasons:

e First, this health process aims are normally achieved through the accomplish-
ment of individual services, which have inherently logical relationships and
should be performed in a certain order. Thus, the conduct of health care can
be easily modelled as a process and our system can provide automated support
for deployment of such a process. As this process can be modelled, it is sup-
ported by conventional workflow management system as well once the process
model is formalised.

Chapter 7. Experimental Evaluations 150

e Second, most of the non-trivial health care process are based on collaborative
work. A number of health care departments, who focus on various health care
tasks, are involved. These departments, sometimes geographically distributed,
should be coordinated properly so that health care process can be passed from
one department to another, according to a set of defined rules. Obviously, such
coordination can be well supported by our system to improve efficiency and
productivity as addressed in the previous case studies.

e Third, there is a large amount of communication amongst patients and medical
departments for coordination purposes. Our system also suggests this feature
well with automatic coordination.

¢ Finally, there are uncertain activities that are not clear at the process design time
(examine patientand their executions fully rely on instance data of previous
activity (initial diagnosig. Our approach and system can support this feature
well since it fully exploits an individual agent’s knowledge and capabilities.

Obviously, at the early stage of a health care process, although the goals and ex-
pected outcomes @xamine patierdire expressed, the activities of achieving it through
a set of steps remains uncertain. The particular patient examine tasks can be gained
only afterfirst diagnosishas been completed. In other words, the decomposition of
examine patientnto sub-processes should be performed on-the-fly at run-time. In
view of this situation, the execution of the health care process falls into the category
of controlled incomplete composite activity’s instantiation (see Chapter 6 for detail)
since the sub-activities axamine patienand their composition depend on activity
initial diagnosisand the instantiating process is performed by one agent (attending
physician). For example, one of the possible complete process instances might be as
depicted in Figure 7.6 (its formal representation can be found in appendix D.5.2) if
examine patiens instantiated by two concrete activitieX Ray checking, ultra sound
checking that are executed in sequential order after the initial diagnosis is made.

X Ray

Checking

1
1
L]
i
H
Cre.ate . Initial /:/' l E BI-:rl:e Fi-lml » Make
Patient Profile Diagnosis ||} y Diagnosis Payment
i f
1
1

Ultra

Sound

Figure 7.6: A possible complete health care process instance

Chapter 7. Experimental Evaluations 151

In this example, whepatientinteracts withattending physiciaror initial diagno-
sis, it knows nothing about what examination it needs to take or technically speaking,
it knows nothing about the unprocessed process model. Therefore, at the time point
when thepatientagent processes tid@tial diagnosisactivity, whether the whole pro-
cess is complete or incomplete doesn’t matter. Afterattending physiciameceives
the un-processed model from tpatient it instantiates the incomplete activity in the
unprocessed model and sends it back according to the definition in the completed pro-
cess model. Agematientthen processes the received process model and makes the
whole process continue. We can see in this process thaidtientagent is totally
unaware of the incompleteness of initial process model. In addition, since in our sys-
tem the process model is distributed amongst agents, different instantiations of the
incomplete process instance will not affect consistency.

7.4 Summary

Three case studies are used in this chapter to demonstrate the applicability of the key
ideas presented in this thesis. The studies have shown the design rationale of our
multi-agent based workflow clearly. The analysis also demonstrates that the multi-

agent based workflow approach proposed in this thesis is applicable for supporting

both conventional (complete), and non-conventional (incomplete processes).

Chapter 8
Discussion

This chapter discusses both the positive and negative sides of our work an multi-agent
based decentralised workflow enactment mechanisms as proposed in this thesis. The
advantages of our approach are suggested in Section 8.1 and the tradeoffs of using the
multi-agent computing paradigm in comparison to the conventional system architec-
ture (client-server architecture) are discussed in Section 8.2. A discussion of applica-
tion domains in which the multi-agent based workflow management system might be
adopted and might perform better than other approach is given in Section 8.4.

8.1 Discussion of the Advantages of This Research

It has been well recognised that business processes are important and crucial in all
organisations. Workflow management for business processes is becoming a more and
more important part of organisational information systems. However, the current situ-
ation is that most workflow systems suffer from problems of poor performance, single
point failures, limited openness and lack of sufficient incomplete process support. Fur-
thermore, as inter-enterprise e-commerce becomes more and more complex, require-
ments emerge for open systems, in which each participants can join, contribute to and
leave the interaction on their own will. With conventional workflow systems, such
requirements can not easily be achieved.

The approaches presented in this thesis treats all the above problems from a novel
point of view. We believe that most of those problems, if not all, are caused by the mis-
match between system requirements and system realisation. Therefore, a centralised
management architecture that is not well suitable for decentralised workflow applica-
tions needs to be replaced by an open, collaborative, and decentralised one while the

152

Chapter 8. Discussion 153

existing business rationales for building workflow management systems should not be
affected by the change of the system architecture.

Based on this observation, the target of this research is to address these unsolved
problems by exploiting features of multi-agent technology that provide a decentralised
architecture to support workflow. As a result, a new framework and corresponding
process coordination technologies are presented. The advantages of our proposed ap-
proach are summarised as follows:

¢ Two different computing paradigms, namely workflow management systems and
multi-agent systems are linked. With our approaches, multi-agent based work-
flow management systems can be constructed faster than before since the exist-
ing work (modeling tools, existing business process models etc) can continue
to be used in the larger design process and the possibility of acceptance of new
systems is largely improved.

e A centralised workflow coordination server is eliminated. Multi-agent based
workflow system avoids some of the risks of client-server approaches. It is more
stable in the circumstances where the whole system fails simply because some
individual points (bottlenecks) fail. The possibility of one point failure of indi-
vidual agent is reduced in our system since the computation and communication
are relatively better balanced between all the participants; Dead agents in the
system can be discovered by others and the system can then be made alive by
replacing the dead point.

e System openness is also improved as agents represent a loosely coupled comput-
ing paradigm. Virtual communities should be open and dynamic so that work-
flow participants can join and leave on their own initiative. Our approach loosens
restrictions on workflow participants. Workflow participants, represented by
agents, are autonomous in the system. With essential data, agents are able to
participate in workflow systems more actively and the behaviours of workflow
agents do not require updating the centralised workflow server as with a conven-
tional workflow system architecture. New agents can join the system at any time
and through any existing agent without affecting the current status of the whole
system.

e Our approach utilises novel techniques involving multi-agent execution of work-
flow processes. This research shows useful results for research topics such as

Chapter 8. Discussion 154

Web service based workflow and Grid workflow. Certain requirements such as
agent based service interaction were found lacking in the existing Web services
and Grid services technologies [SKL02]. With our approach, computing units
like web services can be used to provide external behaviours for agents, and
thus can be adopted into our existing system. This further increases the open-
ness of the system and supports service-oriented workflow well. In addition, the
composition and execution of Web services can also be facilitated properly by
agents.[BBNO2, GPWO03].

e Our approach provides possible support for incomplete processes. By using de-
centralised task decomposition, support for incomplete processes is embedded
within the system framework. This extended feature makes our system capable
of supporting processes in some of the non-conventional workflow domains in
which processes cannot be completely designed in advance.

8.2 Discussion on the Tradeoffs of the Proposed Ap-

proach

Change from conventional workflow architecture to multi-agent based system archi-
tecture brings some tradeoffs which show potential limitations. Some of the tradeoffs
of the proposed approaches in this thesis are summarised as follows:

e The execution of the workflow process is decentralised while the ability of con-
current computing that is supported by conventional workflow management sys-
tem is no longer supported by our multi-agent based platform. Business process
models have to be passed between agents and are executed in sequential order.
As explained in chapter 5, all the parallel structures defined in a process model
need to be converted into sequence structures which execution are the sub-set of
the parallel structures’ execution set.

e Management and monitoring of workflow execution may become more diffi-
cult in a multi-agent based workflow system. Extra agents (say administration
agents) need to be developed for administrating purpose in order to collect the
related information (current states of agents) by communicating with workflow
agents. If the administrating agent has to be designed as a special agent, it would
become a new bottleneck of the whole system, which is what we try to avoid.

Chapter 8. Discussion 155

However, if any common workflow agent in the system has the functions of man-
aging and monitoring, the complexity of individual agent design will be largely
increased.

e The ability to handle exceptions and erroneous situations may be difficult with
multi-agent based workflow system. Unlike conventional workflow systems in
which errors and exceptions can be detected and solved by centralised servers,
more complicated mechanisms such as mechanisms to detect and handle unex-
pected exceptions are required. These require future work.

e Multi-agent based open systems enable networked access to resources. This can
bring security problems [VAMO1]. In particular, with our approaches, every
agent has the right to access the activities defined in the process model being
passed no matter whether they are designated for those activities. Therefore,
issues of authentication and security are a major concern for particular applica-
tions.

8.3 Discussion on Combination of BPMs and MAS In-
teraction Protocols to Support More Complex Work-

flows Based on MAS Platform

Although most of the use cases given in the thesis are requests driven (agents start ex-
ecuting workflows only after they receive requests from others), richer interaction pat-
terns such as negotiations, auctions involved in a workflow can be adopted seamlessly
because of the features of multi-agent system. In this section, we briefly illustrate how
this can be done using negotiation examples[LGWO05].

Negotiation processes are at the core of the inter-operable e-Business. It is very
common that negotiation processes are interleaved with other business processes that
are automated normally by a workflow system. But as addressed in [KS03], the cur-
rent web services standards like BPEL4WS do not allow for all the possible business
negotiation processes. The vast majority of the researches to date have been based
on the multi-agent platform and this is completely natural because negotiations often
involve many parties, multiple issues and decision-making process is always required.
Therefore, when executing a business process that involves negotiation processes, the
inter-operability with other internal- and external- systems (agent-based systems) is

Chapter 8. Discussion 156

critical. Based on the work proposed in Chapter 5, a BPEL4AWS specification can
be used directly in a multi-agent system. Thus, the inter-operability problem that is
addressed above can be eliminated.

A BPEL4WS model that involves negotiation behaviours can be used on our ex-
isting multi-agent platform directly without interacting with any inter- or external-
non-multi-agent paradigm based system. The architecture of it is illustrated below in
figure 8.1: In this architecture, the tasks that are defined in the BPEL4WS specification

LCE Protocol BIEL Hpec ification . Mescage

Figure 8.1: The MAS Based Architecture For Implementing the Negotiation Process
Model

are performed by a group of agents using required web services. The agents that are in
the area of dashed square represent the interaction that takes place for the negotiation
activity defined in the BPEL4WS specification.

Although BPEL4WS provides a rich set of primitives to specify web service com-
positions, it does not support multiple instantiations. There is a clear need to invent a
such activity that are executed multiple times within the same process instance without
knowing the number of parallel executions in a priori. This is especially the case for
inter-organisational negotiation processes that often include 1 : n interactions.

Chapter 8. Discussion 157

8.3.1 Extending BPEL4WS for Negotiation

Typically, a negotiation process can be divided into two parts (see e.g. [Bak98]) as the
example of an online auction process illustrates:

e One-to-many phase:A set of potential partners is created . In an auction pro-
cess each bidder can be regarded as a potential business partner. The bidder with
the best offer is chosen as the partner for further interaction.

¢ Bilateral phase: The offerer and the auction winner continue the process in a
bilateral way. The winner receives a bill, and the offerer initiates the shipment.

In essence, BPEL4AWS defines conversational relationships between two parties via a
so called partnerLink that links one internal party to one corresponding external party.
In order to allow for negotiation process, the following minimum issues have to be
declared in a negotiation activity:

e Array of External Parties: In a negotiation activity different partners may actin
the same role. The respective partnerLink should include an attribute to indicate
such capabilities.

e Sets of Negotiation IssuesThe input variable of a negotiation activity should
be sets of issues that needed to be negotiated.

e Negotiation Strategy: The negotiation strategy decides how the negotiation
process can be carried, for example, in some cases time constraint is highly
emphasised.

Based on the above issues, the extended negotiation activity for BPEL4AWS has the
basic syntax as follows:

< negotiation partnerLink=""ncnamé portType= "gnamé
NegotiationStrategy- "ncnaméinputVariable= "ncnamé
out putVariable= "ncnamé
standard-attributes >
standard-elements
< /negotiation>
The definition forpartnerLinkneeds be revised gently in the following form:

< partnerLinkname="ncnamé partnerLinkType="gnamé
myRole= "ncnamé&? partnerRole="ncnamé?
multiple="yes/nd’ > +

< /partnerLink>

Chapter 8. Discussion 158

Hegotistion Fe quiTement:
. Hegotiation Strategye
. Hegotiation s anes

L . —
. Hegotiation Dartriers
|
Recefue
Fetch required sirate g ¢ .
protocol Agent Chnge e gotiation.
(Role: allocater) requile ment ot Ay time
Start ne gotiativn nsing
silected drate gy
Agent
(Recle: starter) —_—
Agent + L S S Agent |
(Role: Negotiator (Role: Hegotiator egotidion
Enonarle dge
I I Base
Agend
Agend
(Rale: Pariner ol JER S

Figure 8.2: The Agile Negotiating Framework

If the attributemultipleis set to "yes”, thepartnerLinkrepresents a one-to-many rela-
tionship.

The negotiation activity invented is a pure abstract activity, which means it doesn’t
define any semantic of the negotiation behaviours. All the concrete negotiation pro-
cesses, like how the partners interact with each other, are carried out by the underlying
LCC protocols. To interpret the invented BPEL4WS using LCC protococol,a new LCC
role is created corresponding to the negotiation activity:

a(Negotiatior{iIModel, [HeadMList],V List, IDList, myRolg, D) ::

a(allocator(PL,NI, StrategyOf fer),ID) «— processnegqModel, PL,NI, StrategymyRolé

then

a(interpreter(Head MList,V List, IDList,myRolg, D) — add(Of ferV List,V List)
The above LCC protocol specifies that if thiedelthat is being processed is a negoti-
ation activity, the current agent extracts the necessary negotiation information from it
by using the constrairgrocessnegoand then changes its role adlocator to start the
negotiation. After finishing the negotiation process, the remaining BPEL4WS model
will be executed and the negotiation result will be used. How the abilecator is
defined will be discussed in the following section.

Chapter 8. Discussion 159

8.3.2 The Agile Negotiation Framework

Figure 8.2 shows a framework that illustrates the basic negotiation architecture of our
system, which is based on the one-to-many negotiation structure proposed by lyad
Rahwan[IRP02]. With this framework, during the process of one-to-many negotiation,
an agent can negotiate with many other agents by creating a number of one-to-one
negotiating agents on its behalf.

The components of the framework are:

e Negotiation Requirements: stores all the negotiation related information and
can be updated by internal process model of an organisation at any time. It is
composed of three parts:

— Negotiation Issues:defines a set of intended issues that are going to be
negotiated. The number and the contents of those issues can be changed
during the negotiation process.

— Negotiation Partners: defines a set of partners with which we are going
to negotiate.

— Negotiation Strategy: defines the negotiation strategy that is going to be
used for controlling the negotiation process.

e Negotiation Strategy Protocol Library: According to different negotiation
strategies, we need different negotiation protocols for controlling vary sequences
of conversions between agents. Furthermore, because the negotiation strategies
can be changed by end users at any time (before/during/after the process of nego-
tiation), the negotiation protocol has to be as agile as possible to fit this feature.
We developed an extendable LCC protocol library, which contains sets of ag-
ile LCC negotiation protocols based on different negotiation strategy. There are
two levels of negotiation strategies, namely strategies exercised by individual
negotiating agent and their partners in their one-to-one encounter, and strate-
gies exercised by the initial agent in organising and issuing commands to their
negotiators[IRP02].

e Agents: Four types of agents are defined as following:

— allocator: is used to decide which LCC negotiation protocol can be used
according to the given negotiation strategy; fetch and initiate the appropri-

Chapter 8. Discussion 160

atestarter according to the potential strategy and the number of the part-

ners.

— starter/starter _...: starts the negotiation using appropriate negotiation strat-
egy and also responsible for collecting the negotiation result/terminating
the negotiation process.

— negotiator: is the real agent that negotiates with the partner on certain
negotiation issues.

— partner: is the business partner with which we negotiate.

e Negotiation Knowledge Base:stores the business related information and is
used for evaluating the negotiation issues.

Sets of LCC protocols for implementing different negotiation strategies such as one-
to-one negotiation, desperate strategy and patient strategy for one-to-many negotiation,
are listed in Appendix E and all the negotiation strategies defined can be adopted at run
time by usingallocator as mentioned above. The definition for it is given below:

a(allocator(PL,NI, StrategyOf fer),ID) ::
a(starterNI,PL,NL,Of fer),ID) «— is_121(Strategy and geiPL,NL)
or
a(starter DS(NI,PL,NL,Of fer),ID) « is.DS(Strategyand geriPL,NL)
or
a(starter PSNI,PL,NL,Of fer),ID) « is_PSStrategyand geriPL,NL)
or

From the discussion in this section, we can see that the multi-agent based work-
flow enactment approach given in Chapter 5 can easily be extended to support more
complex interaction patterns which are not simple requests based or with which a role
of coordinator has to be involved.

8.4 Discussion on Suitable Application Domains of MAS

Based Workflow Management System

With the discussion of the advantages and some of the possible disadvantages of our
approaches presented in Sections 8.1 and 8.2, we can see that multi-agent based work-
flow systems may perform better for some application domains but not for all. There-

Chapter 8. Discussion 161

fore, an analysis of the application domains where our approaches and system are more
suitable can provide a better understanding of multi-agent based workflow systems.

In general, our approach is capable of providing better support for standard work-
flows providing the advantages outlined in Sections 8.1. Also, it is capable of provid-
ing certain support for incomplete processes based application. In particular, with the
widespread deployment of wireless technologies, the next phase of electronic business
growth will be in the area of wireless and mobile e-commerce. The existing mobile
network infrastructure provides an open environment for running large scale applica-
tions. Such applications can be viewed as multi-agent systems in which each mobile
device is viewed as an agent from a technical point of view.

Multi-agent technology is thus recommended as a well-suited software paradigm
for such mobile devices based environment. Mobile agents are able to travel between
platforms to fulfil their tasks at different locations. Decentralisation helps to cope with
the complexity problem of service infrastructures. However, when adopting the re-
search result from the existing multi-agent world to the mobile agents based system,
new problems emerge due to the features of mobile devices (limited computing ability,
high mobility, huge numbers, etc). With our work, the mobile devices can be used
to deploy a workflow system. The mobile agents can be completely dummy agents
because the issues of how they communicate with each other and perform business
functions at the right time are pre-defined in the message package. Consequently, no
complex functions for controlling the coordination between mobile agents need be
designed inside each mobile agent. The mobile agent thus can be used to deploy work-
flow management systems with more mobility. Another possible application direction
of our approaches is the extension of web services. Currently, web services can only
be invoked passively as service providers without any initiative. Possible extension can
be made using our approaches to add very lightweight layers on top of web services to
enable them work on their own initiative.

For those application domains that require heavy parallel computation, our system
doesn't fit so well since agents in our system can only perform the designated tasks in
sequential orders, which might reduce the overall system performance.

Chapter 9

Conclusions and Future Work

9.1 Summary of This Thesis

The objective of this thesis was to develop an innovative system architecture and pro-
cess coordination mechanism for multi-agent based, decentralised, workflow manage-
ment systems with high level business rationale kept. The thesis was organised as
follows:

e Chapter 1 introduced workflow concepts as well as the state-of-the-art of work-
flow. It also described the purposes of this work, the key issues addressed in this
thesis and the structure of this thesis.

e Chapter 2 analysed some of the existing research problems in conventional work-
flow systems in detail. Based on the problems analysis, we observed that most,
if not all, of these problems are caused by the conventional system architecture
(client-server based architecture) in open environments like the internet. After
reviewing some of major related work, we believe that workflow’s increasingly
distributed nature in open environments can be reflected better by a multi-agent
based, decentralised and collaborative system architecture. Also it is argued that
the underlying system architecture change should not affect the upper level busi-
ness rationale. This is the philosophy of this research.

e Chapter 3 proposed a framework for modelling multi-agent system protocols
starting from a high level process model. With this framework, a process model
can be used as a basis for protocol property verification. A simple language
SPPC is defined for property checking purposes and any protocol model defined
by SPPC can be translated into an existing protocol language(in this case LCC).

162

Chapter 9. Conclusions and Future Work 163

Using this framework, much effort can be saved in the process of MAS protocol
modelling since some requirements specification level errors can be discovered
using automatic verification, which is different from the typical protocol mod-
elling engineering method. Furthermore, using this approach, any revision to an
existing protocol can also be checked quickly to make sure all the business logic
level changes are correct.

e Chapter 4 discussed how to develop protocol based multi-agent systems using
executable business process models. Language mapping is performed between
a business process modelling language (BPEL4WS) and an interaction protocol
language (LCC) to generate the protocol used in MAS from the business process
model. Since the gap between them is quite large, we use another modelling
language (SPPC) as an intermediary. First we perform a language mapping be-
tween BPEL4AWS and SPPC, then the derived SPPC model can be translated
into a LCC protocol automatically. During the language mapping process, we
found that, although most of the main concepts from the business process mod-
elling language (BPEL4WS) and SPPC match, some particular notations from
certain business process modelling language cannot be seamlessly represented
by another modelling language which is based on a different paradigm. For ex-
ample, the computing activities defined at the end ef sequence- activity in
BPEL4WS can not be easily translated to in SPPC clauses and also, the transla-
tion for the synchronisation links defined n flow > requires the revision of
the LCC protocol generation algorithm from SPPC. Such restrictions mean that
only some BPEL4WS specifications (those conforming to the language map-
ping rules promoted) can be used for protocol based MAS development, which
makes the approach discussed in chapter 4 incomplete. In fact, language map-
ping based completeness is very hard to achieve (even for particular business
process modelling languages) since different business process modelling lan-
guages and protocol modelling languages may be based on different computing
paradigms.

e Chapter 5 provided an approach to build a multi-agent based distributed work-
flow system starting from a business process model rather than from an inter-
action protocol, which narrows the gap between the high level requirement and
system specification in the development of a multi-agent system and connects
work in the business workflow community and multi-agent community. The

Chapter 9. Conclusions and Future Work 164

LCC protocol used to interpret BPELAWS models is independent of any spe-
cific message passing infrastructure, although it has been described with respect
to a distributed and multi-agent system infrastructure, it could equally well be
deployed in a more traditional server based style. Furthermore, the protocol
can be used prior to deployment in order to predict behaviours and possible
errors in interaction[WalO4b]. Another advantage is that the workflow engine
built using our approach is a generic server. The only specific knowledge it
needs is about how to process the LCC protocol and how to invoke the web ser-
vices, but not about how to process the particular business process modelling
language. This gives us a very efficient and direct way for system re-design and
re-implementation. Even more generally, this approach can be used in particular
to adopt any functional requirement, as long as the requirement is operational
and can be represented by message passing, on a multi-agent platform.

e Chapter 6 extends our decentralised multi-agent platform to support incomplete
processes. The causes of incomplete processes have been identified and a con-
ventional workflow system’s inability to support incomplete processes has been
analysed. By introducing the instantiation activities, run-time instantiation of
properties missing activities is modelled as an essential step in the process and
integrated into the decentralised architecture. The missing components can then
be completed using individual agents’ internal intelligence or the cooperation of
a group of agents. From an engineering point of view, this approach is justifiable
because the ordinary workflow participants may or may not be given an inter-
face to specify a composite task using a complex workflow modelling language.
From a system coordination viewpoint, the instantiation task is distributed. Thus,
process modelling at run-time can be performed with the support of mechanisms
for completing processes, at either instance- or process-level.

e Chapter 7 presents three case studies to demonstrate the applicability of the key
ideas presented in this thesis. The studies shows the design rationale of our
multi-agent based workflow. The analysis also illustrates how the multi-agent
based workflow approach proposed in this thesis is applicable for supporting
both conventional (complete), and non-conventional (incomplete) processes.

e Chapter 8 discusses both the positive and negative sides of our work an multi-
agent based decentralised workflow enactment mechanisms. Discussions on how

Chapter 9. Conclusions and Future Work 165

to achieve complex interaction patterns (negotiation) using our approaches are
also given in this chapter.

9.2 Contributions of This Thesis

The significance of this research is that it tackles some of the unsolved problems in
the workflow area from the system architecture point of view. Based on existing work
from the multi-agent world, this research combines a new system architecture (multi-
agent based) and process coordination technologies for deploying workflow systems
comprehensively, which can be considered as a paradigm change. This new frame-
work and the corresponding technologies exploits the features provided by multi-agent
computing technology in order to better reflect the distributed nature of current work-
flow. This research contributes to the challenging research area of multi-agent based
workflow, which opens new ground in workflow research, and the process support
area in general. The main outcome of this research is using a decentralised, open
and multi-agent architecture to deploy distributed workflow systems without affecting
the existing workflow rationale (starting from a business process model). Therefore,
this research shows that emerging technologies such as multi-agent system for work-
flow system support provide critical features. Moreover, the new system architecture
proposed in this research changes the way that all the participants are involved in co-
ordination in conventional workflow management (from contributing their services to
the coordination passively to providing their own services to the workflow on their own
initiative). The major contributions of this thesis are:

¢ Identifying the causes of the existing problems in conventional workflow
management systems We have analysed that most of the existing problems
in conventional workflow management systems are caused by the mismatch be-
tween the application nature and underlying system architecture. Based on this
argument, it has been found that multi-agent computing technology can be used
as an underlying infrastructure to support workflow applications better.

e Approaches for adopting existing work for conventional workflow system
development on multi-agent platformAlthough multi-agent system have shown
more valuable and natural features for distributed workflow system’s enactment,
it can hardly be accepted by end users if everything existing has to be re-designed/re-
implemented to fit the new computing features. The approaches proposed by us

Chapter 9. Conclusions and Future Work 166

in this thesis bridge the gap between conventional workflow rationale and multi-
agent systems. Therefore, almost all the existing work can be adopted for the
development of multi-agent based a workflow management system.

e A multi-agent based system architecture and design for decentralised work-
flow management systemsUsing multi-agent based computing technology to
support distributed workflow is considered as a paradigm shift. However, the
system designs of the few existing so called multi-agent/p2p based workflow
approaches are normally incomplete, or even not completely multi-agent based.
The approaches proposed in this thesis, have contributed a relative complete,
concrete, and fully decentralised system design methods for deploying multi-
agent based workflow applications.

¢ A prototype implementation of a multi-agent based distributed workflow
management system.A multi-agent based pure decentralised workflow man-
agement system prototype is developed for the proof of concept purpose. It can
read two types of system specifications namely a LCC protocol and a BPEL4WS
model to direct the interaction of the agents (participants). The system is also
able to adopt external web services and thus can help to realise service-oriented
architecture. This prototype we believe serves as a fine basis for future extension
for real world workflow management systems.

9.3 Future Work

In future, further investigation into multi-agent based decentralised workflow should
be carried out. Future research includes adopting agents’ intelligence into the whole
workflow system. At present, all the agents in our system as explained are dummy
agents which can only perform required tasks following the instruction in the process
model/interaction protocols. More intelligent agents that are adaptive and are aware
of the changes of state of environment/context can be very helpful for performing
workflow management and monitoring tasks.

As indicated in Chapter 6, our system prototype is for the purpose of demonstration
and proof of concept only. After certain extension and improvement, more real-world
applications should be developed based on this prototype in order to collect more con-
crete results. Thus, a more sophisticated comparison of different workflow systems,
either centralised or decentralised can be performed. And sometimes about partial

Chapter 9. Conclusions and Future Work 167

relaxing the assumption about linearised steps.

Some other crucial factors such as organisational management, run time verifica-
tion of workflow instances in a decentralised manner, and security of multi-agent based
workflow are currently ignored to make the problem simpler. In order to have a practi-
cal workflow solution, more research should be carried out on all of the above issues.

Appendix A

Algorithm Description Language

The syntax of the language that we use to describe the algorithm in the thesis is ex-

plained here. All the algorithms are defined as procedures.

procedure ::=
Name :=

Arguments ::

Inputs =
Outputs ::=
Body ::=

DeclarationSequence::

Statement$Sequence::=

if _statement ::

while_statement ::

for_statement ::

NameArgumentsBody

String

Inputs Out puts

Anylegal Term

Anylegal Term

Declaration Sequend&tatementSequence

Declarationof theargumentsused

if _statemenrhile statemernt

for_statemerjany computing clause

if (booleanexpression
Statement$Sequence
elseif(booleanexpression

Statement$Sequence

while(booleanexpression
Statement$Sequence

for(listof element
Statement$Sequence

168

Appendix B

Representing BPEL4AWS Model In

Plain Text
Model := {Scopé
scope ::= {descriptior{[Description...]), Structure
Const terLinkT t
Description ::= partnerLink nameConstan}, parnterLinkTy peConstan},
myRoléConstany, partnerRol¢Constany

|variable(naméConstanj, messageTyg€onstany)

catch faultName faultVariable Activity),
...,catchAll(Activity)] >
|compensationHandI€Activity)

]faultHandIers([

Structure ::= scopé¢|Description...],Structurg Activity)|
flow(Activity/StructureActivity/Structure...)|
switch(condition(Condition Activity/Structure,...)|
while(conditionCondition Activity/Structure|
Structurg/Activitythen StructurgActivity|

onMesssaggartnerLinkConstanj, portTypéConstany,

: operatior{Constani, variable(Constany, Activity),

pick

onAlarm for(duration— expr),
until(deadline— expr), Activity)

169

Appendix B. Representing BPEL4WS Model in Plain Text 170

partnerLinkConstant,

portTypdConstani,

Activity ::= invoke| operatior{Constany,inputVariablgConstany,
out putVariabléConstany, sourceLinkConstant,
targetLinkConstany)

partnerLink Constani, portTypd&Constany,
receive| operatior(Constanj, variable(Constanj,
sourceLinkConstany,targetLink Constany
partnerLink Constani, portTypdConstany,
operatior{Constanj, variable(Constany,

reply
faultNaméConstany,
sourceLinkConstany, targetLink Constan}
trom expressiopiopaquévariable/Constany,
lassign propertyConstany 7

to(variable(Constan, propertyConstany),
sourceLinkConstanj, targetLinkConstanj
\throw(faultNaméConstani, faultVariablgConstani,)
sourceLinkConstany, targetLink Constan}
\Wait< for(Constan, until(Constany,)
sourceLinkConstan},targetLinkConstanj
[terminatésourceLinkConstani,targetLinkConstani)|
emptysourceLinkConstanj,targetLinkConstany)
Condition ::= TermConditionA ConditiorfConditionv Condition
Constant ::= Term

Appendix C

Prolog Definitions For All the

Constraints Used in LCC Interpreter

C.1 Constraints Used For Role a(receivefRole),ID)

extractactivity(Model, Activity) : —
Model=..[scope_,Model],
extractactivity(Model, Activity).
extractactivity(Model, Model).
updatevariableM,[HeadRest,VList) : —
comparevariable(M,Head),

VList; = [M|Rest.

updatevariable(M, [HeadRes},V List) : —
updatevariable(M, RestV List;).

updatevariable(M, [],V Listy).

171

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 172

C.2 Constraints Used For Role a(interpreter...),ID)

is_receivéModel,Role) : —
extractactivity(Model, Activity)
Activity = ..[receivemyRol€Role)|_]

is_reply(Model Role) : —
extractactivity(Model, Activity)
Activity = ..[reply,myRoléRole)|]

is_.invokgModel,Role) : —
extractactivity(Model, Activity)
Activity = ..[invoke myRol¢Role)|]

is_assigriModel) : —
extractactivity(Model, Activity)
Activity = ..[assign_]

is_.throm(Model) : —
extractactivity(Model, Activity)
Activity = ..[throw|_]

is_sequencgModel) : —
extractactivity(Model, Activity),
Activity = ..[then_].

is_switch(Model) : —
extractactivity(Model, Activity)
Activity = ..[switch]

is_.while(Model) : —
extractactivity(Model, Activity)
Activity = ..[while|_]

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 173

C.3 Constraints Used For Role a(receive...),ID)

PartnerRolePortT Operationnull,
processreceivemessag< ® yPeLp A):—

ID,V List, IDList,V List, IDListy
appendPartnerRole PortType: Operation: null : ID, IDList, IDList;).
processreceivemessag < Partne.rRoIes .PortT){peOpe.ratior]VariabIe,) .
ID,VList, IDList,V List;, IDList1
appendVariableV List,V List),
appendPartnerRole PortType: Operation: Variable: ID, IDList, IDListy).

checkreceivéModel, Port TypeOperationVariable PartnerRole : —
extractactivity(Model, Activity),
receive_, partnerLink PartnerLink), portTypéPortType,
Activity= .. | operation(Operation),variable(Variable),
sourceLink_),targetLink(_)
partnerLinknamePartnerLink, myRol€), partnerRol¢PartnerRole).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 174

C.4 Constraints Used For Role a(reply(...),ID)

processreply(Model, Partner Port Ty pe O perationnull, Fault) : —
extract activity(Model, Activity)
Activity = ..[_, partnerLink PartnerLink), portTypéPortType,
operation(Operation,variable(null), faultNamégFault), _, |,
partnerLink naméPartnerLink), ., myRolé_), partnerRoléPartner)).

processreply(Model, Partner Port TypeOperationVariable, _) : —
extractactivity(Model, Activity)
Activity = ..[_, partnerLink PartnerLink), portTypéPortType,
operatior{Operation, variableVariable), _, _, |,
partnerLink naméPartnerLink), ,myRolé&_), partnerRolé¢Partner)).

geLID([],,, - =) -

getID([HeadRest, Partnet PortTypeOperationVariable ID) : —
Head= Partner: PortType: Operation: Variable: ID.

getID([HeadRest, Partnet PortTypeOperationVariable ID) : —
get ID(Rest Partner PortTypeOperationVariable ID).

loop-up(]l,-,.).

look up([HeadRest,Variable Head) : —
Headisofthesametypeand samevariable namewithVariable

look up([HeadRest, Variable Variable;) : —look up(RestVariable Variable).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 175

C.5 Constraints Used For Role a(invoks...),ID)

processinvokdModel, PortTypeOperationnull,V List, Role) : —

Model= ..

invoke partnerLink PartnerLink), portTypéPortType,
operatior{Operation,inputVariablgnull), _, _, - ’
partnerLink PartnerLink _, _, parterRol€Role)).

processinvokd Model, Port TypeOperation InputVariableV List,Role) : —

Model= ..

invoke partnerLink PartnerLink), portTypéPortType,
operatior(Operation,inputVariablgVariable), _, _,]’
look up(Variable V List, InputVariable,

partnerLink PartnerLink _, _, parterRol€Role)).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 176

C.6 Constraints Used For Role a(assign...),ID)

processassigriModel,V List,V List) : —
extract activity(Model, Activity),
Activity = ..[copyList],
processassigncopy List,V List,V List;).

processassigncopy([], -, -)-

processassigncopy([HeadRest,V List,V Listy) : —
Head= ..[TypeFrom,To,
processfrom(From,Value),
updatedataSetV List, Variabley, Part, To,,V Lisb),
processassigncopyRestV List, V List;).

processassigncopy[HeadRest,V List,V Listy) : —
Head=..[TypeFrom,To],
processfrom(From,Value),
updatedataSetV List, To,ValueV List),
processassigncopyRestTo,ValugV List;).

processassigncopy([HeadRest,V List,V Listy) : —
Head=..[TypeFrom,To],
processfrom(From Value),
To=..[to, partnerLink PartnerLinKk), |,
partnerLink PartnerLink _, _, partnerLink'Value)),
processassigncopyRest To,ValueV List).

processfrom(From,Value) : —From= ..[_, variable(Variable), part(Part)],
lookupdataSetV List,Variable Part,Value).

processfrom(From,Value) : —From= ..[_, variableVariable), propertyProperty)],
lookupdataSetV List,Variable PropertyValue).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 177

processfrom(From,Value) : —From= ..[_,expressiofValue)|.

processfrom(From,Value) : —From= ..[_,opaqué&Value)|.

processfrom(From,Value) : —
From= ..[_, partnerLink PartnerLink), end pointRe feren¢myRolg],
partnerLink PartnerLink _,myRol¢Value),).

processfrom(From,Value) : —
From= ..[_, partnerLink PartnerLinK),end pointRe feren¢partnerRole¢],
partnerLink PartnerLink _, _, partnerRoléValue)).

lookupdataSet[HeadRest,Variable Part,Value) : —
checkif Head and Variableareof thesame messagetype
gettheValueof HeddPart

lookupdataSet[HeadRest,Variable Part,Value) : —
lookupdataSefRestVariable Part,Value).

lookupdataSet[HeadRest, PropertyValue) : —
checkif Head and Variable are o f the same messagetype
gettheValueof HeddProperty

lookupdataSet[HeadRest, PropertyValue) : —
lookupdataSetRest PropertyValue).

updatedataSetV List, To,ValueVList) : —
To=..|variable(Variable null)],
updatéV List,Variable null,V List).

updatedataSetV List, To,ValueVList) : —
To=..[variable(Variable part(Part))],
updatéV List,Variable Part,V List;).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter

updatedataSetV List, To,ValueVList) : —
To=..|variable(Variable property Property))],
updatéV List,Variable PropertyV List).

updaté[HeadRest,Variable null, ,VList) : —
| f Head and Variable are o f the same messagetype
VList; = [VariableRest.

updaté [HeadRest,Variable null, ,VList) : —
updatéRestVariable null, _,V List),
VListy = [HeadV List).

updaté[HeadRest,Variable Part,ValueVList;) : —
| f Head and Variable are o f the same messagetype
updatetheValueof HedslPart,
VList = [VariablgRest.

updaté[HeadRest, Variable Part,ValueV List;) : —
updatéRestVariable Part,V List),
VList; = [HeadV Listy].

updatd HeadResi,Variable PropertyValugV List;) : —
Head= ..|variable(Variable property(Property_))],
VList; = [VariableRest.

updaté HeadRest,Variable PropertyValugV List;) : —
updatéRestVariable PropertyV List),
VList; = [HeadV List)].

178

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 179

C.7 Constraints Used For Role a(throw(...),ID)

processthrow(Model, FaultHandlingActivity : —
extractactivity(Model, Activity)
Activity = ..[throw, faultHandlerFaultHandler), faultVariablg FaultVariable)],
find_fault_handlefModel, FaultHandlerFaultVariable FaultHandlingActivity.

find_fault_handlerModel, FaultHandlerFaultVariable FaultHandlingActivity : —
extractdescriptiorfModel, List),
processdescriptionlist(List, FaultHandlerFaultVariable FaultHandlingActivity.

extractdescriptiorfModel List) : —
Model= ..[scopeDList,Model 1],
extractdescriptiorfModel 1, List_1),
List = [DList|List_1].

extractdescriptior_, []).

processscopelist([], -, _, null).

: [HeadRest, FaultHandler
processsco pelist _ _ o D —
FaultVariable FaultHandlingActivity

processdescriptionlist(Head FaultHandlerFaultVariable null),
processscopelist(Rest FaultHandlerFaultVariable FaultHandlingActivity.
o [HeadRest, FaultHandler
processdescriptionlist _ _ o D—
FaultVariable FaultHandlingActivity
Head= ..[faultHandlerscatchList,
processcatchlist(catchList FaultVariable FaultHandlingActivity.

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter 180
processcatchlist(]], _, -, null).
processcatchlist([catchAll(FaultHandlingActivity], _, ., FaultHandlingActivity.

processcatchlist([HeadRest, FaultHandlerFaultVariable FaultHandlingActivity : —
Head= ..[catch faultHandlerFaultHandler), faultVariablg FaultVariable),
FaultHandlingActivity.

processcatchlist([HeadRest) : —processcatchlist(Res).

C.8 Constraints Used For Role a(sequence..),ID)

processsequencgModel Modeh,Modeb) : —
Model= ..[scopeDList, Activity],
composeactivity(Activity, Activityy, Activity,),
Model = ..[scopeDList, Activity;],
Modeb = ..[scopeDList, Activity,).

processsequenc@Activity, Activity;, Activity,) : —
Activity = ..[_, Activity;, Activity,).

Appendix C. Prolog Definitions For All the Constraints Used in LCC Interpreter

C.9 Constraints Used For Role a(switch...),ID)

processswitch Model, Model) : —
Model= ..[scopeDList, Activity],
processswitch Activity, Modeb),
Model 1= ..[scopeDList,Modeb].

processswitch Model, Modeh) : —
Model= ..[switch [HeadRest],
processcondition[Head Rest,Model).

processcondition([HeadRest,Modeh) : —
Head= ..[conditionCondition), Activity],
Conditionistrue
Model 1 = Activity.

processcondition([HeadRest,Mode}) : —
Head= ..[condition(Condition), Activity],
Conditionisnottrue
processconditionN RestModel).

181

Appendix D

Formal Representations Used For

Evaluation

D.1 Student Registration Process Described by BPEL4WS

< processname- "studentRegistrationProcess
< variables>
< variablename= "regisForni / >
< variablename="approvalResult/ >
< variablename="paymentForrh/ >
< variablename="paymentCon firmatidty >
< variablename="accountCon firmatioty >
< /variables>
< sequence-
< receivemyRole= "enrolmentO f ficef parnterRole= "student
portType= "registrationPT operation= "receiveRegistratich
variable= "regisForn{ / >
< invoke myRole- "enrolmentOf ficel parnterRole= " courseAdvisdr
portType="approvalPT operation="approval
inputVariable= "regisFoniout putVariable= "approvalResult/ >
< switch>

182

Appendix D. Formal Representations Used For Evaluation 183

< caseconditior="approvalResul= TRUE" >
< sequence-
< flow >
< sequence-
< invoke myRole="enrolmentO f ficef partnerRole= "treasuref
portType="paymentPT opeartion="pay’
inputVariable="paymentForrh/ >
< receivemyRole- "enrolementOf ficérpartnerRole= "treasuref
portType="paymentConfirmPTopeartion="con firmPaymerit
variable= " paymentConfirmatidty >
< /sequence-
< sequence-
< invoke myRole="enrolmentOf ficef partnerRole= "technicalStaf f
portType="computingAccountPTopeartion= "setupAccourit
inputVariable= "regisForni / >
< receive myRole- "enrolementOf ficérpartnerRole= "technical Staf f
portType= "accountConfirmPTopeartion="confirmAccourit
variable="accountCon firmatioty >
< /sequence-
< receivemyRole- "enrolemetnOf ficérport Type= "recordRegisPT
operation= "recordingRegisvariable= "regisForni >
< /flow >
< replymyRole="enrolmentOf ficel portType= "registrationPT
operation= "receiveRegistratidrvariable= "registrationSuccety >
< /sequence-
< /case>
< caseconditior="approvalResul&= FALSE' >
< replymyRole="enrolementOf ficérportType= "registrationPT
operation= "receiveRegistratidrvariable= "registrationFailed / >
< /case>
< /switch>
< /sequence-
< /process>

Appendix D. Formal Representations Used For Evaluation 184

D.2 Re-written Student Registration Process Described

by BPELAWS

< processname- "studentRegistrationProcé'ss
< variables>
< variablename= "regisForni / >
< variablename="approvalResult/ >
< variablename="paymentForr/ >
< variablename="paymentCon firmaticty >
< variablename="accountCon firmatioty >
< /variables>
< sequence-
< receivemyRole- "enrolmentOf ficet parnterRole= "student
portType= "registrationPT’ operation= "receiveRegistratich
variable= "regisForni / >
< invoke myRole="enrolmentOf ficet parnterRole= " courseAdvisdr
portType= "approvalPT operation="approval
inputVariable= "regisFoniout putVariable= "approvalResult/ >
< switch>
< caseconditior="approvalResule TRUE' >
< sequence-
< invoke myRole- "enrolmentOf ficel partnerRole= "treasuref
portType="paymentPT opeartion="pay’
inputVariable="paymentForrt/ >
< receivemyRole- "enrolementOf ficérpartnerRole= "treasuref
portType="paymentCon firmPTopeartion="con firmPaymerit
variable= " paymentCon firmaticty >
< invoke myRole="enrolmentOf ficet partnerRole= "technicalStaf f
portType="computingAccountPTopeartion="setupAccourit
inputVariable= "regisForni / >

Appendix D. Formal Representations Used For Evaluation 185

< receivemyRole- "enrolementO f ficérpartnerRole= "technicalStaf f
portType= "accountCon firmPTopeartion="confirmAccount
variable="accountCon firmatioty >

< receive myRole- "enrolemetnOf ficérport Ty pe= "recordRegisPT
operation= "recordingRegisvariable= "regisForni >

< replymyRole="enrolmentOf ficel port Type= "registrationPT
operation= "receiveRegistratidrvariable= "registrationSuccet/ >

< /sequence-
< /case>
< caseconditior="approvalResult= FALSE' >
< replymyRole="enrolementOf ficérport Ty pe= "registrationPT
operation= "receiveRegistratichvariable = "registrationFailed / >
< /case>
< /switch>
< /sequence-
< /process>

Appendix D. Formal Representations Used For Evaluation 186

D.3 Shipping Service Process Described by BPEL4AWS

< processname: "shippingService>

< partnerLinks>
< partnerLinkname="customet

partnerLinkType="shippingLT
partnerRole= "shippingServiceCustomer
myRole= "shippingServict/ >

< /partnerLinks>

< sequence-
< receive partnerLink= "customet

portType= "shippingServicePT
operation= "shippingRequest
variable= "shipRequeét>
< /receive>
< switch>
< case condition="getVariablePropert{/shipRequest shipCompletg” >
< sequence-
< assign>

< copy>
< fromvariable="shipRequesy/ >

< tovariable="shipNoticé/ >
< /copy>

< Jassign>
< invoke partnerLink= "customet port Type= "shippingServiceCustomerPT

operation= "shippingNoticginputVariable= "shipNoticé >

< /invoke>
< /sequence-
< /case>
< otherwise>
< sequence-
< assign>
< copy>
< fromexpressior="0"/ >
< tovariable="itemsShippet/ >
< /copy>
< /assign>

Appendix D. Formal Representations Used For Evaluation 187

< whilecondition= itemsShippe&: itemsTotal>
< sequence-
< assign>
< copy>
< fromopaque="yes / >
< tovariable="shipNoticé property="itemsCourit/ >
< /copy>
< /assign>
< invoke partnerLink="customet portType= "shippingServiceCustomerPT
operation="shippingNoticéinputVariable= "shipNoticé >
< /invoke>
< assign>
< copy>
< fromexpressior- itemsShipped-itemsCount >
< tovariable="itemsShippet/ >
< /copy>
< Jassign>
< /sequence-
< /while >
< /sequence-
< /otherwise>
< /switch>
< /sequence-
< /process>

Appendix D. Formal Representations Used For Evaluation 188

D.4 LCC Protocol Generated for Shipping Service Pro-

cess

a(shippingServiceCustomgoop(m.4)),As) ::
(shippingServiceCustomerPBhippingNoticéshipNotice
<= a(shippingServicdoop(m.4)),A))
then

a(shippingServiceCustomgoop(m.4)),A1) < —— ornull
(itemsShipped itemsTota) and itemsShippeé itemsShip ped- itemsCount

a(shippingServiceCustomeég) ::

shipRequest> a(shippingServicgs)

then
shippingServiceCustomerPEhippingNoticéshipNoticg <= a(shippingServicgs)
or
(a(shippingServiceCustomgoop(m.4)),A;) < ——

(itemsShippee- 0) and itemsShippee itemsTota)

ornull

a(shippingServicgoop(m.4)),Ay) ::
shippingServiceCustomerRBhippingNoticéshipNoticg =>
(a(shippingServiceCustomgoop(m.4)),A;) < — — shipNotice= yes >
then
(a(shippingServicgoop(m.4)),As) < ——) ornull
(itemsShippedk itemsTota) and(itemsShippee: itemsShipped- itemsCount

a(shippingServicgdy) ::
shipRequest.= a(shippingServiceCustomég)
then
shippingServiceCustomerREhippingNoticéshipNoticg => a(shippingServiceCustomée)
(< — — (shipNotice= itemsCountand getVariablePropertighipRequesshipCompletg)
or
(a(shippingServicgoop(ms)),Az) < — — (itemsShippeé- 0) and(itemsShippee: itemsTota))
ornull).

Appendix D. Formal Representations Used For Evaluation 189
D.5 Health Care Process Described by Extended BPEL4WS

D.5.1 Initial incomplete health care process model

< processname- "healthCareProcess>
< variables>
< variablename="patientProfil¢ / >
< variablename="examineResuly >
< variablename= " patientDetail / >
< variablename= " finalDiagnosé&/ >
< /variables>
< sequence-
< invoke myRole=" patient’ parnterRole= "registrationServicé
portType= "registrationPT operation= "createPatientProfil&
inputVariable= " patientDetail out putVariable=" patientProfilé€ / >
< invoke myRole- " patient’ parnterRole= "attendingPhysiciah
portType= "diagnosePT operation="makeFirstDiagnose
inputVariable= " patientProfil€ instantiating=TRUE
instantiated= " examine patierit/ >
< incomplete name- "examine patieritout putVariable= examineResuly >

< invokemyRole= " patient’ partnerRole= "attendPhysiciah
portType= "diagnosePT operation= "makeFinalDiagnose
inputVariable="examineResulbut put=" finalDiagnosé/ >
< invokemyRole= " patient’ partnerRole= "treatingPhysiciahn
portType= "treatingPT’ operation="makeT reatmetit
inputVariable=" finalDiagnosé/ > < /sequence-
< /process>

Appendix D. Formal Representations Used For Evaluation 190

D.5.2 A possible complete health care process instance

< processname- "healthCareProcess>
< variables>
< variablename= " patientProfil¢ / >
< variablename="examineResuly >
< variablename=" patientDetail / >
< variablename=" finalDiagnosé/ >
< /variables>
< sequence-
< invoke myRole=" patient’ parnterRole= "registrationServicé
portType= "registrationPT operation= "createPatientProfil&
inputVariable= " patientDetail out putVariable=" patientProfil€ / >
< invoke myRole- " patient’ parnterRole= "attendingPhysiciah
portType= "diagnosePT operation="makeFirstDiagnose
inputVariable= " patientProfil€ instantiating= TRUE
instantiated= " examine patierit/ >
< invoke myRole- " patient’ partnerRole="XRayE xaminér
portType="XRayPT inputVariable= "examineResLilt
out putVariable= "examineResuly >
< invoke myRole=" patient’ partnerRole= "UltraSound E xaminér
portType="UltraSoundPT inputVariable="examineResult
out putVariable="examineResuly >
< invokemyRole= " patient’ partnerRole= "attendPhysiciah
portType= "diagnosePT operation= "makeFinalDiagnose
inputVariable="examineResulbut put=" finalDiagnosé&/ >
< invokemyRole= " patient’ partnerRole= "accountant
portType="paymentPT operation="makePaymefit
inputVariable="finalDiagnosé/ > < /sequence-
< /process>

Appendix E

Negotiation Protocols For Different

Negotiation Strategies

E.1 LCC protocol for one-to-one negotiation

Negotiation strategies of individual negotiators in the LCC protocol library is assumed
to be requestor-driven satisfactory deal strategies. With this strategy, the negotiator
keeps negotiating with its partners until it receives an satisfactory offer. The LCC

protocol for this strategy is:

a(startenNI, [a(Partner PID)], [a(NegotiatomyRole_,),ID1)],Of fer),ID) ::
start(a(Partner PID),of fer(counterNI)) = a(negotiato{myRolea(starter(_, -, -, -, _,), D), a(starter, -, -, -, -, -),1D)),1D1)
then

then
a(terminator([a(Partner PID)], [a(NegotiatofmyRole_,_),1D1)]),ID)
or
stateChangee= a(negotiatorit(myRole_, _, _),1D1)
then
a(terminator([a(Partner PID)], [a(NegotiatofmyRole_,),1D1)]),1D) « checkstatg Strategy, PL1,NI;)
then
a(allocator(PLy, NIy, Stragety, Of fer),ID)

Of fer <« a(negotiatorit (myRole_, _,_),ID1))

a(terminato(SB SB,),ID) ::
SB= [a(negotiatoK_,_,_),|D1)|SB]
terminatéa(PartnerID) = a(negotiatox_, -,-),ID1) < | and
SB, = [a(Partner1D)|SB,]
then
a(terminator(SB,SR,),ID)
or
null — SB=[Jand SB = ||

191

Appendix E. Negotiation Protocols For Different Negotiation Strategies 192

a(PartnetPID) ::

Of fer, < a(negotiatorit(myRole_, _,_),I1D))
then
Of fer=- a(negotiatorit(myRole_,_,_),ID)) <« evaluationFunctiofOf fer,, Of fer)
then
a(PartnetPID)

or

stop< a(negotiatofmyRole_, _),ID)

a(negotiatofmyRoleSenderReceivey, D) :
start(a(Partnet PID),of fer(counterNI)) < Sender
then
a(negotiatorit (myRolea(Partner PID),of fer(counterNI), Receivey, D)
then
terminatéa(PartnerID)) < a(terminator(_,),1D1)
then
stop=- a(PartnerID)
or
a(negotiatofmyRoleSendeReceive), D)

a(negotiatorit(myRoleOf fer, Partner Receivey, D) :
Of fer, = Partner
then
Of fer<« Partner
then
stateChangee: Receiver— checkstate_, _,)
or
Of fer= Receiver— satisfiedOf fer)
or
a(negotiatorit (myRoleOf fer, a(Partnet PID), Receive), ID) — (—satisfiedOf fer)and revis¢Of fer Of fer))

Six roles are defined in the above LCC protocol chunk:

e starter: is a coordinating agent that control the coordination between different
negotiators based on different negotiation strategies. For one-to-one negotiation,
since there is only one negotiator required, the behaviours defined for starter are
simply used to: inform a negotiator to start a negotiation; terminate the running
negotiation at any time when the user wants to change their negotiation prefer-
ences (strategies, negotiation issues etc.).

e collector: is used to collect the final offer from the negotiator.

e negotiator: is the actual agent that negotiate with the business partners on cer-
tain negotiation issues. Three parameters are defined for it:

— myRole: this represents the real business role of current negotiator and is
extracted from the correspondirg partnerLink> defined in BPEL4AWS
model.

Appendix E. Negotiation Protocols For Different Negotiation Strategies 193

— Sender: A negotiator cannot start a negotiation until it receives a mes-
sage from the initial/coordinating agent. To negotiator, the role of ini-
tial/coordinating agent is undecidable before it actually receives a message
from it. The one-to-one negotiation is the basic component of our system,
in order to make it reusable with any possible negotiation strategy, we have
to define aSenderhere as a place holder for potential initial/corrdinating
agent.

— Receiver: For the same reason that is addressed aRevejvelis another
place holder to tell where the negotiator can possibly send the negotiation
results. Both of them are instantiated by the constigentPL, NL) defined
in the role of allocator.

Once it receives a start message (including negotiation issues, negotiation partner
of it) from starter, it starts the negotiation, gets the negotiation results and sends
it to starter.

e negotiator.it: is defined for representing the iterative negotiation process.

e terminator: is used to inform all the negotiator (BB to terminate the negoti-
ation with is partner (ir6By).

e Partner: represents the real business partners that are extracteetfpartnerLink>
defined in BPEL4WS specification.

The message(f fer) exchanged between theegotiatorand Partner is in the
form of of fer(TypeNI), in which NI is the negotiation issues afig/peis used by
the constrainsatis fied O f fer). The definition for the constraisiatis fiedOf fer) is
given below:
satisfiedOf fer): —
-Offer=..[rejectNIl],
evaluFungNI).
where evaluFunc(NI) is the evaluation function for evaluating the satisfactory level of
current NI. Lots of research and work have been denoted in this area. For different
domain, the evaluation function for the degree of satisfactory can be very different. In
this paper, we only care about the agent communication style and agility of negotiation
process. The other two constraints used in the above protocol are statek
All the LCC protocols defined for these roles are used as the basic negotiation
protocol components in the protocol library except $varter and collector, which

Appendix E. Negotiation Protocols For Different Negotiation Strategies 194

vary for different negotiation strategies. For simplicity, we will ignore them in the

following parts.

E.2 Desperate Strategy

This is a very simple strategy in which the time constraints may be important and
the agent wants to close a deal fast. In this strategy, as soon as a negotiator finds an
acceptable offer from a partner, it accepts it and sends messages to all the other partners
to terminate their negotiation. The LCC protocol for this strategy is:

a(starter DS(NI,S,S;,Of fer),ID) ::
Of fer < a(negotiatorit (myRole_,),ID1)
then
a(terminator(PL,NL),ID) < get(ID,PL,NL)
or
start(a(Partner PID),of fer(counterNl))
= a(negotiatofmyRolea(starterDS(_, _,_,_), D), a(starter.DS(_, _, ,-),1D)),ID1)
—checkstatg_, _,_)and S= [a(Partnet PID)|S]
— | and
S = [a(negotiatomyRole_, _, _),1D1)|S]
then
a(starter DS(NI,S,S,,0f fer),ID)

or
a(starterDS(NI, S, S, Of fer),ID) «— —checkstatg_,_,_)and — S=[Jand § =[]
or

stateChangee= a(negotiatorit(myRole_, _,),)

then

a(terminator(PL,NL),ID) « get(ID,PL,NL) « checkstatgStrategy,PL1,Nl1)
then

a(allocator(PLy, NIy, Stragety, Of fer),ID)

E.3 Patient Strategy

In this strategy, even if an acceptable deal is offered by one or more partners, those
agents are asked to wait while all other agents are asked to resume their negotiations.
Once all partners complete their negotiation process (whether with success or fail-
ure), the best offer is chosen. This strategy guarantees that the best possible deal can
be reached, but does not give regard to time constraints. This might be a significant
limitation in a marketplace with too many potential suppliers to negotiate with. One
variation of the patient strategy is one in which a time limit is be set by the user, within
which if no better deal was found, the negotiation terminates and the best deal so far

Appendix E. Negotiation Protocols For Different Negotiation Strategies

wins. The LCC protocol for it is as follows:

a(starterPSNI,S S, 0f fer),ID) ::

stateChanged= a(negotiatorit(myRole_, _,_),)

then

a(terminatoPL,NL),ID) < get(ID,PL,NL) «— checkstate Strategy, PL1,Nl1)
then

a(allocator(PL1,NIq, Stragety, Of fer),ID)

start(a(Partner PID),of fer(counterNI))
= a(negotiatofmyRolea(starterPS_, _, _,_),ID),a(collector(_,_, _,.),ID)),1D1)
—checkstate_, _,)
and S= [a(PartnerPID)|S]
and
S = [a(negotiatomyRole_, _,_),1D1)|S]
then
a(starterPSNI, S, S,,0f fer),ID)

or
a(collector([], PL,NL,Of fer),ID) < get(ID,PL,NL) «— —checkstate_, _,_)and S= [Jand § =]

a(collectonOf ferList SB SB;,Of fer),ID) ::
add(Of fer;,Of ferList Of ferList) < Of fen < a(negotiatotPSmyRole_,_),ID1)
then
a(collectonOf ferList,_,_,Of fer)ID) < —receiveAl(Of ferList)
or
a(terminato(SB SBy),ID) < (receiveAl(Of ferList) and evaluatéOf ferList, Of fer))

195

Appendix F
Publications List

Journal Papers:

e L.Guo, Dave Robertson, Yun-Heh Chen-Burd&ising Multi-agent Platform
For Pure Decentralised Business WorkflowsSubmitted to journal of Web In-
telligence and Agent Systems.

This paper is an extension of the IAT2005 conference paper, which describes
more technical details such as algorithms about how to map a BPEL4WS model
to a LCC protocol (corresponding to the work discussed in Chapter 4 in this
thesis).

Conference Papers

e L.Guo, Dave Robertson and Yun-Heh Chen-Burdapping a Business Pro-
cess Model to a Web Services ModeProceedings of the Third IEEE Interna-
tional Conference on Web Services, (ICWS 2004) (SCI and EI Indexed).

As the first step of the research presented in this thesis, in this paper, we perform
a basic language mapping between current web service composition standard
(OWL-S) and a business process modelling language (FBPML). The problems

during the language mapping are also listed and analysed.

e L.Guo, Dave Robertson, Yun-Heh Chen-BurgarGeneric Multi-agent Sys-
tem Platform For Business Workflows Using Web Services Compositiidre.
proceedings of 2005 IEEE Intelligent Agent Technology (IEEE/WIC/ACM IAT-
2005) (SCI and EI Indexed).

Language mapping between a business process modelling language (BPEL4WS)
and a multi-agent interaction protocol language (LCC) is performed in this paper

196

Appendix F. Publications List 197

to illustrate how to build up specification based multi-agent workflow manage-
ment systems from existing executable business process models. This work is
described in Chapter 4 in this thesis.

e L.Guo, Dave Robertson, Yun-Heh Chen-Burffenacting the Distributed Busi-
ness Workflows Using BPEL4WS on the Multi-Agent Platforitie proceed-
ings of the MATES 2005 conference, volume number 3550 of (LNAI).

A novel approach of using a BPEL4WS model and a LCC protocol to enable
multi-agent based workflow system is explained in this paper. LCC protocol is
used as interpreter to tell agent how to deal with the BPEL4WS model received
so that any BPEL4WS can be used directly and neatly on multi-agent platforms.
Chapter 5 in the thesis describes the work in detail.

e L.Guo, Dave Robertson, Yun-Heh Chen-Burtyg@mMovel Approach For Enact-
ing Distributed Business Workflow on the Peer-to-Peer Platforfiie proceed-
ings of 2005 IEEE Conference on E-Business Engineering. (ICEBE 2005) (SCI
and El Indexed).

This paper is an extension of MATES paper, where a system deployed on JXTA
is developed and explained. The content of this paper is also involved in Chapter
5in the thesis.

e L.Guo, Dave Robertson, Yun-Heh Chen-Burger, Jianquan W&ogducting
The Agile Negotiation Process Involved in The BPEL4AWS Model on the Multi-
agent Platform”. CNAIS2005.

This paper represents how to conduct a negotiation process that is involved
in a BPELAWS model on the multi-agent platform seamlessly (Discussion in
Chapter 8 in this thesis). The insufficient support for negotiation process using
BPEL4WS is analysed. Several negotiation strategies are given in this paper as
well as the corresponding LCC protocol templates.

Workshop Papers:

e L.Guo, Dave Roberston and Yun-Heh Chen-Burg&usiness Process Model
Based Multi-agent System Developmeifoceedings of The Second Workshop
On Collaboration Agents: Autonomous Agents for Collaborative Environments
, COLA 2004, Beijing, China, September 20-24, 2004.

Appendix F. Publications List 198

In this paper, we describe how to produce a multi-agent interaction protocol
(LCC protocol) from a high level business process model (FBPML model) using
linear temporal logic as the intermediate. Chapter 3 in this thesis represents the

work in detail.

[AJOO]

[AS96]

[ASHTO98]

[Aus]

[AWS00]

[AWS02]

[Bakog]

[BBNO2]

Bibliography

W.M.P Aalst and S Jablonski. Dealing with workflow change: Identi-
fication of issues and solutions. International Journal of Computer
Systems Science & Engineerjmglume 15(5), pages 267-276, 2000.

G. Alonso and H. Schek. Research issues in large workflow manage-
ment systems. I Proc. of NFS Workshop on Workflow and Process
Automation in Information Systesages 126-132, May 1996.

G. A. Bolcer A. S. Hitomi, P. J. Kammer and R. N. Taylor. Distributed
workflow using http: Example using software pre-requirementsTHe
20th International Conference on Software Engineerifygpril 1998.

Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil Alexander Wise,
Aaron G. Cass and Stanley M. Sutton. Using little-jil to coordinate agents
in software engineering. lAutomated Software Engineering Conference
(ASE 2000)pages 155-163, September 2000.

Barbara Staudt Lerner Eric K. McCall Leon J. Osterweil Alexander Wise,
Aaron G. Cass and Stanley M. Sutton. Peep-to-peer technologies and col-
laborative work management: The implications of napster for document
management. lWorkflow Handbookpages 81-94, 2002.

Y. Bakos. The emerging role of electronic marketplaces on the internet.
In Communications of the ACM998.

Q. Z. Sheng B. Benatallah, M. Dumas and A. H. Ngu. Declarative
composition and peer-to-peer provisioning of dynamic web services. In
Proceedings of the 18th International Conference on Data Engineering
(ICDEOQ2), pages 297-308, 2002.

199

Bibliography

[BD99]

[BPEO3]

[BVO4]

[CBLOS]

[CBROS]

[Coa99]

[Co002]

[DGCIS95]

[DGS95]

[EGD97]

200

T. Bauer and P. Dadam. Efficient distributed control of enterprise-wide
and cross-enterprise workf. Tfhe Workshop Informatik99: Enterprise-
wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications, pages 25-32, Oct 1999.

Bpeldws v1.1 specification. Technical report, May 2003.

P. Buhler and J. M. Vidal. Enacting bpeld4ws specified workflows with
multiagent systems. IRroceedings of Workshop on Web Services and
Agent-Based Engineering004.

Yun-Heh Chen-Burger and Fang-Pang Lin. A semantic-based workflow
choreography for integrated sensing and processindg?rdneedings of
The 9th IEEE International Workshop on Cellular Neural Networks and
their Applications (CNNA)May 2005.

Yun-Heh Chen-Burger and Dave Robertson. Formal support for an in-
formal business modeling method. @onference proceedings of The
Tenth International Conference on Software Engineering and Knowledge
Engineering June 1998.

Workflow Management Coalition. Workflow management coalition ter-
minology & glossary, Feb 1999.

M. D. Coon. Peer-to-peer workflow management white paper. 2002.

Mark Hornickl Diimitrios Georgakopoulosl Contact Information and
Amit Sheth2. An overview of workflow management. From process
modeling to workflow automation infrastructure. Distributed and Par-
allel Databasespages 119-153, April 1995.

M. Hornick D. Georgakopoulos and A. Sheth. An overview of work-
flow management: From process modelling to infrastructure for automa-
tion. In Journal on Distributed and Parallel Database Systempages
3(2):119-153, April 1995.

R. Cingil E. N. Tatbul P. Koksal E. Gokkoca, M. Altinel and A. Do-
gac. Design and implementation of a distributed workflow enactment
service. InThe 2nd IFCIS Conference on Cooperative Information Sys-
tems (CooplS97pages 89-98, June 1997.

Bibliography

[EI0]

[EP99]

[FCP96]

[FF94]

[FIPOO]

[Fis02]

[FK]

[Fle]

[GAKO5]

[GAMO7]

[Ge088]

[GPWO3]

201

J. Eder and E. Panagos. Towards distributed workflow process manage-
ment. InWorkshop on Cross-Organisational Workflow Management and
Coordination Feb 1999.

B. Pernici F. Casati, S. Ceri and G. Pozzi. Workflow evolution15th
International Conference on Conceptual Modeling (ER;98ges 438—
455, Oct 1996.

T Finin and R Fritzson. Kgml-a language and protocol for knowledge and
information exchange. IRroceeding of 13th International Distributed
Artificial Intelligence WorkshapJuly 1994.

Fipa acl message structure specification. Technical report, 2000.

L. Fischer. Lighthouse point, fla.: Future strategiesWaorkflow Hand-
book 20022002.

G. J. Fakas and B. Karakostas. A peer to peer (p2p) architecture for
dynamic workflow management. ournal of Information and Software
Technology

R. Guenthoer D. Agrawal A. El. Abbadi G. Alonso, C. Mohan and M. Ka-
math. A persistent message-based architecture for distributed workflow
management. IhFIP WG8.1 Working Conference Decentralized Orga-
nizations, TrondheimAugust 1995.

A. El Abbadi G. Alonso, D. Agrawal and C. Mohan. Functionality and
limitations of current workflow management systems.Rkesearch Re-
port, IBM Almaden, Research Centé097.

M. P. Georgeff. Communication and interaction in multi-agent planning.
In Distributed Artificial Intelligence1988.

A. Finkelstein G. Piccinelli and S. L. Williams. Service-oriented work-
flow: The dysco framework. IRroceedings of 29th Euromicro Confer-
ence (EUROMICROO3pages 291-297, 2003.

Bibliography 202

[HAOQ] C. Hagen and G. Alonso. Exception handling in workflow management
systems. INEEE Transactions on Software Engineerjrnglume 26(10),
pages 943-958, Oct 2000.

[Hav01] J. D. Havard. Interaction as a framework for flexible workflow modelling.
In The 2001 International ACM SIGGROUP Conference on Supporting
Group Work pages 32—41, Sept-Oct 2001.

[IRPO2] R Kowalczyk | Rahwan and HH Pham. Intelligent agents for automated
one-to-many e-commerce negotiation. The proceedings of Twenty-
Fifth Australian Computer Science Conferen202.

[JB96] S. Jablonski and C. Bussler. Workflow management - modelling con-
cepts, architecture and implementation.International Thomson Com-
puter PressSeptember 1996.

[JBR99] M. z. Muhlen J. Becker, C.v. Uthmann and M. Rosemann. Identifying the
workflow potential of business processes.fiProceedings of the 32nd
Hawaii International conference on System Sciendas 1999.

[JGM98] J. Hosking J. Grundy, M. Apperley and W. Mugridge. A decentralised
architecture for software process modelling and enactmeriEBi In-
ternet Computing,Sep/Oct 1998.

[JWB96] G. Vossen J. Wainer, M. Weske and C. Bauzer. Medeiros scientific work-
flow systems. InThe Proceeding of NSF Workshop on Workflow and
Process Automation in Information Systems: State-of-the-Art and Future
Directions May 1996.

[IXT] Jxta platform. Technical report. http://www.jxta.org/.

[J.Y04] J.Yan. A Framework and Coordination Technologies for Peer-to-peer
based Decentralised Workflow SysterR&D thesis, School of Informa-
tion Technology, Swinburne University of Technology, 2004.

[JYRO4] Y. Yang J. Yan and G. K. Raikundali. Ciritical issues in extending p2p-
based swindew p2p-based swindew system for incomplete process sup-
port. In Proceeding of the 8th International Conference on Computer
Supported Cooperative Work in Design (CSCWDG04gy 2004.

Bibliography

[KS03]

[LGCBO4a]

[LGCBO4b]

[LGCBO5a]

[LGCBO5b]

[LGCBO5(]

[LGWO5]

[LLO2]

[LMCMO1]

203

J Kim and A Segev. Framework for dynamic ebusiness negotiation
processes. In Proceedings proceedings of IEEE Conference on E-
Commerce2003.

Dave Robertson Li Guo and Yun-Heh Chen-Burger. Business process
model based multi-agent system development.Tie proceedings of
The Second Workshop On Collaboration Agents: Autonomous Agents for
Collaborative EnvironmentsSeptember 2004.

Dave Robertson Li Guo and Yun-Heh Chen-Burger. Mapping a business
process model to a web services modelThe proceedings of the Third
IEEE International Conference on Web Servicady 2004.

Dave Robertson Li Guo and Yun-Heh Chen-Burger. Enacting the dis-
tributed business workflows using bpeldws on the multi-agent platform.
In The proceedings of the MATES 2005 confere@665.

Dave Robertson Li Guo and Yun-Heh Chen-Burger. A generic multi-
agent system platform for business workflows using web services com-
position. InThe proceedings of 2005 IEEE Intelligent Agent Technology
(IEEE/WIC/ACM IAT-2005)September 2005.

Dave Robertson Li Guo and Yun-Heh Chen-Burger. A novel approach for
enacting distributed business workflow on the peer-to-peer platform. In
The proceedings of 2005 IEEE Conference on E-Business Engineering.
September 2005.

Yun-Heh Chen-Burger Li Guo, Dave Robertson and Jianquan Wang.
Conducting the agile negotiation process involved in the bpel4ws model
on the multi-agent platform. Ithe proceedings of CNAIS2Q(%eptem-

ber 2005.

K C. Laudon and J P. LaudorManagement information systemison-
don: Prentice Hall International, seventh edition, 2002.

Hamideh Afsarmanesh Lui M. Camarinha-Matos. Virtual enterprise
modeling and support infrastructures: applying multi-agent system ap-
proaches. InMutli-agents systems and applicationzages 335—-364,
2001.

Bibliography

[MM96]

[Moh97]

[Mohos]

[MRDO3]

[MS02]

[NH94]

[NOWO05]

[NRAWO5]

[OWLO1]

[OWLO04]

204

H. Ledgard M. Marcotty. The world of programming languages.
Springer-Verlag, 1996.

C. Mohan. Recent trends in workflow management products, standards
and research. Iim Proc. of NATO Advanced Study Institute (ASI) on
Workflow Management Systems and Interoperabiitygust 1997.

C. Mohan. Workflow management in the internet age, advances in
databases and information systems.2hd East-European Symposium
on Advances in Databases and Information Systems (ADBIS/6B)me
1475, pages 26-34, Sept 1998.

S. Rinderle M. Reichert and P. Dadam. Adept workflow management
system: Flexible support for enterprise-wide business processes (tool
presentation). Irinternational Conference on Business Process Man-
agement (BPM’03)volume 2678, pages 371-379, June 2003.

P. Mangan and S. Sadig. On building workflow models for flexible pro-
cesses. I13th Australasian Database Conference (ADC,G&)02.

L. Nastansky and W. Hilpert. The groupflow system: A scalable approach
to workflow management between cooperation and automationn In
Proceedings of the 24th Annual Conference of the German Computer
Society during the 13th World Computer Congress (IFIRpé&pes 473—
479, September 1994.

D. Robertson N. Osman and C. Walton. Run-time model checking of
interaction and deontic models for multi-agent systemsPrisceedings
of EUMAS December 2005.

Roman P.J. van der Krogt Nico Roos, Cees Witteveen and Mathijs M.
de Weerdt. Diagnosis of single and multi-agent plansPioceedings

of the Fourth International Joint Conference on Autonomous Agents and
Multiagent System£005.

Owl-s 1.0 release. Technical report, 2001.

Owl web ontology languagereference. Technical report, Feburary 2004.

Bibliography 205

[PHM99] S. Jablonski J. Neeb K. Stein P. Heinl, S. Horn and M.Teschke. A com-
prehensive approach to flexibility in workflow management systems. In
The International joint Conference on Work Activities Coordination and
Collaboration (WACC99)pages 79-88, Feb 1999.

[PMG98] J. Weissenfels A. K. Dittrich P. Muth, D. Wodtke and G.Weikum. From
centralised workflow specification to distributed workflow execution. In
Intelligent Information Systems - Special Issue on Workflow Manage-
ment pages 159-184. Kluwer Academic Publishers, March 1998.

[Rob0O4a] Dave Roberston. A lightweight method for corrdination of agent oriented
web services. IMAAI Spring Symposium on Sematic Web Seryiidg
2004.

[Rob04b] Dave Robertson. A lightweight coordination calculus for agent social
norms. InThe proceedings of AAMAS Workshop on Declarative Agent
Languages and Technologi€04.

[Sch99] M. T. Schmidt. The evolution of workflow standards. IEEE Concur-
rency, pages 44-52, July-Sept 1999.

[Sie99] R. Siebert. An open architecture for adaptive workflow management sys-
tems. InTransactions of the SDPS: Journal of Integrated Design and
Process Sciengc@olume 3(3):29-41. Society for Design and Process Sci-
ence, Sept 1999.

[SJS02] C. Hahn S. Horn R. Lay J. Neeb S. Jablonski, R. Schamburger and
M. Schlundt. A comprehensive investigation of distribution in the con-
text of workflow management. Im Proceedings of 8th International
Conference on Parallel and Distributed Systerpages 187-192, Jone
2002.

[SJIT97] K. Stein S. Jablonski and M. Teschke. Experiences in workflow man-
agement for scientific computing. IIAroceeding of 8th International
Workshop on Database and Expert Systems ApplicaBept 1997.

[SKLOZ2] P. Wagstrom S. Krishnan and G. Laszewski. Gsfl: A workflow framework
for grid services. 2002.

Bibliography 206

[SLS99] A.Goh S. Liuand E. Soong. State-based modelling of flexible workflow
executions in distributed environments. darnal of Integrated Design
and Process Scienceolume 3(2), pages 49-62. Austin: Society for De-
sign and Process Science, 1999.

[SPJC97] E. Park S. Paul and RainMan J. Chaar. A workflow system for the in-
ternet. Ininternet, in Proc. of ACM SIGPLAN Conference On Object-
Oriented Programming Systems, Languages and Applications (OOP-
SLA97) Workshop on Business Object Design and Implementation IlI
Oct 1997.

[SSO01] W. Sadig S. Sadiq and M. Orlowska. Pockets of flexibility in workflow
specifications. IMhe 20th International Conference on Conceptual Mod-
elling (ER’01) volume 2224, pages 513-526, Nov 2001.

[SV96] M. Singh and M. A. Vouk. Scientific workflows: Scientific computing
meets transactional workflow. FProceeding of NSF Workshop on Work-
flow and Process Automation in Information Systems: State-of-the-Art
and Future Directions, PART Il-Reference Papdvsy 1996.

[UDDO02] http://uddi.org/pubs/programmersapi-v2.04-published-20020719.htm.
Technical report, 2002.

[VAMO1] S. A. Chun V. Atluri and P. Mazzoleni. A chinese wall security model for
decentralised workflow systems. Rioceedings of the 8th ACM Confer-
ence on Computer and Communications Secupigges 48-57, 2001.

[vVdAvHO2] W.M.P. van der Aalst and K.M. van Hee. Workflow management: Mod-
els, methods, and systems.NHT Press, Cambridge, MA002.

[Wal04a] C. Walton. Model checking agent dialogues. 2604 Workshop on
Declarative Agent Languages and Technologies (DALtly 2004.

[WalO4b] C. D. Walton. Model checking multi-agent web servicesPhoceeding
of AAAI Symposium of Semantic Web Seryi2zé64.

[Wes98] M. Weske. Interaction as a framework for flexible workflow modelling.
In Proceedings of 31st Hawaii International Conference on System Sci-
ences1998.

Bibliography

[Wes02]

[WSDO01]
[XMLO6a]
[XMLO6b]

[Yan00]

[Yan02a]

[Yan02b]

[YYO01]

207

M. Weske. A formal framework to support workflow adaptationlriter-
national Journal of Software Engineering and Knowledge Engineering
volume 12(3), pages 245-268, June 2002.

http://lwww.w3.org/tr/wsdl. Technical report, 2001.
http://lwww.w3.0rg/tr/2006/rec-xml-20060816/. Technical report, 2006.
http://www.w3.org/tr/xmlschemall-2/. Technical report, 2006.

Y. Yang. An architecture and the related mechanisms for webbased global
cooperative teamwork support, international. Journal of Computing
and Informatics, pages 13-19, Sep/Oct 2000.

Y. Yang. Enabling cost-effective light-weight disconnected workflow for
web-based teamwork support,. Journal of Applied Systems Studies
volume 3(2), 2002.

Y. Yang. Tool interfacing mechanisms for programming-forthe-large and
programming-for-the-small. Im Proceedings of the 9th Asia Pacific
Software Engineering Conference (APSEC’s, j#ges 359-365, Dec
2002.

Z Weiming Shen Yuhong Yan, Maamar. Integration of workflow and
agent technology for business processmanagemenPErddeedings of
Computer Supported Cooperative Work in Desigages 420-426, July
2001.

