

I-Kobe1

An I-X application to support disaster relief operations in the
 RoboCup Rescue Kobe scenario

Clauirton Siebra and Austin Tate
Artificial Intelligence Application Institute
Centre for Intelligent Systems and their Applications
School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, EH8 9LE, Edinburgh, UK

I-X page: http://i-x.info
I-Rescue page: http://i-rescue.org

Date: 31-Aug-2005

1 I-Kobe is part of the I-Rescue project, an effort towards the development of knowledge-based tools
applied to search and rescue or disaster relief domains.

Cycle 20 Cycle 100

Cycle 200 Cycle 300
Blocked Roads

Roads
Buildings Buildings in several levels of fire

Injured civilian Dead civilian Civilian Ambulance Team Fire Brigade Police Force

1. Kobe Domain: an example of urban disaster scenario

The occurrence of disasters in urban areas is the most critical event in terms of human
lives due to the population concentration and considerable number of buildings. The
Great Hanshin Earthquake or Kobe Earthquake is an example of how disasters have
tragic effects in urban areas. On Tuesday, January 17th 1995, at 5.46 a.m. (local
time), an earthquake of magnitude 7.2 on the Richter Scale struck the Kobe region of
south-central Japan. This region is the second most populated and industrialised area
after Tokyo, with a total population of about 10 million people. The ground shook for
only about 20 seconds, but in that short time over 5,000 people died, over 300,000
people became homeless and damage worth an estimated £100 billion was caused to
roads, houses, factories and infrastructure (gas, electric, water, sewerage, phone
cables, etc). The use of knowledge-based tools in scenarios like that has the important
goal of decreasing such tragic effects, extending the capabilities of human teams
during search and rescue activities.

2. RoboCup Rescue Simulator

The RoboCup Rescue (RCR) simulator [1] is a real-time distributed simulation system
that is built of several modules connected through a network via a central kernel,
which manages communications among such modules. Each module can run on
different computers as an independent program, so that the computational load of the
simulation can be distributed across multiple processors. Each disaster phenomenon,
such as collapse of buildings or fire spread, is simulated by a dedicated simulator-
module, while a Geographical Information System (GIS) provides the initial condition
of the disaster area.

The RCR simulator recognises six different types of agents: ambulance team, fire
brigade, police force, ambulance centre, fire station and police office. Such agents act
as several independent modules, which receive information about the environment
and send commands to be performed by the kernel. In our implementation some of
such agents are represented by I-X agents as detailed soon.

The simulation proceeds by repeating a specific cycle of one second, which
corresponds to one minute in the real disaster space. However the rate can be
configured according to the application that we intend to test. During each cycle the
following steps are carried out:

− The kernel sends individual sensory information to each agent;
− Each agent individually submits an action command to the kernel;
− The kernel sends the action commands of agents to all sub-simulators;
− Sub-simulators submit updated states of the disaster space to the kernel;
− The kernel integrates the received states, sending the result to the viewer;
− The kernel advances the simulation clock of the disaster space.

The RCR disaster space is configured to represent the Kobe scenario. However we
can model and use customised scenarios. For that end, there are appropriate graphical
tools that generate geographical data in the format used by the RCR simulator. We
have used one of these tools to create a scenario representing part of Nagoya city, for

example. Together with this capability of configuration, the principal advantage of
using the RCR simulator is that it provides a dynamic and unpredicted environment,
which enables the evaluation of different approaches in a more realistic way.

3. Application Architecture

The architecture that was used for this initial I-Kobe version is illustrated bellow
(Figure 1). As introduced in the last section, the RoboCup Rescue simulator is the
component that accounts for generating sensory information and processing the
agents' commands. Sensory information from the simulator is indexed with the
identification of agents and each of these agents only receives the perceptions
associated with the scenario around it. Basically fixed agents (e.g., Police Office) do
not receive new information about the environment because they do not change their
positions. Action commands (e.g., rescue, extinguish, move, etc.) are only generated
by the non-fixed agents: Ambulance Teams (AT), Fire Brigades (FB) and Police
Forces (PF).

Agents are divided into two groups: RCR agents and I-X agents. RCR agents are
provided in the simulator package (yapapi) and represent very simple agents that can
be used as a basis for more complex implementations. I-X agents are the components
that we have implemented and that are being evaluated inside the RCR environment.

The grey bars and arrows (Figure 1) represent the communication network, which
defines which agents can interact. For example, fire brigades (FBi) can only interact
among themselves and with the fire station. For the experiments discussed here, the
architecture uses a communication strategy in which each I-X agent is mapped to a
host and port number, and messages are sent by writing their serialisations to a socket.
A thread that acts as a name-server on a specified port accounts for the role of rotating
messages between agents. Note, however, that the I-X architecture is independent of
the communication strategy, so that other options could be used (e.g., Jabber I-X
Instant Messaging Technology).

Figure 1. Application architecture

4. Quick Start

This section lists the steps that must be carried out to start the application. A first
feature to be noticed is that the simulator only works on a Linux-based platform.

A m b u la n c e
C e n tre

F ire
S ta tio n

P o lic e
O ffic e

A T 1 A T n F B 1 F B m P F 1 P F w

I -X a g e n tsR C R a g e n ts

A m b u la n c e
C e n tre

F ire
S ta tio n

P o lic e
O ffic e

A T 1 A T n F B 1 F B m P F 1 P F w

I -X a g e n tsR C R a g e n ts

Differently, both RCR agents and I-X agents can run on any platform that supports
the Java Runtime Environment. As any I-X application, all the necessary content of
the I-Kobe can be found in the directory ix-<version>/apps. For the I-Kobe
application, in particular, we have the following directory tree:

ix-<version>/apps/kobe/config
ix-<version>/apps/kobe/docs
ix-<version>/apps/kobe/domain-library
ix-<version>/apps/kobe/etc
ix-<version>/apps/kobe/imports
ix-<version>/apps/kobe/java
ix-<version>/apps/kobe/resources
ix-<version>/apps/kobe/scripts

We must set some parameters before starting the application. Such parameter are
explained in Table 1.

Parameter Location
Step ../kobe/etc/rescue<version>/boot/config.txt
Defines the duration of a cycle in milliseconds. Its value can be increased, for
example, if you want to see the effect of the actions at each cycle, or have more time
to make decisions. The current value is 5000
host and port ../kobe/scripts/unix/2-start-rcr-agents.sh
Defines the host and port where the RCR agents must look for the simulator (kernel).
The current values are 127.0.0.0 as host, and 8000 as port. This host is equivalent to
the localhost and must be used if agents are going to run on the same host of the
simulator. Port 8000 is the default value for UDP connections. TCP connections must
use the port 7000.
-rcr-hostname and –rcr-port ../kobe/scripts/unix/3-start-ix-agents.sh
- Similarly, defines the host and port where the I-X agents must look for the simulator
(kernel).
-action-message-time ../kobe/scripts/unix/3-start-ix-agents.sh
I-X agents that represent police forces can print a simple log to indicate the kind of
actions (search, move and clear) they are taking during the simulation. This parameter
set the period that such information is generated. The current value is 10.

Table 1. Principal application parameters

The default number of agents of this application is:
 1 Fire station (RCR agent);
 10 Fire brigades (RCR agents)
 1 Ambulance centre (RCR agent);
 5 Ambulance teams (RCR agents);
 1 Police office (I-P2, I-X Process Panel [2]);
 10 Police forces (I-X agents, no GUI);

However the number of agents can be changed. This process involves three files:
 ../kobe/etc/rescue<version>/boot/maps/Kobe/gisini.txt
 ../kobe/scripts/unix/2-start-rcr-agents.sh
 ../kobe/scripts/unix/3-start-ix-agents.sh

The gisini.txt file says to kernel the number of agents for the current simulation via
the parameters: AmbulanceCenterNum, FireStationNum, PoliceForceNum,
AmbulanceTeamNum, FireBrigateNum and PoliceForceNum. Note that if we define,
for example, AmbulanceTeamNum=5, we must define 5 entries for each ambulance
team in the same file. Examples of such entries can be found in the gisini.txt file.

In brief, the gisini.txt says how many agents are going to connect to the kernel,
together with some initial information such as the initial position of each agent. After
that, we must use the next two script files to start such agents. The important point
here is that the number and kind of agents that will be started have to match the
number defined in the gisini.txt.

Finally we can start the simulation by using the three scripts below:
 ../kobe/scripts/unix/1-simulator.sh
 ../kobe/scripts/unix/2-start-rcr-agents.sh
 ../kobe/scripts/unix/3-start-ix-agents.sh

Agents are connected in the simulator if they receive an id from the simulator. After
the last agent receives this id, the simulation automatically starts.

5. The Simulation

The steps below give a general idea about what happens during the simulation
progress:

1. Each police force sends its id and current position to the police office. This
enables its representation by the I-X Map Tool;

2. Police forces decide by themselves what should be done if they do not receive
any activity from the police office. Such behaviour is associated with the
activities of search and clearing blocked roads;

3. The fire station accounts for receiving requests to clear roads from fire
brigades and send these requests to the police office. Then, the police office
agent transforms the requests in activities and update the map scenario so that
it shows the blocked roads (road with a red cross);

4. The human user of the police office agent must decide which actions will
handle the activities. Basically he/she can delegate activities to one of the
police forces, or apply an allocation action (SimpleAllocatorHandler) to
automatically choose the best agent(s) to perform the activities;

5. When an action is applied to the activity, such activity changes its status from
Ready (orange colour) to Executing (green colour). After a police force
executes the activity, it sends a completion report to the police office and the
action’s status is changed to Complete (blue colour);

Each police force agent generates a simple log saying which actions (search, clear or
move) were performed during a specific period of time2. The search action means that
the agent is looking for roads to be cleared. The clear action means that the agent is
on the blocked road, clearing such blockage. The move action means that the agent is
moving itself to a position indicated by the police office. We can say that the police

2 Such period can be configured by the parameter -action-message-time, as explained in Table 1.

office’s role is to optimise the performance of its police forces. This log can provide
an idea about this performance because, in a general way, the goal is to increase the
number of clear actions during a period of time, consequently decreasing the number
of move and search actions.

6. The Simple Allocation Handler

The SimpleAllocation action is an example of an I-X handler that can be used by the
police office. Its goals is, as cited before, to increase the number of clear actions
during a period of time. For that, the handler is based on three ideas:

− Closest distance: the handler tries to allocate the closest agent to a blocked road.

If this is not possible, it tries the second closest agent and so on;
− Loading balancing: the handler first tries the agents with the least number of

activities;
− Multiple allocations: considering an activity a, the handler tries to allocate more

than one agent to a (there is a constant X that limits the maximum number of
agents that can be allocated to a) if there are agents with less executing activities
than a constant Y. For this version we have X=2 and Y=1 as default values.
Theoretically the code enables changes in such values, however this feature was
not well tested yet.

The Java code that implements these ideas can be seen in:

 ix-<version>/apps/kobe/java/ix/rcragents/handlers/SimpleAllocatorHandler.java

7. Limitations and Improvements

This first I-Kobe version implements the basic features about the integration between
the RoboCup Rescue simulator and the I-X architecture. At the moment we are
expanding this version so that it presents useful capacities associated with the
development of human-agent collaborative planning. Some examples of limitations
that can be found in this current implementation are:

− Police forces only report completion or failure of activities. Reports associated

with activity commitments and progress are also important because they provide
useful information to be used by the handlers, for example. Future versions will
show how we can develop more powerful handlers if we have these reports
defined by the architecture;

− In situations where the police office allocates a clear activity to two agents, two

sub-nodes are created to represent such allocations. These nodes are typical
examples of “or-activities” because only one of them needs to be completed to
the clear activity be finished. However this doesn’t happen in this version.

The theoretical proposal that we are implementing for future versions intends to
provide a general (non-domain specific) solution for problems like that. In this way,
the system will enable support to any other disaster relief domain or, in a broader
perspective, any type of coalition domain.

Acknowledgement

Clauirton Siebra’ scholarship is sponsored by CAPES Foundation under process
number BEX2092/00-0. This material is based on research within the I-X project
sponsored by the Defense Advanced Research Projects Agency (DARPA) and US Air
Force Research Laboratory under agreement number F30602-03-2-0014 and other
sources.

The University of Edinburgh and research sponsors are authorised to reproduce and
distribute reprints and on-line copies for their purposes not withstanding any
copyright annotation here on. The views and conclusions contained here in are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either express or implied, of other parties.

References

[1] Kitano, H. and Tadokoro, S. (2001). RoboCup Rescue: A Grand Challenge for
Multiagent and Intelligent Systems. AI Magazine, 22(1):39-52.

[2] Tate, A., Dalton, J. and Stader, J. (2002) I-P2 – Intelligent Process Panels to
Support Coalition Operations. Proceedings of the Second International Conference on
Knowledge Systems for Coalition Operations, Toulouse, France, pp. 184-190.

