CAMP-BDI
An approach for Multiagent Systems
Robustness through Capability-aware Agents

Maintaining Plans

Alan White

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh
March 2017

Abstract

Rational agent behaviour is frequently achieved through the use of plans, particularly
within the widely used BDI (Belief-Desire-Intention) model for intelligent agents. As
a consequence, preventing or handling failure of planned activity is a vital component
in building robust multiagent systems; this is especially true in realistic environments,
where unpredictable exogenous change during plan execution may threaten intended

activities.

Although reactive approaches can be employed to respond to activity failure through
replanning or plan-repair, failure may have debilitative effects that act to stymie recov-
ery and, potentially, hinder subsequent activity. A further factor is that BDI agents typ-
ically employ deterministic world and plan models, as probabilistic planning methods
are typical intractable in realistically complex environments. However, deterministic
operator preconditions may fail to represent world states which increase the risk of

activity failure.

The primary contribution of this thesis is the algorithmic design of the CAMP-BDI
(Capability Aware, Maintaining Plans) approach; a modification of the BDI reason-
ing cycle which provides agents with beliefs and introspective reasoning to anticipate

increased risk of failure and pro-actively modify intended plans in response.

We define a capability meta-knowledge model, providing information to identify
and address threats to activity success using precondition modelling and quantitative
quality estimation. This also facilitates semantic-independent communication of capa-
bility information for general advertisement and of dependency information - we define
use of the latter, within a structured messaging approach, to extend local agent algo-
rithms towards decentralized, distributed robustness. Finally, we define a policy based
approach for dynamic modification of maintenance behaviour, allowing response to
observations made during runtime and with potential to improve re-usability of agents

in alternate environments.

An implementation of CAMP-BDI is compared against an equivalent reactive sys-
tem through experimentation in multiple perturbation configurations, using a logistics
domain. Our empirical evaluation indicates CAMP-BDI has significant benefit if ac-

tivity failure carries a strong risk of debilitative consequence.

Acknowledgements

This thesis represents the outcome of a long, hard journey which would not have been
possible without the help and advice of my primary supervisor, Professor Austin Tate.
In equal measure, I owe a debt of thanks to Dr Stephen Potter and Dr Michael Rovatsos,
my secondary supervisors in 2010-2012, and 2012 onwards respectively. I would also
like to thank my examiners, Dr Ron Petrick and Prof. Michal Péchoucek, for their

invaluable input and suggestions towards improving the quality of this thesis.

On a technical level, I'd like thank Prof. Jomi F. Hubner and Dr. Rafael H. Bor-
dini, for their assistance with understanding the Jason framework during my imple-
mentation work. Although I ultimately opted for an alternate method, Professor Felipe
Meneguzzi provided valuable advice and help regarding the JavaGP planner imple-

mentation used in the Peleus system.

I also acknowledge my former cohort under EADS sponsorship, Dr Erich Zywssig,
and my erstwhile colleagues at EADS Innovation Works during my funding period. It
would also be remiss not to extend my best wishes to everyone in IF 2.35 - past and

present - for putting up with me and my sometimes incoherent whiteboard writings.

My wife Dr. Poay Ngin Lim served, and continues to serve, as a source of help,
advice and support. Last, but by no means least, I’d like to thank my daughter Juno —

an inexhaustible source of both determination and inspiration.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Alan White)

Table of Contents

(L Introduction|
(1.1~ Background and Context|

(1.2 Motivating Example] 000

(1.3 Research Objectives|.

(1.4 Hypothesis|

1 ntributions e e e e

2 Motivating Domain|

2.1 Domain and Environment Properties|
2.2 Example IPCDomamns|
2.2.1 Space Domains| L 0oL,

[2.2.2 Transport Domains|

[2.3 Example Multiagent Experimentation Domains|

2.3.4 Blogohar] o
2.3.5 RobocupRescue| 0oL
2.4 The Cargoworld|

2.4.2 Entitytypes|

25 Summary|

3 Agent Systems|

[3.1 Agents and Multiagent Systems|

[3.1.1 Multiagent Systems Approach|

O OO0 0 N W N

10
10
11
12
13
15
15
16
16
18
19
20
22
22
23

[3.2.3 The BDI Agent Reasoning Cycle]
[3.2.4 Runtime Planning In BDI Agents|

[3.3 Mental States for Multiagent activity|
34 Conclusion|

4 Agent Robustness Strategies|

4.1 Defining Robustness|,

4.2 Fatlure Diagnosis| o oo

4.3 Sentinel Monitoring and Exception Handling|
4.4 Role Filling Approaches|
4.5 Replication|

5 F o

[5.1 Planning and Plan Execution|

[5.1.1 Classical Planning|
[5.1.2 Hierarchical Task Network (HTN) Planning|
[5.2 Multiagent Planning|.

[5.2.2 Partial Global Planning|.

5.3 Conclusionl

[6 Plan Robustness under Uncertainty|

[6.1 Preventing Failure in Uncertain Environments|

[6.1.1 Conformant Planning|.

[6.1.2 Contingent Planning|

[6.1.4 Continual Planning|

[6.2 Handling Plan Activity Failure|

[6.2.1 Reactive Plan Repair and Replanning|

[6.2.2 Plan Execution Monitoring|

[6.2.3 Determinization with Replanning|

36
36
37
40
43
45
49

50
50
51
53
55
57
57
58
59

nclusion| 79

(7 Behavioural Design| 81
[/.1 'The Cargoworld environment| 81
(7.1.1 Domain Predicates and Operations|. 81

83

85

7.3 CAMP-BDI Behaviour 86
[7.3.1 Normal Agent Behaviour|. 86
[7.3.2 Behaviour to prevent Preconditions Failure| 88
[7.3.3 Behaviour to prevent Non-deterministic Failuref 89

4 Distri Maintenance Behaviour] L. 90

[/.4 Summary| 91
(8 CAMP-BDI Supporting Architecture| 93
(8.1 Mental State Components within the BDI agent Model 93
[8.2 Capabilities] 95
(8.2.1 Existing Approaches towards Capability Modelling| 95
(8.2.2 Capability Model| 97
(8.2.3 Typology| 98
[8.2.4 Matching capabilities to activities| 101
[8.2.5 Confidence estimationl 105
[8.2.6 Calculating Plan Confidence| 108

83 Maintenance Policies| 114
83.1 Contentsl 115
[8.3.2 Matching to Activities| oo 116
[8.3.3 Merging Policies| 118

4 Nracts] e e 119
[8.4.1 CAMP-BDI specificfields| 120
[8.4.2 Usage and Execution| 121
843 ContractPolictesl 122

8.5 Conclusionl 122
e - aintenance Algorithm 124
0.1 CAMP-BDI Agent Reasoning Cycle 124
0.2 Maintenance Tasks| 0. 127

vi

9.3 Agenda Formation| 128

I _Task Consolidation| 132

9.4 TaskHandling|. 134
[9.4.1 Forming Planning Operator Sets From Capabilities| 135
[9.4.2 The Maintenance Planner Component) 137
[9.4.3 Acceptable Plan Criteria) 140
944 PlanlInsertion|. 141

[9.5 Preconditions Task Handling| 143
0.6 Effects Task Handlingf., 144
9.7 Running Example]o oo 149
[9.7.1 Preconditions Maintenance Task handling| 150
[9.7.2 Effects Maintenance Task handlingl 151
[9.7.3 Effects Maintenance Task consolidation and handling|. 152
[9.7.4 Iterative Scope expansion in Maintenance| 153

0.8 Summary| 154
(10 _Distributed Maintenance 157
(10.1 Introduction| 157
(10.1.1 Approach| 157
(10.1.2 Synchronization and Communication Requirements|. 158
(10.1.3 Reasoning Cycle Methods| 159

10.2 Information sources in Distributed Maintenance| 160
(10.2.1 External Capabilities| 160
(10.2.2 Dependency and Obligation Contracts| 161
[[0.2.3 Maintenance Policies] 162
(10.2.4 Forming and Updating Contracts|. 163

(10.3 Maintaining Obligations| 171
(10.3.1 Obligation Maintenance Cost| 172
(10.3.2 Maintaining Joint Obligations| 173

(10.4 Maintaining Plans containing Dependencies| 175
(10.5 Example Distributed Maintenance Behavioury 180
(10.6 Summary| 187
(11 Experimental Evaluation| 190
(IT.1 Implementation| 190
(11.1.1 Implementation of the Cargoworld Simulator) 191

Vii

(11.1.2 Implementation of Experimental Systems|

(11.2° Experimental Design|

[(11.2.1 Experimental Geographies|
(11.2.2 KeyMetrics|.
(11.2.3 Experimental Protocol|

(11.3 Experimental Parameters|

(IT.4 Summary|

(12 Experimental Results|

(12.1 Delivery Success Rate|

(12.2 Average Activity SuccessRate|

(12.3 Average Delivery Cost (Activities per Goal),

(12.4 Planning Operations Per Goal|

(12.5 Planning Time Costs|

[(12.6 Messaging Costs|

[12.7.1 Goal Success Rates and Activity Costs|
(12.7.2 Planning Costs|
(12.7.3 Messaging Costs|
(12.7.4 Summary of Results|
(12.7.5 Applicability of the CAMP-BDI approach|.

[13 Applicability of CAMP-BDI|
[13.1 General applicability|

(13.2 Space Domains|

(13.3 Transport Domains|

(13.4 MAS Disaster Response Domains|

[14.2.1 Achievement of Research Aims and Objectives|
(14.2.2 Relationship and dependencies between CAMP-BDI and BDI|

viii

214
214
224
228
234
242
247
255
255
257
258
259
261
261

263
263
264
267
271
273
278

279
280
282
282
287

(14.2.3 Requirements and Potential Generalization| 290

14.3 Rel ekl . 292
(14.4 Further Workl 297
[14.4.1 Asynchronous Maintenance| 297

(14.4.2 Heterogeneous Planning|, 298

(14.4.3 Communications Optimizations| 298

14.4.4 Execution Context Prediction| 299
Append 301
A Cargoworld Simulator Screenshots| 302
AT World Al o 303
A2 WorldBl 304

B Experimental Results| 306
[B.1 Average Goal Achievement| 307
[B.1.1 World A — Average Goal Achievement. 307

[B.1.2 World B — Average Goal Achievement|. 308

[B.2 Average Activity SuccessRate| o000 309
(B.2.1 World A — Average Activity Success Rate|. 309

[B.2.2 World B — Average Activity Success Rate| 310

[B.2.3 World A — Differences between CAMP-BDI.Speed and other |

| Approaches| o 311
[B.2.4 World B — Differences between CAMP-BDI.Speed and other |

| Approaches| o o 312
[B.3 Average Delivery Cost| 313
[B.3.1 World A — Average Delivery Costl 313

(B.3.2 World B — Average Delivery Cost| 314

[B.3.3 World A — Differences between CAMP-BDI.Speed and other |

| Approaches| oo 315
[B.3.4 World B — Differences between CAMP-BDI.Speed and other |

| Approaches| 316
[B.3.5 Difterences between CAMP-BDI.Quality and other Approaches|317

[B.4 Planning Operations Per Goal| 318
(B.4.1 World A — Average Planning Operations Per Goal|. 318

(B.4.2 World B — Average Planning Operations Per Goal|. 319

[B.4.3 World A — Differences between CAMP-BDI.Speed and other |

Approaches| o 320

[B.4.4 World B — Differences between CAMP-BDI.Speed and other |
Approaches| oL 321

[B.4.5 Difterences between CAMP-BDI.Quality and other Approaches|322
Planning Time Costs| 323

[B.5.1 World A — Average Planning Operation Time| 323

[B.5.2 World B — Average Planning Operation Time| 324

[B.5.3 World A — Differences between CAMP-BDI.Speed and other |
Approaches| 325

[B.5.4 World B — Differences between CAMP-BDI.Speed and other |
Approaches| o 326

Messaging Costs| 327

[B.6.1 World A — Average Messaging Costs| 327

[B.6.2 World B — Average Messaging Costs|. 328

[B.6.3 World A — Absolute Messaging Costs| 329

[B.6.4 World B — Absolute Messaging Costs| 330

[(B.6.5 World A — Absolute Message count differences with increas- |

| ING Mpighl « « v v v e e e e e e e e e e e e e e e e e e e 331
[B.6.6 World B — Absolute Message count differences with increasing |

[Triskl « « o o o e e 332
[B.6.7 Messaging Costs including updatedContract|. 333

[B.6.8 Messaging Costs excluding updatedContract) 337
C_Publications 341
) 342

Chapter 1
Introduction

Intelligent agents are increasingly employed in challenging realistic environments,
such as military, emergency response, aerospace, or power management systems. This
thesis focuses upon Multiagent Systems (MAS) robustness, specifically with regard
to the Belief-Desire-Intention (BDI) model (Rao and Georgeft] [1995]]). As plans are
important in defining the rational behaviour of intelligent agents (Pollock/[[1999])), mit-
igation against the failure of plans and planned activity represents an important com-

ponent of agent robustness.

We target realistic environments where successful plan execution may be threat-
ened by exogenous change during execution — contradicting the beliefs under which
plans were formed and leading to activity failure. Existing BDI architectures typically
employ reactive approaches to handle failure, such as replanning. However, activity
failure may risk lasting debilitative consequences — which can hinder reactive mecha-
nisms, hamper subsequent goal achievement, and potentially extend to loss of material

resources — or human life.

This thesis presents the CAMP-BDI approach for plan execution robustness through
proactive plan modification (referred to as maintenance). We contribute algorithms
for performing plan maintenance, combined with a supporting architecture to pro-
vide knowledge for introspective reasoning and a policy mechanism which supports
flexibility through runtime modification of key variables. We extend locally defined
behaviour to the distributed case, using structured communication and provision of

contractual knowledge to allow decentralized maintenance.

Chapter 1. Introduction 2

Our experimental evaluation shows CAMP-BDI can offer improved robustness in
environments where failure risks debilitative consequences, by preventing negative
post-failure states that can hinder reactive recovery. These results also show improved
planning and activity costs over reactive methods, with excess absolute costs miti-
gated by improved robustness (i.e. avoiding expenditure on ultimately failed goals).
The maintenance policy mechanism we define also allows further cost mitigation in
practical implementations — expected to employ CAMP-BDI to complement reactive
methods — through tailoring the sensitivity of maintenance for specific agent and/or

activity types.

1.1 Background and Context

This work addresses robustness in MASs formed of BDI agents acting within realistic
environments, in the context of plan execution. Multiagent systems are employed in
realistic domains including aerospace (Sislak et al. [2010]), military (Hoogendoorn et
al.|[2006]]) or emergency response (Zhan and Chen [2008]]). The inherently componen-
tized nature of a MAS can be ideal in such environments due to supporting techniques
such as a decomposition, reducing the knowledge and capability requirements of indi-
viduals whilst allowing co-ordinated behaviour through virtual organizations such as
teams or holons (Fischer et al.| [2003]). However, realistic environments can present
agents with difficult characteristics (Russell and Norvig| [2009]) by being dynamic,
inaccessible, or stochastic. These environments may be hostile, where agents risk de-

bilitation from exogenous change or following activity failure.

Planning holds critical importance within BDI agent rationality, making mitigation
against planned activity failure a key aspect of agent robustness. As MASs frequently
require goals be achieved through the coordinated efforts of agent feams, mitigation
must consider distributed plans, especially as individual failure can have reciprocal
impact across a multiagent team - such as a scout helicopter’s failure to warn cohorts
of a threat leading to consequent ambush. Planning often models the environment in
deterministic terms (Meneguzzi et al.| [2010]), as resultant problems and plans are typ-
ically easier to understand and visualize (and more tractable) than with probabilistic
approaches (such as Markov decision processes). However, this can only approximate
the complexity of realistic environments; plans will possess hidden probabilistic or

qualitative components, as states deemed not significant enough to represent in opera-

Chapter 1. Introduction 3

tor preconditions can still influence the outcome of execution (McCarthy| [1958]]).

Toyama and Hageri [1997]] categorize robustness approaches as ante or post-failure;
the former seeking to resist failure, the latter responding to it. Architectural frame-
works for BDI agents (Bordini and Hiibner [2006]], ldInverno et al.| [2000]) frequently
employ the latter for plans, using repair or replanning to recover from failure. Reactive
response can be justified as offering greater certainty and efficiency through occurring
only when failure is definite; proactive/pre-emptive systems may risk false positives
and negatives — performing ultimately unnecessary mitigation activity, or failing to

identify (and prevent) failures.

However, reactive recovery entails failure must occur before any mitigation is per-
formed; in a realistic environment, activity failure may be accompanied by debilita-
tive consequences that increase the difficulty of recovery. In certain domains these
consequences may be severe - extending to potential loss of life (e.g. in military or
emergency response domains). Finally, as realistic domains are continuous, failure
consequences may also hinder subsequent activity and impact the longer term effi-
cacy of the MAS. Existing proactive approaches often involve providing flexibility to
modify or refine plans during execution. Continual planning approach defers planning
decisions until (close to) their execution, but can risk inadvertently stymieing longer
term goal achievement. Conformant or conditional planning attempts to form plans
which prevent failure arising from uncertainty, but require abstraction for tractability

in complex domains — reducing their ability to prevent all failures.

1.2 Motivating Example

We wish to improve robustness in realistic environments which are subject to unpre-
dictable exogenous change and where activity failure risks debilitative consequences.
An example of these properties can be found in Transport domains (Figure(l.1), where
goals are to transport cargo objects between locations. MAS robustness can be viewed
in terms of the number of deliveries performed (system goals achieved) against increas-
ing environmental perturbation (rate of exogenous change). Our approach assumes ex-
ogenous changes are detected by agents and subsequently represented in their Beliefs,
reasoning that event types directly impacting agent activity are likely to be identified

and modelled during system design and domain analysis.

Chapter 1. Introduction 4

Figure 1.1: Example geography; nodes represent locations and connections the bi-

directional roads between them.

For example, Truckl, situated at H, adopts an (intended) goal to deliver specified

cargo to K. This leads to an intention to perform the following plan:

1 Travel to A (through a sub-plan of movements; H—F —E—A)
2 Load cargo object cargol at A

3 Travel to K (following route A—B—C—D—K)

4 Unload cargol at K.

We are concerned with preventable, anticipatable failure stemming from exoge-
nous change contradicting the beliefs held at the time of (and used for) intention for-
mation. For example, preconditions of planned activities may be violated by change
before execution, such as a landslip blocking E — A. Alternatively, exogenous change
could increase failure risk without explicitly violating preconditions — such as £ — A
becoming slippery, increasing the risk of Truckl skidding and crashing on £ — A

without preventing it’s use outright.

Failure may have debilitative consequences; for example, if Truckl crashes on the
slippery E — A it may damage both itself and any cargo being carried. The resulting
post-failure may render recovery more difficult and/or costly, if not impossible; e.g.
if Truckl requires additional agents to return to the road, or cargo destruction forces
use of some alternative, more distant, cargo resource. Debilitative consequences may
persist and threaten future goals — damage to Truckl can risk that agent failing future

activities or being unable to act atall.

Chapter 1. Introduction 5

We suggest agents can be embodied with capability meta-knowledge, allowing in-
trospective reasoning to identify where exogenous changes threatens activities within
intended plans. This can allow agents to determine both when to attempt plan modifi-

cation to address that threat, and which modifications are required.

Our prior example described Truckl suffering movement failure due to £E — A
being slippery. Our desired behaviour (depicted in Figure [1.2) is that, when Truckl
becomes aware of the change in road conditions, it employs capability knowledge to
identify an increased risk of failure for travel along E — A. Truckl then uses that ca-
pability knowledge to guide appropriate plan modifications, forming an alternate route

to avoid E — A.

Figure 1.2: Example maintenance behaviour. Truck1, currently onroad H — F', detects
slippery conditions on E — A. It modifies it's plan to use an alternate route (solid lines),
avoiding the now-slippery (riskier) road used in the original plan (dashed lines).

MASs frequently employ multiagent teams (performing distributed plans), mean-
ing individual agent failures reciprocally impact others in the same team. For example,
a Commander agent can adopt a goal to satisfy a cargo request at K; resulting in a
plan that selects Cargol for delivery, and Truckl as the delivery agent — leading to
subsequent dependency relationships. Failure on Truckl’s part entails failure of Com-
mander’s dependant activity. Robustness approaches must consider failure on both
local and team levels; i.e. if Truckl cannot prevent or recover from failure, Comman-

der must adapt accordingly.

In a realistic environment, the world is likely to be be highly complex and only

Chapter 1. Introduction 6

partially observable — rendering centralized robustness approaches impractical. In-
deed, environmental complexity is a frequent motivation for employing a MAS (Sycara
[1998]]), as it allows a ‘divide and conquer’ approach reflecting the distribution of
knowledge in the environment. A decentralized, distributed approach becomes de-
sirable, allowing system-wide behaviour to be accomplished through structured local
behaviour. We suggest this be accomplished by making agents aware of obligations to,
and dependencies upon, other agents to perform tasks — enabling obligants to commu-
nicate the status of their obligations to dependants, and dependants to use that infor-
mation to identify whether they should maintain their corresponding dependant plan in

response.

An example of this behaviour occurs if Truckl is unable to find a route to pick up
Cargol at A (e.g. if every possible route risks non-deterministic failure). Due to the
obligation accepted from Commander, Truckl would inform that dependent agent that
it had a reduced chance of success, and had been unable to improve its local plan (i.e.
local maintenance had failed). Commander could then modify it’s dependant local
plan; such as to use a Helicopter agent not constrained by road conditions, or another

Truck in a position to form a less risky route.

This behaviour is intentionally analogous to repair of Hierarchical Task Network
(HTN) plans (Tate [1977]). HTN plan repair can be summarised as escalating (from
the most primitive level) re-refinement of abstract tasks, until a suitable refinement
is found. We view a distributed multiagent team in similar terms, where the plan
associated with an intended goal is analogous to a selected refinement for an abstract
task Our desired system level behaviour is for repair to proceed in a similar manner,
with maintenance responsibility escalating up the hierarchy (from the lowest — i.e.
most specialized — agent) until an agent successfully modifies it’s plan, counteracting

the threat to the distributed intention.

Typical BDI implementations adopt a reactive approach, responding to activity fail-
ure with replanning or plan repair. Our motivation stems from where failure both can
arise from exogenous change after plan formation, and risks debilitative consequences

— hindering the effectiveness of reactive recovery. Agents could, intuitively, use con-

'In this context, selecting an obligant to perform a delegated activity can be viewed as selecting an
agent to refine that task.

Chapter 1. Introduction 7

tinuous replanning — forming a new plan (for the intended goal) after every activity
execution using the most current set of beliefs. However, this risks significant com-
putational cost due to frequent planning operations. Continuous replanning also risks
necessary material or agent resources not being reserved and consequently lost to con-
tention, or increased communications costs if they are; the agent can identify required
resources for the current intended plan, but these risk cancellation with subsequent

revision.

1.3 Research Objectives

The aim of this thesis is to identify and design an approach towards plan execution
robustness for BDI agents, based upon proactive modification of plans to avoid antic-
ipated (risk of) activity failure. This follows our hypothesis (Section that activity
failure avoidance can offer robustness benefits, where reactive recovery is hindered by
debilitated states arising as a consequence of failure. Our research objectives were as

follows:

1. To determine knowledge requirements for agents to anticipate where an intended

activity risks failure, following exogenous change.

2. To provide BDI agents with behaviour to anticipate activity failure and avoid

resultant intention failure through proactive plan modification.

3. To provide agent team level behaviour that enables proactive robustness within

the context of distributed plan execution.

4. To show proactive plan modification can improve robustness over reactive ap-

proaches, within environments whose properties befit our motivation.

1.4 Hypothesis

We hypothesized that, in realistic environments where failure risks debilitative conse-
quences, a proactive approach of pre-emptive plan modification can improve robust-

ness over a purely reactive approach.

Drawing from our literature review, we defined robustness as the ability to achieve

Chapter 1. Introduction 8

system goals (i.e. of a hierarchically decomposing, multiagent team) despite environ-

mental perturbation.

Our consideration of pre-emptive behaviour, combined with support of longer term
planning, led to us to form several design hypotheses during our specification and

design:

e Agents can be embodied with capability knowledge to represent both activities
they can perform themselves, and those they can delegate to others.

e The resultant capability model can be used to determine when plan failure is
threatened, and to direct mitigation behaviour.

e [ocalized behaviour can be extended to perform decentralized, distributed main-
tenance through knowledge-sharing within, and communication of, dependency
contracts.

e Policies — sets of behavioural constraints, applied to sets of agent-capability pairs
— can be used to tailor agent maintenance behaviour during runtime, allowing

adaptation to changing knowledge of the agent and environment.

1.5 Contributions

This thesis contributes the design of the CAMP-BDI (Capability Aware, Maintaining
Plans) approach; an algorithm and supporting architecture for pre-emptive plan modi-

fication to avoid failure, described as an extension to the generic BDI reasoning cycle.

We can divide this contribution into the following parts, each representing a signif-

icant individual elements of our design;

e An algorithm for performing pre-emptive maintenance, based upon modifying
intended plans in response to exogenous change during execution.

e The capability meta-knowledge model, used to represent external capability and
dependency contract information in a multiagent team and facilitate our mainte-
nance algorithm.

e Description of structured messaging behaviour to extend individual agent main-
tenance behaviour into the distributed context of a plan-executing team.

e A policy based mechanism allowing runtime modification of key variables and

constraints used by the algorithm, allowing tailoring of maintenance behaviour

Chapter 1. Introduction 9

and providing a framework for potential extension to support generalization and

agent reuse across different environments.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter [2] discusses existing domains, explaining our motivation and introducing

the Cargoworld domain used for description and evaluation of CAMP-BDI.

Chapter [3 overviews agent system concepts, including the BDI approach; this is

followed by discussion of approaches for agent robustness in Chapter [

The importance of plans in guiding BDI behaviour leads to consideration of auto-
mated planning in Chapter |5} to determine knowledge requirements for our intended
behaviour. Chapter [6] considers approaches for plan robustness under uncertainty,

which suggest conceptual mechanisms applicable to our work.

Chapter 7| specifies desired behaviour using the Cargoworld domain. The follow-
ing three chapters detail our primary contribution. Chapter [8| defines the supporting
architecture, employed by the core maintenance algorithms detailed in Chapter [9) -

with Chapter [10] describing extension to perform distributed maintenance.

Chapter [IT] and Chapter [12] discuss our evaluation. Chapter [13] considers how
CAMP-BDI may be applied towards domains outside Cargoworld, before Chapter [14]

concludes this thesis.

Chapter 2
Motivating Domain

Uhrmacher and Swartout|[2003]] noted that empirical investigation of a MAS requires a
suitable domain; this chapter discusses a number of domains and environments where
agents — and teams — could benefit from proactive failure mitigation. This leads to the

choice of domain for the current research.

2.1 Domain and Environment Properties

Russell and Norvig [2009] classify the operating environment for a multiagent system

along several axes;

e Accessible (Fully Observable) or Inaccessible (Partially Observable) — in an
accessible environment, the sensory apparatus can perceive the entire world state
when required; conversely, inaccessible environments require agents to preserve
knowledge of changes in world state for use in reasoning.

e Deterministic or Non-deterministic — in a deterministic environment the next
state of the environment is always determined by the current state and the next
action(s) of the agent(s) therein. In non-deterministic environments actions may
have multiple potential outcomes, with exogenous events also potentially alter-
ing world state. Deterministic but inaccessible environments may appear non-
deterministic to agents due to limited visibility of all action outcomes.

e Episodic or Non-episodic — in an episodic environment, agents experience dis-
crete ‘episodes’ of perception followed by action. Action quality depends solely
upon the current episode; any consequences will not persist into future episodes.

e Static or Dynamic — a dynamic environment is one where world state may

change over time, including while an agent reasons. In a static environment,

10

Chapter 2. Motivating Domain 11

conversely, time constraints are not a concern upon agent reasoning. An envi-
ronment is semi-dynamic if it does not change with time, but the performance
score of the agent does (e.g. if slow decision making is penalized).

e Discrete or Continuous — discrete domains contain a limited number of clearly
defined percepts and actions; continuous domain percepts cover continuous ranges

of values.

A realistic domain is inaccessible, non-deterministic (stochastic), non-episodic, dy-
namic and continuous. Our approach targets the non-episodic, non-deterministic and
dynamic characteristics — specifically where exogenous change occurs unpredictably
during plan execution. We assume the domain can be reduced to deterministic terms
in order to employ classical planning; but also that other world states — not significant
enough to represent in deterministic preconditions — can influence activity outcome
(i.e. increasing risk of failure). We also assume non-determinism through exogenous
change and potential debilitative failure consequences (which may not be sufficiently
known to model in deterministic terms), where non-episodic characteristics entail ac-

tivity effects — including any post-failure debilitation — may impact future activities.

2.2 Example IPC Domains

The International Planning Competition (IPC), organized within the International Con-
ference on Automated Planning and Scheduling (ICAPSﬂ evaluates the performance
of planners in various domains using metrics including plan generation time, activity
or temporal cost, or achievement of optional (‘soft’) goals. Although IPC domains
are orientated towards testing planners rather than the robustness of plan executing
agents within that domain, they can still be related (Crosby ef al.|[2014]) to operating
environments of plan-using MASs and may provide useful guidance regarding plan
formation and execution scenarios. This section describes a number of domains from
IPC-4 (Edelkamp et al.|[2011]]) and IPC-5 (Dimopoulos et al.|[2006]]), which we infor-
mally classify into Space and Transport types, to consider how extension in a realistic

manner may introduce properties relevant to our motivation.

Ihttp://www.icaps-conference.org

http://www.icaps-conference.org

Chapter 2. Motivating Domain 12

2.2.1 Space Domains

IPC-3 introduced the Satellite (1ater extended in IPC-4) and Rovers domains (Fox and
Long [2003]]), both derived from NASA scenarios. The Satellites domain involves a
‘constellation’ of co-operating satellites with heterogeneous sensors, modelling their
fuel, data capacity and temperature properties. The planner must find an optimal route
for satellites to travel to observation targets, transmit data to earth-bound ground sta-
tions — either directly or via a cohort — within defined time bounds and avoiding over-
heating from direct sunlight. The Rovers domain depicts multiple autonomous rovers
exploring the surface of Mars. Again, the planner must form routes between way-
points to perform appropriate information gathering and to allow (line-of-sight) trans-
mission of resultant data to a lander. An extended metric version introduced power
constraints, where Rovers halt to recharge batteries and must co-ordinate to minimize

overall recharging time.

In both domains, we can envisage plausible extensions to include exogenous change
and debilitation cases where proactive behaviour would hold intuitive benefits — par-
ticularly as (given their location) it would be inherently difficult to send resources and
equipment to repair Satellites or Rovers following post-failure damage. For example,
a Satellite could suffer fuel loss from micro-meteor impact (or have less fuel than ex-
pected due to modelling errors), causing failure of an orbital manoeuvre and leaving
that Satellite at risk of further orbital degradation and destructive re-entry. Reactive
handling would occur after fuel had been expended to the point of failure, poten-
tially leaving that Satellite without sufficient remaining fuel to recover (and no suitable
agents near enough to assist). Proactive behaviour, conversely, could anticipate failure

risk and ensure the satellite refuelled in advance to mitigate that risk.

In another example, a Rover could discover an intended (planned) route is more
difficult than expected by sensing an area of softer sand than believed at route forma-
tion. Reactive failure would occur after reaching that location and failing — potentially
leaving the Rover stranded in soft ground and either expending excessive energy to
escape or depending upon (potentially unavailable) other Rovers to assist. Proactive
robustness mechanisms could modify plans to perform preventative behaviour, such
as by re-routing over harder ground, or recharging to ensure full batteries to (assist)

escape if stuck.

Chapter 2. Motivating Domain 13

2.2.2 Transport Domains

Transport or mobile problem type domains are commonly featured within IPC compe-
titions (Edelkamp et al.|[2011]]), and identified by |Long and Fox! [2000] as “a common
feature of planning problems, whether as a central or incidental component”. These
domains can be characterised as concerned with achieving some goal requiring correct
formation and traversal of a route plan (i.e. to arrive at that destination, deliver cargo,
or perform some other activity), and hold interesting properties in terms of both the

factors influencing activity success and the potential consequences of failure.

In the Trucks domain from IPC-5, planners must find a minimal cost plan to de-
liver packages to set locations using actions to move a truck, load a package onto a
truck, unload a package, or deliver a package (i.e. ‘consume’ that package to sat-
isfy a request). Trucks are constrained by their cargo storage space and delivery time
deadlines. The DriverLog domain is similar to Trucks, but introduces an additional
route-finding problem of guiding drivers to appropriate Trucks. This means plan effi-
ciency must also consider the use of Drivers to enable Truck movement (Gregory and
Lindsay| [2007]), and suggests obvious similarities to multiagent domains requiring

co-operation between heterogeneous agents.

We can envisage common scenarios for both these domains where proactive be-
haviour — i.e. failure prevention — is beneficial. For example, trucks could accumulate
wear and tear through travel, with accompanying degradation of performance. A reac-
tive approach would only respond once degradation led to failure — but such a scenario
might see debilitation such as mechanical damage from over-fatigue, or skidding then
crashing. These consequences would increase the difficulty of recovery (if not ren-
dering it impossible) and potentially threaten future activity, by rendering that truck
useless until recovered and repaired. In contrast, a proactive approach could identify
the increasing risk from wear and tear (provided this can be sensed or inferred) and —
when a certain threshold is met — modify the plan appropriately to perform repairs or

delegate to an alternate truck.

Other scenarios may be envisaged; such as route modification to avoid roads ren-
dered dangerous by partial flooding or ice. A proactive approach could reduce back-

tracking costs by making earlier changes, compared to reactively responding upon

Chapter 2. Motivating Domain 14

reaching that road and being unable to execute the planned activity (or beginning exe-
cution and failing midway). In DriverLog, this can extend to scenarios where Drivers
cannot reach their assigned Truck in time. A reactive system would only respond
once that Driver had definitively failed to reach the truck; but a proactive system could
invoke compensatory behaviour once it was sufficiently unlikely the Driver would suc-
ceed — allowing earlier response to identify and assign an alternative. This could also
improve the ability to reassign the delayed Driver, if movement was aborted in a more

convenient (central) location for reaching other Trucks.

The Triangle-Tireworld domain (Little and Thibaux| [2007]]), featured in the prob-
abilistic track of IPC-4, presents an environment where cars move from a start to an
end location along unidirectional roads (Figure [2.1). Each location is associated with
a certain probability of a flat tyre occurring when travelled through; certain locations
hold a spare tyre that may be fitted to the car (extension in IPC-5 added a probability

of failure for fitting a spare) or stored for future use.

goal

goal

start start

Figure 2.1: Triangle-Tileworld, from [Little and Thibaux| [2007]. Black circles represent

locations with a spare tyre, white locations without, and arrows unidirectional roads.

The planner must account for the possibility of a burst tyre by both travelling
through locations with spares, and loading spares for future use. Although not pre-
emptive behaviour — spare tyres only have utility after a burst tyre results in failure —

we draw interest from the generation of plans which prepare for possible failure by

Chapter 2. Motivating Domain 15

ensuring burst tyres can be replaced. The domain does not consider exogenous change
— for example, if another car can remove spare tyres from locations, modifying the

probability of success for plans formed based upon initial state tyre locations.

2.3 Example Multiagent Experimentation Domains

This section overviews example domains and environments from prior multiagent ex-
perimentation. Such domains may employ varying degrees of abstraction, from the

simplified Tileworld to realistic environments like Pacifica or Robocup Rescue.

2.3.1 Tileworld

The Tileworld domain (Pollack and Ringuette [1990]) presents a grid based environ-
ment, used as an abstract agent testbed (Figure [2.2)). Agents hold goals to pick up and
move a set, variable number of tiles into holes in the environment; further constraints
(e.g. shape) may impact the utility of placing a particular tile in a given hole. Tileworld
has been revised over time with more realistic properties — such as resource levels or
multiagent activity (Ephrati et al.| [1995])— and to vary in dynamism, uniformity of
tasks and movement speed. Although [Hanks et al.|[1993b] argue Tileworld is suffi-
ciently extensible to cover a variety of evaluation requirements, Lees [2002]] observes
such modification may be overly driven by the specific agent or behaviour being tested

—reducing the applicability and generality of results.

1
2 [T4|0O1 06| T1

3 04

4 Al H1 T3

5

6 o5 Legend

7 o2 A2 Ax Agentx
8 Hx Hole x

9 H2 03|72 H3 Ox Obstacle x
10 Tx Tile x

Figure 2.2: Annotated diagram of a Tileworld environment, from (Choy et al. [2004].

Chapter 2. Motivating Domain 16

There are numerous potential scenarios where proactive failure avoidance behaviour
could be advantageous in a Tileworld. For example, if holes appear and disappear ran-
domly, proactive behaviour would allow agents to modify intended plans if their cur-
rently intended route risks falling into a newly emerged hole. If agents incurred dam-
age through fatigue — risking further damage through fatigue driven failure — proactiv-
ity can be used to avoid activity by a damaged agent, instead driving that agent to (if

possible) self-repair or delegate the task to another.

2.3.2 Truckworld

Hanks et al.| [1993a] define Truckworld as a simulator testbed for reactive planning,
modelling a world composed of locations connected by roads. Agents represent Trucks,
performing transport tasks (similar to the Truck domain in Section[2.2.2) and modelled
at a level of detail that includes their constituent components (i.e. fuel tanks, tyres,
loading arms and cargo bays). Locations are populated by objects of various types
and properties, including tyre chains that can be fitted to aid driving down wet roads,
or bombs which may explode and damage agents in the vicinity. Exogenous events
include weather changes, such as rainstorms altering road conditions; the probability of
such events may be modified based on various factors, such as time of day. Constraints
may be placed upon agent sensory ability — such as limiting perception of sound by
distance (Hanks ez al.|[1993Db]).

The Truckworld presents an arguably more realistic environment than Tileworld,
albeit with a homogenous agent set limited to Truck types. There are obvious cases
where proactive failure mitigation may be of use. For example, rain may render a
road muddy — threatening failure of future travel, and risking agents becoming conse-
quently stuck or damaged. Proactive behaviour can allow earlier adaptation of plans,
potentially avoiding backtracking if the agent only reacted upon reaching that road, or
allowing agents to (plan to) fit chains in advance and reserve suitable resources earlier

(protecting against contention).

2.3.3 Pacifica/ PRECIiS

Pacifica / PRECiS (Planning, Reactive Execution and Constraint Satisfaction) was cre-

ated as an openly available testbed, offering scenarios within a fictional island geog-

Chapter 2. Motivating Domain 17

raphy (Figure [2.3). Pacifica provides uncertainty and dynamism within a realistic do-
main, with the geographic scale supporting heterogeneous multiagent activity, where
exogenous threats range from insurgent attacks to natural disasters. Pacifica has been
employed in experiments including distributed collaborative planning and scheduling
in NEOs (Non-combatant Evacuation Operations) (Reece ef al. [[1993]]) and multiagent
emergency response (Komenda et al.| [2009a]). These involved logistical scheduling
and disaster response tasks, such as evacuating civilians or transporting medical sup-
plies. Failure in plan activities when performing such tasks, if not recovered from, may
entail severe consequences (such as stranding of refugees or failure to resupply field

hospitals) — potentially including threatening human lives.

Bridge P ciits
Mud & Volcanic Activity D Sand

.| Fresh Water Primary Road

B High Ground = =—— =— — Dirt Road

E Marsh

Aad
VA o)

Figure 2.3: Sample Pacifica / PRECIiS environment geography, from |Reece et al|[1993]

These scenarios include cases where the situation may be unfolding, with changing
or unknown world state. Plans may be initially formed or selected with incomplete,

incorrect or subsequently contradicted state informatiorEl, as it may not be feasible for

21t does not strictly matter whether a state has changed or simply been discovered as different; our
plan robustness focus is concerned with recognizing whether the assumptions under which the plan was
formed were contradicted, and identifying if intended activities are at risk of failure.

Chapter 2. Motivating Domain 18

agents to delay activity until they have absolute certainty regarding the world state.
For example, a road believed passable and safe may subsequently become known as
blocked or dangerous. In the latter case, agents may still use that — still traversable
— road, but risk damage to the agent or their cargo or passengers. Reactive recov-
ery would incur any (potentially lasting) damage from failure, but proactive strategies
would avoid such failure — potentially offering greater flexibility in doing so, if threats

can be identified far enough in advance.

2.3.4 Blogohar

The Blogohar scenario (Figure is designed around two human ‘players’; one rep-
resenting a military force combating a violent insurgency, the other a humanitarian
organization seeking to evacuate civilians (Sensoy ef al.|[2010]). Both must form col-
laborative plans to best achieve their individual goals, and are constrained by policies
derived from real world guidelines (for example, restrictions upon communication be-

tween military and humanitarian organizations).

N Map - East Blogohar Region

N Map - East Blogohar Region o
£ Party A - Humanitarian Organisation W$ E Party B - Military Force
M Missie Range
Tosa
Tosa
- NR2

Figure 2.4: Map of the Blogohar domain for both ‘players’, from|Sensoy et al.|[2010]

As with Pacifica, non-agent antagonists introduce debilitative and unpre-
dictable exogenous change — providing motivation for pre-emptive activity, partic-
ularly as hostile antagonists introduce the possibility of debilitation. These types of
scenario also suggest non-deterministic representation of risk should be considered,
for states not significant enough to represent in precondition terms yet still influenc-
ing the outcome of activities. For example, humanitarian agents could revise plans
upon awareness of nearby insurgent activity, to combat a consequently increased risk

of failure — such as changing route to use safer areas, or requesting military escorts.

Chapter 2. Motivating Domain 19

2.3.5 Robocup Rescue

The Robocup Rescue simulator (Figure [2.5) defines a scenario based upon the Kobe
earthquake of 1995 (deriving from the domain description in [Kitano ez al| [1999]).

This domain has been employed for investigation into multiagent planning and collab-

oration, including use of Partial Global Planning (Pereira et al. [2011]]) and by

and Tate [2006] to extend the I-X mixed-initiative planning approach [2001]))
through the I-Rescue application. Three types of physical agent are modelled (with

equivalent logical commander agents); Each physical type performs specific types of
task — Fire Brigades extinguish fires, Ambulances evacuate casualties and Police clear

blocked roads.

Figure 2.5: Screenshot of the Robocup Rescue environment during a simulated earth-

quake disaster; from http://www.robocuprescue.org/simleagues.html

The simulator models fire spread, building collapse and both agent and non-agent
(civilians requiring rescue) entity health — providing conditions for generating goal
tasks, and for representing threats to agent capability. Fire and building collapse may
damage agents (although graded loss of capability is not modelled); the latter can also
block roads. Whilst a reactive approach would respond to exogenous events only after
they cause activity failure (potentially damaging the acting agent), a proactive approach
would seek to avoid such failure and damage. This is arguably particularly important
given the relative homogeneity of agent types; if an agent is damaged or destroyed from

failing an activity, the typical response would be to find another instance of the same

http://www.robocuprescue.org/simleagues.html

Chapter 2. Motivating Domain 20

type to perform an equivalent activity. This makes it important to preserve individual
agents, as goals cannot be achieved through structured use of other agent types with

semantically differing abilities]

Activity failure risk would (be anticipated as) increase with worsening building
conditions or fire spread; agents could compensate by bringing in supporting agents to
tackle severe fires, or re-routing away from buildings at risk of collapse. For example,
a Fire Brigade agent could determine an intended route is blocked, and pre-emptively
dispatch a Police agent to clear it; pre-emption can ensure support requirements are
identified and agents reserved earlier than if only responding to failure upon the Fire

Brigade agent reaching (and failing to use) the blocked road.

2.4 The Cargoworld

We require definition of a suitable environment to provide examples of our desired
behaviour, and as a basis for experimental evaluation. Whilst we have highlighted
existing experimental domains, there are several issues restricting their viability for our
experimentation. Firstly, as a somewhat abstracted environment, we judged extension
of the Tileworld as risking accidental bias (Lees| [2002]]). More real-world orientated
domains suffer from lack of available modern simulators (such as with Truckworld and
Pacifica), or lacked the configurability required for evaluation — such as to control rates

and probabilities of exogenous change, or for debilitative failure consequences.

Consequently, we define the Cargoworld — embodying a geographical model sim-
ilar to numerous domains (including those surveyed previously), with potential for ex-
ogenous change, and potential for debilitative failure consequences. Cargoworld is a
Transport-style domain deriving from the principle expressed by [Tate et al.|[[1998]] that
agents “go places, do things”; we argue this general concept can be abstracted to cover
a multitude of other domainsﬁ System goals are concerned with movement of cargo
from an initial junction to a requesting destination, and require agent co-operation. The
domain features a variety of heterogeneous threats, agent types and avoidance or re-

covery responses — to avoid failure mitigation simply consisting of repeating the same

3The principal planning problem arguably becomes not which activities are required to achieve a
goal, but rather which instances of an agent type are most efficiently located.

4i.e. that in most domains, system activity is formed of processes of preparing for or enabling some
goal-required activity (“‘go places”), and of actually performing that activity (“do things”).

Chapter 2. Motivating Domain 21
activities using different instances of the same agent types.

Entities in Cargoworld are situated within a bi-directional graph structure, repre-
senting a road network; each node represents a location or junction (Figure [2.6). The
road connecting some junction A to B is given as A — B ﬂ The system goal — or top
level goal, referencing its location in a decompositional team-goal hierarchy — is to

transport cargo to a specific destination (request junction), where it can be consumed.

Figure 2.6: An example geography for the Cargoworld

Roads in Cargoworld have several properties, potentially contributing to risk for

activities involving their use;

e Roads are either rarmac or mud, indicating surface composition.

e The road condition may be dry, slippery or flooded; this, in combination with
road surface and type of travelling vehicle, influences the risk of failure when
travelling along that road.

e Roads may be blocked by landslides or foxic due to chemical contamination

following cargo spillage, preventing travel.

It is possible for a road to be (for example) flooded, blocked and toxic - these states are
not mutually exclusive. However, a road can only have one surface composition, and

cannot be (for example) dry and slippery simultaneously.

5A — B, B+ A or B — A all refer to the same bidirectional connection between A and B. However,
we will use the arrow to indicate direction of travel when referring to a road within the context of agent
movement

Chapter 2. Motivating Domain 22

2.4.1 Perturbation

Environmental perturbation is a key factor in considering robustness; we are concerned
with unpredictable, stochastic domains where exogenous change can impact the like-
lihood of activity success. This leads to a degree of non-determinism; the world state
after a successful activity is determined both by that activities effects and any exoge-

nous changes during execution.

Exogenous change can be characterised as any state change which occurs for a
reason outside of an agent’s planned activity. We define several types of unpredictable

exogenous change;

e Rain can fall on roads, causing transition from dry to slippery and, finally, flooded
states.

e Roads can dry out — transitioning from flooded to slippery and finally dry states.

e windy conditions can arise, increasing risk for flight activities.

e Landslips (or equivalent events) may render roads blocked (impassable).

e The Cargoworld is subject to insurgent activity, which can render junctions dan-
gerous; creating dangerZones at those locations. Agents (except APCs) cannot

successfully act in, or move through, any junction with a dangerZone present.

2.4.2 Entity types

Several types of entity are situated in, and can act within, the Cargoworld; these are
controlled by agents, which represent these physical entities within the MAS. In the
remainder of this thesis, we refer to agents and entities interchangeably due to this
proxy nature. However, it is important to distinguish that damage to a physical entity
does not impair the associated agent; instead, that agent is responsible for representing
and, where possible, handling the consequences of such damage within the context of
planning activity and team relationships. Each entity has a given health state, which
influences activity execution — there is a greater chance of activity failure if the acting
agent is damaged, and a mortally damaged agent cannot perform any activity. Damage
is a potential consequence of activity failure; health state gradually recovers over a
period of inactivity.

Vehicles are entities capable of performing a move activity — travelling from

a start to a destination junction. With the exception of helicopters, movement is con-

Chapter 2. Motivating Domain 23

strained to using roads; blocked, flooded, or — with the exception of an APC — slippery
mud or toxic (contaminated) roads cannot be used for movement. Failure of a move
activity may result in debilitative consequences that leave the acting entity ‘stuck® off-
road. Finally, failure of movement when loaded with cargo, or cargo loading or un-
loading, risks destruction of that cargo and spillage (if the cargo is of hazardous type

— e.g. nuclear or chemical waste) rendering roads foxic.

e Trucks are road vehicles which can load or unload cargo, and move along roads;
these represent the basic activities required to transport cargo between junctions.

e Helicopters are able to load and unload cargo, and travel directly between any
two junctions, but can only land or take off from those containing an airport.
Flight activities (takeOff, land, or fly) are threatened by windy conditions.

e Armoured Personnel Carriers (APCs) are able to secure dangerous areas — re-
moving a dangerZone. They are uniquely capable of moving along slippery mud
(with the same risk as for slippery tarmac) or contaminated roads.

e Bulldozers can unblock roads (remove blocked states).

e Hazmats (Hazardous Material handlers) can decontaminate roads (remove foxic

states).

This offers a fairly heterogeneous agent set compared to a domain such as Truckworld.
Entities either achieve the top-level goal of cargo delivery, or facilitate achievement by
others. This gives the MAS more options and flexibility (in both proactive and reactive
failure mitigation) beyond simply selecting an equivalent type agent to perform a task
(i.e. ‘fail-then-retry’). Some agent abilities — particularly movement — achieve the same
goals with different semantics — impacting their preconditions, (side) effects, and the

impact of various world states upon likelihood of success.

2.5 Summary

This chapter described extensions of example domains to show both how exogenous
change can impact plan execution and indicate how failure may have lasting negative
consequences which hinder reactive recovery. We also justified the choice of Car-
goworld as our evaluation domain; an example MAS in this domain is detailed in

Chapter|[7], serving as a specification for experimental evaluation.

BDI systems typically employ a reactive approach towards failure mitigation (in

Chapter 2. Motivating Domain 24

the context of plan failure) — what Toyama and Hager [1997] define as post-failure
robustness, rather than ante-failure strategies. In our knowledge, the relative benefits
of proactivity and reactivity within realistic domains have not been directly compared.
Consequently, the existing domains discussed here are limited in their definition and
modelling of failure consequences, due to an assumption of, or desire to study, reactive

strategies.

We do not argue reactive approaches are disadvantageous; indeed, the obvious un-
certainty constraints upon any proactive approach will likely require complementary
reactive handling for where a failure is not anticipated (false negatives) or preventable.
Rather, we suggest the assumption of de-facto reactivity will bias domain definitions
against considering the possibility of irrecoverable failure, as such scenarios may not
be useful for evaluating post-failure recovery. However, we argue debilitative failure
can, and will, exist in real-world scenarios — and represents a valid motivation for our

approach.

Chapter 3
Agent Systems

We contribute an approach for robustness in the context of agent plan execution. This
chapter defines the concept of an agent, detailing the BDI reasoning approach and it’s
extension to a multiagent context — providing a background for our contribution and

discussion of agent robustness approaches in Chapter 4]

3.1 Agents and Multiagent Systems

Intelligent agents, as defined by|Wooldridge|[[1999], are capable of ‘flexible autonomous

action’ through possessing three key characteristics;

e Reactivity: The ability to respond and adjust to changes in the environment.

e Pro-activity: The ability to autonomously adopt goals and perform consequent
goal-directed behaviour - i.e. to ‘take initiative’ in line with the agent’s design
objectives.

e Social ability: The ability to interact with other agents to achieve goals, includ-

ing structured interactions like contract formation and negotiation.

Rationality is a key component of intelligence. [van der Hoek and Wooldridge
[2003]] define a rational agent as one which acts “in it’s own best interests”; the agent,
given a set of possible outcomes, will direct its behaviour to favour the most desirable
outcome (where the calculation of desirability reflects the agent’s designed purpose).
Rational agents typically receive continuous input from their situated environment, re-
sponding with the selection of goals and the corresponding performance of actions to
affect that environment; they consequently will hold beliefs about the world, goals,
plans, and committed partial plans or intentions for response to external events or in-

ternal goals (Kinny et al.|[1992]).

25

Chapter 3. Agent Systems 26

3.1.1 Multiagent Systems Approach

A Multiagent System (MAS) is composed of multiple interacting components (Wooldridge
[2002], where that system’s purpose is achieved through achievement of individual
goals by constituent agents (McArthur et al.| [2007]). MASs have been employed
for domains including aerospace (Siélék et al.|[2010]]), military (Sokolowskil [2003]),
space exploration (Micalizio and Torasso [2008al]), power management (McArthur et

al.| [2007], Santofimia et al.| [2010]), coalition systems (Allsopp et al. [2002]) and
emergency response (Zhan and Chen| [2008]]). The latter includes simulation of fire
propagation (Han et al.|[2010]), evacuation (Narzisi et al.|[2007], Filippoupolitis et al.
[2009]]), and disaster response (Schurr and Tambe| [2008], Marecki et al.|[2009], [Wu

et al. [2008]]).

Sycara [1998] states several motivations for adopting a MAS approach, including
whether the domain naturally lends itself to a distributed solution, and where a MAS
offers extensibility, flexibility or robustness benefits. Jennings [2000]] argues MASs of-
fer significant advantages over ‘traditional’ methods for complex, distributed systems
— particularly in flexibility, as the autonomous nature of intelligent agents makes them
ideal for dynamic environments (Zwitserloot and Pantic| [2005]]). Hahn et al. [2003]
argue the componentized and modular nature of a MAS improves robustness through
providing abstraction and offering potential dynamic service composition or redun-
dancy — although Kumar and Cohen| [2000a]] note a requirement for fault tolerance and

recovery techniques specific to the Multiagent paradigm.

3.2 The Belief-Desire-Intention Approach

Our contribution focuses upon the Belief-Desire-Intention (BDI) approach to rational
agency. Derived from theories of human mental reasoning (Bratman| [1999]), BDI
has become a de-facto standard for implementing intelligent agents (Wickler et al.
[2007]). Rationality is driven by processes of goal selection, plan identification and

plan execution — the latter being the focus of our contributed robustness behaviour.

3.2.1 BDI Mental States

BDI agent reasoning can be viewed as two parts; deliberation — choosing a goal to

pursue — and means-end reasoning — identifying a plan to achieve that goal — and is

Chapter 3. Agent Systems 27

driven by three mental state components;

e Beliefs; believed knowledge — i.e. about the environment and the agent itself.

e Desires; a set of potentially inconsistent goals, each considered desirable given
current Beliefs.

e Intentions; a consistent set of Desires the agent has committed to pursue — i.e.

what the agent intends to do.

The definition of an intention can be seen to vary within the literature, depending
upon the research focus and potentially the temporal context (i.e. within the reason-
ing cycle) under which intentions are considered. These differences can perhaps be
attributed to the concept expressed by Wooldridge| [2002] that, for an agent to behave
rationally, adopting a goal will inherently lead to acting towards that goal — that form-
ing an intention entails commitment to both a goal and to execute some planned set
of activities. The specific definition of intention used within a particular work may
therefore be influenced by the specific aspects of agent reasoning under consideration
(i.e. can be context specific), and may also be further restricted by any assumptions

regarding implementation of practical systems.

Georgeff and Ingrand) [1989], for example, define an intention within the Proce-
dural Reasoning System (PRS) — an early BDI framework — as a selected task to be
executed, with the I set as a corresponding hierarchy. The intentions held by an agent
can range from a committed goal (i.e. abstract task) to a specific executable activity,
with the former being refined into the latter through successive reasoning cycles. In
contrast, the BOID architecture (discussed in Section [3.3)) is concerned with motiva-
tional sources for goal selection within agents employing BDI reasoning (including
influences from Obligations to others — hence the ‘O’), and consequently views In-
tentions as committed goals. Thangarajah ef al|[2002] define intentions as selected
plans, and argue there exists a need for standard formal representations for mental

state concepts of Desires and selected Goals.

This thesis adopts the model of |[Simari and Parsons [2006], where an Intention
defines both a committed goal and associated plan. As we are concerned with preven-
tative modification, we require our reasoning to be able to consider both the current
plan and — to facilitate reconsideration upon threat to contained activity(s) — the goal

that plan is attempting to achieve. This also serves to state our assumption that if an

Chapter 3. Agent Systems 28

agent intends to perform some planned activity, it has some goal achievement reason
for doing so, and that if an abstract task (goal) is refined to specific activities, the former
can still be determined for (associated with) the latter. Finally, a goal:plan definition
can be seen as a simplification of a further assumption that if intentions do represent
decomposing task hierarchies both the original root goal and the current sequence of
planned activities (i.e. a plan) can be inferred (provided knowledge is retained of the

decomposition of intended tasks into subtasks).

3.2.2 Maintenance Goals

Braubach et al.| [2000] define two types of goal driving agent proactivity; to achieve
some state, and to maintain it over a set time or under defined conditions. Duff e
al.| [2006] distinguish reactive and proactive types of maintenance goals; the former
requires re-establishment of the goal state if violated, the latter constrain goal and
plan adoption to prevent violation. Reactive maintenance goals can be considered part
of the ‘background’ reasoning under which agents select desires and identify plans,
whilst proactive maintenance goals may motivate adoption of achievement goals to

re-establish violated states.

3.2.3 The BDI Agent Reasoning Cycle

An example of a generic BDI reasoning cycle (Rao and Georgeft] [1995]) is given in
Algorithm [I} The reasoning cycle begins with the initialization mental state compo-
nents (i.e. B, D and I), followed by continuous iteration during the agent lifecycle.
The start of each reasoning cycle sees the agent update current Beliefs, including with
percepts of external events perceived at the end of the preceding cycle (represented in
the eventQueue). The optionGenerate uses these updates to identify potential Desires
(options), of which a consistent subset will be used to form Intentions for execution.
Here, B, D and I mental state components are globally accessible and implicitly up-

dated with execution of the constituent functions of the reasoning cycle.

Each Desire represents a potential intention, with a non-conflicting subset selected
by the deliberate function; these are then used to update the agent’s I set. The execute
step can be argued as necessarily vague to allow different implementation specifics. In
general, execute can be summarized as both performing intention refinement processes

and performing executable activities. For a model such as that used by PRS (described

Chapter 3. Agent Systems 29

in Section [3.2.1)), where the [set is an effective hierarchy of committed tasks, this can
be seen to result in addition of new intentions corresponding to the refinement of in-
tended abstract tasks, and the execution of atomic intentions where a task corresponds
to a primitive activity. In the case of our adopted representation of an intention as com-
bining a goal and plan, the initial plan can represent an abstract goal-achievement task
— with the plan being refined and having any atomic activities executed (i.e. interleav-

ing planing and execution) during the reasoning cycle.

Algorithm 1: Generic reasoning cycle for a BDI agent (Rao and Georgeff [[1995])

initializeState();

while agent is alive do

// Generate potential desires

options < optionGenerator(eventQueue);

// Select desire(s) to pursue

selectedOptions < deliberate(options);

// Form intentions from selected desires

selectedIntention <— updatelntentions(selectedOptions);

// Form plans for intentions and execute atomic intentions
execute();

// Update event queue

getNewExternalEvents();

// Identify succeeded intentions

dropSuccessful Attitudes();

// Identify impossible intentions

dropImpossibleAttitudes();

// Determine intentions/goal elements carried to the next

cycle

postIntentionStatus();

Intentions are progressed over multiple reasoning cycles; agents may interleave in-
tentions depending upon their deliberation strategy. At the end of each reasoning cycle,
sensing is performed to detect changes in the environment and identify the outcome of
activity execution; the current intention set is updated to progress partially executed

plans and remove those completed or now considered impossible.

Chapter 3. Agent Systems 30

3.2.4 Runtime Planning In BDI Agents

Due to reactive time constraints, BDI agent implementations — such as the Procedural
Reasoning System (PRS) (Ingrand et al.| [1992]]) or Jason framework (Bordini and
Hiibner| [2006]) — typically employ libraries of plan recipes, mapped to triggering
events and selection conditions. Use of plan libraries has led to criticism that BDI
agents cannot learn and adapt, and are restricted to scenarios envisaged during offline
plan formation. Singh ef al. [2010] have suggested an approach for re-use of library
plans through learning new selection conditions for selection based upon historical suc-
cess rates under various execution contexts — although this did not account for where

multiple plans are attempted for the same goal, or automated repair or recovery.

Approaches have investigated integration of runtime planning in agent behaviour,
albeit with constraints upon invocation. CANPLAN (Sardina et al. [2006] — and the
later CANPLAN?2 (Sardina and Padgham|[2007] — extended Conceptual Agent Notation
(Winikoft er al. [2002]) to define declarative goal constructs, linking event triggered
goals to defined goal states, a program, and failure/unachievability conditions (for de-
commitment) — where that program could be a plan recipe or invocation of a runtime
HTN planner. Silva and Padgham!| [2005]] also defined a framework where plan recipes
can explicitly invoke runtime planning, using the agent plan library to form an HTN
domain representation by mapping plans and goals to refinements and task definitions.
The Peleus system (Meneguzzi and Luck| [2008]]) similarly allowed the invocation of a
(classical) planner as an explicit activity within plan recipes. All of these approaches
give the programmer, rather than the agent, control over when runtime planning is used
on the basis of controlling computational cost; for example, to avoid the excess of an
agent attempting planning for an intractable goal. This does require the designer to
anticipate scenarios where runtime planning is required — potentially risking the same

disadvantages argued for plan recipes.

Runtime planning offers optimal flexibility for BDI agents, but with an associated
computational cost. The surveyed approaches support it’s viability, at least as a con-
strained special case behaviour — ongoing advances in automated planner optimization
should also improve the practicality of runtime planning. However, exogenous change
may still threaten activities during execution regardless of whether the intended plan

was formed at runtime or implementation time — meaning our motivation holds regard-

Chapter 3. Agent Systems 31

less of the method used to form intended plans.

For our robustness approach, use of runtime planning will offer greatest flexibility —
like invocation of runtime planning in these approaches, our robustness behaviour must
address scenarios not anticipated or predicted during the original plan formation. The
ability to map BDI plan libraries (if existing) to HTN domain concepts, given by Silva
and Padgham [2005]], offers a means to support reasoning over whether agents posses
the plans required to meet as-yet unrefined goals (or subgoals within plans). However,
we cannot require runtime planning as an inherent requirement of our approach, as this

could restrict it’s applicability.

3.3 Mental States for Multiagent activity

The BDI approach models behaviour required for the first two properties of intelligence
defined by Wooldridge| [1999]; reactivity (reconsideration of intentions and desires in
response to belief changes) and pro-activity (adoption of desires as intentions). How-
ever, with regard to social ability, BDI does not explicitly model multiagent behaviour.
As co-ordinated activity is a key motivator for a MAS approach, this section discusses
the mental state components employed (and, potentially, added) for various multiagent
activity models, which may similarly be employed by our own robustness approach.
These approaches are not necessarily specific to BDI agents, although they may use

similar terminology and concepts to BDI mental states.

Joint Intentions theory (Levesque et al. [1990]) models agent behaviour performing
co-operatively performing joint activity. Joint Intentions (JIs) are shared commitments
to perform an action, modelled using the same primitives as individual commitment —
(mutual and local) beliefs, goals, agents involved and plans. Agents pursue a JI so long
they mutually believe the associated joint goal still holds and is achievable; if this belief
no longer holds, agents adopt goals to inform other team members, re-establishing
mutual belief as part of performing group de-commitment. Mutual beliefs and joint
goals also constrain agent reasoning, to avoid local agent behaviour that would threaten
joint activity success. JI does not address recovery from loss of mutual belief; agents
could respond to decommitment by forming a new joint intention towards (retrying)

the decommitted goal, but this is not explicitly required.

Chapter 3. Agent Systems 32

Joint Responsibilities (JR) theory, by Jennings| [1992], extends JI by modelling sep-
arate commitments to goals and plans — allowing the latter to be decommitted whilst
retaining commitment to the former. A responsibility is a commitment to the shared
plan which persists until either the goal is achieved, the plan completes without achiev-
ing the goal, or an activity fails. If a plan is believed no longer suitable by an agent
(i.e. due to failure or exogenous change), JR allows agents to suggest remedial actions
as part of mutual belief maintenance — allowing group commitment to a new plan that
restores mutual belief in achievement of (and avoiding decommitment from) the joint
goal. This permits (and indeed inspires) the proactive robustness behaviour we desire
— where agents modify plans, preserving commitment to an intended goal, rather than
aborting (or inevitably failing) if exogenous change renders that plan non-viable. JR
theory informs our treatment of intentions as combining a goal and associated plan —

allowing the latter to be mutable, and where the former denotes that plan’s purpose.

The communication requirements for both JI and JR may involve introspection to
determine whether plans are viable — whilst decommitment conditions can be specified,
meta-knowledge is likely to be required in order to define conditions where a commit-
ted plan is (believed) unable to achieve the goal. We can form a requirement that in our
approach agents must possess capability meta-knowledge to determine whether activi-
ties within individual or joint plans are threatened. We assume this information is also

shared between agents as part of distributed plan formation and execution.

Planned Team Activities (PTA) by Kinny et al.| [[1992] again uses a joint activity
model based upon extended local mental state concepts — i.e. joint beliefs, joint plans,
joint goals, and joint intentions (plans committed for execution). Advance reason-
ing over achievable goals and agent-activity assignments is supported by modelling
known skills (executable primitive activities) and pre-formed plan libraries. PTA plans
are acyclic graphs of activities, each corresponding to a required skill — successful ex-
ecution requires finding a path through the graph and generating a set of role-plans
that ensure all activities can (and will) be executed by appropriately skilled agents.
Reactive failure recovery is supported through back-tracking to find alternate paths or
alternate role-plans. PTA’s use of skills emphasises the utility of holding and sharing

capability meta-knowledge when supporting distributed activity.

A similar decoupling of goal from plan as in JR is found in the SharedPlans formal

Chapter 3. Agent Systems 33

model of collaborative planning (Grosz et al.|[1999]). SharedPlans characterizes two
types of intention; to achieve some proposition (/nt.Th) — i.e. goal — or to perform
some activity (Int.To). The latter type can arise through means-end reasoning for the
former. SharedPlans extends the mental state model of plans (Pollack| [1990]) to the
distributed context — holding a plan requires both knowledge of how to perform the
requisite actions and an intention (i.e. Int.7To) to do so. The SharedPlan — multiagent
plan — is formed through individual means-end reasoning by agents and may contain
both subsidiary SharedPlans (i.e. multi-level decomposition) or individual agent plans.
Reasoning about plans requires agents hold knowledge regarding primitive activities
(i.e. equivalent to skills in PTA) and plans for decomposed goals. Formation of a full
(complete) SharedPlan from an incomplete SharedPlan requires group belief that a full
plan can be formed; this knowledge requirement can be extended to cover awareness

of both an agent’s own capabilities and those of other team members.

The previous approaches and models are concerned with joint activity, but are not
explicitly defined for BDI agents. BOID (Broersen et al.| [2001a]) and B-DOING
(Dignum et al.| [2002]) extend BDI mental states to model goal selection under var-
1ous motivation sources and constraints. BOID views Intentions as selected goals, with
Desire and Obligation sets respectively internally and externally motivated candidate
goals. BOID agents arbitrate between (external conflicts) and within (internal con-
flicts) their four mental states; e.g. conflict between B and [indicates the latter cannot
be achieved following environmental change (Broersen et al.| [2001b]). Agents are
classified by the precedence ordering used to arbitrate internal conflicts — e.g. self-
ish agents prioritize Desires over Obligations, while social agents apply the converse
(Broersen et al.|[2002]).

The B-DOING architecture models motivational sources when forming and main-
taining intentions; here, Intentions are committed plans to meet the selected goals
represented in a Goals set. Figure depicts the Goal and Intention Maintenance
stages. Goal Maintenance arbitrates between the motivational components of Obliga-
tions, Desires and Norms to form a consistent set of Goals; Intention Maintenance uses
means-end reasoning to form plans according to selected Goals and current Beliefs. In-
tentions may be modified or cancelled to maintain the consistency of committed Goals
— or agents may modify their Goals to avoid dropping an intention they are strongly

committed to. B-DOING models several motivational components in addition to De-

Chapter 3. Agent Systems 34

sires. Norms, applied to either an entire system or group of agents, represent societal
desires and constraints upon behaviours and are an inherent requirement of operat-
ing within that agent society. Obligations, conversely, are formed with other agents

through teamwork (such as during contract formation) and entered into by choice.

Obligations Desires Norms

} ! l

Goal Maintenance

'r r

Beliefs Goals

: .

Intention Maintenance

|

Intentions

Figure 3.1: Goal and Intention Maintenance stages in B-DOING (Dignum et al.{[2002])

BOID and B-DOING both model internal and external motivations —i.e. whether
or not an intended goal and associated plan are driven by the agent itself or request by
another. We assume that, at minimum, Obligation information will be available to our
robustness approach. We also assume agents are aware of their dependencies upon
others (neither B-DOING or BOID model mental components to represent dependen-
cies, likely because these are not relevant as motivators for goal adoption), and that
they form contracts to establish dependant-obligant relationships. Our eventual design
assumes contracts are necessary to guard against contention over agent resource in the
types of domain we target, and also that they can facilitate communication of mutual

belief information (by defining delegation relationships).

3.4 Conclusion

This chapter discussed agents and multiagent systems (MASs), focusing upon the
Belief-Desire-Intention (BDI) approach and extension of BDI mental states for dis-

tributed activity. We formed a number of requirements and assumptions:

e We target BDI-based agents due to BDI’s status as a de-facto standard; our ap-
proach should employ BDI mental state concepts and be defined with reference

to the reasoning cycle given by Rao and Georgeft|[1995].

Chapter 3. Agent Systems 35

e We address plan execution robustness due to the importance of plans in BDI
rationality.

e Previous work has shown the viability of runtime planning for BDI agents; as
we are concerned with robustness in unforeseen circumstances, it is desirable to
utilize runtime planning for improved flexibility.

e As agents may face computational constraints, we require our approach to not
rely upon specific runtime planning methods.

e Contract formation is assumed necessary to protect against agent resource con-
tention when delegating activity.

e To understand roles and communication responsibilities, agents are assumed to
model their obligations and dependencies for delegated activities.

e We require agents hold beliefs (meta-knowledge) regarding their capabilities,
to allow introspective reasoning and detection of threats to intended plans; this
knowledge is assumed to have a potential additional utility for mutual belief
maintenance — e.g. in Joint Intention (Levesque et al.| [[1990]) and Joint Respon-
sibilities (Jennings| [1992]) theory.

e Our approach should provide behaviour defined in JR theory — i.e. detect and
counteract threats to planned activities, including communication to restore mu-
tual belief in achievement of the relevant joint (intended) goal.

e Agent capability knowledge must cover primitive and composite activities — both
the former (e.g. skills in PTA) and latter (e.g. plan knowledge in SharedPlans)
are relevant in defining how well an agent can achieve goals. This covers both
reasoning about specific, selected and intended plans, and which goals an agent
can achieve (and under what circumstances).

e Distributed plan formation requires agents reason over their ability to delegate
activities; our capability model must be communicable between agents, to sup-

port robustness reasoning where plans involve dependencies.

Chapter 4
Agent Robustness Strategies

MASs have been employed in domains where agents face unpredictable, partially ob-
servable and potentially dangerous environments. As domain difficulty increases, the
risk of failure and value of robustness methods also increase. This section describes a

number of such methods, which address different aspects of MAS robustness.

4.1 Defining Robustness

Burns and Wellings [1990]] identify four causes of fault in a real time system — inade-
quate specification, design errors, processor failure, and communication error. Within
the MAS context, Higgl [1997] suggests the latter two represent run-time considera-
tions for designing fault-tolerance approaches. We similarly suggest three classes of
failure which may affect agents; total agent failure (‘death’), failure whilst remaining
able to inform others, and activity failure. For the latter, an activity may complete
execution successfully with different post-effects to those expected; whether this con-
stitutes failure depends on whether the plan goal was to have performed that activity,

or to have achieved a specific state.

Covrigaru and Lindsay| [1991]] state ‘robustness is required for self-sufficiency’,
arguing agents must be able to adapt and respond to situations beyond those easily
anticipated by a designer. Schillo et al|[2001] define robustness as the ability of a
system to meet ‘safety responsibilities — defined by |Wooldridge et al.|[[1999] as being
to prevent some undesirable condition — despite debilitation or failure. Hahn et al.
[2003]] further define robustness as ‘graceful degradation of performance under per-

turbation’ — recognizing that if full recovery is impossible, sub-optimal performance is

36

Chapter 4. Agent Robustness Strategies 37

preferable to total loss of ability. Degradation may be expressed through reduced goal
achievement, or relaxation of constraints (e.g. extending deadlines or removing re-
source restrictions) to still achieve suboptimal versions of original goals. Hagg|[1997]]
suggests three levels of fault tolerance; full fault tolerance (performance and function-
ality are never significantly degraded), graceful degradation (operations continue with
some loss of functionality or performance) and fail-safe (specific vital functions are

preserved).

Our contribution focuses on plan execution robustness — with our perturbative con-
cern being the rate of exogenous change in the environment, combined with the proba-
bility of debilitative effects from activity failure. Our approach aims to prevent activity
failure on the basis that the latter — post-failure debilitation — can hinder post-hoc re-
covery. Although we can measure the efficacy of our specific approach in terms of
activity success rate, this is not suitable for comparison against reactive approaches
(which do not aim to prevent activity failure, but recover from it). Given the previous,

we will define and measure robustness in terms of (intended) goal achievement rate.

4.2 Failure Diagnosis

Agents may need to diagnose failures to enable recovery. Joint activity, for example,
may fail if team members hold inconsistent beliefs — individuals may view their own
behaviour as correct, yet the outcome may be negative from the perspective of the
team. Determining if and where such inconsistencies lie is therefore necessary for

their resolution.

In Socially Attentive Monitoring (Kaminka and Tambe [[1998]]), agents use social
diagnosis to diagnose team failures. SAM employs plan recognition to infer the men-
tal state of other agents based upon their (observable) actions, using model-sharing
(Tambe, [1996]) — where team agents share operator models, which indicate their co-
horts expected behaviour and infer beliefs — to reduce communication requirements.
Failures are recognized by divergences between beliefs, goals or plans compared to
other team-members; upon detecting divergence in behaviour, the agent will backtrack
through it’s own beliefs to determine the exact difference. SAM does not address sit-
uations where perception is erroneous rather than incomplete — i.e. such as where an

agent’s sensor reports incorrect data.

Chapter 4. Agent Robustness Strategies 38

Model-Based Diagnosis utilises a system model — formed in terms of components,
their interrelations and behaviour — to establish the cause of malfunctions. Roos and
Witteveen [2005] propose an extension to agent-based plan diagnosis. Agent health
states are modelled as an explicit set that can be related to specific failures through
causal rules; the resulting causal diagnosis can be applied to explain observed errors,
and for prediction. However, this approach is single-agent only, and does not consider
failures from errors by other agents. It also does not consider failure response, although

modelling of health states may be useful for reactive recovery.

Micalizio and Torasso| [2007b] describe a distributed approach for monitoring and
failure diagnosis of a multiagent plan (MAP) containing joint activities, by extend-
ing a model-based approach. The MAP is modelled in terms of activities, plus their
causal links and precedence constraints. Agents are assumed to co-operate in service
provision — i.e. agent i will provide some service for agent j — and distinguish dif-
ferent types of failure. Primary failure denotes failure of the agent’s own activity;
secondary failures represent consequent failures elsewhere in the MAP — i.e. where
primary failure by i leads to secondary failure of (some set of) j’s activities. This also
distinguishes plan and agent diagnosis; the former is concerned with identifying (pri-
mary or secondary) activity failure, the latter with explaining the source of failures as

some combination of functional faults.

Agents use a Plan Execution Monitoring (PEM) module (Section [6.1.4) to super-
vise activity execution; detecting failure where not all expected effects were achieved
(Micalizio and Torasso|[2007a]]) — this does not consider additional unexpected effects
as a source of failure and trigger for diagnosis and repair, however. Local activity
failure initiates diagnosis to identify the root cause and relate that failure to the MAP;
identification of secondary failures requires co-operation between members to com-
municate the details of their threatened local activities. Agent level diagnosis aims to
infer possible causes for failure, including identification of agent health state. Plan
diagnosis seeks to determine causal (violated causal links) or fault (sub-optimal health

state) threats to other activities in the MAP.

Eventually, a set of missing goals is formed, indicating those which cannot be

achieved due to the activity failure (of either threat type). In an approach given in Mi-

Chapter 4. Agent Robustness Strategies 39

calizio and Torasso [2009]], agents first attempt local recovery — planning to restore
local state to a safe status (including releasing resource locks) such that other agents
are not threatened by the failure, before forming a recovery plan to address the missing
goals. If either phase fails, the agent aborts the plan and informs other team mem-
bers; informing them that the failed agent has released resource locks, and will not
(re)reserve those resources in future. In response, the other agents revise their plans to

account for the MAP changes arising from that agent’s failure.

The approaches surveyed in this section are not strictly defined in BDI terms, but
may be applied for detection of belief or intention inconsistencies between agents in-
volved in joint activity. They may detect the cause where failure has occurred, or pre-
dict it’s occurrence through identifying belief divergences which risk incorrect adop-
tion of intentions (and execution of activities). These approaches do not always define
a response mechanism for detected issues, although resultant information may be use-
ful for other handling mechanisms. Micalizio and Torasso| [2007c] do diagnose both
failure and propose a recovery strategy. However, they define failure as failure to
achieve all expected effects — which does not account for exogenous change threaten-
ing subsequent activities, unless it removes a member of that effect set. As a reactive
method, their approach does not consider whether failure risks debilitation and will not
respond if expected effects were achieved but the agent was damaged during execution

(i.e. threatening subsequent activity).

Our robustness approach will assume any failure diagnosis implementations exist
as part of the general agent framework, outwith the BDI reasoning cycle, and can be re-
duced to mechanisms guarding against belief inconsistency. For example, detection of
unexpected effects (as from Micalizio and Torasso| [2007c]]) can trigger belief updates
and consequent revision of intentions (by our robustness-specific behaviour, or default
BDI reasoning). As we are concerned with plan execution robustness, we regard agent
diagnosis — i.e. detection of component failure, as described by Roos and Witteveen
[20035]] — as outside the scope of our approach, although agent health state information

may lie within the Belief set accessible to our approach.

Chapter 4. Agent Robustness Strategies 40

4.3 Sentinel Monitoring and Exception Handling

Hagg [1997] introduces Sentinels; specialized ‘watchdog’ agents that act to prevent
undesirable states occurring or to preserve key functionality. A community of sen-
tinel agents can be employed as a control system layer in a MAS. Sentinels can use a
variety of information sources — communications monitoring, regular ‘heartbeat’ sig-
nals, or direct queries — to evaluate agent performance, detect belief inconsistencies
between agents, and detect (or even anticipate) failure. As sentinels incur computation
and communication costs, it is unrealistic to guard all functionality — instead, the sys-
tem designer must identify critical functionality and specify sentinels accordingly for
graceful degradation. The sentinel concept is a paradigm for implementing oversight
and response, but what the latter entails may be domain specific and is left for the

system designer to define.

A related approach to sentinels is generation and handling of exceptions. Klein
and Dellarocas| [1999] define exceptions as generated upon any departure from desired
system behaviour; such as agent failure, communications problems or task execution
issues. A standard approach towards exception handling is to build specific behaviours
into individual agents — the survivalist approach. However, this risks increasingly com-
plex and inflexible agents, with the majority of their behaviour defined for exception

handling and recovery.

Klein et al.|[2003] defines the citizen approach which, rather than giving indi-
vidual agents specific handling behaviours, uses an exception handling (EH) service.
The EH service holds knowledge of a set of generic exceptions, defined in terms of
generic state, comparable to specific situations during runtime, and associated with a
set of plan templates for responding to that fault. This serves as domain-independent,
generic response information — removing the need for more specific behaviour to be
provided for each individual. Agents joining the MAS provide the EH service with a
representation of their behaviour, to allow pattern-matching against generic exception
types. Depending upon the implementation, introduction of a new agent may lead the
EH service to generate a sentinel to monitor for occurrence of failure types identified
from the provided behaviour information. This sentinel may also transparently moni-
tor communications of that agent, identifying and correcting corruption (Parsons and
Klein| [2004]).

Chapter 4. Agent Robustness Strategies 41

Souchon et al.|[2004]] define an approach to apply exception handling and propa-
gation concepts from programming languages (such as Java) to a MAS context. Here,
exceptions are either detected internally or — in the case of delegation — communicated
as messages to dependants. Agents are viewed in terms of providing services, with
role agents representing sets of agents which hold the same capability. Role agents
broadcast received service requests to their represented agents, and collect responses
or exceptions to be (respectively) aggregated into a collective response or concerted
exception. Exception handlers are associated with services, agents (i.e. covering all
service exceptions) or roles. Handlers either perform corrective action (e.g. restoring
state or sending partial results), propagate the exception (if it could not be handled),
or retry execution (potentially after acting to modify the execution context). Exception
handling searches for an appropriate handler for an exception; if a local handler cannot
be found, the agent will propagate the exception to any dependant. The search contin-
ues until an exception handler is identified or the top-level agent reached; meaning the

efficacy of this approach will rely upon appropriate provision of handlers.

Shah et al.|[2006] describe an exception diagnosis process for market-based open
MASs. Their approach assigns sentinels to agents joining the MAS; the agents are
required to inform their sentinel about their goals, plans and mental stateﬂ A hierar-
chical taxonomy of exceptions is modelled — upon detection of a fault, the diagnostic
process explores this hierarchy to find the specific exception class. Exceptions are
associated with abstract plans, instantiated and executed to confirm the correctness
of that diagnosis. If more than one exception is diagnosed, determining the specific
exception requires executing and considering the results of each possible exception di-
agnosis plans. This approach is concerned solely with diagnosis (using the exception

hierarchy) and does not define recovery mechanisms.

Snyder et al. [2004] describe use of sentinels for failure detection in the Cougaar
agent architecture, where failed agents are replaced with replicas (Section {.5)). Sen-
tinels sit at the top of a monitoring hierarchy (robustness community) partitioned into
node or Java Virtual Machine level monitors (which can restart failed sentinels), and

(below) individual agent level monitors. In an asynchronous agent system, agent fail-

! Although this is justified as a method for agents to preserve autonomy by preventing sentinel intro-
spection into their mental state, we note it still explicitly requires — ‘forces’ — information sharing.

Chapter 4. Agent Robustness Strategies 42

ure is detected through inactivity — requiring a potentially unbounded wait (Fischer et
al.|[1985]]). Cougaar employs unreliable failure detectors (Chandra and Toueg [1996])),
permitted to diagnose false positive failures, provided that errors will be ultimately de-
tected and corrected. Agent health monitoring is performed through a regular ‘heart-
beat’ signal, passed to sentinels via agent monitors. The wait period for diagnosing
failure is set based upon where the cost of ensuring correct diagnosis exceeds that of

correcting an erroneous one (where the heartbeat arrives after failure diagnosis).

Cakirlar er al.| [2008] define an exception handling approach which classifies ex-
ceptions over three levels; plan level (i.e. from activity failure), agent level (including
system errors or unhandled plan exceptions), and finally multi-agent level (failures in
dependencies due to agent level exceptions). Agents dynamically add goals upon de-
tecting an exception; successful identification and execution of a plan for that inserted
goal (through regular agent reasoning) handles that exception. Three types of excep-
tion handling goals are given — each must be defined and explicitly associated with a

given goal;

e exceptional goals, if met, allow resumption of the original plan
e sameAs goals denote an equivalent goal to that met by the now-failed plan

e inverseOf goals ‘roll back’ post-execution failure state

This does entail a specification burden to define handling goals for each possible agent
goal. Goals are attempted in precedence order; if an agent cannot find a plan to achieve
an exceptional goal, it attempts to find a plan for the sameAs and then inverseOf goals
associated with the failed agent goal. If an agent cannot recover from an exception,

that exception is propagated to any dependant.

Sentinel monitoring is primarily a monitoring rather than response mechanism, and
may be considered proactive or reactive depending upon the specific implementation.
However, these approaches reduce agent autonomy by requiring the sharing of men-
tal states with sentinels (through communication or invasive introspection). We have
opted, for sake of generality, to assume any sentinel mechanisms are transparent (e.g.
as in Parsons and Klein [2004]) and that their outcome will — in the BDI reasoning

cycle — be reflected through receipt of Belief update events.

Chapter 4. Agent Robustness Strategies 43

Exceptions signify divergence from desired behaviour, and can facilitate reactive
robustness behaviour — although the work surveyed here has been primarily concerned
with representing and communicating notifications of erroneous behaviour. (Cakirlar
et al.| [2008] suggest a mechanism for adoption of responsibility within decomposi-
tional teams through propagation of exceptions of decreasing specificity (such as con-
certed exceptions in|Souchon et al.|[2004]) up the agent hierarchy. Our approach will
require a similar process, with higher level agents in a team responding through lo-
cal robustness behaviour when a lower level obligant is anticipated as unable to meet
their obligation (despite any attempts to resolve issues at their local level). This team-
level behaviour can intuitively be expressed through local agent level exception gen-
eration/handling, as opposed to using — likely infeasible — centralized approaches for

assigning responsibility.

We opt not to utilize exception handlers, as these require a meta-organization (in
the form of role agents) which may restrict the generality of our approach, and risk
being dependant upon the system designer’s anticipation of handler responses for un-
certain, stochastic environments. Additionally, an anticipated future activity failure —
as our proactive approach should address — is potentially less severe than the defini-
tive, current problems typically entailing an exception. Agents may also be required
to arbitrate between multiple anticipated threats, as their ‘time window’ of consider-
ation would ideally extend beyond the narrow immediacy of detected failures. Our
approach should allow the anticipation of multiple potential threats to planned activi-

ties, and provide agents with autonomy to prioritize their robustness response(s).

4.4 Role Filling Approaches

The behaviour expected of an agent can be defined by the roles it holds (Trzebiatowski
and Miinch [2001]ﬂ The organization of a MAS can be designed in terms of agent
roles (required to achieve the system goal), their inter-relationships, and the conditions
(such as capability constraints) for mapping roles to agents (Xu et al. [2007]]). Role
based approaches to robustness are concerned with reconfiguring agent-role assign-
ments when an agent is no longer suitable for, or capable of, it’s current role — such as

following debilitation.

ZRoles themselves can be considered analogous to social concepts such as norms

Chapter 4. Agent Robustness Strategies 44

The Organizational Model for Adaptive Complex Systems (OMACS) by DeLoach
et al. [2007] combines a centralized monitor agent with a role-filling approach, where
a MAS of heterogeneous agents is defined in terms of goals and roles to be filled.
Domain specific functions are used by OMACS to score the quality of an individual
agent’s capabilities and it’s performance within given role. Reorganization of agent-
role assignments is triggered by any event impacting (adding, failing or achieving)
goals or agents (influencing quality of possessed capabilities), with a hill-climbing
algorithm used to find the optimal set of agent-role assignments (based upon the qual-
ity scoring functions). A single Organizational Master (OM), equivalent to a central-
ized sentinel, performs this process. The OM requires total organizational knowledge,
which — combined with it’s singleton nature — does risk it becoming a central point
of failure. OMACS relies upon fixed roles and utility functions — role-assignments
can be modified, but not actual roles; for example, there is no possibility of splitting
the responsibilities of an unmet role into new separate, individually assignable ones.
Additionally, OMACS does not handle scenarios where there are insufficient agent

resources to fulfil all roles.

Preisler and Renz| [2012] propose another role-assignment approach, again based
upon agent capabilities. Where an agent is no longer capable of it’s assigned role — but
other agents are — a role-swapping process allows exchanging of role assignments. A
decentralized approach is employed, as multiple role swaps between agent pairs may
be required to ensure all roles are filled. The general robustness of the system is char-
acterised through the redundancy rate; i.e. the number of agents with the capability to
perform a particular role. A higher redundancy rate entails more agents can potentially
assume a role, and a greater chance of successful reconfiguration (e.g. a 10% rate for
a role indicates one tenth of system agents can fill it). However, this approach again

somewhat limits flexibility by treating roles as immutable.

Role-assignment approaches act to ensure a pre-specified (role-defined) organiza-
tion exists; they may be considered proactive or reactive depending upon the triggering
mechanism for re-organization (such as whether performed upon agent failure, or upon
anticipating suboptimal performance). The actual robustness effect depends upon both
the accuracy of role-assignment (correct assignment of roles to appropriate agents),
and the organizational structure itself. These approaches will not detect or correct

structural weaknesses in the MAS organization — such as central points of failure — or

Chapter 4. Agent Robustness Strategies 45

if insufficient agents exist to fill all defined roles. This contrasts with the flexibility we
seek through proactive plan modification — planned activities that require delegation

also inherently define execution roles that must be filled by some obligant.

A method is required to assess the utility of an agent for a given role — such as
quantitative scoring functions in OMACS (DeLoach et al. [2007]) or constraints re-
quiring possession of specific capabilities (Xu et al. [2007]). This corresponds to our
earlier requirement for agents to possess capability meta-knowledge to introspectively
reason over plan activities. Qualitative estimation (e.g. in OMACS) can indicate not
just whether agents can perform some assigned task — whether a role assignment or
delegated activity — but to what level of quality. We require our capability model (i.e.
to be used by our contributed approach) to include similar qualitative estimation — if
granular estimation is impossible, this can be abstracted to a boolean indicating capa-

bility possession.

4.5 Replication

One common, robustness approach for software systems is to provide redundancy,
allowing replacement of failed components with equivalents. This introduces costs in
providing redundant resource, and in analysing and determining how to provide those
resources within cost constraints. Redundant backups may be warm — brought online
and synchronized with the last known state after failure of the original component — or

hot — kept constantly synchronized.

Within agent systems, replication of agents can be used both for redundancy and
performance improvement (i.e. parallelization). Deters [2001] describe an approach
towards the latter in the form of the DICE multiagent framework, whilst observing that
replication can also potentially improve fault tolerance. Replica groups are formed
from a number of identically capable agents, or replicates; allowing redundancy and
parallel processing or load-balancing. In transparent replication, service users are un-
aware of duplication within the replicate group — i.e. perceiving it as a single agent
(resembling holons, defined by |Schillo and Fischer| [2003]]). It can be difficult to iden-
tify replication requirements for dynamic, large scale systems in advance (Guessoum
et al.|[2005]) — the logical nature of agents can allow dynamic replication, where both

identifying requirements for, and instantiation of, replicates are performed at runtime.

Chapter 4. Agent Robustness Strategies 46

In their work, Deters [2001] note that memory and computational resource constrain
scalability where, respectively, replicated agents are reactive (only act in response to

direct messages) or proactive (i.e. in terms of autonomous goal adoption, as with BDI).

Guerraoui and Schiper] [1997] describe two replication techniques, with potential
for hybrid combinations. In primary backup replication, a single primary replica re-
ceives and handles client invocations. Other replicas are backups; the primary replica
forwards requests and responses between client agent and backup replicas. For active
replication, there is no centralized controller (i.e. no primary replica); client requests
are sent to all replicas, with the client waiting until either (depending on the specific
approach) it receives the first or all responses. In the active replication strategies, the
failure of any replica is transparent to a client; in the primary backup case, the client
is aware of failure of the primary replica, due to the resultant promotion of a backup

replica into the primary role.

Fedoruk and Deters| [2002]] describe replication as a robustness mechanism for
MASs. Replication may be either heterogeneous — replicates perform the same tasks,
but may vary in functional semantics — or homogeneous — replicates share identical
codebases, but risk sharing code faults. In both cases, creation of a replicate requires
activity to ensure consistent internal state with the replicated agent; this may be more
difficult in the heterogeneous case, if semantic differences lead to differences in data
requirements or representation. Proxies may transparently manage replica groups; re-
dundant replicates can be held in a dormant mode (potentially using a hot backup strat-
egy) and reactivated to compensate for replicate failure or to manage increased load.
Their experimentation observed that replica groups did incur a communications cost
overhead from proxy duplication when forwarding messages to and from replicates,

but concluded this cost was not excessive.

Kumar and Cohen| [2000b] describe an approach considering teams of middle, or
broker, agents — these perform tasks including routing requests and responses (i.e. akin
to proxies), serving as service advertisers, or locating capable agents. In their Adaptive
Agent Architecture (AAA) approach, teams of middle agents hold a Joint Intention (JI)
to ensure broker functions are provided to some set of user agents. If connection is
lost between some team member and it’s user agents, the JI stimulates the other broker

team members to (attempt to) connect to the user agents that were being served. Bro-

Chapter 4. Agent Robustness Strategies 47

ker functionality will be consequently restored to user agents following an individual
broker failure, provided at least one member of the broker team remains functional.
This does risk computational or messaging overload on broker agents, if assuming the
responsibilities of a large number of debilitated cohorts. The JI may also be extended
to require a set number of brokers in the system at all times; upon loss of a broker
team-member, and if below that threshold, the remaining team-members attempt to
find another AAA agent — which can start a new replacement broker (assuming the

required infrastructure support exists).

Snyder et al.| [2004] describe robustness within the Cougaar architecture, which
detects agent failure using sentinels. Failure requires the agent be replaced with a
replica; agents maintain collections of backup replicas using either an active or pas-
sive strategy. Active replication entails replica(s) state being synchronized with the
individual every time a task is performed, reducing the time to bring that replica on-
line. The active strategy is ideal for scenarios with high failure rates or tight time con-
straints upon recovery, but carries significant resource cost as the original agent must
synchronize replicas immediately after every activity. Passive replication uses check-
pointing, where the entire system state is periodically persisted to non-volatile storage.
Agent failure is addressed through restarting that agent (effectively re-initializing it)
and restoring mental state using the last stored checkpoint. Additional communication
may be performed to reconcile state inconsistencies between agents — for example,
where a partially executed delegated task has state changes not recorded in the last
checkpoint. As unreliable failure detectors are used to detect failure, incorrect replica-

tion cases (from incorrect failure diagnosis) must be detected and corrected.

Guessoum et al.| [2005] define an approach for dynamic replication based upon
criticality. They focus upon the macro organization of the system which emerges
dynamically at runtime and cannot be anticipated in advance (i.e. to specify replica
groups). Under their approach, the agents to replicate (and how many times) are de-
termined based upon a combination of their criticality and available system resources.
Criticality derives from the volume and type of messages sent between agents, indi-
cating the dependencies upon that agent. Agents involved in more messaging activity
are judged as more critical — i.e. more system agents would be impacted by their loss.
Replication is performed by sentinels in response to agent failure, or as a preventative

measure (to create redundancy or provide additional load handling). One issue is that,

Chapter 4. Agent Robustness Strategies 48

particularly if revising the macro-organization graph at short intervals, criticality may
not correlate with messaging — for example, where an agent is prioritizing performing

a critical task ahead of messaging.

A dynamic replication approach is also suggested by de Luna Almeida ez al.|[2007],
who define criticality based upon the current plans of agents. Plans are modelled as
directed acyclic (AND/OR) graphs. Constituent activities have their criticality scored
through (a designer specified) absolute criticality function, which does not account
for the plans of other agents; this considers elements including the number of alter-
nate agents capable of that activity, resource requirements or further domain specific
factors. Relative criticality is also calculated for activities, this time considering other
agent’s plans, based upon the value their results hold for the system as a whole. Overall
plan criticality is calculated using the criticality of constituent activities. Determina-
tion of which set of agents to replicate is viewed as an optimization problem, solved
by identifying the set of replicated agents offering greatest global utility. Global utility
is calculated by combining individual replica utilities (determined by criticality of the
replicated agent combined with the probability of it failing). It is worth noting this ap-
proach fundamentally relies upon the criticality functions resulting in optimal replica
allocations — placing corresponding requirements upon analysis and specification by

the designer.

Replication can be proactive — by providing redundancy — or reactive — to replace
failed agents; it is also not solely robustness-centric, and may be employed to improve
performance through local balancing or parallelization (Deters| [2001]). Replication
may complement role filling approaches — e.g. replicating agents to fill unoccupied
roles — and is similarly concerned with preserving the meta-organization for the overall
MAS, rather than ensuring correct individual behaviour or maximizing goal achieve-
ment. Redundancy is often constrained by resource availability; the replication ap-
proaches discussed here often focus upon dynamic provision (including replacement)
of agents to avoid the cost of (potentially unused) anticipatory provision. We opt to
assume replication or redundancy in the agent system exists at an organization level,
and will be transparent to the BDI reasoning cycle our approach focuses upon. We
have required agents to hold knowledge regarding their capabilities — this information

could also be employed by targeted replication.

Chapter 4. Agent Robustness Strategies 49

4.6 Conclusion

This chapter discussed a number of definitions for robustness. Drawing from Hiagg
[1997], and through considering our focus upon avoiding plan (and activity) failure,

we opted to define robustness as maximizing goal achievement under perturbation.

A variety of approaches towards robustness were also described, some of which ad-
dress different aspects to our plan-centric contribution — allowing us to form assump-
tions regarding aspects of agent operations we specifically do not addresﬂ These also
suggested mechanisms for adoption of responsibility for, or communicative require-

ments of, robustness in distributed systems.

We formed the following assumptions and requirements;

e The efficacy of our approach is to be measured through goal achievement rate
under perturbation; the latter defined as the rate of exogenous change.

e Our own approach as is assumed to lie within a general ‘ecosystem’ of robust-
ness methods; we restrict our focus to intended plan execution within the BDI
reasoning cycle.

e Approaches concerned with meta-organizational correctness, or handling sen-
sory or communication corruption, are assumed as outside the scope of our con-
sideration.

e Agent teams are assumed decompositional and hierarchical; we require an ap-
proach similar to exception propagation mechanisms to propagate responsibility
when threats to delegated activities cannot be addressed by obligants.

e Propagation of responsiblity requires aggregation of threats, where appropriate.

e Dynamic, goal-duration organizations arise from dependency relationships formed
for distributed plan execution; our approach must consider both obligant and de-
pendant roles within activity delegation.

e The cost of capability specification, both in boolean and qualitative terms, is
assumed to be partially justified through the utility of such information in other

robustness approaches.

3We do not assume existing methods guarantee perfect efficacy — only that their effectiveness lies
outside the scope of our contribution.

Chapter 5
Planning

Plans are critical in rational, goal-orientated behaviour. Although our approach is con-
cerned with plan execution, the information required to detect and address threats to
existing planned activities will likely mirror that required to select activities during
plan formation — this chapter discusses plan representation and formation, before the
following chapter considers methods for handling potential activity failures stemming

from environmental uncertainty.

5.1 Planning and Plan Execution

A plan is a set of steps that, when scheduled according to ordering constraints and
performed within a given initial state, achieve a particular goal. Figure depicts
a generalized automated planning process, based around use of a deterministic world
model given by system), where the next state is determined by the activities executed
and (if applicable) exogenous changes. The Planner produces a Plan based on some
initial state, objective (goal) and world model, which is scheduled and executed by
the Controller. The Controller observes activity outcomes and, in the case of online
planning, informs the Planner of Execution Status to allow plan revisal. Although the
simplest goal specification is a set of states, others are possible; i.e. avoiding particular

states, performing specific tasks, or optimizing some value (Nau| [2007]).

Plan operators represent activities possible in the domain; typically defining pre-
conditions and effect sets — i.e. state constraints required to be met before, and state
changes resulting from, successful execution. The qualification problem (McCarthy

[1958]]) states that, in a realistically complex environment, it is impossible to enumer-

50

Chapter 5. Planning 51

J' Description of }

Initial State
- —/=| Planner
Objectives T N .
. State Transition Function
Execution Plans Y =(S.A.E.7)
Status S =State
r
A = Activities
Controller E = Exogenous change events
H ¥ = State Transition function
Observations Activities
y
System Y
T Events

Figure 5.1: Generalized automated planning process from |Nau et al. [2004];) repre-

sents a (necessarily abstracted) deterministic model of the world.

ate all state combinations that may prevent success — and that doing so would over-
constrain an operator to the point of unusability. In practical terms, preconditions
define — selected based on some degree of significance — states required to execute an

activity without guaranteed failure.

Determining the sequence of activities required — the planning problem — is sepa-
rate from the scheduling problem of determining when to execute each activity. Planned
activities may execute to completion without (detected) error but not achieve their
stated effects, if change can also occur through environmental events or the actions
of other entities. The following sections overview classical planning and hierarchical
planning approaches, in order to examine different types of plan structure and the in-
formation employed. We also describe multiagent planning approaches to consider the

additional information required to reason over delegated activities.

5.1.1 Classical Planning

Classical planning (plan formation) assumes a deterministic, static and finite domain,
with fixed goals and an implicit notion of time. Although classical planning is regarded
as domain independent, these assumptions restrict the set of plausible domains (Nau
[2007]). A deterministic state model consists of some finite set of activities A, finite

set of states S (where a state is some set of propositions defining the condition of

Chapter 5. Planning 52

the world), and a state transition function f. A Discrete Control Problem (DCP), as
defined by [Bonet and Geftner| [2001a], solved by finding the activities to move from
initial state 5o to a goal state G, is modelled through the following:
e The state space S — the possible world states
e Initial state so € S
e Activities A(s) C A, which can be performed in each s € S
e A deterministic transition function f(s,a) defining the effect of executing a € A(s)
ins € S (i.e. giving post-execution state s’)
e A function c(a,s) > 0 giving the cost of performing a in s, employed to identify
optimal solutions
e A set G of goal states, where G Qand G C S

A DCP solution is an activity sequence ay,...,a, — i.e. a plan — that, when exe-
cuted, results in the state sequence sg, Sy, ..., Sy, Sp+1 Where G C s,,11. This requires q;

be performable in s; (a; € A(s;)), with 5,4 representing the outcome of executing ¢; in
n

s; (given by f(s;,a;)). An optimal solution achieves G with minimal cost (Z c(si,a;)).
i=0

Planning is essentially a search problem, where the planner traverses the search
space to find a plan executable in 5o and ending with achievement of G (Hendler et
al.| [1990]). For example, state space search views the set of possible spaces as a
directed graph; each node represents a world state, with directional arcs between state
nodes representing the outcomes of performing particular activities in that state. A
plan represents a path — with actions defined by the traversed arcs — from root node sy

to the leaf node achieving G.

The Stanford Research Institute Problem Solver (STRIPS) (Fikes and Nilsson|[[1971]])
has been widely used as a standard representation for classical planning problems.
STRIPS defines a planning problem P = (F,0,1,G), where:

e [is a set of boolean variables

e [gives the initial state (i.e. sg)

e G is the goal state (i.e. sg)

e O is the set of operators (i.e. A)

We focus on the information used to select activities during plan formation. Each
o € O defines an activity type in terms of a signature and three sets of atoms from F’:

e Preconditions Pre(a); required true to execute a

Chapter 5. Planning 53

e Add effects Add(a); added following execution of a

e Delete effects Del(a); removed following execution of a

McDermott ez al.|[1998] defines the Planning Domain Descriptor Language (PDDL),
which extends a STRIPS-like formalism with support for type definitions (i.e. for
world objects or to constrain operator parameters). Unlike STRIPS, PDDL opera-
tors can have negative preconditions or effects — respectively requiring a condition be
false, or causing it to be not true. Both preconditions and effects can have quantifiers
(expressed numerical conditions); effects may be conditional, i.e. depend upon ex-
ecution context. Later extensions of PDDL support numeric fluent values (Fox and
Long| [2003]]), allowing definition of plan metrics (e.g. to minimize cost or execution
time), and for durative effects in discrete (at the start, end or throughout execution) or

continuous form (e.g. gradually decreasing fuel during execution).

One issue with classical planning is time complexity; Bylander| [1994] state form-
ing an optimal plan using STRIPS operators is NP-complete. Heuristic techniques can
improve common-case performance, albeit with potential inefficiencies for worst-case
scenarios. Heuristic functions estimate the (minimum cost) distance to the goal from a
given state (‘scoring’ desirability of potential expansions), which is then used to arbi-
trate between search options. Heuristics should be admissable —1.e. never overestimate
distance from the current search node to the goal (Pearl| [[1984]) — to generate optimal

plans.

A* pathfinding employs a domain specific heuristic, favouring movement to loca-
tions with lowest Manhattan distance to the destination. Domain-independent heuris-
tics solve a relaxed version of the problem to identify a lower bound cost estimate for
the unrelaxed domain; for example, Fast-Forward (FF) (Hoffmann [2001]]) and Metric-
FF (Hoffmann! [2003]]) form the relaxed domain by removing operator delete effects

(Bonet and Geftner [2001b] employ a similar relaxation).

5.1.2 Hierarchical Task Network (HTN) Planning

Hierarchical Task Network (HTN) planning (Tate [1977]) is a domain configurable
planning method — i.e. using domain specific information to guide planning (Kandiyil
and Gao| [2012]). HTN planners offer speed improvements over classical planners

through encoding domain-specific standard procedures as methods. This restricts the

Chapter 5. Planning 54

planning search space and captures procedural knowledge (Sohrabi et al.|[2009]) — but

requires discovery and encoding of such knowledge.

Like classical planning, HTN planning represents activities as deterministic state
transitions (Nau ef al.| [2004]), with world states defined as sets of atoms — but rather
than achieve goal states, HTN planners aim to perform tasks. |[Erol et al. [1994]] define
a goal task in the form achieve[l] (for some literal /); a solution is a primitive task net-
work with constraints influencing ordering and scheduling (i.e. a partial order plan),
resolvable to a total order plan, and formed through iterative decomposition. [Nau et al.
[2004] define an HTN planning problem P = (so,w,O0,M):

e 50 is the initial state

e w is the initial task network, to be refined to a set of primitive tasks

e O is a set of operators, M a set of methods (also referred to as expansions or

refinements), forming the domain D = (O, M)

e A solution to P is one that performs all tasks in w

M defines known (predefined) task decompositions. Each m € M can be described
by m = (name(m), task(m), subtasks(m), constr(m)):
e name(m) defines a signature n(xi,...,x;); n is a unique method symbol and
X1,...,Xx; define variables which may appear in m
e task(m) is the non-primitive task decomposed by m

e A task network is a pairw = (U,C):

— U defines which subtasks (subtasks(m)) need to be performed
— C defines constraints (constr(m)) upon U, such as for ordering, variable

instantiation, or defining literals required true before or after

A task t(ry,...,rg) is primitive if t corresponds to an operator, and ground if all
terms r are ground. Similarly, a task network is ground if all tasks within ({¢,|u € U})
are ground. HTN planning algorithms use continuous selection and application of
refinement methods (Fig[5.2)) to replace (decompose) every non-primitive task network
in a problem with a primitive task network; these primitive tasks can then be scheduled
and performed, with a plan being a sequence G of ground primitive tasks. The resultant

plans are decompositional task hierarchies.

Chapter 5. Planning 55

‘ Rent-a-car H Drive(X.Y) ‘ ‘ Buy-a-plane-ticket H Fly(X.Y) ‘

Figure 5.2: Example of possible task decompositions, based upon [Erol et al.|[1994],

showing two possible refinements for the task to Go from X to Y.

The first true HTN planner, NOAH (Nets Of Action Hierarchy) (Sacerdoti
[1975]]), committed to an abstract solution at the top level of the task hierarchy before
progressively decomposing successive levels. NONLIN (Tate|[1977]]) added the ability
to backtrack at all levels of planning; ‘retracing’ steps to consider alternate decomposi-
tions following a faulty choice or inability to find a solution. NONLIN was succeeded
by O-Plan (Tate et al. [1999]) and subsequently I-X (Tate| [2001]), which supported
mixed-initiative planning — allowing use of human expert domain knowledge to add

constraints to the planning task and guide automated planning at key points.

These planners are notable for their practical use — the Optimum-AIV planner, based
on NONLIN and O-Plan, was used by the European Space Agency to provide auto-
mated planning support for spacecraft production (Drabble et al|[1997]). I-X has
also been used in domains including military coalitions (Allsopp et al.| [2002]), small
army unit co-ordination (Tate et al. [2000]]), disaster response/rescue (Siebra and Tate
[2006]]) and non-combatant evacuation (Wickler ez al. [2006]). The Simple Hierarchi-
cal Ordered Planner (SHOP) by Nau et al.|[1999]] and it’s successor, SHOP2 (Nau et al.
[2003]]) represent further examples of HTN planners with widespread practical applica-
tion; including within domains such as evacuation planning, terrorist threat evaluation,

UAV control and manufacturing (Nau ef al.|[2005]]).

5.2 Multiagent Planning

Distributed planning occurs when multiple agents participate in planning and/or plan

execution. [Cox et al.|[2005] defines multiagent plan as a tuple (A,E,CL,CC,NC);

e A s a set of activities to be executed
e F are precedence links, establishing ordering constraints between activities
e CL are causal links, describing where activity effects provide a state required by

another’s preconditions

Chapter 5. Planning 56

e CC and NC contain concurrency or non-concurrency constraints.

Each agent forms or holds a plan P for a task, and identifies the required A by
decomposing the root task into subtasks. The resultant A contains non-decomposable
(primitive) tasks; 1.e. leaf tasks that can be scheduled (respecting constraints in E, CC

and NC) and executed — with CL information of use in supporting reactive plan repair.

Durfee [2001]] describes distributed plan formation as a 5-step process, subse-

quently generalized by |de Weerdt and Clement| [2009];

Allocate goals to agent
Refine goals into subtasks
Schedule subtasks by adding resource allocation and timing steps

Communicate planning choices (of prior steps) and resolve any conflicts

I

. Execute the plans

Distributed plans may be formed using a centralized or distributed approach; the
former may offer better plans by employing centralized global knowledge (including
use within heuristic functions), but risks becoming intractable due to the state-space
increase arising from reasoning over a large set of agents and associated activities (Jon-
sson and Rovatsos|[2011]], Nissim and Brafman|[2012]]), or infeasible due to the entire
processing burden of planning being placed upon a single agent (Nissim and Bratman
[2014]). A further disadvantage is that the centralized planner’s assignment of activi-
ties may impair individual agent autonomy, compared to allowing individuals to form
local plans (in a distributed planning process). Distributed planning and execution is
likely to be employed in complex and realistic environments, with agents using local
(specialised) knowledge to contribute parts of the distributed plan; this may also po-

tentially improve efficiency through parallelization (Ephrati and Rosenschein|[1997]).

The following section discusses some specific approaches for distributed plan for-
mation. These approaches inform the capability meta-knowledge required for our ro-

bustness reasoning with regard to multiagent plans.

Chapter 5. Planning 57

5.2.1 Private/Public Actions

Brafman and Domshlak| [2008] describe an approach for MAP using a public/private
actio concept. Atoms are private or public — a private atom is neither required as a
precondition for, nor an effect of, any actions of another agent. The set of agent actions
is partitioned into private/internal and public action sets — public actions have precon-
ditions or effects containing public atoms, and consequently will require co-ordination.
This partitioning is used to form the agent-interaction graph 1Gry (similar to a causal
graph defined in Brafman and Domshlak| [20006]). /G shows agent relationships in
terms of their action’s abilities to supply or destroy states required by preconditions of
others, indicating coupling in the domain; they show worst case complexity of plan-
ning as associated with the degree of inter-agent activity coupling. It is assumed loose
coupling is a natural property of a MAS, where ‘substantially autonomous’ agents

execute more internal actions than coupled public ones.

Nissim et al. [2010] implement the MAP algorithm CSP+Planning, which splits
planning into public and private aspects. The public aspect is expressed as a Dis-
tributed Constraint Satisfaction Problem (DCSP), solved by finding a minimal length
sequence of public actions; this solution ensures all public atom preconditions are met
and the goal is achieved. The private aspect is performed by individual agents using a
local planner (FF by Hoffmann| [2001]]). That planner will identify sequences of inter-
nal actions, executed between public actions to establish private precondition atoms.
This provides local consistency for the public action plan, ensuring private and public

precondition atoms hold for the public actions.

5.2.2 Partial Global Planning

Partial Global Planning (PGP) is a framework for co-coordinating distributed problem
solving, focused upon scheduling (Durfee and Lesser [1991]). PGP adopts the prin-
ciple of ‘co-ordination through local reasoning’, where plan information sharing be-
tween agents during plan formation and execution allows co-ordination to arise from
local behaviour. Agents use shared information on their local plans to form Partial

Global plans — these represent the holding agent’s knowledge of the collective plan-

! Although we primarily use ‘activity’ in this thesis, ‘action’ is employed where necessary to main-
tain consistency with Brafman and Domshlak| [2008] or if used by others employing or extending a
public/private action model

Chapter 5. Planning 58

ning process for a given goal, and indicate which agents should be informed of the
results of local plan execution. PGP changes may trigger local plan changes to ac-
count for co-ordination requirements (Decker and Lesser| [1992]]). The exchange of
PGPs, combined with proposal based negotiation to resolve conflicts, allows grad-
ual convergence upon a shared plan. PGP has optimal performance and non-optimal
but adequate performance in dynamic environments. It offers coordinated behaviour
through designed local behaviour of agents; showing neither centralized control nor

total global knowledge are essential for distributed planning.

5.2.3 Generalized PGP and T EMs

PGP was designed around sensor systems formed of homogeneous agents (Durfee and
Lesser|[[1987]); Generalized Partial Global Planning (GPGP) views agent coordination
as a distributed search of a dynamically evolving goal tree (Lesser et al.|[2004]). GPGP
aims to maximise overall quality attained by agent groups, accrued by achieving high
level goals within time constraints — higher degrees of coordination lead to better over-
all quality and shorter execution time. GPGP was extended by SHAC (SHared Activity
Coordination), which separated modelling and implementation of coordination mech-

anisms from the planning problem and algorithm (Clement and Barrett [2003])).

Task structures in GPGP are modelled using the TAEMS (Task Analysis, Environment
Modelling, Simulation) language (Decker and Lesser| [1993]]). TAEMS represents task-
subtask (or goal to sub-goal) decompositions, similar to HTN representations (Vincent
et al.|[2000]), but annotates a continuous guality accumulation function (qaf) rather
than AND/OR types. The gaf function defines task quality through combining quality
of associated sub-tasks; for example, g_min defines the quality as minimum associated
subtask quality — equivalent to an AND relationship. Alternatively, g_max is equiva-
lent to an OR relationship, defining quality as the maximum of an associated individual
subtask (Lesser et al.|[2004]). TEMS also models enables and facilitates relationships
(plus converse equivalents) between tasks, defining ordering constraints. Tasks have
durations and optional deadline constraints, which can be employed towards calculat-

ing their quality.

Each system goal has an associated TAMS tree, indicating alternative methods

(disjunctive decompositions) of achieving that goal; the gaf score can be used in select-

Chapter 5. Planning 59

ing between multiple options. Agents use a TEEMS representation (initially) of their
local activities; this evolves to include the activities (and resultant task relationships)
of other agents upon receipt of information from them. The representation provides a
partial global model of activities in the system (partial, as it will almost certainly only
capture a subset of the global task tree). Coordination requires agents identify which
sub-goals to pursue, when, and with what degree of effort; more than one agent may

be assigned to a particular leaf node in the task structure.

5.3 Conclusion

This chapter covered automated planning in both a local and multiagent context. Plan-
ning and later modification both intuitively involve reasoning over the appropriateness
of activities for some expected execution context, and identification (or formation) of

causal link relationships. We formed the following assumptions and requirements:

e We assume use of deterministic plans, with activities modelled as state transi-

tions.

e We do not assume or require a specific approach for plan generation in inten-
tion formation or our robustness behaviour, beyond noting heuristic and HTN

approaches can improve the speed and viability of runtime planning for such.

e Our capability meta-knowledge model requires information equivalent to a STRIPS
operator, to anticipate precondition violation and estimate the execution context

for subsequent activities — similar to as used in plan formation.

e We require our capability model to provide quantitative estimation of activity
quality, which can be applied to counteract the qualification problem — i.e. to

indicate where preconditions hold yet activity success is not certain.

e Our capability model should also allow reasoning over whether as-yet undecom-
posed goals or subgoals can be achieved; this requires modelling similar to that
of HTN refinements.

e An aggregation approach similar to that of TEMS’ gaf is required for qualitative

estimation where capabilities represent plan options.

e To cover multiagent plans, our capability meta-knowledge model must represent

capabilities accessible via dependencies upon others.

Chapter 5. Planning 60

e We assume contracts arise from activity delegation; these must convey sufficient
information to allow introspective reasoning about that activity by the dependant,

similar to information sharing during multiagent plan formation.

e A decentralized robustness approach is necessary due to excessive knowledge
and communication requirements for centralized approaches in realistic domains
— we require co-ordination through local reasoning, as expressed by Durfee and
Lesser| [[1991]] for PGP.

Chapter 6
Plan Robustness under Uncertainty

Our contribution is motivated by the risk of activity failure — and associated debilitative
consequences — due to exogenous change in realistic domains. This chapter discusses

approaches for preventing or recovering from plan activity failure.

6.1 Preventing Failure in Uncertain Environments

This section focuses upon approaches to avoid plan activity failure in uncertain envi-
ronments — whether by attempting to handle all possibilities within the formed plan, or

using mechanisms that defer commitment to specific activities until execution.

6.1.1 Conformant Planning

Smith and Weld [1998] define conformant planning as finding a linear plan (activ-
ity sequence) to achieve a goal regardless of world state — 1.e. covering both uncer-
tainty over activity outcome and lack of sensory ability. Rather than attempting to
resolve uncertainty through sensing, the planner seeks to ‘force’ the world into a cer-
tain state. The planner must account for any possible outcome (including side-effects)
modelled in the operator specifications, and form plans applicable for any possible ini-
tial state. Palacios and Geffner| [2006] describe an example conformant plan, where a
robot in a n width grid is assured to reach the rightmost side by performing n moves
right. Although we regard conformant planning as primarily concerned with managing
uncertainty, this approach can improve robustness through avoiding the plan failures

stemming from such - and thus aiding goal achievement by plan-executing agents.

61

Chapter 6. Plan Robustness under Uncertainty 62

Conformant planning can be modelled by extending the DCP model (Section[5.1.1)
to reason over the space of possible belief states; where the initial state is no longer
assumed known and activity outcomes may be non-deterministic. The initial state s
is extended to cover a set Sp of possible initial states; f(a,s) is similarly replaced by
F(a,s), which maps to a set of possible effects of a (i.e. s € F(a,s)). A solution to
a conformant planning problem is a plan that achieves, with certainty, the goal for any

s € Sp and for any possible F(a,s).

As conformant planning considers a multitude of possible states, it is significantly
more difficult than classical planning — Turner| [2002]] show conformant planning as
Zg -complete for plans of polynomially-bounded length, dropping to 25 -complete if
activities are deterministic and executable. Son et al.| [2005] suggest one approach
for reducing complexity to NP-complete by approximating a single initial state using
0-approximation (Baral and Son|[1997]) to determine initial state beliefs based upon
where a given state is constantly true (or false) in all possible initial states (beliefs only
true in some initial state possibilities are treated as unknown). However, this approach

is unable to capture non-trivial disjunctive inference (Son and Tu| [20006]).

Palacios and Geffner [2006] describe a method for solving some non-trivial con-
formant problems through forming equivalent classical problems, to be solved by a
classical planner. Atoms are introduced to represent conditional beliefs; L / X rep-
resents that if X holds, then (given certain invariants) L must hold (X can represent a
disjunction, e.g. if X; V...V X, C Land X,, C L, L holds). This allows the plan-
ner, given knowledge of X;, to conclude whether L holds. Their approach is, however,
not applicable to all conformant problems and assumes activities are deterministic —
meaning uncertainty must lie only in the initial state — excluding where environmental

uncertainty includes exogenous change during plan execution.

The increased possible state space arising from exogenous change during execu-
tion significantly complicates conformant planning, and — combined with the general
complexity of such planning approaches — likely renders this type of approach infeasi-
ble for failure avoidance in realistically complex environments. One further risk is that
it may simply be impossible to form a conformant plan in certain domains; to extend
the earlier example of |Palacios and Geffner [2006], a robot may ensure it is rightmost

by executing n moves right on an n width grid — but this is not practical if moving right

Chapter 6. Plan Robustness under Uncertainty 63

too many times risks damage from hitting a boundary wall.

6.1.2 Contingent Planning

Contingent or conditional planning handles uncertainty and partial observability by
inserting conditional branches into the plan. Decisions on which branch to execute
are deferred until execution, after any sensing activity, to employ more accurate infor-
mation than available at planning time. Bonet and Geffner| [2000] define contingent
planning as a non-deterministic control problem. A solution (a contingent plan) is a
graph where nodes equate to some belief state b, arcs denote the state transition for
a performed in b (a(b)), and each node has a successor b9 corresponding to the be-
liefs resulting from a(b) — where a path can be found to achieve G, accounting for

uncertainty through sensing activities and selection of conditional branches.

In one example, Cassandra (Pryor and Collins [[1996]), forms partial-order plans
including distinct information gathering activities. Cassandra distinguishes precondi-
tions for validity and conditions for selection; defining when an activity is possible
versus when it is necessary. Exogenous events are assumed not to occur; sources of

uncertainty are also assumed as known.

A balance has to be struck regarding plan branches — too few restrict flexibility, but
too many risk execution time being dominated by branching and sensing. |Dearden et
al.|[2002] implemented a utility function to determine branch placement based upon
(probabilistically estimated) likely failure points. Albore et al.|[2007] observe contin-
gent plans risk exponential growth with the number of possible observations (sensed
effects) following activity execution. They partially address this issue using successive
relaxations to a conditional problem to form a conformant and then classical problem,
but solely determines the next activity to perform rather than forming an entire plan
— meaning this is not viable if advance identification and reservation of resources is

required.

Conditional planning allows a degree of fault prevention to be built into plans;
but the extent of that robustness depends upon sufficient branch coverage for possible
failure cases. A further issue arises if enumerating all conditions is intractable, or

where the planner lacks this knowledge.

Chapter 6. Plan Robustness under Uncertainty 64

6.1.3 Markov Decision Processes

Markov Decision Processes (MDPs) model activity in stochastic domains, and can
be used to form policies guiding agent behaviour. An MDP can be modelled as
(S,A,P,R,C,y), where;

e S defines the state space — a finite set of possible states

e A gives the (finite) set of activities

P gives a transition probability P(s,a,s’) — R indicating the likelihood of reach-
ing state s’ by executing a in state s; these represent the Markov Assumption that

the next state derives solely from s and a

R is a reward function R(s) — R, giving the utility for being in s

C is a cost function C(a,s) — R indicating the cost of performing a in AE|

v is a discount function y —[0:1]

An MDP solution is a policy T, where Tt(s) — a gives the optimal activity a to
be executed in state s. Policies are generated using a function defining the utility of
performing a in s; V(s,a) = R(s) — C(s,a). The history h gives the sequence of activ-
ities executed prior to s through following 7, allowing determination of the policies’

cumulative value;

V(h|r) = Z Y 'R(si) — C(si,(s;))

i>0
A solution to an MDP is an optimal policy, i.e. giving maximum utility over all other
possible policies. When translating a classical planning problem into an MDP rep-
resentation, goal and non-goal states can be given non-zero and zero rewards respec-
tively. The discount function Yy reduces rewards associated with later states, bounding

the maximum total activity cost for following 7.

MDPs assume complete knowledge — that the world is fully observable and states
known. This assumption is removed by Partially Observable MDPs (POMDPS), which
reason over observations rather than states. Observations indicate current state; O de-
fines a finite set of observations, and P,(o|s) the probability of observing o € O when
state s is reached from activity a. Decision making uses the history of previous ob-
servations to form a probability map, allowing the actual state to be inferred and a
solvable MDP defined.

'In some formalizations, an MDP definition may have only an R or C function determining utility;
we have opted to define both in line with |Nau ef al.| [2004]

Chapter 6. Plan Robustness under Uncertainty 65

Boutilier| [1996] suggests a method for Multiagent MDP (MMDP) based planning.
He suggests that, given a common reward function, agents will form the same individ-
ual policies. Co-ordination can be reduced to be only being required where agents have
multiple optimal joint activities in a given state, and is viewed as an n-player game aim-
ing to converge on a Nash equilibrium — such that all agents select the same, optimal,
joint activity. Convergence may be achieved through use of conventions — manually
specified or identified through reinforcement learning — to identify the policies of in-
volved agents. This simplifies planning, as agents only need to consider a subset of
co-ordination ‘games’ rather than compute a global coordination policy covering the
whole MMDP. However, their assumption of full observability — of agents involved in

a problem and their possible activities — may not be feasible for realistic environments.

While policies can offer optimal behaviour, complexity issues render identifying
them intractable as state space increases. This is exacerbated for POMDPs, where state
space is further expanded due to the probabilistic nature of observations. In contrast,
Schut et al.| [2002] show BDI agents are able to handle domains that are relatively
simple yet intractable for MDPs, and with approximate performance to MDP (albeit

depending on the time costs of runtime planning).

Attempts to improve MDP tractability typically involve abstraction — simplifying
state spaces at cost of policy optimality (Boutilier and Dearden [1994]]) — or deter-
minization to employ classical planning within the policy generation process. (Guestrin
et al. [2001] developed an approach using factored MDPs — representing the MDP as
a dynamic Bayesian Graph — for multiagent planning; they suggest this approach re-
duces computational complexity to tree-graph width (of a co-ordination graph used for
inter-agent negotiation) from the exponential complexity of MDP approaches. The Re-
TrASE (Regressing Trajectories for Approximate State Evaluation) MDP solver uses
determinization to support state space aggregation, and was shown to have superior
performance to leading planners on several IPPC (International Probabilistic Planning
Competition) domains, although incomplete Probabalistic PDDL support prevented

evaluation in all domains (Kolobov et al.| [2009]).

Work has sought to reconcile both MDP and BDI approaches. Simar1 and Parsons
[2006] suggest mapping between policies and intended plans, extracting the latter by

Chapter 6. Plan Robustness under Uncertainty 66

projecting future activities selected through a policy (assuming the maximum probabil-
ity state transition occurs). They also present a converse method for forming policies
from existing deterministic plans, for where the state search space is too large for MDP
solution. |Pereira et al.|[2008]] further extend this with an approach to form determinis-

tic plans from offline-formed POMDP policies.

Aside from tractability issues, MDP approaches risk transition probability infor-
mation being unavailable or impractical to learn. MDP specifications are also non-
intuitive, restricting their practical usability. Meneguzzi et al.|[2011] suggest a method
to map more intelligible HTN domains onto MDPs — although this defines probabilities
based upon state presence within operator preconditions, rather than probabilities in
the environment. We argue MDP approaches are unlikely to be feasible in the complex
realistic environments our contribution targets. Although tractability issues associated
with MDP and POMDP approaches can potentially be addressed with abstraction or
approximation techniques, we assume the degree of abstraction required for a realis-
tic, complex domain would overly compromise the optimality of any generated policy,

making the outcome no more ideal than deterministic planning (if not worse).

6.1.4 Continual Planning

Continual planning treats plan revision as a continual process by interleaving planning,
execution and monitoring. In the most extreme case this extends to reactive or dynamic
planning, where only a single next activity to execute is determined in each given in-
stant. For example, Schoppers|[[1987] describes synthesis of universal plans that define
conditional rules for selecting which activity a robot should perform for any given sit-
uation. This resembles the use of MDP Policies, with similar difficulties stemming
from enumerating all possible states (in universal plans) or the cost of determining the

next activity after every execution.

desJardins et al.|[[1999] suggest agents employ continual planning in dynamic and
partially observable environments, where time constraints prevent formation of a com-
plete plan, or where goals may change over time. Intended plans can be incrementally
extended during execution, potentially including sensory activity, until the intended
goal is achieved, invalid or impossible. For example, Pellier ef al.| [2014] suggest an

approach based upon Moving Target Search (MTS) algorithms. MTS algorithms are

Chapter 6. Plan Robustness under Uncertainty 67

employed in domains such as where an agent follows some moving entity — requiring

constant plan modification to account for the target’s unpredictable movement.

A typical approach is to define plans containing abstract activities or subgoals,
refined during execution; such as within the Procedural Reasoning System (PRS) (In-
grand et al. [1992]]) and Jason (Bordini and Hiibner [2006]]) agent framework. These
systems ultimately use hierarchical plan structures; the initial plan is an upper ‘layer’
of abstract steps, with specific decomposition during execution (and using more current
knowledge). Continual planning approaches risk shorter term refinements introducing
effects that inadvertently stymie the longer term goal; Clement and Durfee| [1999] state
any abstract plan must still be specific enough to avoid (the majority of) conflicts be-
tween refinements. A secondary risk is the loss of necessary resources to contention,

due to failing to identify and reserve them in advance.

Brenner and Nebel [2009] present an approach postponing ‘unknown’ parts of the
planning operation, allowing execution to begin without a complete plan. Their Multi-
agent Planning Language (MAPL) models the presence or absence of knowledge; op-
erator definitions can represent knowledge requirement preconditions and the knowl-
edge gathering effects of sensing activities. Active information gathering — planned
sensing — allows planning to be resumed once required information is known. The
postponement of planning decisions does risk agents being caught in computational or
logical ‘dead-ends’; they argue the alternative is failing to act entirely or facing (com-
putationally intractable) contingent planning to cover all possible circumstances. Their
continual planning algorithm iterates through three phases; (re)planning for goals from

the current state, executing plans, and perceiving world state changes.

MAPL defines Assertions — representing goals or composite activities that cannot
be currently refined, combined with replanning condition that define knowledge re-
quired to perform that refinement. This allows the planner to both form plans with
abstract future activities, and plan to gather the information required to refine them.
Plan monitoring is used to determine if the plan has become obsolete due to the effects
of an assertion expansion or world state changes; appropriate plan repair or replanning

can then be employed using current knowledge.

’In this context, ‘replanning’ refers to the performance of further planning options to refine that
assertion.

Chapter 6. Plan Robustness under Uncertainty 68

Continual planning risks shorter-term decisions stymieing the longer term goal;
including failure to identify and secure required resources. This can be partially mit-
igated against in approaches such as used by the Jason BDI framework (Bordini and
Hiibner [2006]]). Jason agents use libraries of pre-defined plan recipes, which can in-
clude subgoals which are only refined upon execution based upon the agent’s beliefs
at that time. Such approaches allow resource reservation by intermixing specific and
abstract activities within intended plans; our robustness approach should should allow
reasoning over as-yet undecomposed composite activities or subgoals, particularly as

use of this type of plan model within Jason evidences it’s viability.

6.2 Handling Plan Activity Failure

It is unlikely to be feasible or tractable to form plans that entirely prevent failure in
realistically complex and uncertain environments. This leads to a likely requirement

for agents to handle plan failure; this section describes several recovery techniques.

6.2.1 Reactive Plan Repair and Replanning

Activity failure can mean preconditions of subsequent activities in the same plan are
no longer met, or that goal states are not established as expected. In the literature, the
term ‘replanning’ has varied meaning and usage. [Talamadupula et al. [2013]] defines
replanning as restart to cover generation of an entirely new plan from the point of
failure, and replanning to reduce computation as a minimal modification of an existing
plan. For simplicity, we use replanning to refer to the former, and plan repair for the
latter — reflecting terminology used by |[Fox et al.| [2006] and |van der Krogt and de
Weerdt| [2004]. van der Krogt and de Weerdt| [2004]] describe plan repair as having
two aspects, refinement and unrefinement, corresponding to addition (plan extension)
or removal of activities — where only the former applies to replanning. In our BDI
context, we use replanning to refer to formation of a new plan; for a goal; in a post-

failure state, and repair as modification of an existing plan;.

According to Fox et al.|[2006], plan repair offers greater efficiency and stability
in terms of information retention than replanning. Greater stability reduces both un-

necessary reservation of resource (i.e. those released from use following total replan-

Chapter 6. Plan Robustness under Uncertainty 69

ning) and the overhead for communicating information regarding plan modifications
(Komenda et al. [2012]). However, Nebel and Koehler| [[1992] argue that experimental
results showing superior computational efficiency for plan repair do not hold in the-
oretical worst case scenarios, if there is an explicit goal to retain a maximum part of
the original plan. Selection between plan repair or replanning approaches to cover dis-
tributed intentions may be driven by considering responsiveness (time spent to modify

or replan) against communications costs (increasing inversely to stability).

Plan causal structure information describes causal links between planned activity,
denoting where effects of some activity contribute states required by preconditions of
some subsequent plan activity — allowing distinction between side-effects and those
relevant to ongoing execution (states may have multiple contributors, i.e. be estab-
lished by multiple activities). Reece and Tate| [1994]] describe use of this information
to synthesize protection monitors, which detect where required causal effects have not
been established following activity execution (and no alternate contributor activities
exist) — allowing invocation of repair. A parallel causal structure represents causal
links established by prior activity and required by future activity, and is used to avoid

or address interference with preserved parts during plan repair.

Drabble et al.| [[1997] describe an approach for plan repair within O-Plan (Tate e
al. [1999]), where two tables store causal link information. The Table Of Multiple
Effects (TOME) records the effects of activities, which may occur at the start or end
of execution. The Goal Structure Table (GOST) records causal dependencies between
activities. Finally, the TOME and GOST Manager (TGM) invokes plan repair where a
causal link does not hold. Failure of an activity to establish an effect does not neces-

sarily require repair, if multiple contributors exist (Tate|[1977]]).

Their repair algorithm is specified in three parts. First, ‘necking’ the plan estab-
lishes where the last activities completed and inserts a neck point — a dummy activity
denoting the insertion point for repairs. This also identifies activities scheduled for
next execution; the execution fringe. If repair was triggered by activity failure, miss-
ing effects required by casual links are identified using the GOST; if no alternative
contributors exist, a restorative plan is generated and inserted after the neck point.
Alternatively, if planning was triggered by exogenous change, a world event activity

representing that change is inserted into the plan after the last executed activity. That

Chapter 6. Plan Robustness under Uncertainty 70

change is consequently represented in the TOME, allowing — with the GOST - de-
termination of any impact and repair requirements. Even if the plan is not affected,
persistence of that event within the TOME allows detection of any subsequent impact.

If a repair plan is required, the end of the world event activity serves as the neck point.

van der Krogt and de Weerdt [2005]] suggest an approach utilizing individual plan
repair to form multiagent plans between self-interested agents. Here, agents plan for
a particular individual goal, delegating sub-tasks they cannot achieve locally using a
blackboard-style auction (and requiring agents to share their capabilities). Plan repair
is used to adapt local plans, followed by necessary auctions for added tasks, repeating
until a complete plan is formed. This does not assume agents are collaborative, but re-
lies solely upon local repair. Collaboration can still occur through the auction approach
— there may be social benefits for self-interested agents (i.e. reciprocal aid when that
agent requires assistance) to counteract the costs of performing some subtask for an-
other. Their experimental results, evaluated in a logistics domain, suggest efficiency
gains in plan repair over replanningﬂ and, significantly, reduced decommitment costs

due to more limited change to intra-agent dependencies.

Boella and Damiano [2002]] describe a plan repair algorithm for BDI agents in
environments where exogenous change or non-deterministic (unexpected) activity ef-
fects can contradict intended plans. Agents monitor for differences between expected
and actual world state, invoking repair where utility is reduced in the latter. The re-
pair algorithm, based on a refinement planning principle, traverses up the abstraction
hierarchy of the original plan from the activity with violated preconditions. Refine-
ments are ‘retracted’ until a new (re)refinement with acceptable utility is found or no

acceptable refinement is found for any level.

Fritz and Mcllraith [2007] annotate plan activities with information gathered dur-
ing refinement planning. These annotations are used to determine whether the current
plan remains both valid (preconditions hold) and optimal (no better plan can be found
given current state) following exogenous change or failure. Replanning occurs only if
and when a more optimal plan can exist — reducing the computational cost of (their

described alternative) replanning upon every divergence between expected and actual

3This contradicts [Nebel and Koehler [1992], who focused upon worst-case analysis rather than ex-
perimental results.

Chapter 6. Plan Robustness under Uncertainty 71

state. Although aimed at improving replanning efficiency, this method is also applica-
ble for repair; the focus is upon triggering remedial behaviour rather than the specific

method of performing it.

Talamadupula et al.| [2013] describe replanning for multi-agent scenarios, where
replanning or repair operations are constrained by commitments to others; e.g. to main-
tain or establish states (such as safety responsibilities) or observe time/cost restrictions.
They suggest representation of such constraints as soft goals — i.e. non-mandatory for
success, but with associated rewards for achievement (and converse costs). The failure
or exogenous change stimulating repair may render commitments to mandatory ‘hard’
goals as impossible to meet; soft goals allow MAP replanning/repair to focus on meet-
ing as many constraints as possible (i.e. maximize net reward), without being overly

constrained by being required to meet all.

Komenda et al. [2012] define, and subsequently evaluate (Komenda ez al.| [2013]),
a notable MAP repair approach. Their algorithm focuses upon definition of planning
problems and insertion of generated plans (using MA-PLAN by Nissim et al.| [2010]],
which employs the public/private approach of Brafman and Domshlak| [2008]]) to re-
pair a MAP. Three approaches were detailed (here, P[0,..,k| denotes the failed plan

consisting of activities ag to ai, with the failed activity being some interim activity a;);

e Back on track repair — forms a repair plan Py, that establishes the ‘missing’
effects associated with the failed activity. This is inserted as a prefix to the
remaining plan activities, giving repaired plan P’ = Py, ® Pli,...,| (Where
Pli,..., 00| #0).

e Lazy Repair (LR) — attempts to execute the remaining original plan activities fol-
lowing the failed activity, where the executable remainder is denoted as Pk . . . oo
(ag is the activity following the failed activity), before forming a new suffix plan
(Pjazy) to achieve any missing goal states; i.e. P ' =Plk...|e Piazy

e Repeated Lazy Repair (RL) recognizes that LR may see, with repeat failures,
repeated concatenation of a repair plan. RL drops any existing repair suffixes
before appending a new repair suffix. For example, failure at a;, and sub-
sequently ax, would see the repaired plan evolve from Pk ...co|® Py, to
Plky...c] ® Py ® Pzy—5. RL instead would drop the previous P; repair,
giving repaired plan P[k;...co] ® P) —on the basis P, would be shorter than the

combined P; e P;.

Chapter 6. Plan Robustness under Uncertainty 72

Evaluation in a number of domains shown that plan repair offered reduced commu-
nications overhead over replanning in more tightly coupled domains. All three repair
algorithms had superior execution length (executed less joint actions) over replanning,

with Repeated Lazy Repair showing best performance.

This thesis focuses on BDI agents which we assume to co-operate in multiagent
plan execution. This motivates adoption of plan repair over replanning due to lower
associated communications costs. While Nebel and Koehler [1992] argue against the
computational efficiency of plan repair, they do so from the basis of an explicit goal to
maximize plan retention, and for the worst case — this may not hold for most common
case scenarios (such as indicated by experimental results, such as by Fox et al.|[2006]),

or if there is flexibility over the required plan stability.

The approaches reviewed here are defined from a reactive standpoint — i.e. fol-
lowing detected failure, typically defined as where expected activity effects have not
arisen, and are vulnerable to where the debilitative consequences of that failure hinder
recovery. Approaches such as given by Reece and Tate| [[1994]], [Boella and Damiano
[2002]] and |Fritz and Mcllraith| [2007] can be seen as proactive due to detecting plan
invalidity from violated preconditions prior to activity execution — a situation that may
occur from activity failure or parallel exogenous change. We can adopt similar meth-
ods for our proactive approach — i.e. detecting if preconditions of activities within the

intended plans of a BDI agent are likely to fail, and responding accordingly.

We have also previously required qualitative evaluation functions within our ca-
pability meta-knowledge model, to determine where the utility of selected activities
has been reduced. Our requirements therefore exceed the boolean model of these ap-
proaches, which only consider whether an activity has failed or not, to consider where
risk of failure increases — and requiring an associated mechanism to indicate when

such risk merits pre-emptive plan repair.

Having adopted a plan repair approach, HTN plan repair methods can provide a
model for our desired multiagent behaviour. Hierarchical Task Networks resemble
the decompositions arising from activity delegation within hierarchical agent teams
(Wickler et al.|[2009]). We view local modification of plans by obligants as similar to

re-refinement HTN plan repair; suggesting a distributed plan repair approach based on

Chapter 6. Plan Robustness under Uncertainty 73

this local behaviour. Exception propagation (Section |4.5)) style mechanisms can con-
trol when agents in a decomposing hierarchical team perform plan changes, to restrict

distributed plan changes to some minimal subset.

6.2.2 Plan Execution Monitoring

Plan Execution Monitoring (PEM) detects and responds to divergence between the ac-
tual world state during execution and that assumed by (i.e. during the formation of) a
plan. PEM approaches may incorporate plan repair or replanning, and have been em-
ployed in partially observable, highly dynamic domains such as robot football (Men-
doza et al.|[2015])) or disaster scenarios (Jarraya et al. [2013]).

Wilkins| [1985] describes a replanning module employed within the System for
Interactive Planning and Execution monitoring (SIPE). Given a plan, world state and
some unanticipated situation SIPE seeks to transform a threatened plan into an ex-
ecutable one with minimal changeﬂ SIPE first discovers the current situation and
identifies resultant problems — such as missing knowledge or violated casual links —
with detected problems then addressed through selection of a replanning action. This
action may re-instantiate an activity with alternate variable values, insert a conditional
branch, or replace a threatened activity with a new subgoal (stimulating planning to

form and insert a new (sub)plan).

IPEM - Integrated Planning, Execution and Monitoring - interleaves planning and
execution, responding where activity preconditions are violated by failure or exoge-
nous change (Ambros-Ingerson and Steel [[1988]]). IPEM utilizes continuous planning
to support problems otherwise unsolvable due to partial (initial) knowledge; an ini-
tial partial plan is refined using IF-THEN rules that define transformations for detected
flaws. Flaw types include false preconditions, conflicts between potentially parallel ac-
tions or unexpanded/non-primitive actions; responses include inserting or re-ordering
actions, or insertion of sub-plans. The IPEM scheduler uses a priority ordered queue
(agenda) of tasks to resolve potential conflicts between fixes — each task consists of a
flaw and set of candidate fixes, both ordered using a domain specific heuristic. If a flaw
cannot be addressed, IPEM iteratively backtracks using a stored history of planning

decisions; if necessary, resulting in complete re-planning. Like SIPE, IPEM utilizes

4 Although described as a replanning module, this minimal change approach matches our earlier
distinction for plan repair

Chapter 6. Plan Robustness under Uncertainty 74

hierarchical decomposition to facilitate local repair.

The Continuous Planning and Execution Framework, or CPEF (Myers| [1999]),
uses monitors that, when triggered, evoke responses ranging from user alerts, to plan
repair or invocation of standard operating procedures. Various monitor types exist —
failure monitors define responses to activity failureﬂ knowledge monitors detect the
absence of required information, and assumption monitors detect differences between
observed world state and that assumed by plans. Assumption monitors are similar to

protection monitors in |Reece and Tate [[1994] and, similarly, can be synthesized.

CPEF models various types of failure. Precondition and action failure respectively
occur due to absence of some precondition state(s) before execution, and absence of
a stated effect afterwards. Unattributable failures occur where some (automated or
manual) assessment deems the current plan unacceptable, even if no failure occurs. As
some domains permit individual failures to occur, such as due to inbuilt redundancies,
Aggregate failures types capture where a combination of failures constitutes a more
significant event. Plan repair is employed by CPEF, when triggered by monitors, using
a principle of minimal modification and maximum stability — as CPEF uses hierarchi-
cal plans (using the SIPE-2 planner by Wilkins| [[1991]), backtracking re-refinement is

used, terminating when parents of failed plan nodes are successfully re-refined.

The PKS (Planning with Knowledge and Sensing) system uses a knowledge based
approach to planning, where the planner considers how knowledge state — rather than
possible environment state — is changed through activities. PKS models activities in
terms of knowledge requirements (with preconditions equating to queries) and ef-
fects (what is known after execution). This entails storage of information in five
databases (Petrick and Bacchus|[2002]]); conveying facts which are known (of boolean
or continuous types), which will become known (i.e. sensed) during execution, those
whose values are unknown but are known to come from a disjunctive set (allowing in-
ference of conditional branches), and of Local Closed World knowledge (Etzioni et al.
[1994]) — where sensing can return exhaustive information, even when the open world

assumption applies in general).

>CPEF supports both direct and indirect execution — the latter being observation of some other
system executing the plan.

Chapter 6. Plan Robustness under Uncertainty 75

Goals are represented through information queries. PKS generates conditional
plans to account for potential knowledge cases — for example, branching to cover both
cases where a variable is (discovered as) true or false. These can be linearized into ex-
ecution paths with conditional rules applied to perform both backwards and forwards
inference (Petrick and Bacchus| [2003]), allowing definition of temporal constraints
(e.g. that some state should hold at the end or over the duration of a plan). In one
example, PKS was used in controlling a bartender robot (Petrick and Foster| [2012]).
This facilitated social dialogue, as representation of activities as knowledge transitions
allowed interaction between the human customer and bartender robot to be modelled
in planning terms. The robot responded to missing information by reforming its plan
to include knowledge gathering; e.g. repeating a drinks order request if unable to un-

derstand the customer’s response.

Another example of PEM is found in I-Globe (Komenda et al. [2009a]), which in-
tegrated I-X mixed-initiative planning (Tate [2001]) with the A-Globe agent platform
(Sislak e al. [2005]]) and the AGENTFLY multiagent UAV control system (Sislak et al.
[2012]). The experimental domain (Fig presented a dynamic environment where
I-Globe agents hunted terrorists (using police and intelligence gathering UAV agents)
and responded to attacks (using ambulance and fire brigade agents). Failure in activity
could lead to potentially severe costs — i.e. failing to intercept a terrorist could lead
to subsequent attacks and loss of life — meaning a strictly reactive approach offered
insufficient efficacy. I-Globe supported real-time replanning through decommitment
rules associated with obligations, which defined conditions for an agent dropping an
intention and adopting an alternative plan instead (Wickler e al|[2009]). A notion
of capability was defined, giving agents knowledge of activity preconditions, with de-
commitment rules (similar in effect to protection monitors) linking violation of pre-

conditions to the triggering of recovery plans.

Whilst plan repair can change plans in response to threat — whether in reaction
to activity failure, or proactively where preconditions are detected as violated before
execution — plan execution maintenance offers a method for invoking such behaviour.
The PEM approaches described are concerned with post execution states, placing them
as more of a reactive approach. They can also be considered proactive, when detecting
violation of activity preconditions prior to execution. However, this risks drawbacks

similar to continuous planning due to the immediacy of required activity — being able to

Chapter 6. Plan Robustness under Uncertainty 76

detect and address threats further in advance may offer greater flexibility and options,

and is a motivator of our focus upon an explicitly proactive approach.

Figure 6.1: Screenshot of an I-Globe scenario (Komenda et al. [2009D]).

Our approach requires PEM behaviour, with a proactive focus, and defined within
the context of BDI agent and multiagent reasoning — i.e. using agent mental state
components, as a specific part of reasoning, and also covering joint activity. We can
also adopt aspects of the surveyed approaches which naturally extend to our multiagent
context and previously identified requirements. Detection of precondition violation is
requisite (such as by SIPE, IPEM or through CPEF assumption monitors), although

we also wish to employ qualitative reasoning to account for the qualification problem.

The concepts of aggregation in CPEF, or agenda formation in IPEM, may be of
value in allowing categorisation and prioritization of threats in our approach. As we are
considering anticipation rather than reaction, there is a possibility of plans containing

multiple activities at risk of failure over the longer (non-immediate) time period. This

Chapter 6. Plan Robustness under Uncertainty 77

is similar to re-refinement plan repair or propagation of exceptions (Section[4d.3)), in that
multiple threats in a subplan can represent a singular combined threat to the associated

subgoal or composite activity.

6.2.3 Determinization with Replanning

Determinization approaches form a classical problem from a non-deterministic domain
specification (i.e. where operators have non-deterministic effects); the determinized
planning problem is solved using a classical planner — taking advantage of classical
planning optimizations — with the resultant plan translated back to probabilistic opera-
tors for execution. These planners recognize that determinizations will be inexact, and
compensate by replanning where the actual effects following execution diverge from

those expected (i.e. by the determinized domain).

FF-Replan (Yoon et al. [2007]) is one such example; this planner won the IPPC-
2004 competition, and — although not formally entered — outscored the winners of
IPPC-2006 in a significant number of domains. FF-Replan maps probabilistic opera-
tors to deterministic operator specifications, before employing the FF planner (Hoff-
mann| [2001]) to solve the determinized problem. The initial version of FF-Replan
utilized single-outcome determinization, where the highest probability outcome was
selected as the effects specification of an equivalent deterministic operator; latter ver-
sions adopted all-outcomes determinization (i.e. treating all possible probabilistic out-
comes as equal), forming a deterministic operator to represent every possible outcome
combination. FF-Replan monitors state during execution, replanning upon any diver-

gence between actual and expected post-execution state.

FF-Replan was later extended by FF-Hindsight (Yoon er al.| [2008]]) to employ
hindsight optimization (Chong et al.| [2000]]) for determinization. FF-Replan’s single-
outcome determination assumes the most likely outcome occurs — if a less probable
outcome occurs (resulting in replanning), it may render it costly to achieve the goal.
FF-Hindsight instead forms multiple determinizations to consider alternate potential
outcomes, selecting activities that with hindsight (from the plans formed using these
determinizations) provides a starting point to reach the goal cheaply. FF-Hindsight
offered improved performance over FF-Replan in IPPC-04 and 06 domains, and in

‘probabilistically interesting” domains suggested by |Little and Thibaux|[2007] in ear-

Chapter 6. Plan Robustness under Uncertainty 78

lier criticism of FF-Replan. This approach had high computational expense, scaling
with the state-space size and applicable action set, although [Yoon et al. [2010] identi-

fied further enhancements aimed at improving scalability.

PAC-PLAN (ProbabilitiesAreCosts-Plan) offers another example of determiniza-
tion (Jiménez et al.| [2006a]]). Here, all-outcomes determinization is used to form de-
terministic alias actions (plans can be converted back from alias actions to the original
probabilistic actions). Each alias action has a cost equating to risk of failure, given
as risk; = —log(prob;), where prob; gives the probabilistic likelihood of that opera-
tor’s specific effects. The deterministic planner (in their evaluation, LPG-TD-1.0 by
Gerevini and Serina [2002]) employs metric-minimization based upon this risk value,

corresponding to minimizing risk of failure.

Determinization and replanning both attempt to handle uncertainty (by consider-
ing probabilistic operators) and incorporate plan execution monitoring (i.e. to trigger
replanning under unexpected effects in FF-Replan). However, these approaches focus
upon the possible outcomes of successful execution; i.e. where preconditions hold and
the activity succeeds, but with effects of varying probabilities. For a determinization
approach to account for the possibility of failure, the resultant consequences would
need to be known and provided as determinized effects; this would require an all-
outcomes approach, as the most probable outcome of preconditions holding (as per the
qualifications problem) is success, meaning any single-outcome approach would omit

failure case effects when forming determinized operators.

Representing the failure case in an all-outcomes or weighted operator (as in PAC-
Plan) is counter-intuitive, as such operator representations effectively mean planning
for failure — whilst failing to capture that the activity preconditions are associated with
a significantly lower probability of failure than where they do not hold. Finally, any
determinization approach attempting to handle both failure and success outcomes of
activities is arguably entering the realm of conformant planning, and facing the same
issue of intractability. This means these types of approaches, whilst able to handle un-
certainty in the form of unexpected effects, cannot be seen as strictly concerned with
failure recovery. Additionally, planning for such uncertainty may be less effective if

post-execution state is strongly influenced by exogenous change.

Chapter 6. Plan Robustness under Uncertainty 79

However, PACPlan does suggest a method for weighting — through metric val-
ues — deterministic operators to account for the probability of success. This pro-
vides a viable method to incorporate quantitative quality estimations from capability
meta-knowledge into our proposed approach, if using a capable runtime planner. Ap-
proaches such as FF-Replan evidence the need to consider divergence from assumed
state when executing deterministic plans in realistic, uncertain environments; reinforc-

ing our motivation to proactively avoid failures caused by such divergence.

6.3 Conclusion

This chapter described techniques for avoiding or reacting to failure in uncertain en-
vironments, where activities may lead to unexpected post-execution states (including
from exogenous change). We first surveyed various approaches that attempt to pre-
vent failure by accounting for uncertainty to avert unexpected circumstances (in the
MDP or conformant planning case), or by generating plans offering adaptive flexibil-
ity (through conditional branching, or deferring decisions). All of these approaches,

however, face issues limiting their viability in realistic environments.

MDP and conformant planning methods become intractable in such environments,
particularly with the possibility of exogenous change; abstraction can improve MDP
tractability, but reduces policy optimality. Contingent planning is similarly likely to
become intractable in the event of complex environments, due to a combinatorial ex-
plosion in the number of branches required to account for possible exogenous change
before, during, or after activity execution. Finally, continual planning can ward against

uncertainty by deferring decisions — but risks inadvertent long term failure.

In general, we form assumptions that:

e Agents in a realistic environment cannot form intended plans which entirely pre-
vent threats from unexpected execution contexts.
e Robust agents must counteract divergences between planning-time (i.e. assumed)

and execution-time activity execution context.

The second section of this chapter considered response to failure; including per-
forming replanning or plan repair, use of plan execution monitoring to trigger such

behaviour, and the combination of both in determinization approaches such as FF-

Chapter 6. Plan Robustness under Uncertainty 80

Replan. Our approach will be required to provide similar behaviour, but within BDI

agent reasoning in an explicitly proactive manner.

Plan repair is preferable to replanning in a distributed context due to reduced com-
munications cost. We noted a relative lack of existing work specifically covering mul-
tiagent plan repair, with the exception of Komenda et al.|[2012]. Existing techniques
such as HTN plan repair and exception propagation may be applicable towards such
behaviour, as identified through our previous requirements. This supports the value of
our contribution, which should provide proactive, pre-emptive (of failure) plan modi-

fication —i.e. plan repair —in a MAS.

We can form the following requirements and assumptions from our discussion of

plan robustness techniques:

e We require agents to monitor plan execution, detecting where exogenous change
threatens the next activity to execute or it’s successors in the intended plan.

e Our approach must identify and respond to both violation of preconditions and
loss of quality.

e A plan repair approach is required for local (agent level) plan repair, based upon
reduced communications overhead over replanning.

e We require minimal plan modifications as a soft goal, allowing flexibility to re-
duce computational cost (i.e. to mitigate the relative inefficiency stated by Nebel
and Koehler [1992]] when maximum retention is an explicit, hard goal), whilst
attempting to provide the communications cost benefits of greater stability.

e We assume the distributed plan executed by a decompositional hierarchical team
can be equated to a Hierarchical Task Network, where delegation of activities
to plan forming agents is effectively equivalent to HTN task refinement, and
wish to replicate HTN re-refinement plan repair through distributed robustness

behaviour.

Chapter 7
Behavioural Design

In this chapter, we first detail the Cargoworld domain serving as our detailed moti-
vating example. This is subsequently used to describe our behavioural design require-
ments — firstly the assumed MAS behaviour in non-failure circumstances, and secondly

the desired response when intended plans are threatened by exogenous change.

7.1 The Cargoworld environment

Chapter [2| introduced the Cargoworld domain. Before specifying desired behaviour,
we detail Cargoworld to provide specific motivating examples — including defining

world states, possible activities and agents within the MAS.

7.1.1 Domain Predicates and Operations

We list predicates for Cargoworld in Figure defining potential worlds states and,
ergo, information potentially held in agent beliefs. Contradictory states are assumed
mutually exclusive; e.g. Truckl cannot have percepts indicating it is both healthy
and mortal, or be simultaneously at multiple junctions. Entities in the environment
have associated percepts identifying their type; for example, Trucks will be identified
as present through percepts Truck(Truckl), Truck(Truck2), and soforth. This allows

representation of specific entities, and their type(s), within planning operators.

81

Chapter 7. Behavioural Design

82

Predicate Variables Meaning
busy ag — agent ag is currently performing some activity
healthy ag — agent ag is at optimum health
damaged ag — agent ag has suffered debilitation but remains functional (with
reduced activity quality)
mortal ag — agent ag is mortally damaged and unable to act
at] ag — agent ag is located at j
J —junction
onR ag — agent ag is currently at some point along r (between r’s end-
r —road points)
overJ ag — agent ag is currently flying above j
J —junction
flying ag — agent ag is currently (flying) in the air
airport J —junction Indicates there is an airport at j
loaded ag — agent ag is carrying ¢
¢ — cargo
carryingCargo | ag — agent ag is carrying a cargo item
cargoNeeded | j—junction Request for cargo to be delivered to j
cargo ¢ —name Defines an item of cargo exists with identifier ¢
cargoAt ¢ — cargo c is currently located at j
J —junction
stuck ag — agent ag is stuck in it’s current location (i.e. skidded off-road)
and cannot move until it frees itself
resting ag — agent Corrolary to the stuck percept; ag cannot free itself
whilst in a resting state. When an agent becomes stuck,
it must rest for a period of time before recovery. This
prevents stuck being a zero-consequence state which
can be immediately recovered from using a free activity.
toxic jl —junction | The road connecting j1 and j2 has been contaminated
Jj2 — junction with toxic substance(s)
toxicRd r —road Identifies a toxic road by id r
dangerZone J —junction Jj is dangerous and cannot be used by non-APC agents
blocked j1 —junction | Theroad between j1 and j2 has been rendered unusable
j2 —junction | until cleared
blockedRd r —road Counterpart to blocked, defining the specific road iden-
tifier r
windy Indicates environmental conditions are currently windy,
impacting flight activities

Figure 7.1: Environmental State atoms within Cargoworld

Chapter 7. Behavioural Design 83

Numerous activities can be performed, each corresponding to the use of an entity
effector and representing a directed state change (Figure [7.2). We prepend an addi-
tional argument to indicate the performer(s) for a delegated activity within agent plans
—i.e. move(Truckl, A, B) indicates a move(A, B) is delegated to Truckl — this is given

for readability and does not represent an implementation requirement.

7.1.2 Failure Sources

We define three generalized fypes of activity failure which may occur in a stochastic
dynamic environment, and give examples within a Cargoworld environment. These
definitions do not consider programmatic failures due to incorrect implementation, or

misspecification of plans or planning domains.

e Preconditions failure refers to failures stemming from preconditions not hold-
ing; i.e. where exogenous change between plan formation and execution pro-
hibits success of an activity. For example, if Truckl intends to move(a, b), but
a — b becomes blocked by a landslip.

e Non-deterministic failure refers to where the world state did not prohibit suc-
cess (i.e. preconditions held), but introduced additional risk that lead to failure.
For example, road @ — b may become slippery from rainfall — although still
nominally traversable, the more hazardous conditions lead to Truckl sliding off
of the road and failing to move(a,b). This type reflects scenarios where failure is
possible but not certain — reflecting the ‘hidden’ uncertainties within a realistic
domain reduced to deterministic terms.

e Exogenous (change) failure is where an exogenous event during execution

causes immediate failure — e.g. Truckl’s engine explodes, forcing it to stop.

Preconditions and Non-deterministic types represent preventable failure — we ar-
gue these risks can anticipated using (actual or predicted) execution context knowl-
edge, combined with agent meta-knowledge regarding their activity execution capa-
bilities. Exogenous failure represents cases which cannot be readily anticipated in
advance; although this type of failure is an inevitable risk in continuous, stochastic
environments, we argue there remains value in anticipating and preventing the for-
mer types. Our motivation assumes non-exogenous failure scenarios are sufficiently
frequent to justify pre-emptive measures; our eventual design should also allow com-

plementary reactive measures (which can respond to exogenous failure).

Chapter 7. Behavioural Design

84

Signature Arguments Purpose

move ag — agent ag moves along r, from o to j. 0 and j must be connected by
r —road r, and ag must be either at o or be located at some point on
o0 — junction r. This activity is performable by any road vehicle, although
J —junction specific preconditions may vary.

load ag — agent The agent ag loads (picks up and holds) c; both ¢ and ag must
¢ — cargo be co-located at j. Helicopters cannot load (or unload) cargo
J —junction whilst flying.

unload ag — agent ag unloads c and deposits it at j; ag must be carrying ¢ and at
¢ — cargo J-
J —junction

takeOff ag — agent Helicopter ag, landed at j — which must hold an airport —
J —junction becomes airborne over j.

land ag — agent Helicopter ag, which must be airborne over j and where j
J —junction must hold an airport, lands at j.

fly ag — helicopter | Helicopter ag flies directly from o to j; ag must already be
o0 —junction airborne.
J —junction

secureArea ag — APC The APC agent ag removes the dangerZone at j; ag must
J —junction already be present at j.

unblock ag — bulldozer ag clears the blocked r (which must connect o and j), moving
r —road from o to j. r must not be flooded or toxic, and o and j must
0 —junction not have associated dangerZones.
J —junction

decontaminate | ag — Hazmat ag moves from o to j, decontaminating (the connecting road)
r —road r in the process. r must not be flooded and blocked, and
0 — junction neither o or j can have dangerZones. ag must also be initially
J —junction located at o.

consume ag — agent ag informs j it can consume c in order to satisfy an existing
J —junction request.
¢ — cargo

free ag — agent ag frees itself from being stuck on r, connecting o and j. ag
r —road must not be resting, and r itself must be traversable by that
o0 —junction agent. The preconditions for free allow definition of planning
J —junction goals to establish required conditions and free agents from

being stuck.

Figure 7.2: Possible operations within Cargoworld

Chapter 7. Behavioural Design 85

7.2 Agents within a Cargoworld MAS

We define two classes of agent. Physical agents correspond to, and control, entities
within the environment which can directly influence environment state. Logical agents
do not have this association, and achieve goals through dependencies upon other agents
(which directly or indirectly lead to activities by physical agents). In our Cargoworld
example, each world entity (Section [2.4.2)) has an associated physical agent represent-

ing it within the MAS.

We first describe logical agents and their potential interactions with others:

e The LogisticsHQ provides ‘top level’ (strategic) control; receiving cargo re-
quests, identifying cargo, and then selecting a capable agent to deliver that cargo.
Physical agents do not have peer-to-peer visibility; consequently, the Logistic-
sHQ also serves as a broker to ‘expose’ functionality to others. For example, a
Truck wishing to clear a road will form an unblock dependency upon the Logis-
ticsHQ — which, in turn, selects and dispatches an appropriate Bulldozer.

e MilitaryHQ acts as a tactical level controller, serving as a broker for use of
APC and Hazmat agent types by LogisticsHQ and vice-versa. In the former
case, MilitaryHQ is responsible for forming dependencies upon APC or Hazmat
agents (as appropriate) to secure a given junction or decontaminate a given road,
including performing of a specific physical agent. In the latter, MilitaryHQ acts
as a proxy; APC or Hazmat agents form dependencies upon MilitaryHQ, which
forms an equivalent dependency upon LogisticsHQ. For example, if an APC
needs to clear a road for travel the resultant dependency chain would be APC
— MilitaryHQ — LogisticsHQ — Bulldozer

Our design will not assume any authority structure; we are concerned with the
team meta-organizations arising from dependency relationships, rather than constraints
upon their formation. However, realistic systems frequently utilize organizational hi-
erarchies such as Strategic-Tactical-Operational layers (described in |Killion| [2000]),
as these represent a proven method for decomposing and organizing solutions to com-
plex problems. We represent this in our example MAS by visibility constraints upon

capabilities, restricting the possible dependency relationships an agent can form (Fig-

'We refer to cases such as this as indirect dependencies, i.e. APC indirectly depends on Bulldozer.

Chapter 7. Behavioural Design 86

ure(7.3F). For example, Truckl cannot delegate to Bulldozerl, and must use Logistic-
sHQ to unblock a road. Truckl would not know the identity (or type) of any further

agent(s) used — this semantic knowledge restricted to LogisticsHQ.

LogisticsHQ \
MilitaryHQ

[Truck][Helicopter] [Bzdfdozer] [Hazmat] [APC }

Figure 7.3: Example multiagent hierarchy; arrows indicate an agent can form depen-

dencies upon another.

The heterogenity in Cargoworld is simple enough that a fully peer-to-peer
agent system (with no capability visibility constraints) could be employed. We spec-
ify an effective hierarchy to serve several purposes. Separation of knowledge (of both
delegation structures and semantic details) and responsibility reflects both real world
command-chain concepts and agent-knowledge specialisation that exists and which of-
ten motivates a multiagent approach (Sycara [1998]]). The relationships between agents
are also more complex due to restriction of semantic knowledge to specific agents; this
mandates dependency formation, mirroring the likely necessity of dependency forma-

tion in real world scenarios.

7.3 CAMP-BDI Behaviour

This section describes generalized behaviour examples of a CAMP-BDI MAS within a
Cargoworld environment, extending from fault free execution to the desired proactive

behaviour for potential failure cases.

7.3.1 Normal Agent Behaviour

Before considering maintenance behaviour, we describe multiagent activity covering
successful delivery of cargo without requiring failure mitigation. We reference the

geography previously defined in figure 2.6 where a cargo request has been generated

Where required, we refer to specific individuals as numbered instances; i.e. Truckl and Truck?2
are Truck type agents. The numerical designation is dropped where we only need to refer to a single
instance of that type, or that type in general.

Chapter 7. Behavioural Design 87

at E, and a cargo object (cargol) exists at K. Truckl and Truck2 are at A and M,

respectively.

We now discuss typical multiagent activity, starting with adoption of a deliver-
Cargo(E) goal by LogisticsHQ. This requires dependency formation between agents,
allowing task delegation. We use the terminology dependant to refer to the agent del-

egating a task, and obligant to refer to the agents performing it.

The following sequence summarizes our assumed behavioural model for a MAS

performing this delivery task in Cargoworld,

1 LogisticsHQ forms an intention to perform a plan achieving deliverCargo(E);

this goal is satisfied by removal of the state cargoNeeded(E).

Truckl and Cargol are selected as task-performing obligant and the utilized

cargo resource (we define intentions in the form goal:plan) :
deliverCargo(E): moveTo(Truckl, A, K), load(Truckl, Cargol, K), moveTo(Truckl,
K, E), unload(Truckl, Cargol, E), consume(Cargol, E)

2 A dependency is formed upon Truckl to perform moveTo(Truckl, A, K). Truckl
forms a route plan to reach K from it’s current location, to be executed upon the
dependant’s request;

moveTo(Truckl, A, K):move(A, G), move(G, J), move(J, K)

3 Acceptance of further dependency requests from LogisticsHQ results in the fol-
lowing goal:plan pairs being formed by Truckl, executed (adopted as intentions)
upon the dependant’s request;

load(7ruckl, Cargol, K):load(Cargol, K)
moveTo(Truckl, K, E).move(K, L), move(L, I), move(l, E)
unload(7ruckl, Cargol, E):unload(Cargol, E)

4 LogisticsHQ executes its plan for deliverCargo(E), requesting Truckl perform
each delegated activity in turn. LogisticsHQ waits for each dependency (dele-
gated activity) to complete; once Truckl confirms successful execution, Logis-
ticsHQ progresses it’s (dependant) intended plan onto the next activity.

S LogisticsHQ completes by using consume(E, Cargol), which uses cargol to

satisfy the request from E.

Chapter 7. Behavioural Design 88

The following series of atomic activities are consequently performed:

move(Truckl, A, G)

move(Truckl, G, J)

move(Truckl, J, K)

load(Truckl, Cargol, K)
move(Truckl, K, L)

move(Truckl, L, I)

move(Truckl, I, E)
unload(Truckl, Cargol, E)
consume(LogisticsHQ, Cargol, E)

O 00 3 N N B~ W NN =

We assume multiagent activity requires advance formation of dependency con-
tracts. This is not an inherent requirement of the BDI approach, but we argue a logical
requirement for distributed activity — to protect against agent or resource contention
and facilitate information sharing (such as when establishing mutual beliefs). Our ap-
proach — discussed in the following chapters — extends this assumption to communicate

maintenance-relevant information.

This section described the (assumed) MAS behaviour under normal conditions; we

will next describe the desired behaviour under potential failure scenarios.

7.3.2 Behaviour to prevent Preconditions Failure

Truckl is currently on road A — G (Figure [2.6)), travelling route A - G — J — K to
load cargol at K. J — K becomes blocked by a landslip, violating preconditions for
travel along J — K. Upon arriving at G (and beginning its next reasoning cycle) Truckl
should detect likely failure of the planned future move(Truckl, J, K) and identify this

as being due to a violated precondition.

Truckl should consequently modify the intended plan. For example, Truckl can
form a dependency upon LogisticsHQ to unblock J — K; LogisticsHQ subsequently
selects and delegates this task to Bulldozerl. Execution restores precondition states for

using J — K, before Truck! reaches J, avoiding this anticipated failure (Figure[7.4).

Chapter 7. Behavioural Design 89

move(Truckl, A, G) , move(Trmuckl, G,) , move . 1.K)
— T

Prohibited by Blocked(J, K}

Truckl: moveTo(Truckl, |, Al: orginal plan ‘

Inserted to remove Blocked(J, K)

Truckl: moveTolTruckl, 1, Al; maintained plan
move(Truckl, A, G) ., move(Truckl, G. J) | unblock(LogisticsHQ, G, T) ., move{Truckl, I, K)

Figure 7.4: Plan modification to prevent preconditions failure; unblock is inserted to
re-enable the planned move, after an exogenous event blocks J — K.

7.3.3 Behaviour to prevent Non-deterministic Failure

In these scenarios, changes (compared to original assumptions at intention forma-
tion / plan selection) in the anticipated execution context of an activity render it sub-
optimal. For example, Truckl is carrying cargo from K to E, alongroute K — L — I — E,
when a rainstorm results in / — E becoming slippery. This does not prohibit travel
down that road, but does increase the risk of failure when doing so; instead, Truckl

forms an alternate path K — H — C — D — E, using only dry roads (Figure [7.5).

Figure 7.5: Modified route adopted by Truck? (solid arrows), located at K, to pre-

emptively avoid slippery I — E. The original planned route is shown in dashed arrows.

This does incur additional cost through extra movement — maintenance must ideally

balance extent of risk against the costs of changing plans (both in terms of activities and

Chapter 7. Behavioural Design 90

computational resource). Avoiding failure earlier may also have some efficiency ben-
efits over recovery; in this example, Truckl would incur additional costs backtracking

to H if it delayed maintenance until set to execute move(Truckl, I, E).

We can extend this behaviour to scenarios where an agent is unable to prevent
preconditions failure; if an agent cannot re-establish preconditions for an activity, it
should instead replace that activity with one (or more) whose preconditions can be es-
tablished. In certain cases it may even be preferable to replace an activity regardless
rather than insert prior precondition-establishing activities — the latter can lead to con-
tinual and incremental growth of plan length and complexity, purely to enable a single

activity which may actually only hold limited significance towards the intended goal.

7.3.4 Distributed Maintenance Behaviour

We also consider behaviour of an agent feam, performing a distributed plan, where
an individual member is unable to perform adequate maintenance. One such example
arises where Truckl is carrying cargo along the route K — L — [— E, but suffers

partial damage en-route to K — increasing failure risk for the future move(Truckl, L, I).

Truckl cannot recover independently by repairing itself. At this point, the depen-
dant LogisticsHQ should be made aware Truckl is at risk of failure for its obligation to
movelo(Truckl, K, E) — and that Truckl has attempted and failed to mitigate that risk.

This requires LogisticsHQ to reconsider the (dependant) intended plan.

The moveTo(Truckl, K, E) activity cannot be directly substituted due to an inherent
reliance upon the debilitated Truckl for that goal. This also threatens unload(Truckl,
cargol, E), whose preconditions require Truckl to have moved to E. LogisticsHQ is
required to adapt its intended plan with consideration of the associated goal, abort-
ing moveTo(Truckl, K, E) and subsequent activities before forming a new plan and

dependencies such that:

1 Truck2 moves from M to K to rendezvous with Truckl:
moveTo(M,K)

2 Truckl unloads Cargol at K:
unload(Truckl,Cargol,K)

Chapter 7. Behavioural Design 91

3 Truck2 loads Cargol at K:
load(Truck2,Cargol,K)

4 Truck? travels to the delivery destination:
movelo(Truck2,K,E)

5 Truck2 unloads cargo at E:
unload(Truck2,Cargol E)

6 The cargo is released for use (delivered) at E:

consume(Cargol ,E)

This places additional requirements beyond the localized, individual agent mainte-
nance case. Obligants must communicate information allowing dependants to identify
where delegated activities are threatened, and adopt responsibility if obligant main-
tenance was unable to address that threat. This requires synchronization to ensure
individual maintenance is first attempted at lower levels of a dependency hierarchy, to
minimize disruption to a distributed plan. It is desirable to avoid centralized control(s),
as information and computation requirements in large, realistic systems typically ren-

der these infeasible.

7.4 Summary

This chapter described the Cargoworld domain introduced in Chapter [2| to detail do-
main predicates, entities and activities. We also described an example MAS for op-
erating within this domain. Cargoworld uses a transport paradigm to provide a com-
prehensible motivator for agent behaviour which can be related to real-world practical
applicability. Agent heterogeneity provides increased options for failure mitigation and
planning (making such decisions non-trivial), and allows more detailed consideration

of multiagent plan execution.

We used Cargoworld to first describe assumptions about MAS behaviour, and then
desired maintenance behaviour; the latter covering both preconditions violation and
loss of planned activity quality (expressed as an increase in the risk of failure, as is
relevant to our robustness concern) due to exogenous change after a plan is intended.
This provides a generalized, abstracted view of the maintenance process, and defines a

number of requirements for out subsequent design:

e Agents must perform introspective reasoning to identify threats to planned ac-

Chapter 7. Behavioural Design 92

tivity, identify appropriate plan modifications, and ultimately avoid anticipated
failure.

e A method is required for communication of necessary information to support
introspective reasoning, building upon dependency contract formation.

e Due to realistic scenarios requiring distribution of knowledge and ability across
various agents, a decentralized approach to distributed maintenance is necessary
— including communication of information between the obligant(s) and depen-
dant to support adoption of responsibility by the latter.

e Proactive maintenance may carry greater computational cost than reactive be-
haviour, due to its anticipatory nature. The frequency of maintenance should be
able to be balanced against the consequences of failure for particular activities,
particularly in non-deterministic failure cases.

e Finally, we can intuit it is desirable to support flexible modification of mainte-
nance behaviour during runtime, to adapt to observations of maintenance effi-

cacy.

Chapter 8

CAMP-BDI Supporting Architecture

This chapter contributes our supporting architecture; special case Beliefs used to sup-
port introspection and later plan modification by our algorithms, and which also pro-
vide representation models for communication during distributed activity. We use this
architecture to support our subsequently designed behaviour for CAMP-BDI agents —
BDI agents which are Capability Aware, and which use that capability knowledge to

Maintain Plans.

8.1 Mental State Components within the BDI agent Model

We first define the standard mental state components of Beliefs, Desires and Intentions.
Beliefs represent assumed knowledge of an agent regarding itself and the environment,

and can be defined as a set of positive and negative state atoms;
B=BTUB~

The CAMP-BDI supporting architecture provides a subset of B used to support our
algorithms. In this thesis we refer to these components independently due to their

specific purposes within our approach.

Desires are a set of potentially conflicting goals, individually valid given current

beliefs, from which the agent selects intended goals.

Vd e D:d={g1,...,8n }

93

Chapter 8. CAMP-BDI Supporting Architecture 94

Each individual d represents states to be achieved or removed, defined as being
either explicitly positive, explicitly negative, or implicitly negativeﬂ We refer to a
desire as as to achieve a goal g=g™ U g~ ; g™ defines literals required to be present in
B to achieve g, and g~ those required absent. For example, a goal for Truckl to move
from A to B, and not be mortally damaged at the end, gives g* = {atJ(Truckl,B)} and
g~ = {atJ(Truckl, A), mortal(Truckl)}. The individual desire is met when g™ C B
and g~ ¢ B.

Desires are active achieve goals, as defined by |Braubach et al.| [2005]. An agent
may hold a goal set covering multiple types (including maintain goals described by
Dastani et al.|[2011]]), used by standard BDI reasoning. If reactive maintenance goals
exist, we regard them as stimulating desires to (re)achieve protected propositional
states when necessary. Proactive maintenance goals (Duff ez al.|[2006]]) prohibit cer-
tain states being established — responsibility for respecting them will lie within the
plan identification mechanism used for intention formation and, in our design, later

co-opted for maintenance planning.

The Intentions of an agent are defined by a selected, non-conflicting, subset of
Desires - conceptually, / C D. The exact definition of an intention varies within the
literature; this thesis adopts the definition employed by |Simari and Parsons| [2006],

where an intention combines both goal and plan;
Viel:i={goalplan;}

The goal; corresponds to a selected desire; plan; represents the plan (to be used) to
achieve goal;. This explicit association allows agents to reconsider how they achieve
goals, when those goals remain valid despite threats to a specific means. The Norma-
tive Agent Architecture (NoA) (Kollingbaum and Norman| [2003]]) and the B-DOING
architecture (Dignum et al.| [2002]) similarly distinguish selected goals within agent

mental state, albeit focusing upon the various influences upon rational reasoning.

We define a plan p as a linear sequence of n activities;

p=A{ai,...,an}

'We make a closed world assumption where the absence of a positive atom within B can be treated
as that atom being implicitly negative. For example, a vehicle agent does not require the explicit belief
—at(A) € Bifat(A)¢ B.

Chapter 8. CAMP-BDI Supporting Architecture 95

Activity a represents a state transition F(a,s)=s"; s’ is the outcome of successfully ex-
ecuting a in state s. An activity can represent either an atomic action — i.e. use of an
agent effector — or a goal performed through decomposition to an executable sub-plan
(i.e. as in hierarchical task networks). A p as a primitive plan if every a € p is atomic.

Where a € plan;, we refer to goal; as the parent goal of a.

We assume all activities can be captured by deterministic STRIPS planning opera-
tors (Fikes and Nilsson|[[1971]]). However, we do not assume all factors influencing the
success of a are represented through deterministic preconditions, but rather the most

significant prohibitory ones (McCarthy| [[1958]).

Finally, we refer to the set of obligations held by an agent (to perform some activity
upon request) as Ob, and the dependencies as Dp. These are more fully detailed in

section [8.4] but also referenced in preceding sections as information sources.

8.2 Capabilities

Our approach is founded upon pre-emptive behaviour — that agents respond to ex-
ogenous change by identifying whether intended plans are negatively impacted, and
modifying those plans — if necessary — to compensate. This requires introspection
by agents regarding their ability to perform activities. The capability model provides
meta-knowledge to both assess viability of an activity in a given world state, and to
modify plans in recompense. A common model is employed for capabilities (discussed
subsequently), encapsulating semantic knowledge requirements within the implemen-

tation — this aids generality, communicability and re-usability.

8.2.1 Existing Approaches towards Capability Modelling

Self-awareness is an important aspect in design and implementation of an intelligent
agent; including representation of agent ability, and its impact upon which goals can
be achieved — |Xuan| [2006] suggests rational agents must be able to reason over ac-
tivity utilities. Morgenstern| [1986] describes planning and acting agents as requiring
knowledge of their possible activities and achievable goals; an agent has know-how-to-
perform an activity if it is aware of the constraints allowing or prohibiting execution,

can-perform an activity if it can be executed in the current situation, and has know-how-

Chapter 8. CAMP-BDI Supporting Architecture 96

to-achieve for a goal where it can-perform an activity achieving the required effects.
These concepts are extended into planning in terms of can-execute a plan, and where an

agent can-plan to achieve a goal (by executing the activities itself and/or delegation).

Singh! [1999] defines similar concepts of know-how as determining what goals can

be achieved;

An intention can lead to success when it is held long enough, is acted
upon, and when the agent has the requisite know how.

Two types of action describe the know-how of an agent. Basic actions are primitive,
atomic activities. High level actions represent procedural knowledge — sequences of
lower-level actions that can be performed, where constituent actions may be high level
(i.e. subgoals) or basic. High level actions must eventually resolve to a set of basic
actions; i.e. plans must eventually resolve to some set of effectors for an agent to be

deemed capable.

One predominant focus of existing work lies upon modular, reusable capabilities, to
allow composition of agents from encapsulated capability objects. [Busetta ez al.|[2000]
define resuable capability models serving as ‘building blocks’ for creating agents; each
capability defines a subset of relevant beliefs, plans and handled triggering events for
the plans. These may be composed of further sub-capabilities; agents are viewed as
defined by graph-like capability structures rather than sets of plans and beliefs. Nunes
[2014] suggests three types of relationships between such modular capabilities; as-
sociation (directional or bidirectional dependencies between capabilities), composi-
tion (knowledge is shared, such that a capability is aware of beliefs and/or achievable
goals within another), and inheritance (a capability reusing and extending anothers

constituent components).

Braubach et al.|[2006]] extend the modular model of [Busetta et al. [2000] to address
anumber of perceived issues. They use inclusion of initial beliefs to parameterize capa-
bility instances, and suggest an approach for dynamic modification of agent capability
sets. Capability loss is treated as unpreventable and irreversible — limiting response to
deciding whether to abort intended plans or reactively handle resultant failure. Simi-
larly, Padgham and Lambrix|[2005] offer a model focused upon modular reuse, which

limits failure handling to predefined recovery plans or dropping intentions entirely.

Chapter 8. CAMP-BDI Supporting Architecture 97

Padgham and Lambrix| [2005] extend the concept of accessible worlds (Rao and
Georgeft [1993]) to include capability-accessible worlds — where desires and inten-
tions are restricted to the goals an agent is capable of achieving. A somewhat analo-
gous approach (if we view capabilities as representing plan information) is suggested
by Waters et al.|[2014]]; although they do not explicitly define a capability concept, they
suggest an intention selection mechanism where agents favour execution of intended
plans with least coverag Agents maximize overall intention throughput, by select-
ing the lowest coverage intention in each reasoning cycle — recognizing such intentions

are less likely to be executable in future circumstances.

8.2.2 Capability Model

A capability c, for activity a, is defined with the following fields;
c=<ag,s, gla), pre(a), eff (a), conf(a, By)>

e ag: identifies the agent that performs a — this may be different from the agent
holding the capability object.

e s: a signature with name n and ¢ parameters (s = n(vy, ...,)); the combination
of s X ag can be used to uniquely identify a given c. For example, an activity to
move along road A — B would correspond to s=move(?from, ?to), where ?from
and ?fo denote variable names ground to become A and B.

e g(a): the goal achieved by (succesfully) performing a, whose terms can be
ground by s, defined as the sets of states which must be added (g™ (a)) and re-
moved (g~ (a))for g(a) to be achieved. Goal states are used to disambiguate the
defined purpose of an activity; i.e. performing move(A, B) always adds state
at(B), but with varying side-effects depending on whether ag is a road or aerial
vehicle. We assume multiple capabilities with the same s share a common g(a);
meaning s can be used to determine the purpose of an activity.

e pre(a): a set of preconditions (belief atoms), ground to a, that define the condi-
tions under which a can be achieved — use of ¢ to perform a is not guaranteed to
fail iff pre(a)e B, (where B, provides the — believed — execution context of a).

e ¢ff(a): the complete set of post-effects of successfully using ¢ to perform a,

ground using s. This can be considered equivalent to the combined set of add

ZThangarajah et al|[2012] defines the concept of coverage as representing the breadth of situations
in which a plan can be executed; a plan with high coverage has less constraints (i.e. ‘covers’ more
scenarios) than one with low coverage.

Chapter 8. CAMP-BDI Supporting Architecture 98

and delete effects of a STRIPS operator — we refer to states added as eff " (a) and
eff ~(a) respectively. As g(a) Ceff(a),the side-eﬁ‘ectﬂ of ¢ are eff (a) \ g(a).

e conf(a, By): a X B, — [0:1]; a “confidence” function estimating the scalar qual-
ity