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The definition of hierarchies as organisational structures for coalitions is
the first step toward the definition of a joint human-agent planning framework.
However, a more formal description of such structures is important to be used
as a basis for future discussions, so that ideas can be introduced on a same
perspective. Figure 2.4 illustrates the idea of a general hierarchy.

Figure 1: Example of a hierarchical coalition description

Components (agents) that form a hierarchy are represented by µi, where i
is an integer value from 1 to n (total number of components). We can define
the following functions on hierarchical components:

• LEVEL(µi), returns the level of µi. The notion of levels is introduced
through the idea that components at the same depth belong to the same
hierarchical level;

• RELATION(µi,µj), returns the relation of µi regarding µj . If such com-
ponents do not have a relationship, the function returns null.

Using such functions we can deduce some initial properties. First, consid-
ering two different components µi and µj , if µi is peer of µj , then they are at
the same level. However the return is not true because components in the same
level can have a null relationship. Such a property can be expressed as:
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∀ µi, µj (i 6= j) ∧ RELATION(µi, µj) = peer
⇒ LEV EL(µi) = LEV EL(µj)

In the same way we can deduce properties for the cases where µi has a
superior or a subordinate relation regarding µj . Note that in such cases µi and
µj have to be in adjacent levels (we assume the highest level as level 1).

∀ µi, µj (i 6= j) ∧ RELATION(µi, µj) = superior
⇒ LEV EL(µj)− LEV EL(µi) = 1

∀ µi, µj (i 6= j) ∧ RELATION(µi, µj) = subordinate
⇒ LEV EL(µi)− LEV EL(µj) = 1

We are assuming that components can only set relations with components
of their level or adjacent levels. Thus, the difference between their levels is 0 or
1:

∀ µi, µj (i 6= j) ∧ RELATION(µi, µj) 6= Null
⇒ |LEV EL(µi)− LEV EL(µj)| ≤ 1

Relationships inside a coalition are always between two components. Each
relationship also defines a communication channel between the components so
that they can exchange useful messages for the performance of their plans. Mes-
sages can be represented by the tuple < µi,µj , content >, where µi and µj are
the message sender and receiver respectively, and content could be instances of
commands, goals, activities, feedback, facts and so on. The kind of relationship
between µ1 and µ2 has influence on this communication, enabling or avoiding
the sending of some types of message. For example, components that have a
peer-peer relationship may not be able to exchange commands between them.

An option to describe a hierarchical coalition Θ is to consider Θ a composi-
tion of sub-coalitions. To this end, we can use the tuple < µi,S[1..m] >, where
µi is a superior agent and S[1..m] is a set of subordinates that can be formed by
components (µ[1..m]) or sub-coalitions (Θ[1..m]). In this last case, each Θi can
recursively be decomposed in their components or sub-coalitions. For example,
to represent the hierarchy of Figure 2.4 we have:

Θ = < µ1, [Θ1, Θ2, Θn] >
= < µ1, [< µ2, [µ3, µ4, µ5] >,< µ6, [Θ3, Θ4] >,< µm, [...] >] >
= < µ1, [< µ2, [µ3, µ4, µ5] >,< µ6, [< µ7, [µ9, µ10] >,< µ8, [...] >] >,< µm, [...] >] >

Another practical way to represent sub-coalitions is to use the concept of in-
teraction zones. Each interaction zone Φi defines a group of agents that present
a direct communication between them. For example, in Figure 2.4 we could de-
fine six interaction zones with their respective agents: Φ1 = {µ1, µ2, µ6, µm, },
Φ2 = {µ2, µ3, µ4, µ5}, Φ3 = {µ6, µ7, µ8}, Φ4 = {µ7, µ9, µ10}, Φ5 = {µ8, ...} and
Φ6 = {µm, ...}. Note that the sets of agents in each zone Φi are always repre-
sented by one superior and one or more subordinates. In this way, the tuple
< µi,S[1..m] > can be applied to represent such sets as sub-coalitions. Consid-
ering this idea, we have the following sub-coalitions for each interaction zone:
ΘΦ1 =< µ1, [µ2, µ6, µm] >, ΘΦ2 =< µ2, [µ3, µ4, µ5] >, ΘΦ3 =< µ6, [µ7, µ8] >,
ΘΦ4 =< µ7, [µ9, µ10] >, ΘΦ5 =< µ8, [...] > and ΘΦ6 =< µm, [...] >. In brief, a
general rule for a coalition Θ =< µi,S[1..m] > is:
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IF S[1..m] = µ[1..m] ⇒ ΘΦ =< µi, [µ1, ..., µm] >
IF S[1..m] = Θ[1..m] ⇒ ΘΦ =< µi, [Superior(Θ1), ..., Superior(Θm)] >

Using such a definition we can consider that a coalition has a number of
interrelated sub-coalitions that are themselves hierarchically structured. Each
sub-coalition is a stable intermediate form and can most of the time act without
help from the complex structure. At this point we can apply the following
function to return plans from a (sub)coalition:

• PLAN(Θi,p), returns the (sub)plan of a (sub)coalition Θi to a proposition
p. The same function can be applied to return the plan of a component
µi.

Plans are intricately linked to the idea of levels so that components on the
same level share a common degree of plan abstraction. The following property
can be defined to relate plans of an upper level component with the plans of
their subordinates:

∀ < µ,S[1..m] > PLAN(µ, p) =
⋃m

i=1 PLAN(Si, pi)

This property is important to corroborate, for example, the idea of enclosing
planning problems inside the sub-coalition where they were generated. In this
way, if PLAN(< µ, s[1..m] >) has a problem, µ must deal with such a problem
together with its subordinates S[1..m]. Only if this is not possible, µ will report
the problem to its superior.
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