
A Unified Approach to Planning Support in

Hierarchical Coalitions

Clauirton de Albuquerque Siebra
T

H
E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2006

Abstract
Hierarchical coalitions are organisations whose components carry out different plan-

ning and plan execution activities at each level. One of the principal aims of knowledge-

based tools for coalitions is to support such components so that they are able to work

synergically together, each of them accounting for part of the planning and execution

process.

The use of planning assistant agents is an appropriate option to provide this kind of

support. Agents can extend the human abilities and be customised for different plan-

ning activities performed along hierarchical decision-making levels. However, the use

of standard planning mechanisms is not sufficient to deal with the complexity of prob-

lems associated with coalition domains. In these domains, activities cannot consist

merely of simultaneous and coordinated individual actions, but they must also be de-

veloped on a collaborative framework that ensures an effective mutual support among

joint members.

This thesis analyses groups of requirements associated with the development of

joint human-agent planning agents, showing that they can be implemented, in a unified

way, via a constraint-based ontology and related functions. The constraints’ properties

have already been used by several planning approaches as an option to improve their

efficiency and expressiveness. This work demonstrates that such properties can also

be employed to implement collaborative concepts, which are kept transparent to the

planning mechanisms. Furthermore, the use of constraints provides several facilities

to the implementation of advanced mechanisms associated with the human interaction,

as also demonstrated here.

The practical aspects of such an approach are illustrated via a prototype that uses a

disaster relief domain as a test-bed. The role of this prototype is to show: (1) the im-

pact of collaborative concepts in the planning process; (2) the opportunities for human-

agent interaction, and; (3) the easy customisation of agents through the definition of

activity handlers and specific constraint managers. Finally, an additional domain asso-

ciated with space applications is also discussed so that we can testify the generality of

this approach.

iii

Acknowledgements
To be completed...

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Clauirton de Albuquerque Siebra)

v

Table of Contents

I Background 1

1 Introduction 3
1.1 Coalition Support Systems and their Challenges 3

1.2 Examples of Coalition Domain . 6

1.3 Problem Definition . 8

1.3.1 Assistant Agents and their Customisation 8

1.3.2 Principal Limitations of the Current Research 9

1.3.3 Specific Issues Addressed in this Thesis 11

1.4 Thesis Structure . 12

2 Abstract Architecture and Conceptualisation 15
2.1 Hierarchies as Structure for Coordination 16

2.2 Hierarchies and Planning . 20

2.3 Decision-Making Levels . 22

2.3.1 Strategic Level . 23

2.3.2 Operational Level . 24

2.3.3 Tactical Level . 24

2.4 A Formal Description for Hierarchical Coalitions 25

II Planning Threads 29

3 HTN and Constraint Posting Ideas for Multiagent Planning 31
3.1 Multiagent Planning and Hierarchies 31

3.2 Constraint and Planning . 34

vii

3.3 Constraint Posting Planners . 37

3.4 Requirements for Planning in Coalitions 40

3.4.1 Temporal Model . 40

3.4.2 Resource Model . 44

3.5 Summary . 46

4 Teamwork Theories for Collaborative Planning 49
4.1 Why is planning not enough? . 49

4.1.1 Case I: The Helicopters Attack Domain 50

4.1.2 Case II: The Guararapes Game 51

4.2 Principal Teamwork Proposals . 52

4.2.1 Joint Intentions . 52

4.2.2 SharedPlans . 56

4.2.3 Joint Responsibilities . 60

4.2.4 Planned Team Activities . 65

4.3 Comparative Discussion and Requirements 67

4.4 Summary . 70

5 Toward a Human-Agent Teamwork Model 73
5.1 Limitations of Teamwork for Human Interaction 73

5.2 The Adjustable Autonomy Approach 75

5.2.1 Agent-Based Approach . 76

5.2.2 User-Based Approach . 77

5.3 The Mixed-Initiative Approach . 79

5.4 Summary . 83

III Unifying Requirements 85

6 � I-N-C-A � : a Constraint-Based Ontology 87
6.1 Reasons to Use Ontologies for Multiagent Planning Representation . . 87

6.2 � I-N-C-A � and its Components . 88

6.2.1 Issues . 89

viii

6.2.2 Nodes (Activities) . 90

6.2.3 Constraints . 91

6.2.4 Annotations . 91

6.3 Representation of Plans via � I-N-C-A � 91

6.4 Summary . 95

7 A Unified Representation 97
7.1 Classifying Constraints . 97

7.2 Synthesis of Requirements . 100

7.2.1 Temporal Model . 100

7.2.2 Resource Model . 103

7.2.3 Commitment Function . 106

7.2.4 Report Function . 108

7.2.5 Mutual Support . 111

7.2.6 Agents’ Autonomy . 114

7.2.7 Users’ Restriction . 116

7.2.8 User Control . 117

7.2.9 Explanations Function . 119

7.3 Summary . 123

8 Customisation of Planning Mechanisms 125
8.1 Planning Architecture . 125

8.1.1 The Planning Process Abstraction 126

8.1.2 Activity Handlers and Constraint Managers 127

8.1.3 Planning Interfaces . 129

8.2 Building Plans . 130

8.3 The Customisation Design . 131

8.3.1 Planning Customisation for Strategic Agents 132

8.3.2 Planning Customisation for Operational Agents 134

8.3.3 Planning Customisation for Tactical Agents 135

8.4 Planning Tools . 136

8.5 Summary . 140

ix

IV Experiments, Results and Conclusion 141

9 I-Kobe: A Practical Application 143
9.1 Urban Disaster Relief Domains . 143

9.2 The RoboCup Rescue Simulator . 144

9.3 Application Architecture . 146

9.4 Evaluation and Results . 148

9.4.1 The Collaboration Aspect 148

9.4.2 The Human Interaction Aspect 162

9.5 Summary . 168

10 Potential Applications in Space-related Domains 171
10.1 Planning in Space Domain . 172

10.2 The Satellites’ Constellation Domain 174

10.3 Issues and Solutions . 176

10.4 Future Space Scenario . 179

10.5 Summary . 181

11 Final Remarks 183
11.1 Related Projects and Comparative Discussion 183

11.1.1 Coalition Agents eXperiment (CoAX) 183

11.1.2 CplanT System . 184

11.1.3 DIPART System . 184

11.1.4 Coordination of distributed Activities (CODA) System 185

11.1.5 DSIPE . 186

11.1.6 Anticipatory Planning Support System (APSS) 186

11.1.7 Advisable Planning (AP) System 187

11.2 Contributions . 188

11.3 Limitations and Problems . 189

11.3.1 Distributed Knowledge . 190

11.3.2 Human-Agent Interaction Mechanisms 191

11.4 Future Directions . 192

x

11.5 Conclusion . 194

A � I-N-C-A � Specification for Plans 197
A.1 Observations . 201

B � I-N-C-A � Proposed Extensions 203
B.1 Observations . 206

C Search Patterns as Standard Operating Procedures 207

D Disaster Evolution in RCR Simulator 209

E Initialisation File for Experiments in RCR Simulator 211

F Pseudocode in Java of the Commitment Constraint Manager 215

G Pseudocode in Java of the Mutual Support Constraint Manager 219

Bibliography 221

xi

List of Figures

1.1 Examples of coalition domains: (a) disaster relief, (b) military and (c)

space exploration domains. 7

1.2 Relation between planning requirements, representations and mecha-

nisms. 9

2.1 Teams of equals performing inside of decision-making levels. 19

2.2 Characterising a level via input, output, processes and required knowl-

edge. 21

2.3 Abstract idea of a three level hierarchical organisation. 22

2.4 Example of a hierarchical coalition description. 26

3.1 Example of disaster operation scenario. 41

3.2 Graphical representation to instants and intervals. 42

3.3 Example of reusable (a) and consumable (b) resources. 45

4.1 JPG commitments in a hierarchical organisation. 55

4.2 Result of a hierarchy, described via SharedPlans. 59

5.1 Spectrum of agent roles in human-agent interaction, showing degrees

of agent initiative (adapted from [Bradshaw et al., 2002]). 75

5.2 Example of part of a dialogue (from [Ferguson et al., 1996]). 80

5.3 Example of an O-Plan interface. 81

6.1 Example of hierarchical decomposition of activities. 90

6.2 First level of the � I-N-C-A � specification for plans. 92

6.3 Specification of issues. 93

xiii

6.4 Specification of nodes. 94

6.5 Specification of constraints. 94

7.1 Constraints classification according to their roles in the planning process. 98

7.2 � I-N-C-A � definition for world-state constraints. 99

7.3 � I-N-C-A � definition for temporal constraints. 101

7.4 Example of activities and their intervals in a hierarchical coalition. . . 102

7.5 � I-N-C-A � definition for resource constraints. 104

7.6 AgentCommitment function. 106

7.7 � I-N-C-A � definition for commitment constraints. 108

7.8 AgentCommitment function extended to support reports. 110

7.9 MutualSupport function. 112

7.10 � I-N-C-A � definition for autonomy constraints. 115

7.11 Scenario example for autonomy constraints. 115

7.12 � I-N-C-A � definition for preference constraints. 118

7.13 Explanation function. 121

8.1 The activity-oriented planning approach 126

8.2 Simplified example of an � I-N-C-A � plan. 130

8.3 Example of strategic level handler. 133

8.4 Example of operational level handler. 134

8.5 Example of tactical level handler. 135

8.6 I-X Process Panel and its 4 sub-panels. 136

8.7 I-Space tool. 138

8.8 I-Messenger tool. 138

8.9 I-Editor tool. 139

9.1 (a) Tectonic plates and (b) Chubu map (http://www.georesources.co.uk). 144

9.2 Application architecture. 146

9.3 Activity allocation for police forces during the experiment 1. 150

9.4 Activity allocation for police forces during the experiment 2. 153

9.5 I-P2 using commitments and reports. 155

9.6 Activity allocation for police forces during the experiment 3. 158

xiv

9.7 Diagrammatic notation for the activity Unload(?injured), where con-

ditions appear above the box, and the effects below. 161

9.8 Example of autonomy constraint (relaxed syntax representation). . . . 162

9.9 Possible redefinition for autonomy constraints. 163

9.10 Another possible redefinition for autonomy constraints. 164

9.11 Example explanation as an activity annotation. 165

10.1 Evolution of planning technology in space applications. 173

10.2 Perspective of a constellation. 174

10.3 Futuristic scenario for human mission displayed via two I-X viewers. . 179

11.1 Logo of the I-Rescue web page (http://i-rescue.org). 196

C.1 Six different search patterns (from [Joint Chiefs of Staff, 1996]). . . . 208

D.1 Four different moments of an experiment in the RoboCup Rescue Sim-

ulator. 209

xv

List of Tables

2.1 Strategic level features. 23

2.2 Operational level features. 24

2.3 Tactical level features. 25

4.1 Comparison of Teamwork Theories 71

7.1 Temporal relations. 101

7.2 Example of resource specification for a fire brigade. 105

7.3 Summary of the constraint definitions. 123

9.1 Simulation results for a coalition without collaborative/coordination

models. 149

9.2 Simulation results for a coalition using a coordination model. 152

9.3 Simulation results for a coalition using a coordination/collaboration

model. 157

xvii

Part I

Background

1

Chapter 1

Introduction

Coalitions are organisations whose members work together to solve mutual goals. This

chapter presents the research field of knowledge-based tools for coalition operations,

starting by characterising the kind of domain that coalition members normally operate.

The focus is on the performance of distributed planning and execution activities, and

the challenges that they raise to the development of coalition support systems. Based

on this discussion we define the specific problems that this thesis is concerned with

and the contributions of our approach in this direction. Finally an overview of the

remaining chapters is presented.

1.1 Coalition Support Systems and their Challenges

Coalition, from Latin coalescere (co-, together + alescere, to grow) is a type of or-

ganisation where joint members work together to solve mutual goals. The principal

feature of a coalition is the existence of a global goal, which motivates the activities of

all coalition members. However, normally such members are not directly involved in

the resolution of this goal, but in sub-tasks associated with it. For example, in a search

and rescue coalition that aims to evacuate an island (evacuate island is the global goal),

there are several sub-tasks (e.g., allocate helicopters, provide information about road

conditions, etc.) that must be performed to reach the global goal. The following real

scenario can be used as a basis to illustrate some common aspects of coalition domains.

Japan is a region prone to earthquakes due to the number of tectonic plates

3

4 Chapter 1. Introduction

that converge below the country’s surface. The Kobe Earthquake of Jan-
uary 1995 is an example of how disasters have tragic effects in urban ar-
eas. More than 6.500 civilians were killed, 80.000 houses fully collapsed
and the number of sufferers were more than 1 million. Several events can
happen during a large earthquake: buildings collapse, civilians are buried
under collapsed buildings, fires spread along the city, roads are blocked
causing problems for the evacuation of civilians and the work of rescue
teams.

The Kobe Earthquake has the typical features of a scenario that requires the de-

ployment of a coalition. Such features are:

� The nature of the problem demands a set of different abilities (fire brigades, res-

cue teams, paramedical professionals, police officers, military and civil defence

personnel, etc.) to accomplish different tasks (extinguish fire, find buried people,

take care of injured civilians, evacuation control and so on);

� Participants need to collaborate because they have limits in abilities and knowl-

edge. For example, ambulances require a clear route to rescue injured civilians.

If the route is blocked, ambulances must ask for help from truck units so that

they unblock the route. Participants also collaborate during the planning process,

each of them accounting for the part of the plan which it has more knowledge

about;

� The rescue organisation requires a structure of command and control that coordi-

nates the activities of participants. Coordination is also essential to avoid conflict

and improve the use of time and resources. A coordination process avoids, for

example, that three ambulances try to rescue the same injured civilian;

� The anywhere/anytime feature of disasters (such as earthquakes) requires that

coalitions be rapidly created and flexibly changed as circumstances alter;

� There is the problem of integrating heterogeneous systems belonging to multiple

organisations (hospitals, fire centres, etc.) with distinct doctrines and operational

rules. This problem is more complex if we consider international coalitions

where actions are misunderstood or lost in translation across cultural interfaces;

1.1. Coalition Support Systems and their Challenges 5

� The example of urban disaster relief domain relates to the area of Operations

Other Than War (OOTW) [Walker, 1999], which also involves peacekeeping,

peace-enforcing and non-combat evacuation domains. Such scenarios are good

motivations for our work.

Research in knowledge-based tools for coalition operations considers one or more

of these features during the development of theories and applications. The CoAX

Project [Allsopp et al., 2002], for example, demonstrates the agent-based paradigm as

a suitable way to deal with the technical issues of integrating different technologies for

coalition support.

Within the CoAX system, heterogeneous components are seen as a set of dis-

tributed agents that are able to share understanding and information among them-

selves through a computing infrastructure called the CoABS Grid [Schmorrow, 2002].

The CoAX project contemplates operations that need to rapidly integrate various non-

integrated and “come-as-you-are” systems, allowing capabilities to be assembled at

run-time. CoAX was demonstrated in the Binni Coalition Scenario [Rathmell, 1999],

a hypothetical scenario based on the Sudanese Plain (Africa) where a number of typ-

ical exercises for coalition forces can be simulated. During the CoAX demonstration

in Binni, several systems (Ariadne [Knoblock and Minton, 1998], I-X Process Panels

[Tate et al.,2002], etc.) were integrated to support an international war avoidance force

in this virtual region. Details about this demonstration can be seen in [CoAX, 2004].

In brief, the current topics covered by knowledge-based tools for coalition opera-

tions include1:

� Innovative theory and techniques for coalition formation and support to similar

virtual organisations;

� Applications and requirements for knowledge-based coalition planning and op-

erations management;

� Knowledge-based approaches to command and control, coalition logistics and

OOTW;
1Based on the proceedings of the Second International Conference on Knowledge Systems for Coali-

tion Operations.

6 Chapter 1. Introduction

� Multiagent systems and the concept of agency in coalitions;

� Tools and techniques for simulation and modelling of coalition operations;

� Security and maintenance of private information or knowledge;

� Autonomous vs. centrally managed coalition operations.

The International Conference on Knowledge Systems for Coalition Operations

(Edinburgh/1999, Toulouse/2002, Florida/2004) is the principal forum of discussion

for research in this area. The focus of the work are on Military OOTW domains, how-

ever the technology generated can be extended to any other kind of coalition domain.

1.2 Examples of Coalition Domain

A coalition can be deployed in any domain that contains the features discussed in Sec-

tion 1.1. During this thesis the practical examples are mostly associated with disaster

relief domains. However the examples can be easily mapped to others, such as military

and space exploration domains. Figures 1.1 illustrates such domains.

Urban disaster relief domains (Figure 1.1a) require the union of agents that support

activities related to search and rescue. The coalition instance in Figure 1.1a is based

on the RoboCup Rescue simulator [Kitano and Tadokoro, 2001], which we have used

during our evaluations (details in Chapter 9). Agents are represented by fire brigades,

ambulances, police forces, fire stations, ambulance centres, police offices and a search

and rescue command centre. The scenario represents a real part of Kobe City (Japan).

Figure 1.1b illustrates an example of a military domain where multinational forces

integrate abilities during operations of peacekeepers, such as in the fictional Binni sce-

nario. Agents are represented by the head country’s Department of Defence, local oper-

ational agents and several military units. Multinational coalitions are a typical example

of coalitions that require the development of shared representations reflecting different

cultures, doctrines and languages. Groups such as the Multinational Planning Aug-

mentation Team (MPAT) [MPAT, 2004a] work in this direction, trying to develop and

become familiar with Standard Operating Procedures (SOP) [MPAT, 2004b], which

represent well-founded and tried plans to be applied in specific situations.

1.2. Examples of Coalition Domain 7

Finally Figure 1.1c illustrates a futuristic scenario where robots and astronauts col-

laboratively work in interplanetary missions, such as a Mars Mission. Agents are rep-

resented by the Earth Mission Control Centre, Mars Habitats and units of astronauts

and robots. A real example in this context is the Aurora Project, a long-term effort of

the European Space Agency (ESA) that aims to send a team like that to Moon in 2024

and to Mars in 2033.

These domains also illustrate the nature of coalition structures. We can note that

there are different levels of decision-making where components deal with different

activities and knowledge. These levels compose a hierarchical structure, which has an

important influence associated with the development of planning processes. Chapter 2

discusses in detail aspects associated with hierarchies.

Figure 1.1: Examples of coalition domains: (a) disaster relief, (b) military and (c) space

exploration domains.

8 Chapter 1. Introduction

1.3 Problem Definition

This thesis, in particular, is concerned with the specification of a framework to the

development of hierarchical coalition support systems. Our main idea is to consider

requirements associated with the implementation of multiagent planning mechanisms

[Sycara, 1998] because they can bring several advantages to coalition operations such

as prediction of failures, resource allocation, conflict identification and so on. However

this framework must also be able to support other important requirements for coalition

systems, related to collaborative theories and human-agent interaction. The problem

is that the requirements that we want to consider are investigated by different research

areas rather than in a unified way. Consequently the solutions are generally incompat-

ibles or hard to integrate and there is a lack in the current literature about frameworks

that discuss this issue.

This section discusses the relation between requirements, planning representation

and mechanisms, highlighting the limitations of systems that do not consider all the

requirements in a unified way.

1.3.1 Assistant Agents and their Customisation

We are delivering planning mechanisms to users via assistant agents. In this approach

each participant has an agent that supports his/her tasks, providing for example, plan-

ning information and options to carry out activities. This approach is powerful because

while users have the ability to take decisions based on their past-experience (case-base

reasoning), agents are able to generate and compare a significant number of options,

showing both positive and negative points of such options. Projects such as O-Plan

[Tate, 1997] and TRAINS [Ferguson et al., 1996] explore this fact, providing planning

agents that interact in a mixed-initiative style with users during the development of a

solution, such as a plan.

As introduced in the last section, the coalitions that we are working with are typ-

ically based on a hierarchical structure. Coalition members placed in levels of this

hierarchy perform different and complementary planning activities. For example, the

members located at the top level of the coalition presented in Figure 1.1a (search and

1.3. Problem Definition 9

rescue command centre) will account for directions and high level plans. Their plan-

ning perspective is very unlike the perspective of the hierarchical bottom members

(fire brigades, police forces and ambulances), which are the members that are, in fact,

executing the plan in the environment.

Considering this fact, agents that support coalition members at different levels of

decision-making must be customised so that they are able to support the planning activ-

ities carried out at each level. From a practical perspective, this customisation means

that agents must provide activity handlers (e.g. pathfinder, load balancing, etc.) to

support a specific set of activities (Figure 1.2). Such handlers work on a planning rep-

resentation, which expresses, for example, notions of environment, time, resources,

priority, activity, state, etc.

Figure 1.2: Relation between planning requirements, representations and mechanisms.

However, when agents are performing as part of a coalition, the complexity of the

planning process increases due to the number of requirements that must be consid-

ered. Requirements associated with collaboration, distributed planning, coordination

and user interaction are interrelated and the design of such one can influence others.

Thus the implementation of individual solutions for each set of requirements is not a

good practise. Part II of this thesis analyses in details such requirements and their role

inside the planning representation.

1.3.2 Principal Limitations of the Current Research

Consider the Multiagent Planning Architecture (MPA) [Wilkins and Myers, 1998], for

example. MPA could be an option to coalition support systems because it is a frame-

work for integrating diverse technologies into a system capable of solving problems

10 Chapter 1. Introduction

that cannot be solved by individual systems. Furthermore MPA is distinguished from

other agent architectures [Moran et al., 1997] in its emphasis on large-scale planning

applications, such as coalition operations.

MPA’s agents are organised around the concept of planning cells. Each cell has

a manager agent that accounts for composing the planning cell from a pool of avail-

able agents and distributing the tasks among the selected planner agents. The shared

information, generated during the planning process, is kept in a plan server (central

repository) and any agent of the cell can access it. Using this approach MPA inte-

grates several separated stand-alone software systems (OPIS [Smith, 1994], Tachyon

[Arthur and Stillman, 1992] and SIPE-2 [Wilkins et al., 1995]) that cooperate on large-

scale problems.

MPA is an interesting approach to the integration of different planning solutions.

However this integration presents limits for coalition support systems development, as

any other approach that tries to incorporate existent tools and capabilities into a simple

framework. The principal reason, as discussed in [Grosz, 1996], is that collaboration

between different problem-solving components must be designed into systems from the

start. It cannot be patched on. The problem here is how to incorporate collaborative

requirements into a distributed planning process, so that the final joint plan is not just a

sum of individual plans. Chapter 4 analyses this problem with more details, discussing

some approaches to deal with it.

Considering that one of the most important functions of knowledge-based tools for

coalitions is to support human users, we also need to understand how they interact in

the collaborative planning process. Note that we are not considering aspects of inter-

face that could improve the human-agent interaction [Pegram et al., 1999]. Our focus

is on the study of the additional requirements that the human presence brings to the

development of collaborative planning agents. This important issue for coalition sys-

tems is not well explored by noteworthy collaboration theories, mainly because such

theories only consider agent-agent interactions rather than human-agent interactions

[Tambe, 2003]. Chapter 5 discusses in details this problem.

1.3. Problem Definition 11

1.3.3 Specific Issues Addressed in this Thesis

The principal claim of this thesis is that we can integrate distinct groups of require-

ments (multiagent planning, collaboration and human interaction), associated with the

development of hierarchical coalition support agents, via a unified framework pro-

vided by a constraint-based ontology and related functions. We argue and demonstrate

that such framework brings several advantages for the agents’ development, such as:

well-known environment to represent and build plans; transparent way to incorporate

collaborative concepts, which complement the planning abilities; opportunities for the

development of more advanced human-agent mechanisms; and support to an easy cus-

tomisation of activities handlers.

Based on this claim, we can formulate specific issues that lead to the development

of this thesis. Such issues are:

� Formalisation of hierarchical coalitions (members, relations and rules among

them) so that we can use the structural features of this kind of organisation for

the development of command and control mechanisms (coordination);

� Investigation and categorisation of requirements that have influences on the de-

velopment of models and processes used by agents operating in hierarchical

structures;

� Specification of a unified representation of planning and collaboration that en-

ables an easy customisation of activity handlers and an appropriate basis for the

incorporation of requirements associated with human-agent interaction;

� Development of practical applications that demonstrate the real advantages of

this approach and also stress its generality.

The development of collaborative activities into a hierarchical way, as carried out

in this work, receives some criticisms [Grosz, 1996, Nwana et al., 1996] due mainly

to the master-servant relationship between members. The question is if consensus

about “what to do” and “who does what” must be reached via negotiation between a

team of equals, or if they can be simply imposed to members of a team. Hierarchical

12 Chapter 1. Introduction

organisations are closer to this latter option. In this way, it is important to show that

the notion of collaboration is not lost inside a hierarchical organisation but, on the

contrary, it can take advantages of several features of this structure.

The final outcome of this thesis is a unified approach that enables the configura-

tion of coalition support systems for different kinds of domains. As collaboration has

been designed as part of the planning process, we avoid the specification of additional

domain-specific plans, which could be needed to ensure team collaboration. Note that

the principal theories that have investigated the idea of collaboration only consider

their approaches for multiagent systems. We advance this idea by looking upon the

influences of human interaction during the collaborative process of agents. The new

requirements associated with such human influences are also considered together with

the planning and collaboration requirements, keeping the uniform representational fea-

ture of this approach.

1.4 Thesis Structure

The remainder of this thesis is organised as follows: Chapter 2 introduces the hierar-

chical architecture that we are using to organise the coalition components (humans and

respective agents), showing how planning activities are performed along its levels. The

discussion mainly considers coalitions composed of three levels of decision-making

(strategic, operational and tactical), showing that components into different levels will

typically have different perspectives of the coalition plan as well as different interests

and objectives. Then we present a set of concepts associated with this architecture that

will be used during the dissertation.

Part II investigates which are the requirements for planning development in coali-

tion support systems. To do this, Chapter 3 explores the standard planning require-

ments, considering the Hierarchical Task Network (HTN) [Erol et al., 1994] the nat-

ural approach to perform planning activities in hierarchical structures, together with

the use of constraint posting techniques, which complement the abilities of HTN plan-

ning. Chapter 4 shows that the simple use of planning does not ensure an effective

collaboration among members of a coalition. Then we analyse four important theories

1.4. Thesis Structure 13

associated with teamwork, which provide a fundamental set of requirements to guide

the extension of the planning approach. Chapter 5 considers influences of human users

on the collaborative planning process, going beyond the teamwork theories, which are

only based on agent-agent (multiagent) interactions. In brief, the principal idea of these

three chapters is to generate a robust set of requirements that lead the development of

a hierarchical organisation of assistant agents for coalition members.

Part III details our unified representation that embodies all the requirements previ-

ously discussed via constraint-based models and operations on them. Chapter 6 dis-

cusses � I-N-C-A � [Tate, 2003], the constraint-based general-purpose ontology that

we are using and extending to represent the models. Chapter 7 describes the specifica-

tion of the models and their properties, which are based on the requirements discussed

in Part II of this thesis. Chapter 8 presents the process of planning and execution,

highlighting the development and use of activity handlers and constraint managers,

and how they ensure the satisfaction of the coalition requirements.

Finally Part IV discusses the practical perspective of this thesis, together with its

conclusions and work directions. Then, Chapter 9 describes results of this approach

when applied to a disaster relief domain based on the RoboCup Rescue Simulator for

the Kobe earthquake. Chapter 10 specifies the Satellite Constellation domain, whose

principal objective is to demonstrate the generality of our approach when applied to a

completely different kind of scenario. Chapter 11 concludes our dissertation by high-

lighting the contributions, final conclusions and possible extensions of the work de-

scribed in this thesis.

Chapter 2

Abstract Architecture and

Conceptualisation

This thesis considers the use of hierarchies as an option to organise members of a

coalition. Hierarchies have a long history of being used as a coordination (command

and control) structure, such as in military organisations. One of the principal advan-

tages of hierarchies is their support for the divide-and-conquer concept. Furthermore,

using hierarchies we are able to specify several levels of decision-making rationale

where participants perform different and complementary activities, dealing with spe-

cific tasks and information.

This chapter starts by justifying the choice of hierarchy as an organisational struc-

ture for coalition coordination, showing its advantages and comparing it with other

possible alternatives. Then we discuss the influences of this kind of organisation on

the planning process. Based on this discussion we introduce a particular hierarchical

instance, composed of three decision-making levels: strategic, operational and tacti-

cal. The idea here is to characterise each level in terms of the processes that it needs

to support, and show how the planning works along this hierarchy. Finally we present

a formal description of hierarchies and additional concepts, which are used during the

discussions in the following chapters.

15

16 Chapter 2. Abstract Architecture and Conceptualisation

2.1 Hierarchies as Structure for Coordination

Coordination can be defined as a process in which agents engage in order to ensure

their team acts in a coherent way, avoiding conflicts with one another and behav-

ing as a unit. In multiagent systems coordination is treated as a sophisticated pat-

tern of interaction, together with cooperation and negotiation [Jennings et al., 1998],

and several approaches have been proposed such as the use of blackboard systems

[Hayes-Roth, 1985] or the contract net protocol [Smith, 1988].

There are four principal reasons why the actions of multiple coalition members

need to be coordinated [Jennings, 1990]:

� There are dependencies between their actions, either because local decisions

made by one member have some impact on the decisions of other members (e.g.,

a fire brigade wants to use a road, but the police force is blocking such road)

or because the possibility of harmful interactions among members (e.g., two

firemen may attempt to use the same fire extinguisher);

� There is a need to meet global constraints. For example, astronauts’ space-walk

missions must be planned respecting the oxygen reserves of the station;

� Rather than members possessing a global view of the whole coalition, each of

them only has local views, goals and knowledge which may conflict with others;

� Generally, no one individual member has sufficient information, competence or

resources to solve an entire problem. A simple task of rescuing a buried civilian,

for example, can involve several members to lift heavy objects.

Hierarchies are a well-known and widely used structure for coordinating members

of a team. Military organisations are the most common examples of such a hierarchical

arrangement. Since ancient times, mainly represented by the Roman Legions, until the

current time, military units have been using hierarchies as the way to improve the

efficiency of command and control mechanisms.

The use of hierarchies facilitates the deployment of coordination mechanisms be-

cause such mechanisms can exploit the hierarchical organisational structure. This is

2.1. Hierarchies as Structure for Coordination 17

because such an organisation implicitly defines the agents responsibilities, capabilities,

connectivity and control flow. In addition hierarchies also have the following advan-

tages:

� They are compatible with the divide-and-conquer idea. The process of splitting

a problem into smaller subproblems is repeated at each level;

� Hierarchical levels may deal with different granularities of knowledge so that

each level does not need to have all the details about the problem;

� It is possible to enclose problems to be dealt with by local subteams, instead of

spreading it over the coalition.

On the other hand, there are also critics on the use of hierarchies to achieve coordi-

nation in teams [Nwana et al., 1996]. First, superior members may exert much control

over the subordinates’ actions and hence their deliberative process. This fact mitigates

against some benefits of Distributed AI (DAI), such as concurrency and minimal bot-

tlenecks. However this limitation can be bypassed/minimised if we consider that the

role of upper members is only to say WHAT subordinates members must do, rather

than HOW they must do.

Second, the approach presumes that at least one agent has a global view of the en-

tire coalition, in terms of plans, conditions and capabilities. However this limitation

can be relaxed if we consider that each member has a complete view of itself and its

roles, but only a partial view of others. An instance of this approach is implemented

by the DSIPE distributed planning framework [DesJardins and Wolverton, 1999]. In

DSIPE, each agent has a complete model of its own subplan and a partial model of

subplans being developed by other agents. Section 7.2.3 returns to this problem, pre-

senting a method to deal with this limitation.

Finally, designers should ensure that the hierarchical division is of sufficient gran-

ularity to compensate for the overheads which result from goal distribution and com-

munication. The problem is that the distribution of small tasks can be more expensive

that performing them in a single location [Durfee et al., 1987]. This is not an exclusive

limitation of hierarchies, but of any distributed problem solving organisation. Section

18 Chapter 2. Abstract Architecture and Conceptualisation

2.3 shows that, in terms of logical arrangement, an example of a hierarchical organi-

sation may be seen as a three-level structure, where each level has a well defined role

associated with the planning process. We argue that such a well-defined division can

help the process of goal distribution.

Considering these features, we can say that the use of hierarchies is a suitable

option to support coordination in coalitions. Other possible approaches to coalition

coordination could be: the blackboard architecture, contract net protocol assuming

a decentralised market structure, or negotiation. However each of these approaches

present disadvantages for a coalition’s coordination.

In the blackboard schema members post to and read from a general blackboard. In

this way there is not a direct member-to-member communication, resulting in a dan-

gerous bottleneck. Differently, each member of a hierarchy can directly communicate

with its superior or subordinates without the need of an intermediary component.

In a contract net protocol a manager announces a task to a set of contractors. Each

contractor bids for the task and the manager awards the task to the contractor with the

best bid. This approach is mainly limited because it does not presume members with

contradictory demands. So it is not possible to detect or resolve conflicts. In the most

simplistic form, hierarchies can ultimately detect and solve conflicts when superior

members merge the solutions of their subordinates.

Finally coordination also can be achieved via negotiation [Sycara, 1989]. Nego-

tiation is a type of interaction between two or more components that aims to reach a

mutually accepted agreement on some issue. Despite the fact that negotiation is present

in a significant part of the coordination research, it is a complex and time-consuming

kind of interaction. Therefore, in domains that are time-critical, such as disaster re-

lief operations, it could be appropriate to avoid such interaction. Note that we are

interested in systems that support coalitions during the operation itself, rather than in

a pre-operation time where negotiation processes could be in fact necessary. Further-

more, the members of a coalition are not self-interested. Thus they are not looking for

taking advantage of some situation.

Architectures that are not based on a hierarchical structure find support in some

works of collaborative system. The following scenario [Grosz, 1996], for example,

2.1. Hierarchies as Structure for Coordination 19

is used to justify that the use of a superior/subordinate relationship is not appropriate

during processes of collaboration:

In a health care scenario, a patient arrives at the hospital with problems
affecting his heart and lungs. Three specialists are needed, each provid-
ing different expertise needed for curing the patient. The cardiologist and
pulmonary specialist must agree on a plan of action for reducing the water
in the patient’s lungs, and the infectious disease and pulmonary specialists
must plan together the kind and amount of antibiotic to prescribe.

This scenario represents a team of equals because no single doctor is the manager,

telling the others who does what. However scenarios like that are not in accordance

with the coalition features, where the several degrees of decision that must be taken do

not require the involvement of an entire coalition. For example, the fire propagation

experts (team that accounts for predicting the fire evolution) do not need to interact

with fire brigades to take decisions about important positions to be protected during a

disaster relief operation. In fact, one of the interesting advantages of hierarchies, as

commented early, is this power of dividing logical levels of decision-making, avoiding

the need for members to deal with knowledge that is not important for them. However,

we must note that the kind of decision taken by teams of equals could be important

inside of each level. Figure 2.1 illustrates this scenario.

Figure 2.1: Teams of equals performing inside of decision-making levels.

According to the figure, teams of equals could be organised inside each level so

that they agree on solutions before sending commands to down levels. Such an idea is

20 Chapter 2. Abstract Architecture and Conceptualisation

also important when a member has two or more superiors. As each superior accounts

for generating commands, two or more superiors will probably be a source of conflicts

because they can have antagonistic goals. In this way, superiors must reach a mutual

agreement before interacting with their subordinates.

2.2 Hierarchies and Planning

The planning process along hierarchies is comprised of individual plan steps. At the

upper or more abstract levels, each plan step achieves more effects than a plan step at a

lower level. The bottom of a hierarchy is composed of primitive plan steps, which are

the activities that an agent can directly execute.

The simplest way of performing planning along hierarchies is to consider a conflict-

free context. In this case, subplans can be independently created at lower levels and,

after that, directly merged at upper levels. However this kind of context is not common

in real domains.

To bypass this problem, planning in hierarchies follows a centralised or a dis-

tributed approach. In the centralised approach [Georgeff, 1983], superior agents re-

ceive all partial plans from their subordinates, analysing them in order to identify po-

tential inconsistencies and conflicting interactions. Then, superior members attempt to

modify these partial plans and combine them into a plan where conflicting interactions

are eliminated.

Conversely, in the distributed approach the idea is to provide each member of the

hierarchy with a model of the other members’ plans, such as in the DSIPE system

[DesJardins and Wolverton, 1999]. Such members must communicate in order to build

and update their individual plans and their models of others’ until all conflicts are

removed. Sections 7.2.3 and 7.2.4 show that our work takes a middle-ground approach

between these two options.

Independently of the approach used to perform planning processes along hierar-

chies, we must consider that coalition members, placed at different hierarchical levels,

deal with different activities to create their individual (sub)plans. In this way, there is

a need for customising the planning support according to such activities. A first step in

2.2. Hierarchies and Planning 21

this direction is to characterise the kind of activities carried out at these levels. An op-

tion is to analyse each level via its inputs, outputs, processes and knowledge required

by such processes (Figure 2.2).

Figure 2.2: Characterising a level via input, output, processes and required knowledge.

The elements of the figure can be defined as below:

� Inputs: are tasks in the form of commands, goals or activities that a level receives

and needs to deliberate on, so that some kind of feedback can be generated.

Usually inputs are the triggers of processes;

� Outputs: are the results of processes, representing primitive activities or requests

for the performance of complementary activities;

� Knowledge: are the set of facts that a level needs to support its processes. Gen-

erally levels have a pre-defined knowledge about their domain, however this

knowledge evolves with the perception of new facts via interaction with both

environment and other levels;

� Planning processes: are the reasoning mechanisms that act according to inputs

and use the level’s knowledge to produce some kind of output. In this way,

processes are strongly related to the inputs (tasks) that the level must deal with.

We must notice that this analysis supports the design of organisations because it

helps in identifying planning processes that are strongly related. Thus such processes

22 Chapter 2. Abstract Architecture and Conceptualisation

can be grouped in the same level rather than being broken between two or more levels.

As discussed before, the distribution of trivial or small tasks can be more expensive

than performing them in a single location. In this way, the organisational design needs

to ensure that subordinates are of sufficient granularity to compensate for the overheads

which result from the distribution of activities.

2.3 Decision-Making Levels

Based on Figure 2.2, this section analyses a particular instance of a hierarchical organ-

isation, which identifies three levels of decision-making (Figure 2.3): strategic, oper-

ational and tactical1. This hierarchical arrangement is a common practise in military

models of command and control [Killion, 2000, Ferguson, 2004, U.S Marine, 1994]

and consistent with knowledge engineering work2. Furthermore, this section also high-

lights the need of customising planning processes at each of these levels.

Figure 2.3: Abstract idea of a three level hierarchical organisation.

1Note that this order, which is used in military domains, is often changed to “strategic, tactical and
operational” in business domains.

2KADS methodology [Schreiber et al., 1999], for example, separates the different “task types” (di-
agnosis, interpretation, monitoring, etc.) into three classes: analysis, synthesis and modification tasks.

2.3. Decision-Making Levels 23

2.3.1 Strategic Level

The strategic level accounts for developing plans in a high level of abstraction, or

“what-to-do” plans. In other words, the level specifies what must be done, but it does

not give details about how something must be done. In this way, the principal tasks

are related to analysis, directions and comparison of courses of actions. Table 2.1

summarises the features of this level.

Feature Description

Input Generally a complex and abstract task

Output Requests for the performance/filling of “what-to-do” plans

Time Long-term goals

Influence The entire coalition is affected by its decisions

Knowledge Global, diversified and non-technical

Processes Problem analysis, definition of directions and priorities

Table 2.1: Strategic level features.

Considering a disaster relief domain (Figure 1.1a), the strategic level could be rep-

resented by the Search and Rescue Command Centre (SRCC). Just after an earthquake,

the SRCC receives the tasks of rescuing injured civilians and decreasing the damages

in the city. Analysing the problem, SRCC decides to divide the city into regions and set

priorities for each of them (some regions can be more critical than others because they

have a higher probability of having buried civilians, historic value such as museums

and monuments, or present risks of increasing the catastrophe such as deposits of fuel

and explosives).

SRCC can also analyse global information, such as speed and direction of wind

to predict the fire behaviour and generate tasks to avoid future causalities. Possible

outcomes of its deliberative process are: avoid the fire spread to region x, look for

buried civilians in buildings of region y, keep unblocked the road z (because it is an

important path to access resources), and so on. Note that such outcomes say what must

be done without references on how they must be done. Furthermore they are long term

goals, which can affect the entire coalition.

24 Chapter 2. Abstract Architecture and Conceptualisation

2.3.2 Operational Level

The operational level accounts for refining the plans produced at the strategic level,

mainly providing the logistical resources for them via processes of resource scheduling

and load balancing. Thus, knowledge about the operation environment is more detailed

and limited coalition groups will be affected by the decisions. Table 2.2 summarises

the features of this level.

Feature Description

Input What-to-do plans and possible restrictions on their performance

Output Requests for the performance of specific tasks

Time Mid-term goals

Influence One or more sub-coalitions are affected by their decisions

Knowledge More specialised, mainly on the operation environment and resources

Processes Synthesis of plans, resource allocation, load balancing, etc.

Table 2.2: Operational level features.

The operational level could be composed of local units such as fire stations and

hospitals. When such components receive subgoals from the strategic level, they start

by checking the necessary conditions and options to reach the subgoals, according to

their available resources. In this way, operational components are taken decisions at a

different level because they are thinking in how the activities can be carried out.

Each operational unit has the function of employing its subordinates to attain spe-

cific goals through the design, organisation, integration and conduct of sub-operations.

For that, each unit has its own skills and abilities so that its knowledge is more spe-

cialised in the field in which it is operating. This level also pays a significant attention

in the relation resource/time. This means an efficient and balanced use of resources.

Thus, processes such as automatic task allocation and load balancing are very useful.

2.3.3 Tactical Level

The tactical level is where the execution of operations actually takes place. For this

reason the degree of knowledge of tactical components is very specialised on the do-

2.4. A Formal Description for Hierarchical Coalitions 25

main that they are operating, and their decisions are generally taken on sets of atomic

activities. As the components are performing inside a dynamic and unpredicted envi-

ronment, their reactive capabilities and speed of response are very important so that

the use of pre-defined procedures could be useful alternative. The output of this level

is a set of atomic activities that are commonly executed by the own components. Table

2.3 summarises the tactical level features.

Feature Description

Input Specific tasks and possible restrictions on their performance

Output Primitive operations (atomic activities)

Time Short-term goals

Influence Decisions ideally should not have influences on other levels

Knowledge Very specialised

Processes Pathfinder, patrolling, reactive procedures, knowledge sharing, etc.

Table 2.3: Tactical level features.

The tactical level, in a disaster relief operation, could be arranged by fire brigades,

paramedics and police forces for example. For the performance of their tasks, these

components could need specific intelligent processes such as a pathfinder, which looks

for best routes to specific destinations, or patrolling mechanisms to trace routes that

efficiently cover search areas. The tactical level is also the principal source of new

information to the coalition because its components are in fact moving through the

environment. In this way they are more propitious to discover changes and new facts

that must be shared among their partners.

2.4 A Formal Description for Hierarchical Coalitions

The definition of hierarchies as organisational structures for coalitions is the first step

toward the definition of a joint human-agent planning framework. However, a more

formal description of such structures is important to be used as a basis for future dis-

cussions, so that related concepts can be introduced on a same perspective. Figure 2.4

illustrates the idea of a general hierarchy.

26 Chapter 2. Abstract Architecture and Conceptualisation

Figure 2.4: Example of a hierarchical coalition description.

Components (agents) that form a hierarchy are represented by µi, where i is an

integer value from 1 to n (total number of components). We can define the following

functions on hierarchical components:

� LEVEL(µi), returns the level of µi. The notion of levels is introduced through

the idea that components at the same depth belong to the same hierarchical level;

� RELATION(µi,µ j), returns the relation (e.g., superior or peer) of µi regarding µ j.

If such components do not have a relationship, the function returns null.

Using such functions we can deduce some initial properties. First, considering two

different components µi and µ j, if µi is peer of µ j, then they are at the same level.

However the contrary is not true because components in the same level can have a null

relationship. Such a property can be expressed as:

� µi � µ j � i �� j �
	 RELAT ION � µi � µ j � � peer
� LEV EL � µi � � LEV EL � µ j �

In the same way we can deduce properties for the cases where µi has a superior

or a subordinate relation regarding µ j. Note that in such cases µi and µ j have to be in

adjacent levels (we assume the highest level as level 1).

2.4. A Formal Description for Hierarchical Coalitions 27

� µi � µ j � i �� j ��	 RELAT ION � µi � µ j � � superior
� LEV EL � µ j ��
 LEV EL � µi � � 1

� µi � µ j � i �� j ��	 RELAT ION � µi � µ j � � subordinate
� LEV EL � µi ��
 LEV EL � µ j � � 1

We are assuming that components can only set relations with components of their

level or adjacent levels. Thus, the difference between their levels is 0 or 1:

� µi � µ j � i �� j �
	 RELAT ION � µi � µ j ���� Null
� � LEV EL � µi ��
 LEV EL � µ j � ��� 1

Relationships inside a coalition are always between two components. Each rela-

tionship also defines a communication channel between the components so that they

can exchange useful messages for the performance of their plans. Messages can be rep-

resented by the tuple � µi,µ j � content � , where µi and µ j are the message sender and

receiver respectively, and content could be instances of commands, goals, activities,

feedback, facts and so on. The kind of relationship between µ1 and µ2 has influence on

this communication, enabling or avoiding the sending of some types of message. For

example, components that have a peer-peer relationship may not be able to exchange

commands between them.

An option to describe a hierarchical coalition Θ is to consider Θ a composition of

sub-coalitions. To this end, we can use the tuple � µi � S � 1 ��� m � � , where µi is a superior

agent and S � 1 ��� m � is a set of subordinates that can be formed by components (µ � 1 ��� m �) or

sub-coalitions (Θ � 1 ��� m �). In this last case, each Θi can recursively be decomposed in

their components or sub-coalitions. For example, to represent the hierarchy of Figure

2.4 we have:

Θ = � µ1 ��� Θ1 � Θ2 � Θn � �
= � µ1 ��� � µ2 ��� µ3 � µ4 � µ5 � � � � µ6 ��� Θ3 � Θ4 � � � � µm ����������� � � �
= � µ1 ��� � µ2 ��� µ3 � µ4 � µ5 � � � � µ6 ��� � µ7 ��� µ9 � µ10 � � � � µ8 ����������� � � � � � µm ��� ������� � � �
Another practical way to represent sub-coalitions is to use the concept of interac-

tion zones. Each interaction zone Φi defines a group of agents that present a direct

28 Chapter 2. Abstract Architecture and Conceptualisation

communication between them. For example, in Figure 2.4 we could define six inter-

action zones with their respective agents: Φ1
�"! µ1 � µ2 � µ6 � µm �$# , Φ2

�"! µ2 � µ3 � µ4 � µ5 # ,

Φ3
�%! µ6 � µ7 � µ8 # , Φ4

�%! µ7 � µ9 � µ10 # , Φ5
�&! µ8 �$������# and Φ6

�'! µm �(������# . Note that the

sets of agents in each zone Φi are always represented by one superior and one or more

subordinates. In this way, the tuple � µi � S � 1 ��� m � � can be applied to represent such

sets as sub-coalitions. Considering this idea, we have the following sub-coalitions for

each interaction zone: ΘΦ1
� � µ1 ��� µ2 � µ6 � µm � � , ΘΦ2

� � µ2 ��� µ3 � µ4 � µ5 � � , ΘΦ3
� �

µ6 ��� µ7 � µ8 � � , ΘΦ4
� � µ7 ��� µ9 � µ10 � � , ΘΦ5

� � µ8 ����������� � and ΘΦ6
� � µm ����������� � . In

brief, a general rule for a coalition Θ � � µi � S � 1 ��� m � � is:

IF S � 1 ��� m � � µ � 1 ��� m � � ΘΦ
� � µi ��� µ1 �(������� µm � �

IF S � 1 ��� m � � Θ � 1 ��� m � � ΘΦ
� � µi ��� Superior � Θ1 � �$������� Superior � Θm � � �

Using such a definition we can consider that a coalition has a number of interrelated

sub-coalitions that are themselves hierarchically structured. Each sub-coalition is a

stable intermediate form and can most of the time act without help from the complex

structure. At this point we can apply the following function to return plans from a

(sub)coalition:

� PLAN(Θi,p), returns the (sub)plan of a (sub)coalition Θi to a proposition p. The

same function can be applied to return the plan of a component µi.

Plans are intricately linked to the idea of levels so that components on the same

level share a common degree of plan abstraction. The following property can be de-

fined to relate plans of an upper level component with the plans of their subordinates:

� � µ � S � 1 ��� m � � PLAN � µ � p � �) m
i * 1 PLAN � Si � pi �

This property is important to corroborate, for example, the idea of enclosing plan-

ning problems inside the sub-coalition where they were generated. In this way, if

PLAN(� µ � s � 1 ��� m � � ,p) has a problem, µ must deal with such a problem together with

its subordinates S � 1 ��� m � . Only if this is not possible, µ will report the problem to its

superior.

Part II

Planning Threads

29

Chapter 3

HTN and Constraint Posting Ideas for

Multiagent Planning

Part II of this thesis investigates and lists the requirements for plan development in

coalition support systems [Siebra, 2005]. The discussion is divided into three threads:

implementation of a multiagent planning framework, extensions of this framework to

support collaborative activities and involvement of humans during collaborative plan-

ning processes.

This chapter, in particular, discusses the requirements for multiagent planning, us-

ing the Hierarchical Task Network (HTN) and constraint posting approaches as the-

oretical solutions. Then we justify the use of such ideas, considering the hierarchical

organisation described in the last chapter, showing how they can be applied to describe

the temporal and resource planning models, which form the basis to face fundamental

distributed planning problems such as conflict resolution and task allocation.

3.1 Multiagent Planning and Hierarchies

The idea behind multiagent planning (MAP) [Sycara, 1998] is to extend classical AI

planning to domains where several agents can plan and act together. While planning

for a single agent is a process of constructing a sequence of actions considering only

goals, capabilities and restrictions of the environment; planning in a MAS domain also

considers the restrictions that the other agent’s activities place on an agent’s course of

31

32 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

actions.

In a MAP domain, each agent is, in fact, a planning agent rather than a simple

executor of assigned pre-planned activities. This feature brings several advantages

to the planning process as a whole: reduced dependence on centralised control and

avoidance of a single point of failure; robust team performance in the face of unreliable,

limited-range communication (agents have more autonomy); local planning resources

used to solve local problems without reliance on higher levels; and high-level planning

and communication only necessary when local planning fails.

However, to produce a coherent plan, agents must be able to recognise subgoal

interactions so that they can avoid or resolve them. This problem is known as conflict

resolution and there are several approaches to face it. Examples are:

� Inclusion of a static agent to recognise and resolve subplans interactions. In this

approach [Rao and Georgeff, 1991], agents send their plans to this static agent,

and it examines such plans looking for critical regions where, for example, con-

tention for resources could cause them to fail. Then the static agent inserts syn-

chronisation messages so that one agent would wait until the resource is released

by another agent;

� Use of the partial global planning framework [Decker and Lesser, 1995], where

interactions among agents take the form of communicating plans and goals at

an appropriate level of abstraction. Such communications enable a receiving

agent to form expectations about the future behaviour of a sending agent, thus

improving agent predictability and network coherence.

Together with the development of new methods and frameworks, as exemplified

above, there is a trend in MAP research to use the know-how of classical AI plan-

ning. In this way, several works have been investigating ways to extend or integrate

the planning technology for single agents. For example, the Multiagent Planning Lan-

guage (MAPL) [Brenner, 2003] extends the Planning Domain Definition Language

(PDDL) [McDermott et al., 1998, Fox and Long, 2001] so that it supports specific fea-

tures of planning in multiagent domain such as concurrent acting and synchronis-

ing on actions of unknown duration. The Multiagent Planning Architecture (MPA)

3.1. Multiagent Planning and Hierarchies 33

[Wilkins and Myers, 1998] is another example in this context. However, rather than

extending previous technology, MPA provides a framework for integrating diverse sin-

gle planning agents via well-defined and uniform interface specifications.

An important research direction for our work is associated with the extension of

Hierarchical Task Network (HTN) planning [Erol et al., 1994] for multiagent environ-

ments. HTN planning is an abstraction-based plan representation that allows an agent

to successively refine planning decisions. As the name itself suggests, HTN planning

is the natural choice for planning performance in hierarchical organisations because

such approach distinguishes actions and goals of different degrees of abstraction and

importance for each level.

The work of Corkill [Corkill, 1979] is an example of effort to extend a HTN plan-

ner, in this case the NOAH (Nets of Action Hierarchies) planner [Sacerdoti, 1977], for

multiagent environments. The basic planning procedure and plan representation used

by Corkill are the same as those of NOAH: planning proceeds through a hierarchy

of plan levels, where at any plan level a partial plan is a partial order of goals and

primitive actions. Each distributed agent solves its goals in the same way as NOAH,

at each level expanding each unplanned goal by finding an applicable operator that

solves it. In addition, Corkill also distributes the NOAH world model and mechanisms

to deal with interdependencies. For that end, each agent is provided with a consistent

initial world model that has enough detail to perform local plan development. As this

world model is changed during local planning, the changes are communicated to other

agents. When an agent receives world-model changes from other agents, it revises its

own world model and determines whether any of its locally planned actions invali-

date the received world-model changes. If they do, an attempt is made to sequence

its planned actions with the planned actions of the other agents so that the actions no

longer interfere with each other. A set of inter-planner protocols have been developed

that accomplish this ordering and detect situations where a suitable ordering cannot be

established.

Two others examples of efforts in this direction are DSIPE (Distributed SIPE)

[DesJardins and Wolverton, 1999] and A-SHOP/IMPACT [Dix et al., 2002]. DSIPE,

a distributed version of SIPE [Wilkins, 1988] (System for Interactive Planning and Ex-

34 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

ecution), is most similar to the distributed version of NOAH, however extending its

ideas by focusing on communication improvements among agents and the creation

of a common partial view of subplans. In a different way, the A-SHOP/IMPACT

project aims to integrate HTN planning agents (A-SHOPs) via a multiagent environ-

ment, called IMPACT [Eiter et al., 1999], which provides facilities for the A-SHOP

agents’ interaction and coordination.

In our project we are using HTN decomposition as an abstract way of performing

planning in hierarchical coalitions. However we are joining the HTN ideas with an

underlying constraint-based representation of plans. In this way, the planning frame-

work can employ powerful problem solvers based on search and constraint reasoning

methods, and still retain human intelligibility of the overall process and plans that are

created. The next sections show the advantages of using a constraint-based represen-

tation and the options to employ it.

3.2 Constraint and Planning

A constraint is simply a local relation among variables, each taking a value in a given

domain [Bartak, 1999]. A constraint often takes the form of an equation or inequality,

but in the most abstract sense it is simply a logical relation among several variables

expressing a set of admissible value combinations. In other words, constraints restrict

the possible values that variables can take.

Constraints have several interesting properties, some of them complementary to the

abilities of HTN planning:

� They efficiently describe problems that incorporate resources and time. For ex-

ample, the problem of preventing overlaps of a number of tasks with specific

durations that share a resource. Note that in classical HTN, issues associated

with the resources and priorities are ignored, and time is represented implicitly

by means of instant transitions in a transition graph;

� While global constraints allow an easy representation of inherent disjunction in

the non-overlap problem (e.g., activity A may precede activity B or activity B

3.2. Constraint and Planning 35

may precede activity A), HTN provides a natural way to stipulate global con-

straints on plans [Erol et al., 1994];

� Constraints are declarative so that they specify what relationship must hold with-

out specifying a computational procedure to enforce that relationship. Thus users

only state the problem while the computer solves it [Freuder, 1978]. Taking ad-

vantages of this property, users can declare set of constraints for each HTN task

that control its decomposition (if it is non-primitive) or execution (if it is primi-

tive);

� In addition, constraints may specify partial information (they need not uniquely

specify the values of its variables), they are additive (the order of imposition

does not matter), and they are heterogeneous (relations can be defined between

variables with different domains).

Constraint Satisfaction Problem (CSP) is the process of identifying a solution to a

problem which satisfies all specified constraints. The CSP structure of variables and

constraints can be represented as a graph with variables and constraints as nodes. A

variable node is linked by an edge to a constraint node if the corresponding constraint

relation includes the variable.

Planners that employ constraints and CSP in some stage of the planning process

can be grouped into three categories [Nareyek et al., 2005]: maximal graphs, complete

CSP representation and constraint posting.

The technique of planning with maximal graphs requires that all constraints of the

domain are posted once. In this way, the CSP is constructed such that it includes all

possible plans up to a certain number of actions. As for planning problems the number

of actions is not known in advance, a stepwise extension of the CSP structure must be

performed if no solution can be found.

The advantage of constructing a structure with all possibilities is that decisions can

easily be propagated through the whole CSP, and future decision options that become

infeasible in consequence can be eliminated. However as constraints in hierarchical

organisations must be stepwise/added depending on the current plan refinement state

at each level rather than posted once, this technique is not suitable for them. Examples

36 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

of planning systems that use maximal graphs are CPlan [Beek and Chen, 1999] and

GP-CSP [Do and Kambhampati, 2000].

The complete CSP representation attempts to reformulate entire planning problems

into the CSP paradigm. Differently from the approach of maximal graphs, this ap-

proach extends the idea of constraint programming so that CSP graphs can be changed

dynamically instead of being defined a priori. This feature is very important for real

domains, where the environment is continually changing. The notion of dynamic CSP

(DCSP) [Verfaillie and Schiex, 1994] is one of the approaches to represent such situa-

tion. DCSP is a sequence of CSPs, where each one differs from the previous one by the

addition or removal of some constraints. The Extensible Uniform Remote Operations

Planner Architecture (EUROPE) [Frank et al., 2000] is an example of planner that uses

the DCSP approach. Another slight different approach is the Structural Constraint Sat-

isfaction Problem (SCSP) used by the EXCALIBUR system [Nareyek, 2000]. These

two approaches differ because DCSP tries to revise a variable assignment with given

changes to the constraint graph and does not include graph changes as part of the

search. In a different way, SCSP defines solutions by specifying correctness tests,

which are restrictions on admissible constraint graphs.

Despite the advantages of complete representation of plans as CSPs, this option is

not suitable for our approach because a full constraint model is not able to explicitly

describe important planning components such as activities and issues. In this way, as

better explained in chapter 6, we are using constraint-based models, where constraints

are part of the plan description together with other important components.

Considering hierarchical arrangements, the constraint posting [Stefik, 1981] ap-

proach is a good option to employ constraints during the planning process. This ap-

proach is based on additions and retractions of constraints during the planning process,

where constraint satisfaction is used as an add-on function to check the satisfaction of

restrictions such as availability of resources or temporal intervals.

One particularly relevant feature of constraint posting is its abilities to plan hierar-

chically by introducing new constraints and variables. In fact, using this approach, the

CSP graph can be built stepwise so that only specific subproblems are covered within

the constraint solving process at each level. Thus, upper level agents only need to deal

3.3. Constraint Posting Planners 37

with constraints that are necessary to define a plan according to the degree of abstrac-

tion required by their levels. The work of refining a plan, with additional constraints,

is left to lower level agents. The use and additional abilities of constraint posting can

be illustrated via its application in past planners, as discussed in the next section.

3.3 Constraint Posting Planners

Several planners have used the constraint posting approach during their planning pro-

cess. Via the analysis of such planners, it is possible to illustrate the ideas behind

this technique. For this end, this section discusses the use of constraint posting in five

different planners: MOLGEN, MACBeth, Descartes, parcPlan and O-Plan.

MOLGEN [Stefik, 1981] is a hierarchical planner that uses the constraint posting

approach to represent interactions between subproblems. MOLGEN proceeds hier-

archically by formulating constraints of increasing detail as planning progresses. In

this way, each hierarchical level that introduces new constraints does not work with

all of the details at once. However, as the resultant subproblems of the decomposition

process generally include dependencies, MOLGEN uses constraints to represent the

interactions between them.

The key idea of MOLGEN is based on the constraint propagation [Bartak, 2001]

technique. In constraint propagation, information deduced from a local group of con-

straints is recorded as a change in the given CSP. Such changes are used to make

further deductions and therefore further changes. This causes the effects of originally

locally constrained information to spread gradually throughout the entire CSP. Thus,

constraint propagation works like a communication channel for constraints of subprob-

lems. When such constraints are shared, they bring together the requirements from

subproblems, which are used to anticipate interference between them and eliminate

the interfering solutions.

MACBeth [Goldman et al., 2000] presents similar ideas to MOLGEN, also being

a combination of hierarchical task network with constraint reasoning techniques. As

each task is expanded by MACBeth, constraints from the corresponding method are

added to a constraint management engine. In the case that more than one method

38 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

applies, the planner develops all of the alternatives. While the plan is built, constraints

propagate both up, from sub-tasks to tasks, and down, from tasks to their expansions.

This constraint propagation process enables the planner to identify flaws in the plan,

as happens in MOLGEN.

However, MACBeth extends some ideas of constraint propagation used by MOL-

GEN. For example, consider that a task Extinguish(Fire1) contains the constraint able-

ToExtinguish(?fireExtinguisher,Fire1), which represents a subdomain D of the fire ex-

tinguishers that are able to extinguish Fire1. Rather than searching for values that

satisfy this constraint, MOLGEN posts this constraint and delays selecting particular

objects until the selection is further constrained by other steps during the planning

process. If the resultant domain is D = ! F1 � F2 # and F2 is allocated to another task,

MOLGEN is not automatically able to allocate F1 to the task of extinguish Fire1. In a

different way, MACBeth will ensure that one of these two elements of D is assigned to

the “extinguish” task, keeping track of elements of D. If F2 is later assigned to a dif-

ferent and unrelated task, MACBeth will automatically assign F1 to the “extinguish”

task, with no additional introspection or backtracking.

Differently from both planners above, parcPlan [Lever and Richards, 1994] is a

temporal planner, rather than a HTN planner, that uses the constraint posting technique

to mainly achieve temporal reasoning. For that, time-points are represented by finite-

domain variables, allowing parcPLAN to utilise finite-domain constraint propagation

techniques.

In parcPlan, constraints are provided in two different types to represent a prob-

lem domain: action constraints and integrity constraints. Action constraints define

relations that must hold between time points of actions. Integrity constraints are clas-

sified as temporal and non-temporal. Temporal integrity constraints place bounds on

the durations of properties and actions, or prohibit certain temporal configurations of

properties and/or actions. Non-temporal integrity constraints express other aspects of

the problem domain, such as quantitative constraints on resources. Despite the fact

that parcPlan uses a discrete rather than a continuous model of time (what means, for

example, that there is a maximum time period that a plan can occupy), this planner

demonstrates the easy use and expressiveness of constraints in dealing with temporal

3.3. Constraint Posting Planners 39

reasoning.

The Descartes [Joslin and Pollack, 1995] planner advances the idea of constraint

posting by also postponing some of the decisions of actions choice. In Descartes, ev-

ery planning decision is represented by a variable, with constraints on each variable

representing criteria that must be satisfied by the corresponding decision. These con-

straints are managed by a general-purpose constraint engine, so that even postponed

decisions play a role in reasoning about plans.

The constraint posting approach of Descartes is similar to the MOLGEN’s ap-

proach. With MOLGEN, once a constraint is posted it serves to rule out impossible

values for variables, and guides the selection of operators to instantiate as interacting

steps are added to the plan. Descartes extending this approach to apply to all decisions,

not just variable binding. Also, differently from MOLGEN, Descartes is not a HTN

planner, being better applied to puzzle-like problems.

O-Plan [Tate et al., 1994] is a HTN planner whose principal feature is to provide a

modular way of manipulating constraints. For that end, O-Plan uses a number of spe-

cialised constraint managers to work on a plan, all sharing a constraint representation

that allows them to interact. In this way, resource utilisation is handled by one con-

straint manager, temporal reasoning by another, and so on. An interesting feature of

this approach is that as better modules become available for specific kinds of reasoning,

they can be incorporated into the system.

Differently from Descartes and MOLGEN, which use constraint propagation in an

active way during future decisions, O-Plan maintains an agenda representing decisions

yet to be made and the postponement of constraints does not affect the handling of such

agenda items. In terms of temporal representation, O-Plan is similar to parcPlan, also

using constraints to define time points for activities. Each O-Plan activity has distinct

start and finish instants in the form of time windows. Then the constraint manager,

associated with temporal reasoning, revises information contained in time windows so

that the overall consistency of temporal constraints is checked.

From this discussion, we can resume the principal uses of constraint posting by

planners in the following points:

40 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

� Constraint posting is relevant to least-commitment1 planners as they typically

operate by eliminating inconsistent choices without committing to particular val-

ues. Thus, this technique has been used to implement least-commitment on the

selection of objects used in actions, aspects of resource and temporal reasoning;

� This approach is useful to represent interactions between subproblems, avoiding

conflicts and guiding the selection of new steps;

� The planners extensively make use of constraints to represent models of time,

resource and ordering. This is because its easy use and power of expressing

relations between domain variables.

Note that the use of constraint posting is not restricted to HTN planners. We are us-

ing this technique together with HTN approach such as O-Plan, MOLGEN and MAC-

Beth have been using. However Descartes and parcPlan are non-HTN planners and

also make use of the constraint posting facilities.

3.4 Requirements for Planning in Coalitions

During the last section, we have introduced constraint posting as an approach for plan-

ning performance. However, there are different ways that we can use constraints to

describe a plan model, depending on the requirements of a particular set of problems

that we want to handle. In this context, this section discusses the likely requirements

for planning, considering its application in coalition scenarios. The focus is on two

principal models (temporal and resource models) that, together, account for supporting

several processes associated with planning such as conflict resolution, task allocation

and load balancing.

3.4.1 Temporal Model

The definition of temporal models for planning agents can follow two main approaches

[Narayek, 2001]: sequence-oriented and explicit timeline. The temporal references
1A strategy exemplifies least-commitment if, when faced with a number of alternative choices, it

carries forward all possibilities rather than making a (backtrackable) commitment.

3.4. Requirements for Planning in Coalitions 41

for these approaches are, respectively, time points (instants) at which a state variable

changes its value, and time periods (intervals) during which a proposition holds. While

an instant is represented as a variable raging over the set ℜ of real numbers, an interval

is a pair (x,y) of reals, where x � y.

Figure 3.1 illustrates a disaster scenario where we can apply the two approaches to

represent the temporal notion of a coalition operation. The coalition � µ0 ��� µ1 � µ2 � µ3 � �
has the goal of extinguishing two fires F1 and F2. µ0 represents the command centre

that must coordinate the activities of two fire brigades (µ1 and µ2) and one police force

(µ3). The fires are localised in different positions and the roads (R1 and R2) to access

such fires are blocked. The figure also describes a possible total order plan for this

scenario, which respects the temporal constraints showed in the figure as a graph.

Figure 3.1: Example of disaster operation scenario.

The general expression action(µi � obj � t � means that the agent µi must perform the

action action on the object obj at the instant t. In a similar way, such expression

could be redefined as action(µi � obj ��� ti � t f � � , which means that µi must perform action

starting at ti and finishing at t f . Using such notations, temporal relations between

these temporal references can be expressed as binary constraints between instants (t)

in a sequence-oriented approach, or between intervals (� ti � t f �) in an explicit timeline

approach. A graphical representation for instants (Figure 3.2a) and intervals (Figure

42 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

3.2b) is given below. Note that this is only a possible option in time for such instants

and intervals. Several other combinations could be possible to solve such problem.

Figure 3.2: Graphical representation to instants and intervals.

The STRIPS framework [Fikes and Nilsson, 71] is the most familiar example of

sequence oriented use. STRIPS considers actions as instantaneous state changers at

a specific instant t, so that each action creates a different world state. If we consider

that actions are labelled by temporal references, we can use constraints only to express

precedence (e.g., t3 � t4) of time points between such actions. Based on this brief

description, we can list some limitations of this approach for our disaster scenario:

� As actions are instantaneous, there is no provision for asserting what is true while

an action is in execution. For example, during the action of extinguishing a fire,

the water quantity of µ2 is continually decreasing. At some time point it will

finish so that the action becomes impossible;

� It is not possible to define more complex relations between actions. For example,

to express a situation where µ1 helps µ2 during part of its task;

� Since state descriptions do not include information about action occurrences,

such approach cannot represent the situation where one action occurs while some

other event or action is occurring (simultaneous actions). For example, a situa-

tion where µ1 is extinguishing F1 while µ3 is clearing R2;

� Finally, it is also not possible to represent interactions of actions with external

events beyond the agent’s direct control. For example, if µ2 wants to synchronise

its extinguish action with a period of rain, which could facilitate its task.

3.4. Requirements for Planning in Coalitions 43

Differently, a conceptual way to represent the explicit timeline idea via constraints,

as used in [Allen, 1991], is to represent time intervals as variables and relations be-

tween two variables as constraints. In this way, many different temporal constraints

can be defined:

� In(� ai � a f � , � bi � b f �) - interval a is contained in interval b;

� Disjoint(� ai � a f � , � bi � b f �) - a and b do not overlap in any way;

� Starts(� ai � a f � , � bi � b f �) - interval a is an initial subsegment of b;

� Finishes(� ai � a f � , � bi � b f �) - a is a final subsegment of b;

� SameEnd(� ai � a f � , � bi � b f �) - intervals a and b end at same time;

� Overlaps(� ai � a f � , � bi � b f �) - a starts before but overlaps b.

Approaches in this direction are more suitable to deal with scenarios as exemplified

in Figure 3.1. For example, each interval has initial and final instants so that other

actions and world state changes can be represented during such interval. In addition,

as shown above, more complex relations can be defined between the intervals.

Note that in both examples, where constraints are used to define precedences on

instants or to define more complex relations between intervals, such constraints present

a qualitative feature. Qualitative models of time do not given metrical information

about duration or about absolute time positions. Thus, they are useful to synchronise

actions of unknown duration (e.g., the time for extinguishing a fire), or to support

levels of abstraction in plans, avoiding that agents take decisions about things that they

do not care about at the moment (least commitment principle). Using qualitative time,

for example, the command centre µ0 can define that µ1 will extinguish F1 after µ3 has

informed it that R1 is clear. Note that µ1 does not need to define specific times for that.

However, a quantitative model of time (e.g., clearRoad(µ3,R1,[10,40] meaning that

such activity spends 30 units of time) is also important to improve the quality of de-

cisions. In processes of resource allocation, for example, this approach could increase

the amount of concurrent activities, avoiding that agents wait long times to receive

tasks. For instance, if µ0 knows that µ3 will probably spend 30 units of time to clear

44 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

R2, µ0 could allocate the task of extinguishing F1 to µ2 during 30 units of time. Note

however, that agents do not have control on the duration of several activities (extinguish

fire, find buried people, etc.) in disaster domains. Thus, values for activities’ duration

will generally be estimations that could be based, for example, on past experiences.

Based on this discussion, we can define the first planning requirement for coalition

support systems:

Requirement 1: the temporal planning model must be based on an explicit
timeline approach, which must enable the representation of both quantita-
tive and qualitative temporal references as well as relations between them.

The implementation of such requirement brings a considerable level of expressive-

ness to manipulation of time. From a single expression like [a,b], considering a and b

temporal references, the unique restrictions are that a must be non-negative and b must

be greater than or equal to a. In this last case, the interval becomes an instant. Usually

the temporal references a and b are time points, however it is also possible to define

them as intervals (e.g., [[ai,a f],[bi,b f]]) so that we can express situations like “the ac-

tivity starts between ai and a f and finishes between bi and b f . Temporal references

can be absolute values, or variables to be completed in further steps. This could be

important to represent lack in temporal knowledge of activities. Constraints can define

relations between intervals or temporal references of these intervals. Such constraints

are likely to be numerical relations, however logical constraints (e.g., meet, overlap,

etc.) can also be applied. A more detailed survey on temporal constraints can be seen

in [Schwalb and Vila, 1998].

3.4.2 Resource Model

Resources are objects whose cost or available quantity induces some restriction on the

operations that use them. Examples of resources in our disaster relief scenario are fire

brigades, ambulances, police forces and so on. Note that each resource also has its

own resources. For instance, fire brigades must manage resources such as water and

fuel during the performance of a given task.

In the context of planning with resources, a solution plan is defined as a plan that

achieves the goals while allocating resources, which often have a limited availability, to

3.4. Requirements for Planning in Coalitions 45

operations in such a way that all resource constraints are satisfied. In order, constraints

associated with resources are complementary to those associated with time, creating,

together, the framework that accounts for leading the process of deciding when and

how to do an activity [Ghallab et al., 2004].

In general, resources can be classified into two types: reusable and consumable. A

resource is reusable if it is released unchanged after use. In a different way, consumable

resources are consumed by activities during their use and, in general, they can be

produced by other activities (e.g., refilling the amount of water in the fire engine’s

tank).

In our disaster scenario (Figure 3.1), the resources are the two fire brigades µ1 and

µ2, and the police force µ3. During the planning process of µ0, such resources can be

used as reusable resources so that when µ1 has finished to extinguish F1, for example,

it can be automatically sent to another mission. Differently, during its own planning

process, µ1 must consider that it is a consumable resource so that it needs to allocate

time for refilling both water and fuel tanks between or during its tasks. Figure 3.3

illustrates this idea.

Figure 3.3: Example of reusable (a) and consumable (b) resources.

Figure 3.3a illustrates the task allocation of fire brigades in the µ0’s plan. In this

case, resources are represented by fire brigades (µ1 and µ2) and Q f represents the

quantity of fire brigades. Note that when a fire brigade finishes an activity, it is auto-

46 Chapter 3. HTN and Constraint Posting Ideas for Multiagent Planning

matically available to new tasks. Figure 3.3b focuses on a consumable resource (water)

of µ1. Here Qw means the quantity of water available. In this case µ1 must distinguish

times for consuming and producing such resource, considering both times in its plan

to extinguish fires.

The specification of each activity could bring, together with the usual precondi-

tions and effects, the requirements that specify which resources and what quantities of

these resources are needed for its performance. Considering a coalition (multiagent)

scenario, the resource requirements of an activity will also guide the process of find-

ing subordinate agents that are able to perform such activity. Normally, superior agents

may have the choice between several alternative resources (agents), and a resource also

may be shared between several activities. For example, if µ0’s plan has an activity to

extinguish a fire in a building of 9 levels, it must allocate this task to a fire brigade that

has a suitable ladder for that activity. If both µ1 and µ2 have the necessary ladder, µ0

can use other variables to choose one of them.

Considering this scenario, superior agents need to be able to access an appropriate

description of its subordinate agents. In a more complex use of these descriptions,

superior agents could also compose new capabilities through the interoperation and

union of the capabilities of other agents. From this discussion, we can elaborate a

second requirement for planning in coalition support systems:
Requirement 2: the resource planning model must support the tasks of

localising services/agents that provide specified capabilities, and also pro-
vide information that enables reasoning on such capabilities.

Based on this requirement, the representation of agents could be provided at two

levels. The first level providing a high-level description of agents, informing what

they are able to do. The second could bring a more in depth description of the agents’

capabilities, such as their functional behaviour and attributes (response time, accuracy,

information required for its activation, etc.).

3.5 Summary

This section has introduced the study of planning in multiagent scenarios, considering

a hierarchical organisation for their agents. We have justified the use of the HTN

3.5. Summary 47

framework as the natural choice to implement planning in hierarchies, together with

the constraint posting technique to augment it. The principal point was to show that

the HTN and constraint posting approaches have complementary features, which can

improve the performance of planning.

Based on these ideas, we have defined two important requirements associated with

planning design in coalition support systems. First, the temporal model must be based

on an explicit timeline approach, which must enable the representation of both quanti-

tative and qualitative temporal references as well as relations between them. Second,

the resource model must support the tasks of localising agents that provide specified

capabilities, also providing information that enables reasoning on such capabilities.

Together such models are able to support several planning mechanisms, such as the

process of finding out how to perform a given set of activities using a limited number

of resources in a limited amount of time.

Chapter 4

Teamwork Theories for Collaborative

Planning

Teamwork research defines several important concepts regarding the design of agents

so that they are in fact able to play as members of a collaborative team. The principal

idea is that the team’s joint activities do not consist merely of coordinated individ-

ual actions, but each member needs, for example, to make commitments on reporting

status of their ongoing activities and support the activities of other members.

This chapter starts by discussing, in Section 4.1, why the traditional multiagent

planning framework is not sufficient to ensure collaboration between agents. Then,

Section 4.2 discusses four principal teamwork proposals: Joint Intentions, Shared-

Plan, Joint Responsibilities and Planned Team Activities. The discussion is directed

by the influences that a hierarchical organisation can have on the teamwork concepts.

Finally, Section 4.3 traces a comparative analysis of such approaches, highlighting the

principal teamwork requirements, while Section 4.4 summarises the important ideas

of this chapter.

4.1 Why is planning not enough?

The complexity of problems associated with coalitions, such as disaster relief op-

erations or military missions, requires that the planning and execution activities of

coalition members be performed in a collaborative way. For that, such activities

49

50 Chapter 4. Teamwork Theories for Collaborative Planning

cannot consist merely of simultaneous and coordinated individual actions, but the

coalition must be aware of and care about the status of the group effort as a whole

[Levesque et al., 1990].

Planning approaches, such as described in the last chapter, support the operations of

distributing tasks and synchronising their performances. Thus, there is a coordination

of activities so that conflicts and redundant tasks can be avoided. However, these

operations still do not ensure collaborative behaviour. The two cases below illustrate

the problems that can appear when teams only use traditional planning approaches.

4.1.1 Case I: The Helicopters Attack Domain

The helicopters attack domain, which is completely described in [Tambe, 1997a], in-

volves pilot agents for a coalition of synthetic helicopters. The plan consists in attack-

ing enemy vehicles and coming back to the home-base. For that end, the helicopters

must fly to a holding point, where one or two scout helicopters will fly forward and

first scout the battle position. Based on communication from the scouts, other coalition

members fly forward to the battle position. Here, each pilot repeatedly masks/hides

their helicopters and unmasks to shoot missiles at enemy targets. Once the attack has

been completed, they return to their home-base.

For this experiment, each pilot has an operator hierarchy, which is very similar

to reactive plans. Each operator consists of precondition rules for selection, rules for

application and rules for termination. At any moment, only one path through this hier-

archy is active. The principal failures associated with this experiment are enumerated

below [Tambe, 1997a]:

1. Upon abnormally terminating engagement with the enemy, the coalition com-

mander returned to home-base alone, abandoning members of its own coalition

at the battle position;

2. Upon reaching the holding area, the coalition waited, while a single scout started

flying forward. However, the scout unexpectedly crashed into a hillside, so that

the rest of the coalition just waited indefinitely for the scout’s scouting message;

4.1. Why is planning not enough? 51

3. Only a scout made it to the holding area, while all other helicopters crashed or

got shot down. However the scout scouted the battle position anyhow and waited

indefinitely for its non-existent company to move forward;

4. While evading an enemy vehicle encountered enroute, one helicopter pilot agent

unexpectedly destroyed the vehicle via gunfire. However it did not inform others,

so that an unnecessarily circuitous bypass route was planned.

To address these and other failures, a possible approach was to add domain-specific

coordination plans, enabling, for example, that after scouting the battle position, a

scout executes a plan to inform that the battle position is scouted to those waiting in

the holding position. However, several difficulties were associated with this approach.

First, there is not a way to anticipate failures, so that coordination plans have to be

added on a case-by-case basis. Second, as the system continues to scale up to increas-

ingly complex scenarios, such failures continually recur, so that a large number of

special case coordination plans are potentially necessary. Finally, it is difficult to reuse

such plans in other domains.

4.1.2 Case II: The Guararapes Game

Guararapes Battle [Siebra and Ramalho, 1999, Silva et al., 2001] is a strategic com-

puter game, partially implemented during my MSc project, where four different ethnic

groups dispute the domain of a region. For that end, the groups can simply fight be-

tween themselves, or try more complex negotiation processes to form alliances, define

periods of peace, or exchange resources. Each group has a coordinator agent, which

can be a player or another autonomous agent. The reasoning of each agent was imple-

mented as a production system so that a set of configurable rules account for guiding

its behaviour.

During some experiments, Guararapes also presented several problems, similar to

the helicopters attack domain. Some of them are listed below:

1. During a negotiation, two members of different groups agreed in setting up a

temporary alliance. However this alliance is not positive for one of the groups;

52 Chapter 4. Teamwork Theories for Collaborative Planning

2. During a fight between two groups A and B, some members of A started to run

away from the battle field, leaving the others to fight alone. Even seeing this

behaviour, the members of A that are still fighting are not able to infer what to

do because they do not know what this behaviour means;

3. When a member discovers a hidden enemy position, it does not share this infor-

mation with the other members;

All these behaviours are not in accordance with the collaborative idea that coali-

tions should present. The solution was to add specific rules to deal with each case. For

example, a rule to force agents to inform others that they are leaving the battle field.

In this way, it is not difficult to see that this project suffered from the same limitations

discussed in the previous case (section 4.1.1).

4.2 Principal Teamwork Proposals

The cases discussed in the last section stress the notion that collaboration between

different problem-solving components must be designed into systems from the start. It

cannot be patched on. [Grosz, 1996]. In this way, coalition planning processes need

to be designed on a collaborative framework that ensures commitments of individual

components in carrying out their activities, considering the global coalition objective.

Teamwork research [Cohen and Levesque, 1991] encloses a set of ideas that sup-

port the implementation of this collaborative framework. In fact, teamwork has be-

come the most widely accepted metaphor for describing the nature of multiagent col-

laboration [Sierhuis et al., 2003]. The works discussed in this section are the principal

proposals to implement the teamwork concepts and, although they present different

approaches to deal with specific technical problems, they agree on the fundamental

teamwork concepts, as discussed later.

4.2.1 Joint Intentions

The Joint Intention Theory [Levesque et al., 1990] specifies how a group of agents

can cooperatively act together by sharing certain mental states about joint activities.

4.2. Principal Teamwork Proposals 53

According to this theory, a team will properly perform joint activities if its agents

have established commitments on the performance of such activities, while they also

mutually believe that the team will do that.

Based on this idea, the focus of Joint Intentions theory is on how to manage the

potential divergences about the mental states of members, allowing them to arrive at

private beliefs about the status of shared activities. Such divergences can appear be-

cause agents are situated in real and dynamic environments where external events are

probable causes of changes in goals or failures in actions. Thus current commitments

and beliefs can be changed as time passes, causing problems for the performance of

activities. For example, a police force concludes that it is not able to clear a road,

abandoning such activity. Consequently the plans of other agents that make use of this

road will become invalid, but such agents do not know this information (they believe

that the road will be cleared) and will spend time and resources executing their plan

until discovering by themselves this new fact.

To deal with problems like this, the Joint Intentions theory proposes a set of prin-

ciples to lead the behaviour of agents that intend to perform joint activities. Such

principles can be described on three levels. First, Weak Goals (WG) that specify the

conditions under which an agent holds a goal, and the actions it must take if the goal

is satisfied, irrelevant or impossible. Second, Joint Persistent Goals (JPG) that specify

a joint commitment of a team in achieving a goal. Finally, Joint Intentions (JI) that

are defined in terms of WG and JPG. Using the predicates1 BEL(µ,p), MBEL(Θ,p)

and INT(µ,p), and assuming that e is an extra condition to represent the reasons that µ

(member of a coalition Θ) may have for keeping the goal, WG can be defined as 2:

WG(µ,Θ,p,e) + [BEL(µ, , p) 	 INT(µ, - p)]
. [BEL(µ,p) 	 INT(µ, - MBEL(Θ,p))]
. [BEL(µ, /0, p) 	 INT(µ, - MBEL(Θ, /0, p))]
. [BEL(µ, , e) 	 INT(µ, - MBEL(Θ, , p))]

1BEL(µ,p) and INT(µ,p) are concepts based on the BDI (Belief-Desire-Intention) Theory
[Rao and Georgeff, 1995] and they mean, respectively, that agent µ believes proposition p to be true
and µ intends to perform p. MBEL(Θ,p) means that all agents in Θ mutually believe that p holds.

2 1 p is a modal operator that requires p to be true at some point in the future (eventually), while 2 p
requires that p to be true from now on (always).

54 Chapter 4. Teamwork Theories for Collaborative Planning

According to this definition, if µ has a WG to carry out p while e is not irrelevant

(e is not false), one of the following conditions will hold:

� µ believes that p is not true and intends that p be true at some future time;

� Having µ privately discover p to be true, µ intends that all the coalition Θ mutu-

ally believes that p is true;

� Having µ privately discover p to be unachievable, µ intends that all Θ mutually

believes that p is unachievable.

� Having µ privately discover p to be irrelevant because e has became false, µ

intends that all Θ mutually believes that p is (temporally) unachievable.

In practical terms, if µ has a WG to carry out p, µ has a commitment to perform p (or

try at least), or to communicate its completion, failure or irrelevance to Θ. e specifies

the conditions under which agents may drop their intentions while still believing that

p is untrue and satisfiable. With this definition in place, we can define Joint Persistent

Goals as follows:

JPG(Θ,p,e) + MBEL(Θ, , p)

	 MBEL(Θ,MINT(Θ,p))

	 UNTIL[MBEL(Θ,p) . MBEL(Θ, /0, p) . MBEL(Θ, , e),� µ 3 Θ WG(µ,Θ,p,e)]

According to definition, a JPG(Θ,p,e) holds if all the following conditions are sat-

isfied:

� Θ mutually believes that p is currently false;

� Θ mutually believes that Θ holds p as a goal (Θ mutually intend to do p);

� Each member µ of Θ holds p as a WG until Θ mutually believes that p is true,

unachievable or irrelevant (predicate UNTIL says that its second argument will

be true as long as the first holds.).

4.2. Principal Teamwork Proposals 55

A JPG ensures that coalition members cannot decommit until p is mutually believed

to be achieved, impossible or irrelevant. This commitment also ensures that members

stay updated about the status of team activities, and thus do not unnecessarily face risks

or waste their time. Finally, using JPG we can define Joint Intentions (JI) as3:

JI(Θ,a,e) + JPG(Θ,DONE(Θ,UNTIL[DONE(Θ,a),MBEL(Θ,DOING(Θ,a))]?;a),e)

The notation x?;y means: “perform activity y, x being true initially. So the equation

above states that Θ has a joint intention to do activity a if their agents have a joint

persistent goal to achieve a, and mutually believe that they are doing a until the time

that they have done a. The JPG (and thus the JI) may be abandoned at any time if

e becomes false. By using such ideas in our example, if the police force is not able

to carry out the activity of clearing the road, it cannot simply abandon the activity

because it has a commitment in a JPG. According to such commitment, it will need to

communicate its failure, keeping the status of the coalition updated.

If agents are arranged in a hierarchical organisation, as discussed in Section 2.4,

the coalition will not only stabilise one JPG (commitment). In this case, the number of

JPGs corresponds to the number of interaction zones Φi involved in the performance

of p. For example, considering the coalition Θ in Figure 4.1.

Figure 4.1: JPG commitments in a hierarchical organisation.

The coalition Θ can be decomposed into three interaction zones: Φ1, Φ2 and Φ3.

Sub-coalitions (ΘΦ1 , ΘΦ2 and ΘΦ3) in each zone makes a commitment on parts of p and

the commitment JPG(Θ,p,e) indirectly emerges from the sub-coalitions’ commitments.

If ΘΦ2 , for example, makes a commitment on the performance of p1 (p1
� p1 � 1 4 p1 � 2),

3DOING(µ/Θ,a) indicates future execution (starting immediately) of activity a for an agent µ or a
coalition Θ, while DONE(µ/Θ,a) indicates immediate past execution of a for µ or Θ.

56 Chapter 4. Teamwork Theories for Collaborative Planning

which is part of p, the following sentences will hold in ΘΦ2: WG(µ2,ΘΦ2 ,[p1 � 1,p1 � 2],e),

WG(µ4,µ2,p1 � 1,e) and WG(µ5,µ2,p1 � 2,e). Furthermore µ2 will also make a WG with µ1,

specified as: WG(µ2,µ1,p1,e). It is important to note that such approach follows the

principles of enclosing the problems into sub-coalitions and decreasing the communi-

cation among agents, because problems are only reported to superior agents.

Joint Intentions theory was mainly used in a practical way via the STEAM Project

[Tambe, 1997b]. STEAM (Shell for TEAMwork) enables explicit representation of

team goals and plans, and teams’ joint commitments. The communication is driven by

such commitments, so that team agents may interact to attain mutual belief while build-

ing and disbanding joint intentions. STEAM was applied in three different domains.

First to provide collaboration among helicopters during an attack mission (see Section

4.1.1). Second in a transport domain, also using synthetic helicopters as agents. Finally

in the RoboCup synthetic soccer domain, where agents play the role of football players.

A summary of the results for these three domains can be seen in [Tambe, 1997a].

4.2.2 SharedPlans

In a similar fashion way to Joint intentions, SharedPlans Theory [Grosz et al., 1999]

argues that, for efficient collaboration, each agent of a team needs to have mutual

beliefs about the goals and actions to be performed and the capabilities, intentions

and commitments of the other participants. In addition, SharedPlans also considers

mechanisms that enable agents to interleave planning and acting, avoiding the adoption

of conflicting intentions and keeping the focus on the information that they actually

need for their activities.

According to SharedPlans, if an agent µ (where µ 3 Θ) intends to do a basic

activity a, this requires that µ believes that it is able to execute a and it is committed to

doing so:

BASIC(a) 	 INT(µ,a) � BEL(µ,(a 3 CAPABILITY(µ))) 	 WG(µ,Θ,a,e)

Note that we are using WG to represent the individual commitment of µ in realising

a. If a is complex, then µ intending to do a requires either that µ has a Full Individual

4.2. Principal Teamwork Proposals 57

Plan (FIP)4 for carrying out a or a Partial Individual Plan (PIP) for carrying out a

together with a plan FIPElab to elaborate the partial plan into a full plan:

COMPLEX(a) 	 INT(µ,a) � FIP . (PIP 	 FIPElab)

Thus, using a recursive definition to create the hierarchy of activities, µ has a FIP

for performing a if: µ has a complete plan for performing a, µ intends to do each

activity in that plan and µ has a subordinate FIP to do each complex activity in that

plan. The same idea is used to define this process for teams of agents. A team Θ has a

SharedPlan (SP) to do some multiagent activity a either by having a Full SharedPlan

(FSP) to carry out a or by having a Partial SharedPlan (PSP) to carry out a together

with a plan FSPElab to elaborate the partial plan into a full plan:

SP � FSP . (PSP 	 FSPElab)

A SP is reducible to the individual plans, beliefs and intentions of the various team

agents, and a single-agent activity ai in the decomposition hierarchy is called resolved

if: an agent µi has been selected to do ai, µi intends to do ai, and the other members

of the group have a set of supportive mutual beliefs and intentions-that (INT.TH)5 ai

succeed. Similarly a multiagent activity a j, which is assumed to be ultimately decom-

posable into a basic or complex single-agent activity, is called resolved if: a subteam

Θ j has been selected to do a j, Θ j has a SP to do a j, and the other agents of the group

have a set of supportive mutual beliefs and intentions-that Θ j succeed.

While a FSP is characterised by a complete activity decomposition hierarchy where

each activity has been fully resolved, a PSP is characterised by a possible incomplete

activity decomposition hierarchy where some or all activities may be unresolved. In

this way, the use of PSPs enables that agents interleave planning and execution because

the team and subteams are not obligated to have a complete idea of their activities.

This aspect could be important because agents do not, in some cases, begin a collab-

oration with all of the conditions (beliefs, commitments, etc.) in place. In such cases,

agents normally start with only partial knowledge about the environment and other
4The complete definitions of FIP, PIP, FSP and PSP can be found in [Grosz et al., 1999].
5INT.TH(µ,p) and INT.TH(Θ,p) are similar to the notions of DES(µ,p) and MDES(Θ,p) respectively,

however motivating possible supportive actions.

58 Chapter 4. Teamwork Theories for Collaborative Planning

participants, and use specific mechanisms (e.g., communication) to gather information

during their operations.

An important aspect of this theory is that during the process of decomposition, team

members are only required to know that a plan exists to enable one or more teammates

to perform activities, but not the details of such plan. Only the agents selected to do a

given subactivity need to be directly involved in the corresponding plan for it.

The proposal of SharedPlans to avoid conflicts is also based on the recursive pro-

cess of decomposition. Considering that agents have established a mutual belief that

there is a plan to solve a problem, the recursive process generates at each step a new

set of activities on which agents also need to make agreements. Furthermore via inten-

tional attitudes (INT.TH), an agent is able to say to others which propositions need to

hold so that its activities can be performed. Thus, such attitudes of an agent directly

constraint the intentions that other agents adopt, affecting their plan-based reasoning.

We can note that the decomposition process can provide by itself a way to create a

hierarchical organisation. For example, considering the case where the coalition Θ has

a FSP to do a multiagent activity a, we have the following implications:

1. Θ mutually believes that its members intend-that Θ performs a;

2. Θ mutually believes that it has a full plan to perform a;

3. Each single-agent activity ai or multiagent activity a j of the plan has respectively

some agent µi in Θ that intends to perform ai, or some sub-coalition Θ j in Θ that

has a FSP to perform a j;

4. Θ mutually believes either that µi intends to perform ai, or Θ j has a FSP to

perform a j; and that both are able to perform their respective activities;

5. Θ mutually believes that each member intends-that µi or Θ j be able to perform

ai or a j respectively.

According to such implications, if Θ = � µ1 ��� � µ2 ��� Θx � µ5 � � � � µ3 ��� µ6 � µ7 � � � � 6

intends to perform a, a hierarchy could be defined by the following sentences:
6From this coalition we can infer ΘΦ1 5 6 µ1 798 µ2 7 µ3 :<;=7 ΘΦ2 5 6 µ2 7>8 µs 7 µ5 :<; and ΘΦ3 5 6

µ3 798 µ6 7 µ7 :?; , where µs is the superior member of Θx.

4.2. Principal Teamwork Proposals 59

� MBEL(ΘΦ1 ,INT.TH(ΘΦ1,a)) 	 MBEL(ΘΦ1 ,PLAN(ΘΦ1 ,a)), from implications

1 and 2;

�A@ (p1=PLAN(ΘΦ2 ,a1)) 	 @ (p2=PLAN(ΘΦ3 ,a2)) from implication 3, where a1 and

a2 are multiagent activities of p. For p1 we have (note that p2 can be decomposed

in a similar way):

– MBEL(ΘΦ2 ,INT.TH(ΘΦ2 ,a1)) 	 MBEL(ΘΦ2 ,PLAN(ΘΦ2 ,a1)), from impli-

cations 1 and 2;

– @ PLAN(Θx,a3) 	 INT(µ5 � a4) from implication 3, where a3 is a multiagent

and a4 is a single-agent activity of p1;

– MBEL(ΘΦ2 ,PLAN(Θx,a3)) 	 MBEL(ΘΦ2 ,INT(µ5 � a4)) from implication 4;

– MBEL(ΘΦ2 ,INT.TH(ΘΦ2 ,a3 3 CAPABILITY(Θx)) 	 MBEL(ΘΦ2 ,INT.TH(

ΘΦ2 ,a4 3 CAPABILITY(µ5)) from implication 5.

� MBEL(ΘΦ1 ,PLAN(ΘΦ2 ,a1)) 	 MBEL(ΘΦ1 ,PLAN(ΘΦ3 ,a2)) from implication 4;

� MBEL(ΘΦ1 ,INT.TH(ΘΦ1,a1 3 CAPABILITY(ΘΦ2)) 	 MBEL(ΘΦ1 ,INT.TH(ΘΦ1 ,

a2 3 CAPABILITY(ΘΦ3)) from implication 5.

A visual result of these sentences can be seen in Figure 4.2. Following this process

of decomposition, we can successively create several levels of abstractions until all

activities become single-agent activities.

Figure 4.2: Result of a hierarchy, described via SharedPlans.

60 Chapter 4. Teamwork Theories for Collaborative Planning

Implementations of SharedPlans include a collaborative interface agent for an air

travel application called COLLAGEN [Rich and Sidner, 1997] and a collaborative mul-

tiagent system for electronic commerce [Hadad, 1997]. COLLAGEN uses Shared-

Plans to represent decisions, which have been made as a result of actions and utterances

during a dialogue, as plan trees. Nodes (plans) in a specific tree represent mutually

agreed decisions upon intentions (e.g., to perform a task), and the tree structure rep-

resents the subgoal relationships among these intentions. In the electronic commerce

scenario, SharedPlans may be formed between agents belonging to the same enterprise

that aim to work together, maximising their enterprise’s benefits; or also among agents

that are self-motivated and interested in collaboration because they may improve their

individual benefits.

4.2.3 Joint Responsibilities

The Joint Responsibilities theory [Jennings, 1992] extends the Joint Intentions ideas

to include the notion of plan states. According to this theory, an important reason for

explicitly distinguishing between goals and plan states becomes evident by examining

what happens after the two types of commitment failure. In the former case, the team’s

activity with respect to the particular goal is over. However if the group becomes

uncommitted to the common solution (a plan) there may still be useful processing to

be carried out. For example, if the plan is deemed invalid, the agents may try a different

sequence of actions which produce the same result. Thus dropping commitment to the

common solution plays a different functional role than dropping a goal.

The concept of common solution is a way of dealing with interdependence of ac-

tivities. If subproblems are solvable in isolation, it may be impossible to synthesise

their results because the solutions are incompatible or because they violate global con-

straints. In order the Joint Responsibilities theory argues that a common goal is not

sufficient to guarantee that collaborative problem solving will ensue. Team members

also need to agree upon a common solution for achieving their goals. However this

stipulation does not imply that the common solution must be developed before joint

actions can commence nor that it cannot evolve over time. Rather it reflects the fact

that team members must believe that eventually they will be able to agree upon, and

4.2. Principal Teamwork Proposals 61

work under, a common solution with respect to their shared objective.

The Joint Responsibilities formalism starts by defining the notion of relationships

between activities of common solutions, which are represented by plans. Considering

B the set of basic activities and M the set of multiagent activities, if [b1,b2] 3 B, [m1,m2]

3 M and ℜx B y(x,y) represents the relationship between activities x and y; we could

have relationships such as ℜm1 B m2 � m1 � m2 � , ℜm1 B b2
� m1 � b2 � or ℜm1 B b1 B b2

� m1 � b1 � b2 � .
Otherwise If two activities are independent we have: , ℜx B y(x,y).

Activities can be combined into finite sequences Σ to specify more complex in-

teractions. Sequences are composed of at least one activity and may contain a mix

of basic/multiagent and related/independent activities. Basic activities are assumed to

be solved by activity sequences of length one (e.g. p1 is solved by Σ = ! b1 #). The

representation Σσ means that the sequence Σ is executed in order to fulfil the goal σ.

The theory distinguishes activities to be carried out from agents who will execute

them. This enables the planning mechanisms to be independent of task and resource

allocation considerations. Once the activity sequence has been defined, the agents

who will in fact perform it need to be decided upon. Considering Θ a coalition, the

following instantiations need to be done:

� Basic activity instantiation: C µ � b D , where agent µ 3 Θ is involved in the

performance of the basic activity b 3 B;

� Multiagent activity instantiation: C Θ j � m D , where Θ j E Θ is involved in the

performance of the multiagent activity m 3 M;

� Activity sequence instantiation: a sequence of basic and multiagent activity in-

stantiations, which specifies the respective agents who will perform them. If Σσ

is an activity sequence, its instantiation is denoted by Σ Fσ.

At this point we can define the predicate RELATION-OK to indicate that the rela-

tionship between two activities σi, σ j 3 Σ Fσ is satisfied or there is not relation between

them. Such definition is given as:

RELATION-OK �GC Θi � σi D � C Θ j � σ j D � Σ Fσ �H+ ℜσi B σ j. �G, @ ℜσi B σ j 3 Σ Fσ �

62 Chapter 4. Teamwork Theories for Collaborative Planning

Using such predicate and c?;a to mean activity a with c holding initially, we can

define the conditions to an agent µ and a sub-coalition Θi to perform a basic activity b

and a multiagent activity mi respectively:

PERFORM(C µ � b D � Σ Fσ) + (
� C ! µw ��� µx #I� σi D 3 Σ Fσ �

RELATION-OK(C µ � b D � C ! µw ��� µx #I� σi D � Σ Fσ)?;

DOING(C µ � b D)

PERFORM(C Θi � mi D � Σ Fm) + (
� C ! µw ��� µx #I� m j D 3 Σ Fm �

RELATION-OK(C Θi � mi D � C ! µw ��� µx #I� m j D � Σ Fm)?;

(@ Σ Fmi PERFORM �GC Θi � mi D � Σ Fmi �)

The first definition simply means that all relationships involving b in Σ Fσ must be

satisfied. The second is a recursive definition where Σ Fmi is a solution developed by Θi

for solving mi. However, before dealing with a joint activity, members of a coalition

must agree upon a common solution. This fact is specified as:

NEED-COMMON-SOLUTION(C Θi � σ DJ�K+ML @ Σ Fσ PERFORM �GC Θi � σ D � Σ Fσ �

At this point a particular emphasis is given to define conditions under which it is

rational to drop commitments to the agreed solution and the actions which must be

taken in such circumstances. The failure conditions are:

� The motivation for performing one of the activities is not present (LACKING-

MOTIVE),

� The agreed sequence does not achieve the desired outcome (INVALID),

� One of the specified activities cannot be performed (UNATTAINABLE);

� One of the agreed activities was not performed (VIOLATED).

These conditions represent situations in which a member µ in Θ can detect, for itself

(local problem), that the common solution is no longer sustainable. Thus, it needs to

reassess its commitments to the agreed solution Σ Fσ. Local problems are represented

as:

4.2. Principal Teamwork Proposals 63

LOCAL-PROBLEM � µ � C Θ � σ D � Σ Fσ �K+
BEL(µ,LACKING-MOTIVE(C Θ � σ D � Σ Fσ � .

INVALID(C Θ � σ D � Σ Fσ � .
UNATTAINABLE(C Θ � σ D � Σ Fσ � .
VIOLATED(C Θ � σ D � Σ Fσ �

Differently to a LOCAL-PROBLEM, a NON-LOCAL-PROBLEM appears if an

agent realises that one of its fellow team agents has dropped commitments to the solu-

tion. In this case the agent needs to reassess its position to take this new information

into account. NON-LOCAL-PROBLEM is represented as:

NON-LOCAL-PROBLEM � µ � C Θ � σ D � Σ Fσ �K+
µ �� µi BEL � µ � � @ µi 3 Θ LOCAL-PROBLEM(µi � C Θ � σ D � Σ Fσ)))

Thus, the situation under which an agent µ drops commitments to an agreed com-

mon solution Σ Fσ for a multiagent activity instantiation C Θ � σ D is given by the dis-

junction of both problems: DROP-SOL-COMMIT + LOCAL-PROBLEM . NON-

LOCAL-PROBLEM.

To ensure that the problem is disseminated within Θ, µ must inform all other mem-

bers about the fact that it is no longer committed and also the reason why. In this way,

the theory uses the concept of Individual Solution Commitment (ISC) to represent a

high level description of how each agent should behave in its own planning perfor-

mance and toward others with regard to the agreed solution7:

ISC � µ � C Θ � σ D � Σ Fσ �K+
WHILE , DROP-SOL-COMMIT(µ � C Θ � σ D � Σ Fσ � DO

(
� C ! µ � µw ��� µx #I� σi D%3 Σ Fσ), where ! µ � µw ��� µx #NE Θ

BEL � µ � L PERFORM �GC ! µ � µw ��� µx #I� σi D � Σ Fσi �(�O	
L PERFORM �GC ! µ � µw ��� µx #I� σi D � Σ Fσi �(�

WHEN

GOAL � µ � MBEL � ! Θ,DROP-SOL-COMMIT(µ � C Θ � σ D � Σ Fσ)))

7In the ISC definition we have WHILE p DO q WHEN r: while p is true, q will remain true. When
p becomes false, q will be false and r will become true.

64 Chapter 4. Teamwork Theories for Collaborative Planning

According to this definition, for each activity that µ is involved in, it should believe

that it is going to perform that activity and also that it will in fact perform the activity

at the appropriate time. If there is some problem to perform the activity, µ will have

a new goal of disseminating this information within Θ. Then, combining the given

definitions, we can specify the two conditions concerned with performing activities

in a multiagent group: agreeing to a common solution and defining how individuals

should behave once such a solution has been chosen:

SOL-COMMITMENT(C Θ � σ D) +
MBEL(Θ,NEED-COMMON-SOLUTION �GC Θ � σ DJ�) 	
MBEL(Θ � � � µi 3 Θ ISC � µi � C Θ � σ D � Σ Fσ �(�)

Finally we can define the mental state of joint responsibility which a coalition Θ

must adopt if its agents are to jointly perform σ. Note that the definition uses the

concept of JPG, which was defined in section 4.2.1:

JOINT-RESPONSIBILITY(C Θ � σ D) +
MBEL(Θ � JPG �GC Θ � σ DJ�) 	
MBEL(Θ,SOL-COMMITMENT(C Θ � σ DJ�)

The use of Joint Responsibility in a hierarchical organisation implies that each sub-

coalition Θi E Θ establishes its own joint responsibility. This case is similar to the

Joint Intentions theory (Section 4.2.1) where each sub-coalition needs to establish a

JPG.

An example of the use of Joint Responsibility is for a fault detection and diagnosis

system for electricity transportation management. This scenario deals with the process

of taking electrical energy from where it is produced to where it is consumed. Agents

are used to jointly detect, and if possible, repair problems during this process. In this

way, agents make use of joint responsibilities to develop common solutions to prob-

lems and inform about possible faults during the performance of the agreed solution.

Details of several experiments in this domain can be found in [Jennings, 1995].

4.2. Principal Teamwork Proposals 65

4.2.4 Planned Team Activities

The Planned Team Activities approach [Kinny et al., 1992] proposes a framework to

specify joint plan activities where the participant agents have a repertoire of plans

supplied in advance, rather than being generated by them. This approach is mainly

based on the idea that agents embedded in dynamic environments can rapidly respond

to events by adopting a pre-defined plan.

The planned team activities language contains individual agent constants and team

variables. Ground teams are teams that contains no variables. The language also

distinguishes between ordered and unordered teams, which can be used to compose

new teams. Thus if Θ1 �(������� Θn are teams, then ! Θ1 �(������� Θn # is an unordered team and

(Θ1 �$������� Θn) is an ordered team.

The performance of a plan is represented as a graph ρ (a labelled, directed, acyclic

and/or graph). Nodes in the graph are denoted by ni,..., n j and the k’th directed edge

from node ni to node n j is denoted by ek
i j. The labels on the plan graph employ opera-

tors (*,!,?,ˆ) to specify a plan expression ω, which denotes the performance of a basic

activity *(Θ,a), achievement of a proposition f !(Θ,f), testing of f ?(Θ,f), or waiting

for f ˆ(Θ,f). We can return the team that occurs in each plan expression using the

function TEAMOF(ω).

A plan is defined as a tuple(p, f purpose, f precondition, ρ), where p is a unique plan

name, f purpose is a goal proposition, f precondition is the circumstance under which the

plan can be executed, and ρ is a plan graph. Given a library of plans P and a goal state

g, the function PLANS-FOR(P,g) returns the subset of P whose f purpose is equivalent

to g.

Planned Team Activities also defines some important functions to guide the pro-

cesses of team formation and plan selection at runtime. For example, there is a function

for role assignment that creates a mapping from roles in the plan to members of a team.

This is achieved by matching the formal team in the purpose of the plan to the acting

team that invokes the plan. Then, a substitution S is a matching from an ordered team

Θord to an ordered ground team Θground if:

� Θground represents a single agent (an agent constant) and S(Θord) = Θground ; or

66 Chapter 4. Teamwork Theories for Collaborative Planning

� Θord = � Θord1 �(������� Θordn � and Θground = � Θground1 �$������� Θgroundm � are teams such

that n � m and
�

i = 1...n, S(Θordi) = Θgroundi

Then, given a ground team Θground and a plan p whose formal team is Θp, a role

assignment SΘground
p over Θground for p is a matching from Θp to Θground . αSΘground

p refers

to the member that performs a role α. The process S of defining the team Θground that

will perform a specific plan p explicitly encodes the need of communication because

members of a team must first commit or not to each delegated role α.

A Θground has the capabilities to execute a plan p if p 3 PLANS(Θground) and there

exists a role assignment SΘground
p such that

� w 3 SUBGOALS � p � � T EAMOF � w � SΘground
p

has the capabilities to perform the plan expression w. In this way, a ground team

Θground has the capabilities to perform a plan expression w if:

� w = *(Θground ,a) and a 3 CAPABILITY(Θground); or

� w = ?(Θground ,f) or w = ˆ(Θground ,f); or

� w = !(Θground ,f) and @ p 3 PLANS-FOR(PLANS(Θground),f) such that Θground

has the capabilities to perform p.

Finally, using such definitions and considering that TRANSFORM(α,p) is a func-

tion that returns a role-plan for the role α in p, the definition of joint intention for this

approach can be written as:

JINTEND � Θ � p �K+ P µ Q ROLES R p S JINT END � µSΘ
p � p �
	

MBEL � µSΘ
p � JINT END � Θ � p �(�T	

MBEL � µSΘ
p � P α Q ROLES R p S DONE � ! � αSΘ

p � T RANSFORM � α � p �(�(�VU
DONE(!(Θ,p)))

According to this definition, a ground team Θ has a joint intention toward a plan

p given a role assignment SΘ
p if every agent has the joint intention toward the plan,

every agent believes that the joint intention is being held by the team, and every agent

believes that all agents performing their respective role-plans results in the team per-

forming the joint plan.

4.3. Comparative Discussion and Requirements 67

Note that this approach stresses the idea of finding suitable capabilities to achieve a

joint goal, guiding, in this way, the team selection process [Tidhar et al., 1996]. How-

ever, as related in [Kinny et al., 1992], the approach makes no provision for organisa-

tional structure within a team or between teams, such as the presence of a manager, or

other hierarchical relationships. The representation could be extended to permit this,

possibly resulting in modifications to the amount and type of communication between

agents.

The ideas of the Planned Team Activities theory were used in an air combat simu-

lation system, which enables the definition and configuration of both individual aircraft

agents and teams of aircrafts. Details of this application can be seen in [Rao et al., 1993].

4.3 Comparative Discussion and Requirements

A comparative analysis of the teamwork approaches can be divided in five principal

topics: commitments, communication/monitoring, mutual support, particular problem

target and option for hierarchical description. From this discussion it is also possible to

extract the fundamental requirements that must be considered by collaborative systems.

Although the works discussed in the last section lead their approaches to deal with

different technical problems, they agree that agents involved in collaborative tasks must

implement a notion of commitment. For that, a first requirement associated with col-

laboration could be expressed as:

Requirement 3: the collaborative model must consider the establishment
of commitments to joint activities, enabling consensus on plans or their
constituent parts.

Considering this requirement, the Joint Intention Theory (henceforth, JIT) employs

a strong notion of commitments, stipulating that agents are committed to a joint goal

until they believe that such goal is satisfied or come to the conclusion that it is im-

possible to reach it. SharedPlans relaxes this notion of commitment via an intentional

attitude (a mutual belief that something holds), which allows that agents drop inten-

tions, but still having a potential intention to do any activity that they believe will

contribute toward the previous commitment. The Joint Responsibility (henceforth, JR)

68 Chapter 4. Teamwork Theories for Collaborative Planning

framework refines the JIT, adding notions of plan and joint plan commitments. This

includes a specification of the conditions under which joint plan commitments can be

dropped. The Planned Team Activities (henceforth, PTA) is also based on mental states

such as joint intentions and mutual believes. However such mental states also involve

explicit references to the roles that each agent is performing, so that agents must mutu-

ally believe that performing their respective role-plans results in the team performing

the joint plan.

Associated with communication in teamwork environments, we can note from the

study of these proposals that the support to the development of such a process can be

summarised by the following requirement:

Requirement 4: the collaborative model must provide ways to disseminate
information associated with progress, completion and failure of activities.

For that end, JIT embodies a rigid communication approach, which defines that if

a member in a collaboration comes to believe privately that the joint goal is satisfied

or is impossible to achieve, it incurs a commitment to make this fact mutually known.

Differently, in SharedPlans agents are not required to communicate when they drop in-

tentions. Instead, communication is only one option in such situations because, in fact,

they possibly still having an intentional attitude forward such intentions. Thus, the de-

cision of communicating requires additional reasoning. The communication approach

of JR is similar to JIT once that JR is an extension of JIT. However note that it does an

important extension in adding information about the conditions under which the com-

mitment was dropped. PTA, in a similar way as JIT, builds into their definition of joint

intention a requirement that agents communicate. In particular, the method they use

for transforming a general plan structure to a plan in which teams are assigned to spe-

cific activities adds communication actions so that a message reporting the failure or

success of sub-activities is broadcast to the members of the team after the sub-activity

is (or is not) executed.

The notion of team support allows that a team member supports the performance

of other members. In fact this is a very important feature of teamwork, however this

is not very well explored by the approaches discussed here. One such requirement for

team support development could be expressed as:

4.3. Comparative Discussion and Requirements 69

Requirement 5: the collaborative model must underline the idea of mutual
support, providing ways to the specification of useful information sharing
mechanisms and creation of supportive activities.

JIT does not discuss in detail the ways in which mutual support is generated. The

principal reason is because JIT deals with plans at a very high level of abstraction and

does not address partiality in a significant way. For example, it does not represent

in detail partial plans for individual or joint activities. Thus it is not able to express

how one such plan can support the performance of another. In contrast, SharedPlans

discusses efforts toward this requirement. Its formalism will lead, for example, an

agent to share some particular information that it believes will enable the team to do

an activity, which it desires to be performed by the team. In addition, SharedPlans

also represents notions of partiality in plans, including, for example, more detailed

specification of plans for activities. JR also presents a better representation for plans,

distinguishing, for example, basic from multiagent activities. However, like JIT, JR

does not consider the idea of mutual support. PTA provides detailed specifications of

plans via libraries of pre-defined plans. However, it does not consider either situations

in which agents have partial plans, or the construction of a new plan structure using

elements from individual members’ libraries. Furthermore, PTA does not discuss ways

to represent mutual support or helpful behaviour.

We can note from the discussion that each framework tailors its approach to deal

with a specific target problem. JI is more concerned with the problem of when to

communicate, in particular the need for agents to inform one another whenever they

drop a joint commitment. SharedPlans focus on how agents could form commitments

to the activities of other participants of the team (mutual support). JR addresses in more

details the conditions under which joint activities may falter and how team members

should behave toward each other in such circumstances. PTA is more concerned with

how agents can organise a suitable team to achieve a given problem.

Finally the frameworks present different levels of difficulty to allow for the de-

scription of collaboration in hierarchies. JIT does not discuss a direct way to express

teamwork ideas in such organisations, however it is possibly an easy adaptation if we

consider each subgroup as a particular team. In SharedPlans this adaptation is more

70 Chapter 4. Teamwork Theories for Collaborative Planning

obvious because the approach already considers a hierarchical process of decomposi-

tion. JR brings a similar level of difficulty than JIT once that it is just an extension of

JIT. Differently, PTA needs a more detailed analysis and possible extensions so that

it supports notions of organisational structures. The resume of this discussion can be

seen in Table 4.1.

4.4 Summary

This chapter has discussed the need for developing planning processes together with

principles of collaboration. In this way, the teamwork research was introduced as the

most widely accepted metaphor for describing the nature of multiagent collaboration.

Four different teamwork approaches (Joint Intentions, SharedPlans, Joint Responsi-

bilities and Team Work Activities) were summarised so that we were able to raise

important requirements for the implementation of coalition support systems.

Three ideas were stressed during this discussion: commitments, communication

and mutual support. The concept of commitments is the core part of the teamwork

research and it is used as a way for agents to define joint intentions to perform a col-

lective activity while they share a certain mental state. Communication is important to

update such mental state, enabling activity monitoring and correct use of information.

Finally, mutual support that accounts for providing a more obvious sense of collabo-

rative behaviour for each agent, even though it is not so well explored by the existing

teamwork approaches.

4.4.
Sum

m
ary

71

Theory Commitment Communication/
Monitoring

Mutual Support Particular Prob-
lem

Hierarchical
Description

Joint
Intentions

Strong notion based

on joint mental states

Rigid approach ex-

plicitly represented

in the theory

Not supported Communication

analysis

Easy adaptation to

support such de-

scriptions

SharedPlan Based on intentions

and desires on inten-

tions

Not explicitly rep-

resented. Requires

additional reason-

ing

Allows useful in-

formation sharing

Initial effort for

mutual support

Possible via its hi-

erarchical process

of decomposition

Joint Responsi-
bilities

Expands the JIT

ideas with the notion

of commitment to

plans

Similar to JIT but

dealing with addi-

tional information

about commitment

failures

Not supported Study about fail-

ures in joint activ-

ities

Same as JIT

Planned Team
Activities

Joint mental states

with reference for

roles

Build on the joint

intentions def-

inition via the

transformation

function

Not supported Team formation Not supported

Table 4.1: Comparison of Teamwork Theories

Chapter 5

Toward a Human-Agent Teamwork

Model

The use of teamwork ideas supports the performance of collaborative planning activ-

ities by agents of a coalition, however they do not consider situations where agents

interact with human users. This chapter starts by analysing, in Section 5.1, which

problems can appear when humans are involved in planning activities using “teamwork

agents”. Then, Section 5.2 introduces the concept of adjustable autonomy and its two

principal approaches (agent-based and user-based), explaining how it can be used to

deal with such problems. Section 5.3 discusses a solution based on the well-known

framework of Mixed-Initiative Interaction, however incorporating several notions of

adjustable autonomy. As in the last two chapters, the principal aim of this discussion is

to extract the requirements, in this case associated with human-agent interaction, that

are important to the development of coalition support systems.

5.1 Limitations of Teamwork for Human Interaction

While early research on teamwork was mainly focused on agent-agent interaction,

there is a growing interest [Bradshaw et al., 2002] in various dimensions of human-

agent interaction. However, this new way of thinking about teamwork applications

must firstly face additional problems that interaction with human users can bring up.

To illustrate such problems, consider the following scenario. During a disaster

73

74 Chapter 5. Toward a Human-Agent Teamwork Model

relief operation, the command centre sends the activities that must be performed by

each paired agent/human. A truck t receives the activity a of “allowing access to the

region on fire” so that the fire brigades can access such a region. When t’s agent

receives this activity, it presents several plan options for t performing a. However,

supposing that t is an uncertain human being, he/she spends more time than expected

thinking about the options, so that the fire brigades as they arrive find the roads still

blocked. Thus the whole plan is delayed.

Based on this example, we can note that agent inaction while waiting for a human

response can lead to potential miscoordination with other coalition members. Thus,

a new requirement to the development of human-agent teamwork systems could be

raised as:

Requirement 6: the human-agent model must enable the definition of ad-
justable methods that complement the decision making process of human
users.

If the agent was developed considering this requirement, it could, in certain time

critical situations, decide by itself one possible option and present it to t. For that,

the agent will need some level of autonomy to take decisions that normally must be

taken by humans. In some cases this could be dangerous because the agent can put the

human user in situations of risk.

Now, consider that t decides to clear a narrow road that gives access to the region

on fire because the work will be easier and quicker. However this road, in the complete

plan, is working as a debris deposit so that others trunks are using it to drop off their

waste. According to this example, we can note that local decisions taken by a coalition

member can seem appropriate for her/him, but may be unacceptable to the team. In

this way, an additional requirement can be expressed as:

Requirement 7: the human-agent model must provide ways to restrict user
options in accordance with the global coalition decisions.

Note that the teamwork theories are not specified to deal with such requirements.

In the first case (Requirement 6), commitments could consider a deadline to force

some reasoning process in the agent so that it returns at least a “not possible” answer.

However, in cases where humans are the final decision-makers, agents are not normally

5.2. The Adjustable Autonomy Approach 75

permitted to play such role. In the second case (Requirement 7), commitments on plans

and activities do not have effects on individual decisions of agents. In order, an agent

already has set a commitment when it accepts an activity. However the theories are not

at a level of granularity to force commitments on details about how to perform each

activity. Note that this could be very hard in terms of communication and time.

5.2 The Adjustable Autonomy Approach

The requirements discussed in the last section can be seen as a problem of finding a

suitable level of autonomy to the agents. Depending on this level of autonomy, agents

can only carry out user commands or, at the other extreme, replace human reasoning,

making all necessary decisions. Figure 5.1 illustrates this idea, showing a discrete

classification for agent systems that present some kind of interaction with human users.

Figure 5.1: Spectrum of agent roles in human-agent interaction, showing degrees of

agent initiative (adapted from [Bradshaw et al., 2002]).

Considering this idea, if the agents’ autonomy is adjusted to a correct degree, this

will allow them to exploit human abilities to improve their performance, but without

becoming overly dependent or intrusive in their human interaction. Research in ad-

justable autonomy considers this idea, encompassing the strategies by which an agent

76 Chapter 5. Toward a Human-Agent Teamwork Model

selects the appropriate entity such as itself, a human user, or another agent, to make a

decision at key moments when an action is required [Maheswaran et al., 2004]. These

strategies can vary the level of autonomy of agents so that they require a different

level of guidance depending on the current situation. The remainder of this section

discusses the two different directions to formulate adjustable autonomy (user-based

and agent-based autonomy), analysing in depth their features and advantages inside a

collaborative planning environment.

5.2.1 Agent-Based Approach

In the agent-based approach [Scerri et al., 2001] to adjustable autonomy, each agent

explicitly reasons by itself about whether and when to transfer decision-making con-

trol to another entity. For that, the transfer control process has to reason about the

real advantages of such transference, facing the fact that it may have a high cost of

interrupting the user who may be also unable to make and communicate a decision.

The agent-based approach has been used in the context of a multiagent system

called Electric Elves [Chaulpsky et al., 2001]. In this system, individual user agents

act in a team to assist with rescheduling meetings, ordering meals, finding presen-

ters and other day-to-day activities. For that, agents are implemented through Markov

Decision Processes [Puterman, 1994], which allow an explicit representation and rea-

soning about uncertainty of the world state and user interactions. Consequently, agents

are able to dynamically vary their degree of autonomy, deciding when they need to

interact with human users.

To illustrate the use of this approach regarding requirement 6, suppose that, when

faced with uncertainty, a fire brigade agent consults its user (e.g., to check whether

the user is able to work into the night), but the user, very busy in extinguishing a fire,

fails to respond. While waiting for a response, the agent may miscoordinate with its

teammates, since it fails to inform them whether the user will work during the night.

Note that the agents, following the teamwork requirements, model each operation ac-

tivity as a team commitment so that agents keep each other informed about progress,

completion or failure. This in turn means that other members that depend on the work

of the fire brigade waste their time waiting. Conversely if, to maintain coordination,

5.2. The Adjustable Autonomy Approach 77

the fire brigade agent tells the other agents that its user is not able to work during the

night, but the user does indeed work, the team suffers a potentially serious cost from

receiving this incorrect information. So, the fire brigade agent must instead make a

decision that makes the best trade off possible between the possible costs of inaction

and the possible costs of incorrect information.

The approach used in Electric Elves was innovative in considering the use of an

agent-based approach to adjustable autonomy in a teamwork context, differently of

previous works (e.g., [Dorais et al., 1998, Horvitz et al., 1999]) that have focused such

approach on individual agent-human interactions. However, we can note that agents

have considerable control of the interaction so that human users would not feel very

confident. This feeling could become worse if we consider critical domains such as

disaster relief operations or military missions where decisions can put humans in situ-

ations of risk. Furthermore, the approach does not consider the scenario where individ-

ual users take unacceptable decisions when dealing with their activities (Requirement

7).

5.2.2 User-Based Approach

Differently of the agent-based approach, the user-based approach to adjustable au-

tonomy explores a human-centred perspective, where humans are seen as the crucial

elements in the system and agents are fitted to serve human needs. The central issue for

this approach is the design of mechanisms by which an user can dynamically modify

the scope of autonomy for an agent.

A possible implementation of the user-based approach is oriented around the no-

tion of policies [Sierhuis et al., 2003, Myers and Morley, 2003]. A Policy can be con-

sidered a declarative statement that explicitly bounds the activities that an agent is

allowed to perform without user involvement. Thus, as long as the agent operates

within the policy, it is otherwise free to act with complete autonomy. Human users can

impose and remove the policies at any time, adjusting in this way the level of auton-

omy of agents. Consequently the main issue is to know how to specify good polices in

accordance with the current scenario.

An example of policy use to implement the user-based approach can be seen in the

78 Chapter 5. Toward a Human-Agent Teamwork Model

TIGER System [Myers and Morley, 2003]. TIGER provides interactive tools to help

users to define and manipulate its policy framework. Such a framework assumes a BDI

model of agency in which an agent has a predefined library of parameterised plans that

can be applied to achieve assigned tasks or respond to detected events. Each class of

plan instances in this library is characterised by an activity specification, which can be

defined as A � � F W � F X � R � Cr � . The elements in this tuple respectively correspond

to:

� A set of required plan features. A plan feature designates an intrinsic character-

istic of a plan that distinguishes it from other plans that could be applied to the

same task;

� A set of prohibited plan features;

� A set of plan roles. A plan role describes a capacity in which a domain object is

used within a plan. For example, a pathfinder plan may contain variables, whose

roles correspond to locations such as START, DESTINATION and so on;

� A set of constraints on how plan roles can be filled.

A desire specification D is defined in a similar way, however substituting the con-

cept of plans by goals. Thus D has a set of required and prohibited goal features rather

than plan features. Using both concepts, A and D, the formalisation introduces the

notion of agent context, which is defined by a tuple C � � B � D � A � , where:

� B is a set of beliefs;

� D is the current set of desire specifications of µ;

� A is the current set of activity specifications of µ.

Agent context is the mechanism for delimiting the scope of agent reasoning. Via

such a mechanism the framework defines two classes of policies:

� Permission Policy � C � A � : declares conditions under which an agent must ob-

tain authorisation from the human user before performing activities (e.g., Obtain

5.3. The Mixed-Initiative Approach 79

permission before refilling the fire brigade water tank). When the agent’s BDI

state matches the specified agent context C, permission must be obtained in order

to execute a plan instance that matches the permission-restricted activity A;

� Consultation Policy: designates a class of decisions that should be deferred to

the human user. They are defined into two types:

– Role-fill Policy � C � r � : related to the selection of a value for parameter

instantiation (e.g., Let me choose specific roads to the final route). The in-

terpretation of a role-fill requirement is that when an agent’s BDI executor

state matches the agent context C, any instantiation decision for a variable

corresponding to the consultation role r should be passed to the human;

– Plan Policy � C � D � : related to the selection of a plan for a goal (e.g.,

Consult me when deciding how to respond to requests of help). Plan policy

indicates that when an agent’s BDI executor state matches the agent context

C, the human user should be asked to select a plan to apply for any goal

that matches the desire specification D.

In addition to permission and consultation policies, the proposal also defines the

idea of strategy preferences that constitutes recommendations on how agents should

accomplish assigned tasks. Together, such concepts support some idea associated with

requirement 6. For example, if a fire brigade is very busy extinguishing a fire, it can

give more autonomy for its agent and specify directions on how it must plan/act. Note,

however, that this proposal does not discuss what must be done in case of an agent

which asks something of its user and he/she does not reply. Furthermore, this proposal

also does not explicitly discuss solutions toward requirement 7.

5.3 The Mixed-Initiative Approach

Mixed-Initiative Interaction refers to a flexible strategy in which each participant of

the interaction contributes what it is best suited to do at the most appropriate time

[Allen et al., 1999]. In this way, such an approach is useful to combine the abilities

80 Chapter 5. Toward a Human-Agent Teamwork Model

of humans and agents so that they synergistically work together. We can say that

while users have the ability to take decisions based on their past-experiences (case-base

reasoning), agents are able to generate and compare a significant number of options,

showing both positive and negative points of such options.

Mixed-initiative interaction is not only used to combine the abilities of humans

and agents, but also can be used as a technique for users to keep the control of agents.

For example, TRAINS/TRIPS [Ferguson et al., 1996, Ferguson and Allen, 1998] is a

mixed-initiative planning assistant that outlines the applicability of dialogue as a pos-

sible metaphor for the design of such systems. Figure 5.2 exemplifies part of a dialogue

for a train route planning problem.

Figure 5.2: Example of part of a dialogue (from [Ferguson et al., 1996]).

In this example, humans are able to set high-level goals (such as in the step 1)

while agents account for refining these goals. To that end, agents should ask questions

to users, which provide details about the plan (such as in the step 3). Note that during

this dialogue, the human is adding (step 3) or relaxing (step 5) restrictions on the

deliberative process of the agent, and this is a form of controlling its behaviour.

The metaphor used by TRAINS/TRIPS involves some problems associated with

natural spoken dialogue research. However, if we analyse a human-agent dialogue

in a planning context, such as the dialogue in Figure 5.2, we can note that they are

commonly a high-level way of manipulating restrictions.

O-Plan [Tate, 1997], another classical mixed-initiative planner, uses a more direct

alternative to manipulate such restrictions. Via the O-Plan interface (Figure 5.3) users

are guided through a planning process in which they can set initial assumptions, as-

5.3. The Mixed-Initiative Approach 81

sign tasking level requirements for a Course of Action (COA) and select elements of

evaluation, which are shown on a white background in the first column (e.g., minimum

duration in Figure 5.3). The items in the matrix give the values for these elements,

together with colours that specify whether the values raise any possible problematic

issue (green = no issues, orange = points to note, red = violated constraints). Users can

split any COA into two or more sub-options and explore further within each, adding,

for example, new constraints and generating new plans. Together, these facilities allow

for incremental development, exploration and evaluation of qualitatively different plan

options.

Figure 5.3: Example of an O-Plan interface.

In both projects agents and humans can flexibly transfer initiative in decision mak-

ing. TRAINS/TRIPS uses the idea of turn-taking models to address questions of when

an agent is obliged to take the turn, when it cannot have the turn, and when it has an op-

tion of taking the turn or not. Differently, O-Plan envisages a mixed initiative form of

interaction in which users and agents proceed by mutually restricting the plan. During

this process, users can delegate to the system by adding suitable entries (with implied

constraints) in an agenda for parts of the work that agents can handle best. Agents can

seek help from the user via the same mechanism.

Mixed-initiative proposals, such as TRAINS/TRIPS and O-Plan, implement mech-

82 Chapter 5. Toward a Human-Agent Teamwork Model

anisms to transfer control between agents and humans. Such mechanisms are a key

aspect of the adjustable autonomy process so that mixed-initiative interaction can be

used to adjust the degree of agents’ autonomy. The implementation of adjustable au-

tonomy on the mixed-initiative perspective is a suitable alternative because mixed-

initiative research has also been investigating two fundamental model requirements of

human-computer interaction, which can be expressed as:

Requirement 8: the human-agent model must support the definition of
mechanisms that intensify the human user control and enable the customi-
sation of solutions.

Requirement 9: the human-agent model must support the generation of
explanations about autonomous decisions, clarifying the reasons why they
were taken.

Requirement 8 refers to mechanisms that allow users to customise the solution

according to their desires. Note that this requirement is likely to be antagonistic toward

requirement 7. The idea should be that users can customise their solutions so that such

solutions are still in accord with the coalition goals. In the TRAINS/TRIPS example

(Figure 5.2), we can see that the user was able to customise the solution by indicating

a preferential route (step 5). O-Plan also enables such customisation when users add

entries in the agenda together with restrictions (e.g., ordering restrictions) for their

performance. Note that the approach used in the TIGER system (Section 5.2.2) also

presents an option for customising solutions via the concept of strategy preferences.

Requirement 9 is important because human users have an additional need of under-

standing what and why something is happening or will be carried out by the agent. This

is particularly significant when an agent responds in a specific way to some previous

human request. In TRAINS/TRIPS example (Figure 5.2), the agent returns an expla-

nation (step 4) when an activity cannot be performed. In the same way, O-Plan allows

users to set elements of evaluation that qualify a plan (COA) showing, for example,

why it is not possible to perform it (values in red colour).

5.4. Summary 83

5.4 Summary

The involvement of human users in systems that implement the teamwork concepts

is a very new experience and several opportunities are being created for research

[Siebra and Tate, 2004]. The current proposals are still limited and they can only be de-

ployed in specific cases. In this context we have identified two principal requirements

(requirements 6 and 7) that must be considered during the evolution of multiagent

teamwork systems to human-agent teamwork systems.

Research in adjustable autonomy is the current trend to deal with these require-

ments and it can be classified into two principal directions: user-based and agent-

based autonomy. However we argue that such requirements can be dealt with the

mixed-initiative approach. The principal advantage is that mixed-initiative research

has a long history involving the interaction of humans and agents, already considering

fundamental requirements for this (requirements 8 and 9).

Part III

Unifying Requirements

85

Chapter 6

Y I-N-C-A Z : a Constraint-Based

Ontology

Part II of this thesis analysed three different threads associated with human-agent col-

laborative planning, extracting several requirements and discussing potential solutions

for them. This part details how we are mapping such solutions into a unified frame-

work, using constraint-based models and operations on them.

This chapter, in particular, presents � I-N-C-A � , the general-purpose constraint-

based ontology that has been extended and adapted to support the definition of our

planning models. We start by justifying the use of an ontology as a basis for plan

representation. After that, we focus on the � I-N-C-A � components and how � I-N-C-

A � can be used to describe plans.

6.1 Reasons to Use Ontologies for Multiagent Planning

Representation

Ontologies are formal descriptions of concepts and relationships that can exist for or-

ganisations and their agents, creating a representation vocabulary, often specialised to

some domain or subject matter. However, as stressed in [Chandrasekaran et al., 1999],

it is not the vocabulary as such that qualifies as an ontology, but the conceptualisations

that the terms in the vocabulary are intended to capture.

87

88 Chapter 6. � I-N-C-A � : a Constraint-Based Ontology

One important feature of ontologies for multiagent planning is that they are de-

signed for the purpose of enabling knowledge sharing and reuse [Gruber, 1995] via

agreements to use a vocabulary in a way that is consistent with the theory pre-specified.

Note that for problems that require standard planners, where all the planning processes

are commonly carried out for a single planning agent (e.g., Sokoban, Towers of Hanoi),

the kind of planning representation can be designed considering features such as effi-

ciency or expressiveness. Differently, the design of a multiagent planning representa-

tion must consider the fundamental need of providing a mutual understanding of the

domain for all the agents. For that, ontologies are able to provide a shared underly-

ing conceptual model, creating a framework for supporting collaborative processes of

planning and execution.

The advantages associated with the use of an ontology for multiagent planning

representation can be summarised into three features:

� It facilitates interoperation and communication between agents with common

terminology;

� It promotes knowledge sharing between systems, integrating knowledge acqui-

sition and modelling efforts, and;

� It creates a repository for general knowledge about planning to be used across

several different application domains (reusability).

An example of ontology use in planning domains is the Joint Forces Air Component

Commander (JFACC) ontology [Valente et al., 1999]. This project investigates a case

study in building and (re)using an ontology for a specific application domain - air

campaign planning. According to the authors, the experiments obtained the benefits

envisioned, which are similar to those listed above.

6.2 [I-N-C-A \ and its Components
� I-N-C-A � (Issues - Nodes - Constraints - Annotations) [Tate, 2003] is a general-

purpose ontology that can be used to represent synthesised artefacts, such as plans

6.2. � I-N-C-A � and its Components 89

and designs, in the form of a set of constraints on the space of all possible artefacts

in the application domain. The use of � I-N-C-A � , in this thesis, aims to underpin

the representation of collaborative activities, respecting the requirements previously

discussed. The next subsections describe each of the � I-N-C-A � components.

6.2.1 Issues

Issues are the � I-N-C-A � components that state the outstanding questions to be han-

dled and can represent unsatisfied objectives or questions raised as result of analysis

or other deliberative processes. For example, during the planning of activities associ-

ated with the rescue of civilians, an ambulance team can raise an issue representing a

question like “Which are the hospital with facilities to treat burn injuries?”. This issue

could be, for example, send to another agent with more expertise to answer it.
� I-N-C-A � has adopted the IBIS [Kunz and Rittel, 1970] (Issue-Based Informa-

tion System) orientation of expressing issues as any of a number of specific types of

question to be considered [Conklin, 2003]. The types of questions advocated that are

likely to be the most common in the � I-N-C-A � task support environment are:

1. Deontic questions: What should we do?

2. Instrumental questions: How should we do it?

3. Criterial questions: What are the criteria?

4. Meaning or conceptual questions: What does X mean?

5. Factual questions: What is X? Is X true?

This use of issues in planning is similar to the Question-Option-Criteria (QOC) ap-

proach [MacLean et al., 1991]. At a high level, a planning session could be defined by

the issues (questions) considered, the alternatives (options) posed and their justifica-

tions (criteria for those choices). In fact, the QOC approach was used for rationale cap-

ture for plans in earliest works associated with � I-N-C-A � [Polyak and Tate, 1998].

90 Chapter 6. � I-N-C-A � : a Constraint-Based Ontology

6.2.2 Nodes (Activities)

Nodes describe components that are to be included in an artefact (in our case, in a

plan). Nodes can themselves be artefacts that can have their own structure with sub-

nodes and other � I-N-C-A � described refinements associated with them (Figure 6.1).

Figure 6.1: Example of hierarchical decomposition of activities.

When � I-N-C-A � is being used to describe plans as processes, the nodes are usu-

ally the individual activities and their sub-activities. They are usually characterised by

a pattern composed of an initial verb followed by any number of parameter objects,

noun phrases, qualifiers or filler words describing the activity. For example:

(transport object from start-place to finish-place)

In this example, the activity transport is characterised by the qualifiers “from” and

“to”. The variables object, start-place and finish-place must be set before the activity’s

performance. It is important to note that issues can be transformed to activities, im-

plying further nodes. For example the issue “Which are the hospitals with facilities to

treat burn injuries?” could be transformed to the activity: (find object with capability

), where object = (hospital) and capability = (treat (burn injuries)). Details about the
� I-N-C-A � syntax are given later.

6.3. Representation of Plans via � I-N-C-A � 91

6.2.3 Constraints

Constraints restrict the relationships between nodes to describe only those artefacts

within the artefact space that meet the requirements. The constraints may be split into

critical constraints and auxiliary constraints depending on whether some constraint

manager can return them as maybe answers to indicate that the constraint being added

to the model is okay so long as other critical constraints are imposed/altered by other

constraint managers. For example, a fire brigade agent may extinguish a fire if restric-

tions on routes are made. The maybe answer is expressed as a disjunction of conjunc-

tions (“or-tree” of possible solutions) on such critical constraints. The yes/no/maybe

constraint management approach is detailed in [Tate, 1995] and generalises the Model

Truth Criterion approach presented in [Tate, 1977, Chapman, 1987].

The choice of which constraints are considered critical and which are considered

auxiliary is itself a decision for a particular application. Specific decisions on how

to split the management of constraints within such an application are required. For

example, a temporal activity-based planner would normally have object/variable con-

straints (equality and inequality of objects) and some temporal constraints (maybe just

the simple “before” constraint: before timepoint- 1 time-point-2) as the critical con-

straints. But, in a 3D design or a configuration application, object/variable and some

other critical constraints (possibly spatial constraints) might be chosen.

6.2.4 Annotations

Annotations account for adding complementary human-centric and rationale informa-

tion to plans. In a general way, annotations can be seen as notes on plan components,

such as nodes (activities) or issues, describing information that is not easily represented

via the other � I-N-C-A � components.

6.3 Representation of Plans via [I-N-C-A \

Each plan represented via � I-N-C-A � is made up of a set of issues, a set of nodes and

a set of constraints, which relate those nodes and objects in the application domain.

92 Chapter 6. � I-N-C-A � : a Constraint-Based Ontology

Annotations can be added to the overall plan, as well as specifically on any of its

components. Figure 6.2 shows the first level of the � I-N-C-A � specification for plans,

where we can see the declaration for such elements.

PLAN ::=
� plan �

� plan-variable-declarations �
� list � PLAN-VARIABLE-DECLARATION � /list �

� /plan-variable-declarations �
� plan-issues � � list � PLAN-ISSUE � /list � � /plan-issues �
� plan-issue-refinements �

� list � PLAN-ISSUE-REFINEMENT � /list �
� /plan-issue-refinements �
� plan-nodes � � list � PLAN-NODE � /list � � /plan-nodes �
� plan-node-refinements �

� list � PLAN-NODE-REFINEMENT � /list �
� /plan-node-refinements �
� constraints � � list � CONSTRAINER � /list � � /constraints �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� plan �
Figure 6.2: First level of the � I-N-C-A � specification for plans.

The first part of the specification is dedicated to the declaration of variables. Vari-

ables are characterised by a unique identifier, a name and a scope (local or global).

Local variables are only visible by the component that is using them. Thus, we can

have, for example, several local variables with the same name in a plan. Differently,

global variables must have different names. Names that represent variables begin with

the symbol “?” and such names can be used by several other components of the model.

Issues, in this specification, are not directly included in a plan. Instead, each issue

is wrapped in a PLAN-ISSUE element (Figure 6.3). A pair of the elements PLAN-

ISSUE and PLAN-ISSUE-REFINEMENT is used to relate an issue to its sub-issues.

6.3. Representation of Plans via � I-N-C-A � 93

PLAN-ISSUE ::=
� plan-issue id=“NAME” expansion=“NAME” �

� issue � ISSUE � /issue �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-issue �

ISSUE ::=
� issue status=“STATUS” priority=“PRIORITY” sender-id=“NAME”

ref=“NAME” report-back=“YES-NO” �
� pattern � � list � PATTERN � /list � � /pattern �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /issue �
Figure 6.3: Specification of issues.

The ISSUE element (Figure 6.3) is characterised by a status (blank, complete, ex-

ecuting, possible, impossible, n/a), a qualitative priority (lowest, low, normal, high,

highest), an attribute to indicate the source of the issue (sender-id), a reference name

for internal use, and a flag to indicate if the issue sender requires report-back.

The declaration of nodes (activities) is similar to the issues, so that nodes are also

not directly included in a plan. Using the same idea of issues, nodes are wrapped in a

PLAN-NODE element and the pair of the elements PLAN-NODE and PLAN-NODE-

REFINEMENT is used to relate an activity to its subactivities. Thus, the specification

of the elements PLAN-NODE and ACTIVITY (Figure 6.4) are similar to the elements

PLAN-ISSUE and ISSUE respectively. In fact, issues are likely to be transformed in

activities during the planning process.

The specification of constraints starts by the element CONSTRAINER (Figure

6.5). Such element is being used at the moment (version 4.0) because the idea of or-

dering is represented via instances of a separate element called ORDERING. However,

ongoing versions tend to consider such ORDERING element as a normal constraint,

which implements similar ideas to the “before” or “after” temporal constraints.

94 Chapter 6. � I-N-C-A � : a Constraint-Based Ontology

PLAN-NODE ::=
� plan-node id=“NAME” expansion=“NAME” �

� activity � ACTIVITY � /activity �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-issue �

ACTIVITY ::=
� activity status=“STATUS” priority=“PRIORITY” sender-id=“NAME”

ref=“NAME” report-back=“YES-NO” �
� pattern � � list � PATTERN � /list � � /pattern �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /activity �
Figure 6.4: Specification of nodes.

A constraint is characterised by a type (e.g., world-state), a relation (e.g., condition

or effect) and a sender-id attribute to indicate its source. The constraint itself is de-

scribed as a list of parameters, whose syntax depends on the type of the constraint. For

example, a world-state constraint has as parameter a list of PATTERN-ASSIGNMENT,

which is defined as a pair pattern-value such as ((speed wind),35km/h).

CONSTRAINER ::= CONSTRAINT � ORDERING

CONSTRAINT ::=
� constraint type=“SYMBOL” relation=“SYMBOL” sender-id=“NAME” �

� parameters � � list � PARAMETER � list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 6.5: Specification of constraints.

Finally we can see that annotations can be used as in the high level plan definition,

6.4. Summary 95

as in each of its components. Annotations are represented by a set of key-value maps

in which any object represented in the � I-N-C-A � specification may appear as a key

or a value. The complete and current � I-N-C-A � specification for plans can be found

in Appendix A.

6.4 Summary

Differently to the JFACC ontology (Section 6.1) example, which focuses on the partic-

ular domain of air campaign, � I-N-C-A � aims to be a general-purpose ontology able

to represent a broad range of domains related to synthesis tasks such as designs, plans

and configurations.

An interesting feature of � I-N-C-A � is that it has a clear description of the dif-

ferent components within a synthesised plan, allowing such a plan (or part of it) to be

manipulated and used separately from the environment in which it was generated. This

feature enables agents to work individually on different parts of the plan, but without

losing the awareness of collaboration.
� I-N-C-A � is an ongoing topic of research so that its specification is likely to be

changed as the work progresses. However, we have used the current version presented

here as the basis for our thesis. In our case, in particular, we have adapted such a

version so that it accommodates the requirements previously discussed (Part II). The

next chapter details these adaptations.

Chapter 7

A Unified Representation

This chapter details how we are synthesising the requirements previously discussed so

that they can be analysed from the same perspective. For that end, the chapter starts

by showing an agent-centred view of the planning process, classifying different sets

of constraints and functions that are related to this process. Each set of constraints or

function is associated with a requirement, which guides its specification. An extended

version of the � I-N-C-A � ontology together with a group of constraint manipulation

functions are raised from this investigation, creating a unified representation for col-

laborative human-agent planning activities.

7.1 Classifying Constraints

An interesting way to understand the planning process is via the elements that have in-

fluence on it (e.g., world state, time, human users, etc.). Considering that each of such

elements is represented as a set of constraints (Ci), we have the scenario illustrated in

Figure 7.1. According to this figure, we can identify the following sets of constraints:

� C0: represents the set of constraints imposed by the environment such as weather

conditions or the state of world objects;

� C1: represents the set of constraints that restricts the planning process in adding

new activities into the agent’s agenda (plan). In our representation it is specified

via the temporal model (Section 7.2.1) according to Requirement 1;

97

98 Chapter 7. A Unified Representation

Figure 7.1: Constraints classification according to their roles in the planning process.

� C2: represents the capabilities and internal state of agents that, together, restrict

the kind and amount of activities that they can perform. Note that the set C2

of subordinate agents also restrict the creation of plans by its superior. In our

representation C2 is specified via the resource model (Section 7.2.2) according

to Requirement 2;

� C3: represents the constraints associated with the process of commitment. Each

delegated activity has one constraint C3, whose value indicates if a specific agent

is committed to the performance of such an activity. The value of C3 is gener-

ated via the commitment function (Section 7.2.3 and 7.2.4), which is specified

according to Requirement 3 and 4;

� C4: represents the set of constraints used by humans to control/customise the

behaviour of agents (Section 7.2.8), according to the Requirement 8;

� C5: represents the set of constraints that restricts the options of the human user.

Its definition (Section 7.2.7) is in accordance with Requirement 7;

7.1. Classifying Constraints 99

� C6: represents the set of constraints associated with activities of other agents.

The function F2 acts on C6 to discover possible inconsistencies (Section 7.2.5)

in such a set, so that agents can mutually support each other according to Re-

quirement 5;

� C7: represents the set of all constraints monitored by the function F3, which

accounts for generating explanations in accordance with Requirement 9;

� C8: represents the set of constraints that accounts for providing a declarative

manner of restricting the autonomy of the planning process (Section 7.2.6), ac-

cording to Requirement 6.

Two simple properties can be defined to the constraint sets C0...C8. First, while

some sets are composed of only one type of constraint (e.g., C0: world-state, C1: time

and C2: resource), other sets (e.g., C6 and C7) can be composed of several constraint

types defined in the model. Second, a constraint c can appear in one or more sets, so

that a constraint is not uniquely associated with a specific set.

The figure below (Figure 7.2) shows an example of constraint type definition. In

this case for the set C0 (world-state constraints). Using the general � I-N-C-A � model

for constraints (Figure 6.5), we have:

CONSTRAINT ::= KNOWN-CONSTRAINT

KNOWN-CONSTRAINT ::=
� constraint type=“world-state” relation=“condition” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.2: � I-N-C-A � definition for world-state constraints.

The PATTERN-ASSIGNMENT element is represented by the tuple (pattern,value),

where both are lists of any � I-N-C-A � element (strings, variables, activities, issues,

numeric values, symbols, etc.). For world-state constraints we generally use the state-

ment: ((attribute Object [attribute-qualifiers]),value). Based on this statement, we can

100 Chapter 7. A Unified Representation

specify the following examples of world-state constraints:

((number Civilians),1000)

((number Civilians disappeared),?amount)

((fieryness Building-x), 25%)

((state ?route (from station to Building-X)), clear)

In the first example, the attribute number of the object Civilians has the numeric

value 1000. Note that this example does not have the optional attribute-qualifier pa-

rameter. Differently, the second example qualifies the attribute number using the at-

tribute qualifier disappeared. Note that the second example uses a variable, which

is initialised by the question mark “?”, to express that the number is not known yet.

Variables can be used anywhere in these statements, such as to represent an object as

showed in the last example (?route).

7.2 Synthesis of Requirements

7.2.1 Temporal Model

As discussed before, the development of a suitable temporal model for planning in

hierarchical coalitions should be based on the following requirement:

Requirement 1: the temporal planning model must be based on an explicit
timeline approach, which must enable the representation of both quantita-
tive and qualitative temporal references as well as relations between them.

In fact there are several and expressive ways that this requirement could be imple-

mented [Allen, 1991, Freksa, 1992], so that it is not our intention to propose a novel

temporal model for planning. Rather, we are using a simple set of the timeline ideas to

show how a temporal model could be specified via � I-N-C-A � .

Considering the � I-N-C-A � representation, an explicit timeline approach indi-

cates that each activity (node) has associated a constraint I, expressing its interval,

with initial (Ii) and final (I f) moments. Such a constraint could be defined as shown

in Figure 7.3, where the relation attribute is set as interval. For this type of constraint

7.2. Synthesis of Requirements 101

we are composing the pattern, in the PATTERN-ASSIGNMENT element, by the node

identifier; while the value by the tuple (I i,I f) where Ii and I f can be variables if the mo-

ments are not known yet. Based on this definition, instances of pattern-assignment for

temporal constraints could be specified as: (node-x,(10,20)) or (node-y,(0,?moment)).

KNOWN-CONSTRAINT ::=
� constraint type=“temporal” relation=“interval” sender-id=”NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.3: � I-N-C-A � definition for temporal constraints.

This time representation allows the expression of values for both certain (with nu-

meric values) and uncertain (with variables) times. In case of certain time, the duration

of an activity can directly be defined as the difference between the final moment and

initial moment. Considering now that we want to set temporal relations between two

activities a1 and a2, with respective intervals I(a1) and I(a2). For that end, first we must

specify which are such relations and their meaning. Table 7.1 shows some examples

of possible relations. However, several others can be defined using the same idea.

Relation Meaning

Before
�

a1,a2 Before(a1,a2) � I f (a1) � Ii(a2)

Equals
�

a1,a2 Equals(a1,a2) � Ii(a1) = Ii(a2) 	 I f (a1) = I f (a2)

Meets
�

a1,a2 Meets(a1,a2) � I f (a1) = Ii(a2)

During
�

a1,a2 During(a1,a2) � Ii(a2) � Ii(a1) 	 I f (a1) � I f (a2)

Overlaps
�

a1,a2 Overlaps(a1,a2) � Ii(a1) � Ii(a2) 	 I f (a1) � I f (a2) 	 I f (a1) � Ii(a2)

Finishes
�

a1,a2 Finishes(a1,a2) � Ii(a2) � Ii(a1) 	 I f (a1) � I f (a2)

Table 7.1: Temporal relations.

The representation of temporal relations via � I-N-C-A � follows the structure

shown in Figure 7.3, however with the relation attribute specifying the temporal re-

lation (before, equals, etc.) and a simple tuple (a1,a2) as parameter rather than a

102 Chapter 7. A Unified Representation

PATTERN-ASSIGNMENT element. a1,a2 are the identifiers of the nodes (activities)

that are being related. Then, using the notation “relation-attribute(parameter)” to rep-

resent example of temporal constraints, we could have: before(activity1,activity2) that

means activity1 before activity2. The figure below (Figure 7.4) illustrates a scenario

where we can exemplify the use of this model to represent the temporal aspects of

hierarchical coalition activities.

Figure 7.4: Example of activities and their intervals in a hierarchical coalition.

In this example, “East” is the region where the fires F1 and F2 are taking place.

µ6 represents the command and control centre (strategic level); µ5 and µ4 represent the

police office and the fire station respectively (operational level); µ3, µ2 and µ1 represent

one police force and two fire brigade respectively (tactical level). Using the “relation-

attribute(parameter)” notation again, the following constraints can be specified for each

of the activities in the strategic and operational levels:

� Plan of µ6: overlaps(N1,N2);

– N1: interval(N1,(0,?a));

– N2: interval(N2,(?b,?c));

� Plan of µ5: before(N1 � 1,N1 � 2);

– N1 � 1: interval(N1 � 1,(0,?d));

7.2. Synthesis of Requirements 103

– N1 � 2: interval(N1 � 2,(?e,?f));

� Plan of µ4: finishes(N2 � 2,N2 � 1);

– N2 � 1: interval(N2 � 1,(?g,?h));

– N2 � 2: interval(N2 � 2,(?i,?j));

It is very difficult to determine durations for activities related to disaster relief op-

erations. Thus their initial and final moments are likely to be variables. However,

suppose that the agent µ4 knows that the node N2 � 2 will spend 15 time units. In this

case, the interval constraint for this node could be specified as interval(N2 � 2,(?i,?i+15)).

We can conclude that this simple representation for C1 supports the requirement 1.

First it considers initial and final moments to activities so that they have explicit time-

lines. Second we can represent the notion of qualitative time, using temporal relations,

and also quantitative values to express duration of activities. It is interesting to observe

that the temporal relations (Table 7.1) are abstractions on numeric relations between

initial and final activities’ moments. A more expressive representation could enable

relations on any two activities’ moments, as for example, to specify exact overlap or

during periods between activities. However, this approach increases the manipulation

complexity of such a representation so that its implementation could not be justified.

7.2.2 Resource Model

The requirement previously discussed and used as a basis for the resource model spec-

ification is:

Requirement 2: the resource planning model must support the tasks of
localising services/agents that provide specified capabilities, and also pro-
vide information that enables reasoning on such capabilities.

In a similar way as discussed for the temporal model, it is not our intention to

provide a complete ontology for resources. An interesting effort in this direction is

DAML-S (or currently OWL-S) [Ankolekar et al., 2002], whose principles could be

reused here. For now we are using a simple idea to specify resources and their fea-

tures, which provide a basis for our experiments. Furthermore we show how such

specification could be extended to provide a more detailed description for resources.

104 Chapter 7. A Unified Representation

The original version of � I-N-C-A � (Chapter 6) uses a “pattern” in the activity

element definition (Figure 6.4) to specify which capability an agent should have to

carry out a specific activity. For that, the pattern is composed of an initial verb followed

by any number of parameters, qualifiers or filler words. For example: (transport
?injured from ?x to ?hospital). Then the system finds agents to perform this activity by

matching the verb transport with the capabilities (list of verbs) of the available agents.

Thus, this simple mechanism supports the task of localising agents.

According to Requirement 2, the resource description should also provide infor-

mation that enables reasoning on such capabilities. Imagine the scenario where a high

building is on fire. To extinguish the fire in this building, the fire brigade should have

a suitable ladder to reach the fire. However, using this simple capabilities description,

fire brigades with and without ladders can be allocated to this activity because both are

able to extinguish fires.

Based on this idea, we can define a new type of constraint to represent the features

of a required resource as:

KNOWN-CONSTRAINT ::=
� constraint type=“resource” relation=“RESOURCE-TYPE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.5: � I-N-C-A � definition for resource constraints.

This constraint specification follows the same structure of the world-state or tempo-

ral constraints specification. Again we must detail the general form of the PATTERN-

ASSIGNMENT element, which can be defined as below:

((resource object [resource-qualifier] [resource-range]),value)

In this statement, “object” represents the identifier of the agent that accounts for

performing the activity. For example, if the activity is “Extinguish ?fire”, the object

could be a “fire-brigade-x”. The attribute “resource” represents some object’s resource

7.2. Synthesis of Requirements 105

necessary for its operation. Such resource can be qualified via the attribute “resource-

qualifier” and it can also have a range, which is typically used when the resource is

consumable.

The table below (Table 7.2) shows some examples of resource specifications for a

fire brigade. Note that the last two constraints have a special meaning and are only used

for consumable resources. The “Consume” qualifier indicates the average rate that the

resource is consumed. Similarly, the “Produce” qualifier indicates the average rate that

the resource is produced. For example, for the fire brigade below the consume qualifier

represents its pumping capacity and the produce qualifier represents its refilling rate.

Resource Object Qualifier Range Value

Water-tank Fire-brigade-x Amount (0-12000000) 138763 ml

Fuel Fire-brigade-x Amount (0,140000) 60000 ml

Fuel Fire-Brigade-x Type - Diesel

Stairs Fire-Brigade-x Height - 20000 mm

Water-tank Fire-Brigade-x Consume - 100000 ml/s

Water-tank Fire-Brigade-x Produce - 10000 ml/s

Table 7.2: Example of resource specification for a fire brigade.

Then, using both ideas, the resource model can be seen on two levels. The activity

pattern provides a simple high-level description of the capability required by the plan,

while the constraints provide a more granular way to characterise or restrict the use

of such capability. Considering a hierarchical coalition, superior agents can keep only

the high-level description of their subordinate agents, mainly because such descrip-

tions are stable. However, if they need more information, a query can be performed

so that subordinates return their current resource attributes and respective values. This

interaction between agents evinces the influence that the resource specification of sub-

ordinates has on the planning process of their superior agent.

106 Chapter 7. A Unified Representation

7.2.3 Commitment Function

The temporal and resource models defined via � I-N-C-A � provides the essential re-

quirements for the development of planning processes, also providing the basis for the

definition of more detailed models. At this point, our aim is to incorporate the notion

of collaboration into these planning processes. For that end, the first requirement to be

considered is:

Requirement 3: the collaborative model must consider the establishment
of commitments to joint activities, enabling consensus on plans or their
constituent parts.

According to � I-N-C-A � , each plan p is composed of a set of plan nodes ni. If

a superior agent, that has p as goal, sends such nodes to its subordinate agents, then a

commitment must be made between them. For that end, Figure 7.6 defines a function

called AgentCommitment that must be implemented by each hierarchical agent.

01. function AgentCommitment(sender,ni)

02. static: subplan, list of nodes to be generated, initially empty

03. subordinates, list of subordinates involved in subplan

04. subplan] GenerateNodes(ni)

05. if(@ subplan)

06. if (hasNodesToBeDelegated(subplan)) then
07. Delegate(subplan,subordinates) 	 WaitCommits()

08. if @ s (s 3 subordinates) 	 (, Commits(s)) then go to step 04

09. REPORT(sender,ni,COMMITTED)

10. else
11. Report(sender,ni,NO-COMMITTED)

12.
�

s (s 3 subordinates) 	 HasCommitted(s,subplans)

13. Report(s,subplans,NO-COMMITTED)

14. end

Figure 7.6: AgentCommitment function.

7.2. Synthesis of Requirements 107

Based on this function, we can discuss some of its implications and features. First,

ni has a set of constraints associated with it. Thus the “GenerateNodes” function (step

04) considers such a set to return a subplan (list of nodes) to perform ni. If there is

a subplan (step 05) and it does not depend on anyone else (step 06) then the agent

can commit to ni (step 09). However, if the option depends on the commitments of

subordinates, then the agent must await their answers (step 07). This implies that com-

mitments are made between a superior agent and their subordinates and, starting from

the bottom, an “upper-commitment” only can be done if all the “down-commitments”

are already stabilised.

Second, if some subordinate is not able to commit (step 08), the agent returns to

generate a new subplan (invalid commitments to the old subplan must be cancelled)

rather than sending a no-committed report to its superior. This approach implements

the idea of enclosing problems inside the sub-coalition where they were generated.

Finally if the agent is not able to generate a subplan for ni (e.g., a deadline for such

generation is a possible reason) it reports a NO-COMMITTED to its superior (step

11). However the agent must also warn all their subordinates that subplan has failed

and consequently their subnodes (subplans) can be abandoned (step 13).

This discussion has considered that agents only report simple commitment in-

dications. However, extensions for this idea could enable the following situations:

COMMITTED, when an agent commits to the performance of a node ni 3 p, it re-

turns the new conditional constraints necessary for the performance of ni; and NON-

COMMITTED, if an agent does not commit to the performance of ni, it returns the

constraints that are avoiding the performance of ni. Such constraints must be used by

its superior during the generation of a new node list (subplan).

The principal feature of � I-N-C-A � that supports this function is its explicit repre-

sentation for activities (nodes). That is, an activity can be seen as a complete subplan,

which can be sent to agents others than the one(s) that generated it. However, to sup-

port this function � I-N-C-A � must also have a kind of constraint (C3, Figure 7.1)

associated with commitments. If we say that the activity of a superior agent is only

valid if the subordinates agents commit on the performance of such activity’s subn-

odes, then a commitment setting is, in fact, a conditional constraint to the activity. In

108 Chapter 7. A Unified Representation

this way, Figure 7.7 shows the � I-N-C-A � specification for commitment constraints.

KNOWN-CONSTRAINT ::=
� constraint type=“commitment” relation=“COMMIT-TYPE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.7: � I-N-C-A � definition for commitment constraints.

If a plan p has n nodes node � 1 ��� n � that are delegated to m agents agent � 1 ��� m � , the

PATTERN-ASSIGNMENT element for the commitment constraint can be defined as:

((nodei agent j),true/false). Then p is possible if every commitment constraint for each

nodei delegated to agent j is true. Considering this approach, p can assume three dif-

ferent status:

� Possible: indicates that all constraints (including commitment constraints) are

met so that p is currently ready to execution;

� Not-Ready: indicates that p is not currently ready for execution because some

conditional constraint might not be met yet;

� Impossible: indicates a failure (e.g., a false commitment constraint) for which

recovery planning steps might be initiated.

We can note that the principal advantage of this approach is that commitments are

naturally considered during the constraint processing. In other words, the failure in a

commitment is interpreted as a problem in satisfying a constraint, which will trigger a

common process of recovery (e.g., replanning).

7.2.4 Report Function

The next requirement associated with collaboration is:

Requirement 4: the collaborative model must provide ways to the dissem-
ination of information associated with progress, completion and failure of
activities.

7.2. Synthesis of Requirements 109

We are implementing this requirement via a function that monitors the constraints’

values during the execution of activities. The principal questions that this function

must answer is when to send a report and which information should be reported. There

are two obvious cases in which an agent ag performing an activity ni must report: first

when ag finishes the performance of ni and second when happens an execution failure

and ag is not able to deal with the failure by itself. In the first case the agent only

needs to send an activity completion status as information, while in the second case an

activity failure status must be sent optionally together with the failure reasons.

Reports associated with progress are a more complex case. In order, agents do not

have to communicate each step of their execution progress. Previous works already

have identified communication as a significant overhead and risk, mainly in hostile en-

vironments [Tambe, 1997b]. Furthermore, in case of progress reports, the information

associated with them should be useful to the monitoring process.

Considering these facts, we start from the principle that relevant information, once

sent, becomes common knowledge and hence unnecessary to update. For example, if

ag informs that it has just started the execution of ni, it does not need to send other

messages informing that it is still executing ni. At this point we must think on which

could be the information generated during the execution of activities and that is likely

to help superior agents during the process of monitoring. For that end, let us use

the following scenario: when ag commits to the performance of ni, it informs the

conditional constraints of the subplan that it is going to use. The constraints of such a

subplan can have the following classes of values:

� Concrete values: represent known values, or estimated values if ag has a good

idea about the process. For example, the temporal constraint interval(ni,(30,60))

indicates that ag will (or is likely to) finish the activity ni in 30 time units, or

the resource constraint ((Fuel ag Amount),35000) to indicate that ag will (or is

likely to) need 35000 millilitres of fuel to complete its activity;

� Variables: used during unpredicted situations. For example, interval(ni,(?s,?f))

to indicate that ag does not have an idea about the duration of ni yet, or ((Fuel

ag Amount),?x) to indicate that ag does not have idea about the fuel it will need.

110 Chapter 7. A Unified Representation

Using constraints with concrete values, the superior agent of ag can perform better

reasoning. For example, if it knows that the activity of ag will finish in 30 time units,

it can allocate ag to a new activity after 30 time units. Thus, if during the execution

of subplan a concrete value of subplan is changed or its variables are instantiated, a

progress report must be sent.

The report function is based on this discussion and can be seen as an extension of

the commitment function (Figure 7.6). Thus, both ideas (commitment and reports) are

represented by the same function (F1 in Figure 7.1) that is defined below (Figure 7.8).

01. functionAgentCommitment(sender,ni)

02. static: subplan, list of nodes to be generated, initially empty

03. subordinates, list of subordinate agents involved with subplan

04. subplan] GenerateNodes(ni)

05. if(@ subplan)

06. if (hasNodesToBeDelegated(subplan)) then
07. Delegate(subplan,subordinates) 	 WaitCommits()

08. if @ s (s 3 subordinates) 	 (, commits(s)) then go to step 04

09. Report(sender,ni,COMMITTED)

10. while (, Complete(subplan))

11. if (JustReady(subplan) . HasChanged(subplan)) then
12. Report(sender,ni,EXECUTING)

13. if (Violated(subplan) . Receive(FAILURE)) then go to step 4
14. end while
15. Report(sender,ni,COMPLETION)

16. else
17. Report(sender,ni,FAILURE)

18.
�

s (s 3 subordinates) 	 HasCommitted(s,subplans)

19. Report(s,subplans,FAILURE)

20. end

Figure 7.8: AgentCommitment function extended to support reports.

7.2. Synthesis of Requirements 111

According to this redefinition of the commitment function, commitments (and non-

commitments that here are considered failures) are treated as a type of report, together

with execution and completion reports. Then, after reporting a commitment (step 09)

the agent keeps monitoring the constraint processing to identify when its subplan has

been completed (step 10), changed (step 11) or violated (step 13). For each case, re-

spectively, the agent reports a completion, reports an execution, or restarts the process

until the subplan is completed or there is not a possible subplan. Note that a failure

reported by subordinates is considered as a simple failure in the plan (step 13).

The function also expands from three (possible, not-ready and impossible) to five

(complete and executing) the possible status values of a plan (or subplan). The � I-

N-C-A � definition for activities (Figure 6.4) shows that each activity has a status at-

tribute, which is filled with one of these status values.

The principal point of this function is that the reasoning associated with commit-

ments and reports are based on results of constraint processing. This fact is illustrated

by the functions “Complete” (step 10), “JustReady” (step 11), “HasChanged” (step 11)

and “Violated” (step 13) that are all applied to the constraints of the agents’ subplan.

In this way, we still having the same basis for working, which was also used to support

the planning mechanisms.

7.2.5 Mutual Support

The last requirement associated with collaboration is, in fact, the requirement that

accounts for providing a real sense of collaborative behaviour to the members of a

coalition.

Requirement 5: the collaborative model must underline the idea of mutual
support, providing ways to the specification of useful information sharing
mechanisms and creation of supportive activities.

However, despite its importance, only the SharedPlans formalism discusses direct

efforts toward this requirement, as was discussed in Section 4.3. In this thesis we are

exploring the notion of mutual support via a function (F2, Figure 7.1) that verifies the

constraints (C6, Figure 7.1) associated with activities of other agents. However, before

112 Chapter 7. A Unified Representation

characterising F2 and C6, it is important to understand the idea of mutual support that

we are exploring here.

The principal idea behind mutual support is to enable that one agent has knowledge

about the needs of other agents. For example, an agent ag knows that a specific road

is clear so that it uses this constraint in its plan. However, as the world is dynamic, the

road becomes blocked. If any other agent finds out that such road is no longer clear,

it must inform this fact to ag. Thus, this informer agent is supporting the performance

of ag. An easy option to implement this feature is to force that agents broadcast any

new fact to all coalition. Consequently all agents will have their world state updated

and problems like that can be avoided. However, this is not a good approach in terms

of communication and agents will also receive useless information.

Consider now that each agent agi, where agi 3 Θx, has a plan pi with a set of

conditional constraints C, which agi desires that hold so that pi is still valid. In this

case, each ci 3 C is a constraint that agi believes to be true and hopes that it is still

being true. Then agi broadcasts C for every agent ag j 3 Θx so that other agents of

its sub-coalition know what it needs. A function based on this idea is defined below

(Figure 7.9).

01. function MutualSupport(agi,C,mybeliefs)

02. static: newactivity, activity that can be created during the process

03. while (@ c j c j 3 C)

04. if (@ c jck c j 3 C 	 ck 3 mybeliefs 	 Contrast(c j,ck)) then
05. newactivity] CreateActivity(Goal(c j))

06. if (, @ newactivity) then Inform(agi,ck)

07. Retire(c j,C)

08. if (@ c j c j 3 C 	^, Valid(c j)) then Retire(c j,C)

09. end while
10. end

Figure 7.9: MutualSupport function.

7.2. Synthesis of Requirements 113

This function follows the same idea of the AgentCommitment function (Figure 7.8)

so that it is still based on constraint manipulation and verification. Another similarity

is that the function also needs the id-sender attribute, which identifies the agent source

agi of the constraint set C to be monitored.

According to the function, which is applied by agents that receive C from agi,

agents must compare their beliefs (that is also a set of constraints) with C (step 04). If

they find some contrast, they must try to create a new activity whose goal is to turn c j

true. If this is not possible, they must inform agi that c j is not more holding and its

new value is ck. The idea implemented by this function is simple, however there are

two more complex points: the “Contrast” and “Valid” functions.

The Contrast function is an extension of the Violated function (step 13, Figure 7.8).

A violation is a type of contrast between two constraints. It says that two constraints,

which are supposed to match, are not matching. However we are also considering

as contrast the situation where two constraints have the potential to be equal. For

example, ((colour Car),?x) and ((colour Car),blue). In this case the two constraints are

in contrast because they have the potential to be equal if the variable ?x assumes the

value “blue”. This type of contrast is very useful in the following class of situations.

Suppose that one of the activities of agi is to rescue injured civilians. For that end, agi

firstly needs to find such civilians so that it has the following conditional constraints:

((position ?a),?b), ((role ?a),civilian) and (status ?a),injured). This set of constraints

implies that the variable ?b is the location of an injured civilian ?a. Then if other team

agents that have or discover a set of constraints that contrast with the set sent by agi,

they must inform agi about this new knowledge (note that it is not logical to create a

new activity in this case).

The Valid function accounts for eliminating the constraints that no longer represent

conditions to agi. This is important to avoid that agi still receives useless information

and also to decrease the number of messages in the coalition. A practical way to do that

is to consider that all c j 3 C have a timestamp that indicates the interval where such a

constraint is valid. At this point we are able to characterise the constraints for mutual

support (C6, Figure 7.1) as being a kind of world-state constraint with a pre-defined

timestamp (ti,t f). In this way, its pattern assignment would be specified as:

114 Chapter 7. A Unified Representation

((attribute object [attribute-qualifier1 ... attribute-qualifiern] (ti,t f)),value)

Using the timestamp (ti,t f) and considering that ti and t f are ground values, the

Valid function only needs to compare if the condition (t f
� current-time) is true to

eliminate the respective constraint. However, as discussed before, it is likely that

agents do not know when their activities finish so that such a temporal value will be a

variable. Note that the principal advantage that we are looking for in using timestamps

is to avoid that agents (C’s senders) need to broadcast the information that they no

longer need that a group of constraints holds. Rather, timestamps enables agents (C’s

receivers) to reason by themselves on the elimination of such constraints.

One of the principal advantages of the MutualSupport function is that it improves

the information sharing [Siebra and Tate, 2005] because the sending of information is

guided by the constraint-based knowledge that each agent has of the activities of its

partners. Chapter 9 shows some experiments associated with this function. so that we

can justify its real relevance.

7.2.6 Agents’ Autonomy

As outlined previously, the first requirement associated with the involvement of human

users during the collaborative planning process is:

Requirement 6: the human-agent model must enable the definition of ad-
justable methods that complement the decision making process of human
users.

As better detailed in the next chapter (Chapter 8), the transfer of control between

agents and humans follows a generate-evaluate-choose sequence. First agents generate

possible plan options to deal with the current set of activities, presenting such options

to their users. Then users evaluate these options and, if they want to make changes, the

process returns to the first step where agents generate a new set of options. Otherwise,

users choose one of the options to be performed.

An alternative to decrease the impact of human delays in this process is to define

contexts where agents choose by themselves the option to be performed. Such an ap-

proach was used in past projects, as discussed in Section 5.2.2, and it is very suitable

7.2. Synthesis of Requirements 115

because contexts can be redefined by users so that they are still in control of the situ-

ation. We define contexts associated with activities so that if such a context is true, a

degree of autonomy is applied avoiding or allowing agents to take autonomous deci-

sions. Constraints (C8) that implement this idea have their type attribute instantiated

with the key word autonomy, and the relation attribute with a degree representing the

agents’ level of autonomy (Figure 7.10).

KNOWN-CONSTRAINT ::=
� constraint type=“autonomy” relation=“DEGREE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.10: � I-N-C-A � definition for autonomy constraints.

Currently we are considering two degree values for these constraints: permission

and in-control. The first is the default value so that if no autonomy constraint is spec-

ified, agents consider that they have to ask permission to insert (and perform if the

agent is also an executor) the associated activity. The second means that agents can

choose and perform the activity by themselves. The PATTERN-ASSIGNMENT ele-

ment is defined as ((attribute object),value) so that a list of pattern assignments creates

a context for possible values where the degree must be activated. The scenario below

(Figure 7.11) illustrates the use of such type of constraint.

Figure 7.11: Scenario example for autonomy constraints.

116 Chapter 7. A Unified Representation

In this scenario the agent µ1 has the goal of extinguishing the fire F1. For that,

µ1 must firstly create a plan to go to F1. The plan illustrated in Figure 7.11 has three

activities: Go via R1, Go via ?r and Go via R7. Suppose that the second activity

has an autonomy constraint, whose degree is in-control and the pattern-assignment is

((position ?r),South). Such constraint means that if the agent planning process decides

to instantiate ?r with a road of the South region (R5 and R6), it does not need to ask

permission to the component identified in the sender-id attribute (normally its human

user) to add the activity in its plan. Otherwise, if the agent decides for any other option

(R2, R3 or R4), it needs a permission.

A possible expansion of this approach is to implement the consult (degree attribute)

autonomy constraint. The idea is to enable that users specify context where agents must

consult humans about the instantiation of specific variables. Note that using permission

constraints, agents only ask humans to confirm the choice of one activity. Differently,

using consult constraints the process becomes more interactive and granular because

humans interfere during the configuration of activities.

7.2.7 Users’ Restriction

The second requirement associated with human interaction, as outlined before, is:

Requirement 7: the human-agent model must provide ways to restrict user
options in accordance with the global coalition decisions.

The idea here is to avoid that users take decisions that are prejudicial to the coalition

as a whole. Agents can do that by restricting the options of users in creating their plans,

or performing their activities.

The natural way to implement such restrictions, considering our constraint-based

framework, is to define a set of constraints that cannot be changed by users or their

planning agents. During the planning process users are able to manipulate constraints

as a way to customise the outcome solutions, as discussed in the next section. However,

it is clear that there is a group of constraints that users cannot change. This group is

represented by constraints whose source is an external component such as the superior

agent, or other team members. Based on this idea, the whole set of constraints can be

divided into two classes:

7.2. Synthesis of Requirements 117

� Internal constraints, which users can manipulate (read/write) and that are gener-

ally created by themselves during the process of customisation of solutions;

� External constraints, which users cannot change (read-only) because they are

assigned by other components.

� I-N-C-A � enables a very direct support for such classification. As we can see

in the constraint definition (Figure 6.5), constraints have an optional attribute (sender-

id) that specifies the constraint source, the component that accounts for their creation.

Thus the semantics associated with such attribute is very simple. If the sender-id at-

tribute is assigned with the own agent/user identifier, the constraint is internal. Other-

wise the constraint is external.

Despite the simplicity of such approach, it also presents a serious limitation. For

example, suppose that a superior agent sends an activity to one of its subordinates.

Associated with the activity, the superior agent also sends a group of constraints with

some preferences on how to perform such activity. Note that these constraints are only

preferences so that the subordinate agent is not obliged to follow the options expressed

by such constraint group. It must do so if it is able to. Otherwise it can try other

options. However this is not possible using our initial approach. As the constraints are

external, they cannot be changed and planning must respect them.

This feature can be relaxed by implementing the idea of weak constraints. Weak

constraints are, at first, used as normal constraints. However, if agents are not able

to find any solution, they can eliminate weak-constraints, relaxing the restrictions on

the plan options. Following this approach, world-state, resource and temporal con-

straints should also have their weak versions. Thus, the ontology needs to have ways

to discriminate between normal and weak constraints. The next section shows how this

discrimination is specified in our model.

7.2.8 User Control

The next requirement is:

Requirement 8: the human-agent model must support the definition of
mechanisms that intensify the human user control and enable the customi-
sation of solutions.

118 Chapter 7. A Unified Representation

As discussed before, this requirement seems to be antagonistic to Requirement 7.

In fact we are looking for a mutual process of restriction so that while agents have

constraints (C5) to restrict the options of human users, users can also set constraints

(C4) to restrict the behaviour/reasoning of agents.

The approach defined in the last section provides the basis for user control. Ac-

cording to that approach, users can set normal constraints to force some result, or

weak constraints to try such preferential solution if they are possible. To implement

this approach (weak constraints) we have defined a new class of constraints (C4) whose

type attribute is specified as preference (Figure 7.12) and the relation attribute receives

the type of a pre-defined constraint such as temporal or resource type constraints.

KNOWN-CONSTRAINT ::=
� constraint type=“preference” relation= “PREF-TYPE” sender-id=“NAME” �

� parameters � � list � PARAMETER � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �
Figure 7.12: � I-N-C-A � definition for preference constraints.

At this point we must investigate if the pre-defined constraints specified so far are

able to express preferences. For that end, consider the same scenario illustrated in

Figure 7.11. In this scenario, users can set preferences during the creation of plans

using constraints to restrict durations (temporal constraints), use of resources such as

maximum quantity of fuel (resource constraint) and so on. However it is not easy, using

constraints in this way, to tell µ1 that there is a preferential path, via R5 for example.

An option could be to set world-state constraints to say that the other roads R2 B 3 B 4 B 6 are

“blocked” so that the agent is forced to choose R5. However, this is not logically an

attractive solution.

A more practical way to deal with preferences is to associate them with the process

of variable instantiation. Consider that such instantiation can be guided by a specific

kind of constraint, whose function is to restrict values of constraint variables. This new

type of preference constraint has its relation called instantiation and its PATTERN-

7.2. Synthesis of Requirements 119

ASSIGNMENT element defined as: ((set-definer-attribute variable),value).

According to this pattern-assignment definition, the attribute set-definer-attribute

defines the relation between variable and value, delimiting the space of options to

instantiate variable. Possible examples are:

� ((� ?x),10) - indicates preference for values greater than 10;

� ((set ?r),R5) - this is the most basic example for discrete values, where ?r should

be instantiated with the value R5;

� ((in ?r),[R4,R3,R5]) - in this case ?r should be instantiated with any value that

belongs to the set [R4,R3,R5];

� ((in-ordered ?r),[R4,R3,R5]) - in this case ?r should be instantiated with any value

that belongs to the set [R4,R3,R5], but considering that the values are listed in

order of preference.

The last example is particularly important because it demonstrates the expressive-

ness of the syntax. In this case the user is not only setting a specific preference, but a

set of discrete and disjunctive values listed by order of preference. Then if R4 is not

possible, the agent must firstly try the next option that is R3 and so on. Based on these

examples, the idea of set-definer-attribute can be expanded to consider diverse kinds

of delimiters.

Note that autonomy and instantiation preference constraints have different seman-

tics for their parameters, if we compare them with the other constraint types. While the

autonomy constraint parameter characterises a context in which a specific degree of au-

tonomy is valid, the instantiation preference constraint parameter indicates preferential

values to be assigned to variables.

7.2.9 Explanations Function

The last requirement that must be considered is:

Requirement 9: the human-agent model must support the generation of
explanations about autonomous decisions, clarifying the reasons why they
were taken.

120 Chapter 7. A Unified Representation

This process of providing explanations is closely associated with the reasoning

process that agents perform [Sqalli and Freuder, 1996]. For example, tracing through

some problem solver techniques we could have: “I tried this and then I tried that, and

it did not work so I backed up and tried the other...” (for backtrack searchers); “I tried

this and then I tried that and it did not work but I decided to use it anyway...” (for

simulated annealing local searchers); and “X had to be v because ...” (for inference-

based solvers).

The idea here is to define a function (F3, Figure 7.1) that produces explanations

based on specific events triggered during the constraint processing. For example, if an

activity becomes impossible due to a constraint, this event generates an explanation

to the user saying which constraint is blocking the plan. In this case the user can, for

example, relax or delete such constraint (only if it is an internal constraint). In this

case the set of constraints C7 associated with F3 represents all constraints that are be-

ing manipulated by the planning process. Considering this idea, we must answer three

questions: which are the agents’ decisions that humans would like to have explana-

tions for, which are the events that can trigger such explanations, and how can such

explanations be produced.

To exemplify the explanation function design, consider one of the most common

events that happens during planning and execution process: the invalidation of an activ-

ity in a plan. Users are generally interested to know the reasons for such invalidation.

In other words, explanations for this case must be able to answer questions like: “why

is the plan/activity x impossible?” or “why are we not able to perform x?”.

The second step is to identify the constraint processing events that can be used to

generate explanations for such questions. We know that the invalidation of plan options

is caused by conflict between constraints. Considering that the plan is in a stable state,

some event must happen to cause a conflict. Such an event could be:

� Activity addition: constraints associated with new activities may be in conflict

with current constraints;

� State changes: acquisition of new knowledge can change constraint values or

instantiate constraint variables. This new configuration can generate conflicts,

7.2. Synthesis of Requirements 121

invalidating activities;

� User decisions: constraint manipulation by users can also create new configura-

tions that generate conflicts and invalidate activities.

The approach designed to produce explanations it to use templates with variables,

which are instantiated by such events. The idea is to translate the meaning of each

event via a specific template. A template for the case of activity invalidation is:

activity is not valid because cactivity is in conflict with ctrigger set by source.

For this template F3 must instantiate four variables: activity representing the activ-

ity that was invalidated, cactivity representing the activity constraint in conflict , ctrigger

representing the constraint that has triggered the conflict and source representing the

source of ctrigger. Generalising the idea used in this example, we can define F3 as

follows (Figure 7.13):

01. function CreateExplanation(p)

02. static: event, event that generates some explanation

03. template, template for a specific event

04. while (Valid(p))

05. event] CaptureEvent(p)

06. if (@ event) then
07. template] GetTemplate(event)

08. explanation] InstantiateTemplate(template,GetFeatures(event))

09. SetTemplate(p,explanation)

10. end while
11. end

Figure 7.13: Explanation function.

The idea of this function is to monitor the activity/plan p while it is valid. Then

if some event associated with the constraint processing of p happens, the function

captures such event (step 05) and, if it is an explanation trigger, the function gets a pre-

defined template for it (step 07). Then the variables of this template are instantiated in

122 Chapter 7. A Unified Representation

accordance with several features (type, sender-id, constraint associated, etc.), creating

the explanation for this event. Finally the function sets the explanation to p.

We are adding explanations for activities in the form of annotations. As defined in

Chapter 6, every � I-N-C-A � component can have one or more annotations associated

with it. We are using annotations, in particular, to keep the explanations for � I-N-C-

A � activities. As annotations can be set for every component, the explanation function

could be extended to automatically create several explicative forms of annotations to

other components.

Another interesting feature of this explanation function is associated with the “Get-

Template” function (step 07). Such a function can be implemented to find out the tem-

plate in the solver class rather than using a default template. For example a pathfinder

solver could provide specific templates associated with situations where the activity is

impossible, such as the path was blocked or the vehicle does not have sufficient fuel

to complete the path. Consider the two explanations below where the first uses the

default template and the second a specialised template to the path clear condition.

Go from school to hospital is not valid because ((status road-x),clear)
is in conflict with ((status road-x),blocked) set by world-state.

Go from school to hospital is not valid because status of road-x is blocked
rather than clear according to the current world-state.

The specialised template for this example in particular is:

activity is not valid because c.patternactivity of c.objectactivity is c.valuetrigger
rather than c.valueactivity according to current source.

It is easy to see that the explanation function can produce more intelligent and

readable explanations using specialised templates like that. Chapter 9 shows how we

could implement this feature.

The explanation function defined here is able to generate high-level explanations

for simple decisions taken by agents. However, the idea provides the basis to sup-

port the elaboration of more detailed explanations for questions like: “Why has the

plan/activity x been chosen?”, “Why is this solution better than that?” or “which are

the possible values for a specific domain variable?”. Note that while an explanation

7.3. Summary 123

function must capture the notion of comparative parameters in the first two questions,

the last question requires a better understanding of the planning domain.

7.3 Summary

This chapter has proposed a unified framework for the development of planning pro-

cesses, which considers requirements of different research areas: multiagent planning,

collaboration and human-agent interaction. Such a framework is underlined by � I-

N-C-A � , a constraint-based ontology which was extended/adapted to support the im-

plementation of these requirements. The principal ideas presented here are given in

the form of constraint representations, summarised below (Table 7.3), and functions to

manipulate these constraints.

Ci Type Principal feature (PAR means Parameter)

C0 world-state PAR: ((attribute object [attribute-qualifiers]),value)

C1 temporal PAR for intervals: (node-id,(tinitial,t f inal)) or

PAR for temporal-relation: (node-id-x,node-id-y)

C2 resource PAR: ((resource object [res-qualifier] [res-range]),value)

C3 commitment Manipulated by F1, PAR: ((node-id agent-id),true/false)

C4 preference Represents weak-constraints that can be eliminated in case

of conflicts.

C5 no specific sender-id attribute corresponds to an external source

C6 no specific Set of external constraints used by F2 during the mutual sup-

port process

C7 no specific Set monitored by F3 to create explanations

C8 autonomy Implements in-control and permission as relation values.

The constraint parameters are used to define contexts

Table 7.3: Summary of the constraint definitions.

Appendix B brings the complete proposed extension for the � I-N-C-A � syntax.

Furthermore, Chapter 9 contains several practical demonstrations on how the ideas

124 Chapter 7. A Unified Representation

discussed here could be used to implement a real coalition support system.

Chapter 8

Customisation of Planning

Mechanisms

The last chapter has showed how we can use a constraint-based ontology to express

several ideas associated with the development of coalition support systems. This chap-

ter focuses on the practical aspects of this approach, discussing how planning processes

use such a representation during the creation and execution of plans. In this way, Sec-

tion 8.1 details the planning architecture and the principal components associated with

it. Section 8.2 describes the process of building plans using such an architecture. Sec-

tion 8.3 explains how we can use the idea of planning interfaces to customise handlers

according to the activities carried out at each decision level (strategic, operational and

tactical). Finally, Section 8.4 presents the agents that implement such ideas together

with their auxiliary tools.

8.1 Planning Architecture

The specification of the � I-N-C-A � ontology has been done in parallel with the de-

velopment of an open planning architecture, called I-X [Tate, 2004], whose principal

objective is to enable the manipulation of models based on such an ontology. This sec-

tion details the principal concepts and components associated with the I-X architecture,

showing how we are using them to implement our ideas.

125

126 Chapter 8. Customisation of Planning Mechanisms

8.1.1 The Planning Process Abstraction

The I-X architecture considers planning as a two-cycle process, which aims to build

a plan as a set of nodes (activities) according to the � I-N-C-A � approach. The first

cycle tries to create candidate nodes to be included into the agent’s plan, respecting the

current constraints of the activities, which are already in the plan. If the agent is able

to create one of more candidate nodes, one of them can be chosen and its associated

constraints are propagated, restricting the addition of future new nodes.

A simple way to understand this process is to follow the example below (Figure

8.1). The agent’s plan contains the set of activities that it intends to perform. If the

agent receives a new activity, it must generate planning actions that include this new

node in its plan. Each action is a different way to perform this inclusion so that different

actions generate different nodes’ configurations.

Figure 8.1: The activity-oriented planning approach

We call this process of activity-oriented planning because agents provide context

sensitive actions to perform activities in specific. Common types of actions imple-

mented under this perspective are:

� Delegation: action that simply sends a node to other agent that has the capability

to handle it. Thus the unique work of the sender agent is to wait for the result;

� Standard Operating Procedures (SOPs): SOPs are sequences of pre-defined ac-

tivities based on experiences, lessons learnt or carefully pre-designed. Depend-

8.1. Planning Architecture 127

ing on the context, agents turn available one or more SOPs as actions that de-

compose nodes. Appendix C shows an example of search patterns defined as

SOPs;

� Dynamic Plan Generation: this action creates a dynamic plan, providing more

assistance with a “How do I do this?” action associated with each node;

� Specific solver: actions can invoke specific solvers, such as a pathfinder, which

are available as plug-ins.

We can say that the role of agents is to provide actions to decompose nodes until

there are only executable nodes. The important point in this discussions is to know

that each action is implemented by an activity (node) handler, which propagates the

components through constraint managers to validate their constraints. For example,

the action of applying a SOP is a handler that decomposes an activity according to the

SOP specification. For this, the handler also causes constraint managers to check the

conditions in which the SOP can be applied, indicating any conflict.

8.1.2 Activity Handlers and Constraint Managers

All agents have a set of activity handlers that they use to refine or perform their ac-

tivities. The I-X architecture allows the definition of handlers as plug-ins, which can

be declared in a configuration file so that agents load them during their initialisation.

Each handler has a method (appliesTo) that indicates at runtime if it can be applied to

a specific activity. In a general way, the process follows the steps below:

1. When an activity a is received, the agent’s controller component selects (ap-

pliesTo method) a set of handlers H, which matches the description of a;

2. Each handler h 3 H uses one or more constraint managers to return the status of

the action (possible, impossible or not ready);

3. Users choose one of the proposed actions, committing to the performance of a;

4. During the execution, constraint managers are still monitoring the constraints of

a, warning in case of problems.

128 Chapter 8. Customisation of Planning Mechanisms

Note that the steps 1 and 2 correspond to the first cycle of the planning process,

where constraints associated with each handler are tested against constraint managers

so that they have to respect the current model. Meanwhile, steps 3 and 4 correspond

to the second cycle, where the constraints of the chosen action are propagated and

monitored by the managers.

The role of constraint managers in this process is to maintain information about

a plan while it is being generated and executed. The information can then be used

to prune search where plans are found to be invalid as a result of propagating the

constraints managed by these managers. The principal advantage of using constraint

managers is their modularity. We can design managers to deal with specific types

of constraints, such as temporal, resource or commitment. In fact a guideline for the

provision of a good constraint manager is the ability to specify the calling requirements

for the module in a precise way. According to the constraints defined in Chapter 7, we

could have the following constraint managers (CM):

� World-state CM: manages the constraints associated with the state of the envi-

ronment and its objects;

� Temporal CM: manages the constraints associated with time, implementing the

temporal relations defined in Table 7.1;

� Resource CM: manages the constraints associated with the description of agents,

their capabilities and limitations;

� Commitment CM: manages the constraints associated with commitments, im-

plementing the ideas of the AgentCommitment function;

� Autonomy CM: manages the constraints associated with autonomy;

� Preference CM: managers the constraints associated with preference, mainly

guiding the instantiation of variables.

Together the constraint managers form the model manager of the agent. Each

constraint manager considers a set of specific constraints in a well-defined syntax,

based on the � I-N-C-A � formalism. In brief, constraint managers are intended to

8.1. Planning Architecture 129

provide support to a higher level of the planner where decisions are taken. However,

they do not take any decision themselves. Rather, they are intended to maintain all the

information about the constraints they are managing and to respond to questions being

asked of them by the decision making level [Tate, 1995].

8.1.3 Planning Interfaces

The idea of I-X in using planning interfaces is to provide a standardised connection

between each constraint manager and other agents’ components. For that end, it is

important to understand the inputs that constraint managers need to manage their set

of constraints, and which possible outputs are generated by them.

Inputs for each manager are represented by any constraint entry that must be tested

against existing managed constraints to see what the impact of making the entry would

be, and then a commit or abort can be done to add it or not. However the manager

must also be informed about changes in its constraints, such as variable instantiations

and deletions, because these events have impact during the constraint processing.

According to the I-X approach, all standard constraint managers return as output

one of three results when they receive a new (or changed) constraint:

� yes: indicates that the constraint is now under management;

� no: indicates that the constraint cannot be added;

� maybe: indicates that the constraint can be added if plan entities are altered

as specified via an or-tree, a data structure representing the alternative ways in

which the plan may be altered1.

The use of a well-defined interface has the advantage of allowing an easy imple-

mentation of new handlers and also the design of new constraint managers that can be

dynamically added to an agent’s model manager. For example, a pathfinder handler

can add a constraint manager that monitors road states. This manager could return

specific information to the handler according to the reasoning that it is performing.
1In this thesis we are not considering this option. More details can be seen in [Tate, 1995]

130 Chapter 8. Customisation of Planning Mechanisms

8.2 Building Plans

Following our extended version of the � I-N-C-A � ontology, a plan instance could be

represented as follows (Figure 8.2):

01. � plan xmlns=“http://www.aiai.ed.ac.uk/project/ix/” �
02. � plan-nodes � � list �
03. � plan-node id=“node-0” expansion=“refinement-0” � ... � /plan-node �
04. � /list � � /plan-nodes �
05. � plan-node-refinements � � list �
06. � plan-node-refinement id=“refinement-0” expands=“node-0” �
07. � plan-nodes � � list �
08. � plan-node id=“node-0-0” � ... � /plan-node �
09. � plan-node id=“node-0-1” � ... � /plan-node �
10. � plan-node id=“node-0-2” � ... � /plan-node �
11. � /list � � /plan-nodes �
12. � constraints � � list �
13. � constraint type=“temporal” relation=“before” �
14. ... (node-0-0,node-0-1) ...

15. � /constraint �
16. � constraint type=“temporal” relation=“before” �
17. ... (node-0-1,node-0-2) ...

18. � /constraint �
19. � /list � � /constraints �
20. � /plan-node-refinement �
21. � /list � � /plan-node-refinements �
22. � /plan �

Figure 8.2: Simplified example of an � I-N-C-A � plan.

This is a simplified example of an � I-N-C-A � plan, which omits several syntacti-

cal elements represented in the form of XML tags. The important point in this example

is to understand its structure and the function of each element. Starting at step 02, the

8.3. The Customisation Design 131

plan nodes element allows the association of several nodes (activities) with this plan,

where each of these nodes will have a unique identifier. In this example we repre-

sent only one plan-node (step 03), whose identifier is “node-0”, and that also has an

expansion attribute called “refinement-0”. Together, both attributes are used to relate

nodes with their refinements to create hierarchical plans. In this case, the refinement

of “node-0” is represented by three sub-nodes: node-0-0 (step 08), node-0-1 (step 09)

and node-0-2 (step 10).

The two constraints (steps 13 and 16), associated with the “refinement-0”, indicate

that the sub-nodes need to be performed sequentially. In the same way we could add

temporal constraints (between step 21 and 22) to indicate some temporal restriction on

the high-level node (node-0) of the plan. Other examples of constraints that could be

in this list, between steps 12 and 19, are: ((node-0-0,?agent),?value) to indicate that a

commitment to the performance of node-0-0 is required (commitment constraint) and

((in-ordered ?agent),[a1,a2,a3]) to indicate that there is a preference on the agent (a1,

a2 or a3) that will be selected to perform node-0-0.

An important observation is that each plan-node inside the plan-nodes list (step

07) can also be decomposed in more nodes via refinements. In this way we are able

to create a hierarchy of nodes so that each level has its associated constraints. For ex-

ample, the decomposition of node-0-0, which is represented as � plan-node-refinement

id=“refinement-1” expands=“node-0-0” � , could generate two new plan-nodes: � plan-

node id=“node-0-0-0” � ... � /plan-node � and � plan-node id=“node-0-0-1” � ... � /plan-

node � . For each of these nodes we can associate a new list of constraints, which are

only valid in the corresponding level of the node.

8.3 The Customisation Design

The idea of planning interfaces provides a practical and uniform way to develop activ-

ity handlers and constraint managers. This is more useful when we think of a hierarchi-

cal organisation where the agents have to be customised to support different activities.

This section shows the design of three handlers, one for each level of decision mak-

ing, using our disaster relief domain as scenario. There are two important points to be

132 Chapter 8. Customisation of Planning Mechanisms

noticed here. First, independently of their functional aspects, handlers have the same

structure because they extend a super class that defines the essential methods for con-

straint checking and manipulation. Second, as the requirements discussed throughout

the thesis are all represented via constraints, it is possible to control any aspect associ-

ated with planning via handlers. The remainder of this section stresses such points.

8.3.1 Planning Customisation for Strategic Agents

As discussed before (Section 2.3.1), the strategic level accounts for developing plans

in a high-level abstraction, so that its principal tasks are related to the analysis of

information and definition of directions.

Considering a disaster relief scenario where several fires are spreading over the

city, one of the strategic level functions is to decide where to concentrate the coalition

resources to avoid such spreading. Based on this idea, the planning model could con-

tain an activity called “Avoid fire-spreading”, which has a sub-activity called “Predict

fire-behaviour”. Then, for this activity we could design a handler (action) that receives

the positions of the fires and, using information of the world-state module such as the

speed and direction of the wind, this handler could return positions about where to

place the fire brigades.

Based on this idea, let us define the handler in a more formal way. First, the activity

that the handler can be applied to is specified as:

(Avoid-fire-spreading ?region)

The variable ?region specifies the area where the agent wants to avoid the fire

spreading. Using a SOP or any other action we can decompose such activity in the

sequential sub-activities below:

(Localise ?list-of-fires in ?region)

(Predict-behaviour ?list-of-fires ?list-of-positions ?time)

(Protect ?list-of-positions)

Following this order, the first activity intends to instantiate list-of-fires with the

fires localised in region. Then, the second activity predicts the behaviour of the fire in-

stances in ?list-of-fires during a specific time and returns the locations (list-of-positions)

8.3. The Customisation Design 133

where the fire is going to. Finally, the last activity is associated with the protection of

such positions and the agent can send it to a fire station, for example. The handler to

be applied to “Predict-behaviour” activity can be defined as (Figure 8.3):

01. handler CalculateFireBehaviour(list-of-fires, time)

02. static: list-of-positions, save positions that must be protected

03. AppliesTo(“Predict-behaviour”);

04. Handle()

05. do (
� f 3 list-of-fires)

06. s = modelManager.query(windSpeed(Position(f)))

07. d = modelManager.query(windDirection(Position(f)))

08. pos = FireBehaviourPrediction(Position(f), v, d, time)

09. list-of-positions = list-of-positions + pos;

10. end do
11. return list-of-positions

12. end

Figure 8.3: Example of strategic level handler.

In this example we can see that this handler defines the method “AppliesTo” (step

03), specified in the activity interface, to indicate in which kind of activity it can be

used. Another important method of this interface is “Handle”, which is called when the

handler is chosen. This handler, in particular, neither creates nor uses any constraint

manager. Rather it only uses the ”Query” method (steps 06 and 07), which is defined

in the modelManager class, to acquire information about the environment. Then, the

information about wind direction and speed for each position is used in a special func-

tion, which returns positions where the fires are likely to evolve during the specified

time.

This is a typical handler at the strategic level, whose principal function is to anal-

yse information about the scenario (wind’s speed and direction), producing important

knowledge (fire behaviour) that is used to support high-level decisions (in which areas

the coalition must concentrate resources).

134 Chapter 8. Customisation of Planning Mechanisms

8.3.2 Planning Customisation for Operational Agents

The operational level accounts for refining the plans produced in the strategic level,

mainly providing the logistical resources for them via processes as resource scheduling

and load balancing (Section 2.3.2). Continuing in the disaster relief scenario, such

level could be represented by fire station agents, which have groups of fire brigades as

subordinate agents.

Consider that a fire station receives the (Protect ?list-of-positions) activity from

the strategic level. Then one of its functions is to allocate its resources (fire brigades)

based on the variable ?list-of-positions. One possible handler to deal with such activity

is exemplified below (Figure 8.4):

01. handler AllocateResources(list-of-fire-positions)

02. static: list-of-activities,list-of-resources,list-of-attributions

03. AppliesTo(“Protect”);

04. Handle()

05. list-of-activities] GenerateActivities(list-of-fire-positions)

06. list-of-resources] contactManager.query(“available resources”)

07. list-of-attributions] Schedule(list-of-resources,list-of-activities)

08. end

Figure 8.4: Example of operational level handler.

In this example we can note that the structure of the handler is similar to the strate-

gic level handler, or any other handler developed on this architecture. In this case,

however, there is a considerable number of interactions between the handler and the

temporal module (constraint manager) in particular. This happens because the Sched-

ule method (step 07) will try to add several temporal constraints into the current agent’s

plan that represent the new activities associated with the protection of each position.

Thus, the application of this handler on the (Protect ?list-of-positions) activity will

decompose it in several sub-activities of the form “Protect ?position” with receiver

agents already associated with them.

As the definition of this handler is at a high level, several details are hidden. One

8.3. The Customisation Design 135

of these details is related to the commitment constraints. When handlers create activ-

ities to be delegated, they automatically associate commitment constraints with such

activities. In this case, the function that accounts for such association could be “Gen-

erateActivities” (step 05).

8.3.3 Planning Customisation for Tactical Agents

The tactical level is where the execution of activities actually takes place. In our ex-

ample, the tactical level is populated by fire brigades, which will receive the ”Protect
?position” activity produced in the operational level. However, as such an activity is

not executable yet, the fire brigade must decompose it. For that end, it can apply a SOP

that produces the following sub-activities:

(Refill water-tank)

(GoTo ?position)

(Extinguish ?fire in ?position)

At this point the three sub-activities are executable. However we can implement

a handler to improve the efficiency of the “GoTo” activity. This handler could ac-

count for finding a suitable route between the current position of the fire brigade and

?position. This handler can be specified as follows (Figure 8.5).

01. handler Pathfinder(position)

02. static: list-of-roads, set of roads that the agent must use

03. AppliesTo(“GoTo”);

04. Handle()

05. list-of-roads] Router(position)

06. end

Figure 8.5: Example of tactical level handler.

According to this definition, if the “Pathfinder” handler is applied to the “GoTo”

activity, a list of roads from the current position of the agent to the specified position is

136 Chapter 8. Customisation of Planning Mechanisms

generated. The Router function (step 05) can implement any pathfinder algorithm ac-

cording to the route representation used by the application. Note that while the Router

function is creating a route, it interacts several times with the constraint managers to

know if this route option is valid. For example, it has to ask the status of roads to the

world-state module before including them in its outcome.

8.4 Planning Tools

The I-X project seeks to deliver useful functionality based on the � I-N-C-A � ontol-

ogy via I-X Process Panels (I-P2) [Tate et al.,2002]. A panel shows the current state of

collaborative planning (from the perspective of the panel’s user) through the presenta-

tion of the current items of each of the four set of entities comprising the � I-N-C-A �
model (Figure 8.6).

Figure 8.6: I-X Process Panel and its 4 sub-panels.

The principal objective of I-P2 is to provide support to joint planning and execution

activities of a team or coalition. Each agent of such a coalition receives its activities

via an I-P2, whose contents, along with the current context and state of the collabo-

8.4. Planning Tools 137

ration, are used to dynamically generate possible planning actions. For example, as

discussed before (Section 8.1), associated with a particular activity might be sugges-

tions for refining or executing it using known SOPs, for invoking a specific solver, or

for delegating this activity to some other agent in the coalition.

For any activity on the panel, an I-P2 panel row shows its current execution status

and an “Action” menu with the available options to handle the activity. Colours indicate

the readiness of the specific action for use:

� White: indicates that the item is not currently ready for execution (i.e., some

precondition defined by some constraint is not met yet);

� Orange: indicates that the action is ready to perform and that all preconditions

and constraints are met;

� Green: indicates that the item is currently being performed;

� Blue: indicates successful completion;

� Red: indicates a failure for which failure recovery planning steps might be initi-

ated.

Activities and other panel items can be passed from one panel to another (or to

capable services or other agents). These can pass back reports of success or failure

to the original sender of the item. This provides a way to monitor activity progress,

receive back milestone reports and check off the completion of activities.

I-P2 has additional tools that also support the process of planning and execution of

human users. Examples are: I-Space, I-Messenger, I-Domain Editor and I-Viewers.

The I-Space tool (Figure 8.7) supports the arrangement of coalitions, allowing the

management of organisational relationships such as superior-subordinate or peer-peer.

Considering an agent ag, I-Space shows the kind of relationship that ag has with other

agents of the coalition (superior, subordinate or peer). For each of these relationships

we can associate specific forms of interaction, which characterise each relationship in

specific. In addition, I-Space also shows the capabilities of each agent that composes

the contact list of ag.

138 Chapter 8. Customisation of Planning Mechanisms

Figure 8.7: I-Space tool.

I-Messenger (Figure 8.8) supports the change of knowledge and manual monitoring

of activities via reports of progress, success or failure. The knowledge sharing can be

done via formal (pre-formatted messages) and informal (chat-like) messages. This

tool, and the whole architecture, operates independently of communication protocols2.

Figure 8.8: I-Messenger tool.

The I-Domain Editor (Figure 8.9) enables the definition of refinements (e.g., SOPs)

and creation of libraries of pre-defined plans. Rather than being used during missions,

such an editor is commonly used off-line, preparing robust and well defined-plan com-

2I-X can use a wide variety of communication methods via plug-ins.

8.4. Planning Tools 139

ponents or complete plans. Then, during missions, I-X agents are able to automatically

turn available the procedures/plans that can be applied into a specific context.

Figure 8.9: I-Editor tool.

Finally the I-Viewers represent a set of tools that explores appropriate (sometimes

domain specific) ways for showing some kind of information generated by the I-X

agents. Two current examples developed during this thesis are the Map Viewer and

3D viewer. The need to develop a Map Viewer is justified by the kind of domain that

we are working with. Generally, members involved in disaster relief operations or

military missions, for example, require a visual representation of the scenario where

they are performing, which shows positions of resources and issues. For that end, a

map-based representation is the most natural way to bring this kind of information in

a bi-dimensional plan. The 3D Viewer can be used in missions that require a more

detailed description of the scenario. For example, in a disaster relief operation where

a rescue team is looking for injured civilians inside a large building.

At the moment the I-X Process Panels only can be used in a PC or laptop based

environment. However research associated with the I-X aims to adapt this technology

to more limited platforms (e.g., PDAs, mobile phones, etc.) so that users on the move,

such as rescue team members, can use it. A first step in this direction [Lino et al., 2003]

is the development of planning information delivery processes that look for the most

“legible” way to present information based on several features such as profile of de-

vices, user preferences and information content.

140 Chapter 8. Customisation of Planning Mechanisms

8.5 Summary

The I-X architecture defines the practical aspects to use the � I-N-C-A � ontology.

The principal advantage of I-X for our work is its proposal of openness, which enables

an easy extension of its capabilities (e.g., activity handlers, constraint managers and

viewers) and configuration for different domains (e.g., disaster relief, space applica-

tions, etc.). In fact, the implementation of such ideas are being developed in the form

of a JAVA Application Program Interface (API), which already supports the openness

and extensibility features.

The I-X Process Panels, together with their auxiliary tools, have been demonstrated

in different scenarios such as Coalition and Multinational Forces Command and Con-

trol [Tate et al., 2004], and Search and Rescue Coordination [Siebra and Tate, 2003].

Such demonstrations were based on the original � I-N-C-A � version, presented in

Chapter 6. The next chapter discusses experiments that include the ideas presented

through this thesis, mainly in Chapter 7.

Part IV

Experiments, Results and Conclusion

141

Chapter 9

I-Kobe: A Practical Application

I-Kobe1 is a prototype of a hierarchical coalition system that supports disaster relief

operations in the RoboCup Rescue Kobe scenario. This chapter details how I-Kobe

has considered several ideas discussed through this thesis during its implementation.

For that end, Section 9.1 introduces the Kobe domain, explaining the motivations for

its use. Then, Section 9.2 presents the RoboCup Rescue Simulator, a disaster relief

simulator that was configured to represent a scenario similar to a specific region of

Kobe city. Section 9.3 describes the architecture of our application, showing the in-

teraction between its components. Section 9.4 discusses several experiments based on

this architecture. Such experiments can be divided into two groups: the first focuses

on collaborative aspects, while the second on user interaction aspects. Finally, the last

section discusses the results together with advantages and limitations of the system.

9.1 Urban Disaster Relief Domains

The occurrence of disasters in urban areas is the most critical event in terms of human

lives due to the population concentration and considerable number of buildings. The

Great Hanshin Earthquake or Kobe Earthquake is an example of how disasters have

tragic effects in urban areas. On Tuesday, January 17th 1995, at 5.46 a.m. (local time),

an earthquake of magnitude 7.2 on the Richter Scale struck the Kobe region of south-

1I-Kobe is part of the I-Rescue Project (http://i-rescue.org), an effort toward the development of
knowledge-based tools applied to search and rescue or disaster relief domains.

143

144 Chapter 9. I-Kobe: A Practical Application

central Japan. This region is the second most populated and industrialised area after

Tokyo, with a total population of about 10 million people. The ground shook for only

about 20 seconds, but in that short time over 5,000 people died, over 300,000 people

became homeless and damage worth an estimated £100 billion was caused to roads,

houses, factories and infrastructure (gas, electric, water, sewerage, phone cables, etc).

It is not only Kobe, but the whole Japan is a region prone to earthquakes due to

the number of tectonic plates (Philippines, Eurasian and Pacific Plates) that converge

below the country’s surface (Figure 9.1a). To lighten the damage of earthquakes in

the future, scientists are studying ways to predict the occurrence of quakes more accu-

rately. One of the results of that study was to appoint the Chubu region (Figure 9.1b)

to be a candidate for a large quake in the near future.

Figure 9.1: (a) Tectonic plates and (b) Chubu map (http://www.georesources.co.uk).

Based on this context, we have chosen the Kobe domain as a motivational scenario

for our application. Such a domain represents a small but central part of Kobe, which

will certainly be a problematic region in case of a new natural disaster. Similarly, such

an application could be adapted to Nagoya, the principal city of the Chubu region.

9.2 The RoboCup Rescue Simulator

The RoboCup Rescue (RCR) simulator [Kitano and Tadokoro, 2001] is a real-time dis-

tributed simulation system that is built of several modules connected through a network

via a central kernel, which manages communications among such modules. Each mod-

9.2. The RoboCup Rescue Simulator 145

ule can run on different computers as an independent program, so that the computa-

tional load of the simulation can be distributed across multiple processors. Each dis-

aster phenomenon, such as collapse of buildings or fire spread, is simulated by a dedi-

cated simulator-module, while a Geographical Information System (GIS) provides the

initial condition of the disaster space.

The RCR simulator recognises six different types of agents: ambulance team, fire

brigade, police force, ambulance centre, fire station and police office. Such agents

act as several independent modules, which receive information about the environment

and send commands to be performed by the kernel. In our experiments some of these

agents are represented by I-X agents as detailed soon.

The simulation proceeds by repeating a specific cycle of one second (default value),

which corresponds to one minute in the real disaster space. However such rate can be

configured according to the application that we intend to test. During each cycle the

following steps are carried out:

1. The kernel sends individual sensory information to each agent;

2. Each agent individually submits an action command to the kernel;

3. The kernel sends the action commands of agents to all sub-simulators;

4. Sub-simulators submit updated states of the disaster space to the kernel;

5. The kernel integrates the received states, sending the result to the viewer;

6. The kernel advances the simulation clock of the disaster space.

The RCR disaster space is not fixed so that we can model and use customised

scenarios. For that end, there are appropriate graphical tools that generate geographical

data in the format used by the RCR simulator. We have used one of these tools to

create a scenario representing part of the Nagoya city, for example. Together with this

capability of configuration, the principal advantage of using the RCR simulator is that

it provides a dynamic and unpredicted environment, which enables the evaluation of

our ideas in a more real way. A visual evolution of one of our experiments in the RCR

environment is showed in Appendix D.

146 Chapter 9. I-Kobe: A Practical Application

9.3 Application Architecture

A complete I-X coalition for the I-Kobe application could be defined as illustrated bel-

low (Figure 9.2). As introduced in the last section, the RoboCup Rescue simulator

is the component that accounts for generating sensory information and processing the

agents’ commands. Sensory information from the simulator are indexed with the iden-

tification of agents and each of these agents only receives the perceptions associated

with the scenario around it. In general, geographically fixed agents (e.g., Police Office)

do not receive new information about the environment because they do not change their

positions. Action commands (e.g., rescue, extinguish, move, etc.) are only generated

by the movable agents such as fire brigades (FB).

Figure 9.2: Application architecture.

The grey bars and arrows (Figure 9.2) represent the communication network, which

defines which agents can interact. For example, fire brigades (FBi) can only interact

among themselves and with the fire station. For the experiments discussed here, the

architecture uses a communication strategy in which each agent is mapped to a host

9.3. Application Architecture 147

and port number, and messages are sent by writing their serialisations to a socket. A

thread that acts as a name-server on a specified port accounts for the role of distributing

messages between agents. Note, however, that this architecture is independent of the

communication strategy, so that other options could be used (e.g., Jabber Technology

for XML messaging [Saint-Andre, 2001] or its recent formalisation XMPP2).

The coalition represented in Figure 9.2 is divided into the following levels of

decision-making:

� Strategic Level - composed of one Search and Rescue Command Centre (SRCC)

agent, represented by an I-X Process Panel. Its principal function is to coordinate

the operational agents;

� Operational Level - composed of three agents called Police Office, Ambulance

Centre and Fire Station, which are also represented by I-X Process Panels. Their

main functions are, respectively, to coordinate the activities of police forces,

ambulance teams and fire brigades;

� Tactical Level - composed of n ambulance teams (AT), whose function is to res-

cue buried civilians; m fire brigades (FB), whose function is to extinguish fires;

and w police forces (PF), whose function is to clear roads. All these components

are represented by I-X agents.

Agents of the operational and tactical levels have special functions to translate sen-

sory information and actions between them and the simulator, because the internal

formats used by agents and simulator are different. For example, consider the geo-

graphic information format. While the simulator uses the orthogonal distance (x,y)

from a pre-defined point to a specific object, in millimetres, to indicate the position of

such an object; I-X agents use latitude/longitude values for that. For this case, in par-

ticular, the functions to translate values between these two formats were implemented

using the regression technique3.

2Extensible Messaging and Presence Protocol (http://xmpp.org).
3Regression is the numerical technique of fitting a simple equation to real data points.

148 Chapter 9. I-Kobe: A Practical Application

9.4 Evaluation and Results

This section describes a set of experiments, which demonstrate the implementation

of the features discussed through this thesis. We must note that all the mechanisms

developed in this section are based on constraint manipulation and visualisation of the

effects of such manipulation. The first part (Section 9.4.1) focuses on mechanisms

that support a better notion of collaboration. The second part (Section 9.4.2) discusses

some practical directions associated with human-agent interaction mechanisms.

9.4.1 The Collaboration Aspect

The experiments of this section focus on the performance of a sub-coalition Θp com-

posed of one police office (operational level) and ten police forces (tactical level) dur-

ing a period of 150 cycles, which corresponds to 150 minutes in the real world. The

objective of Θp is to clear the roads that are blocked by collapsed buildings. A good

performance of Θp is very important to the fire brigades, for example, because they

need clear paths to quickly reach the fire points and water refill places.

For the experiments detailed here, the tactical agents use a simple plan. Each police

force has a list of blocked roads, indicated by the police office, that is ordered by the

closest distance from the blockage to the current agent position. Then, if an agent is

clearing a road, it remains doing that until one of the passable lines becomes clear.

Otherwise, it accesses its list to know the next blocked road. If the list is empty, the

agent tries to find (search action) other blockages around the scenario. This plan is used

as a basis for the following experiments. The initialisation file for the experiments,

defining numbers and initial features of agents and objects (refuges and fire points) is

shown in Appendix E.

9.4.1.1 Experiment 1: Coalition without Coordination/Collaboration Models

This first experiment was carried out using RCR agents, which are provided by the

simulator package and represent plain components that can be used as a basis for more

complex implementations. The police force agents (tactical level) implement the plan

previously discussed, while the police office has the function of receiving requests to

9.4. Evaluation and Results 149

clear roads from other operational agents and broadcasting such requests to its police

forces. In other words, the police office ensures that all its subordinate agents have

the same knowledge that it has about the roads. Table 9.1 shows the results4 for this

experiment.

Cycle PF allocated time (%): FB Allocated time (%): Buildings

Move Search Clear Move Refill Exting. on fire

10 26.7 52.2 21.1 87.0 2.0 11.0 7

20 49.5 24.7 25.8 71.6 1.1 27.4 10

30 55.2 16.2 28.6 70.3 0.7 29.0 11

40 61.0 12.0 27.0 67.9 5.6 26.4 14

50 66.7 9.6 23.7 60.2 13.9 25.9 16

60 70.3 8.0 21.7 54.7 14.9 25.3 16

70 72.6 6.8 20.4 52.6 18.3 29.1 15

80 75.9 5.9 18.1 50.2 20.9 28.9 18

90 78.5 5.3 16.2 47.0 22.7 30.3 22

100 80.4 4.8 14.8 44.6 24.8 30.6 21

110 82.1 4.3 13.6 43.8 25.0 31.2 23

120 83.6 4.0 12.4 42.4 25.8 31.8 25

130 84.9 3.6 11.5 41.7 26.4 31.9 30

140 86.0 3.4 10.6 40.4 27.6 32.0 34

150 86.9 3.2 9.9 39.6 28.0 32.4 34

Table 9.1: Simulation results for a coalition without collaborative/coordination models.

The table presents three types of information. First, the time that police forces

(PF) have spent in their possible actions: move (when agents are moving to some

position indicated by the police office), search (when agents are looking for blocked

roads by themselves) and clear (when agents are clearing roads). Second the time that

fire brigades (FB) have spent in their possible actions: move (when agents are moving

along the scenario), refill (when agents are stopped in a refuge refilling their water
4Results on all tables in this section represent the joint performance of ten police forces during a

simulation of 150 cycles. Each experiment was repeated three times.

150 Chapter 9. I-Kobe: A Practical Application

tanks) and extinguish (when agents are trying to extinguish fires). Finally, the number

of buildings on fire. According to this experiment, the coalition is not able to avoid

the fire spread so that the number of buildings on fire increases during the simulation.

Thus we need to understand what is the problem of this coalition and its approach.

The simulator classifies fires in three different levels: initial, medium and severe.

At the beginning of the simulation (cycle 10), there are 7 buildings in 5 different loca-

tions that are in an initial level of fire. The idea is that the fire brigades quickly find the

fire points while such fires are still at an initial stage because such fires are easier to be

extinguished. However this is only possible if the paths along the route are clear.

Using the information in the table, we can observe that the police forces spend a

great part of the simulation moving, rather than clearing roads. This mainly happens

because agents in this experiment are self-coordinating their own activities according

to the features of the environment. Thus, it is common that an agent moves to a position

that must be cleared, however such a position was already cleared by another agent. In

other words, many such move activities are a waste of time. Figure 9.3 illustrates this

problem and its effects.

Figure 9.3: Activity allocation for police forces during the experiment 1.

In the graphic we can see that the Move curve is always increasing. This means

9.4. Evaluation and Results 151

that the police forces have requests to clear roads from the police office during all the

simulation. In an efficient coalition we could expect that this rate starts to decrease at

some moment. We can say that the sooner this rate decreases, the better the coalition

performance is.

It is also important that the police forces quickly deal with incoming requests so

that they start to search for blocked roads by themselves. Thus, differently of the Move

curve, we could expect that the Search curve starts to increase at some moment. In

the case of the current approach, the inefficient behaviour affects the performance of

the fire brigades so that in the final stage of the simulation we have a high number of

buildings (34 buildings, Table 9.1) on fire, together with other 12 buildings partially

burnt (buildings where fires were extinguished).

Another analysis that we can carry out here is associated with the number of mes-

sages exchanged in the sub-coalition Θp. Consider that Rclear is the number of requests

that a police office po receives from other operational agents. If we have a function

SubordinateNumber(po) that returns the number of subordinates of po, the number of

messages generated in Θp is given by:

Nmessages = Rclear x SubordinateNumber(po)

For our experiment, for example, we have 10 police forces (subordinates) and an

average of 40 clearance requests. Thus, a total of 400 messages are generated in Θp.

9.4.1.2 Experiment 2: Adding Coordination via the I-X Approach

Based on the results of the first simulation, we have implemented a new coalition

version that uses a model of coordination based on the I-X approach. For that, the

police office was implemented as an I-P2 and the police forces were implemented as

I-X agents (partially representing the architecture in Figure 9.2).

I-X provides a coordination structure where each agent can report execution, com-

pletion or failure of activities. In addition, we can implement handlers to deal with

the “clear activity” in particular. For this experiment we have implemented a handler

called “SimpleAllocation” that uses the reports and information about the environment

152 Chapter 9. I-Kobe: A Practical Application

to generate an efficient delegation of activities to police forces. In other words, it in-

tends to increase the number of clear actions during a period of time. This handler is

based on three ideas:

� Closest distance: the handler tries to allocate the closest agent to a blocked road.

If this is not possible, it tries the second closest agent and so on;

� Loading balancing: the handler firstly tries agents with least activities;

� Multiple allocations: the handler allocates more than one agent to each activity

if there are agents with less executing activities than a constant Y.

Table 9.2 shows the results for this new simulation.

Cycle PF allocated time (%): FB Allocated time (%): Buildings

Move Search Clear Move Refill Exting. on fire

10 13.3 67.8 18.9 86.7 2.2 11.1 7

20 30.0 41.6 28.4 72.1 1.1 26.8 9

30 35.2 33.4 31.4 71.4 0.7 27.9 14

40 36.9 33.1 30.0 60.8 8.2 31.0 13

50 36.9 33.9 29.2 52.2 19.4 28.4 18

60 38.8 34.9 26.3 48.8 21.2 30.0 15

70 39.9 35.5 24.6 46.4 19.8 33.8 15

80 39.7 37.1 23.2 43.4 22.5 34.1 16

90 37.0 41.5 21.5 39.4 27.9 32.7 20

100 35.0 45.2 19.8 38.2 28.0 33.8 20

110 35.1 46.1 18.8 36.6 26.8 36.6 18

120 32.9 49.5 17.8 35.2 29.1 35.7 16

130 30.6 52.3 17.1 34.7 31.3 34.0 18

140 28.7 54.9 16.4 36.0 30.2 33.8 16

150 26.9 57.3 15.8 37.6 29.7 32.7 16

Table 9.2: Simulation results for a coalition using a coordination model.

9.4. Evaluation and Results 153

According to Table 9.2, police forces are able to deal with their delegated activities

faster than in the previous experiment. This fact is mainly represented by the rate of

the move actions that increases until the cycle 80 and after that starts to decrease. The

principal reason for this improvement is that the superior component (police office) is

selecting specific (and best) agents to activities rather than sending all the activities to

all agents. Thus the police office avoids that one police force moves to a place that

another police force is already working on. Note in Table 9.2 that a better performance

of the police forces also improves the performance of fire brigades. In the final round

of the simulation (cycle 150) we have 16 buildings on fire (against 34 from experiment

1), together with 18 partially burnt (against 12 from experiment 1).

The idea of reports, supported by I-X, is fundamental in this process. If an agent

does not report that it is executing an activity, the allocation handler considers that

such an agent is still available. In the same way, agents must report the completion of

activities so that the police office can update its allocation table. Agents can also report

failures. In this case the activity must be reconsidered by the allocation process. The

graphic in Figure 9.4 gives a better idea about the police forces’ behaviour.

Figure 9.4: Activity allocation for police forces during the experiment 2.

The curves in this graphic represent the behaviour that we are expecting from the

154 Chapter 9. I-Kobe: A Practical Application

police forces. The Move curve has a peak around the cycle 70 and after that starts to

decrease. The Search curve has the opposite behaviour, showing that the police forces

have actually finished the delegated activities and they are going back to the search

actions. Finally the Clear curve also demonstrates a better performance so that if we

calculate the integral of this curve the resultant value will be bigger than the same curve

in the previous experiment.

Despite the improvements presented by this coalition, it still has some limitations.

The principal examples are:

� Police forces only report completion or failure of activities. Reports associated

with activity commitments and progress are also important because they provide,

for example, useful information to be used by the handlers;

� In situations where the police office allocates a clear activity to n agents, n sub-

nodes are created to represent such allocations. These nodes are typically exam-

ples of or-activities where only one of them needs to be completed for the overall

clear activity be finished. However this does not happen in this version.

Finally, considering that Nsubnodes(a) returns the number of subnodes created to an

activity a, we can define the number of messages in this coalition using the following

expression:

Nmessages = 3 x ∑Rclear
i * 1 Nsubnodes � activityi �

The number 3 in the expression represents the three basic messages (delegation,

execution start and completion/failure). For our experiment, in particular, we set

Nsubnodes to the constant value 2. Thus, every activityi has two subnodes (two police

forces allocated to each activity). In this case we can simplify the expression to:

Nmessages = 6 x Rclear

Then, considering again that the average of clear requests for this coalition is 40,

we have a total of 240 messages changed by the coalition members.

9.4. Evaluation and Results 155

9.4.1.3 Experiment 3: Adding Collaboration (Commitments and Mutual Support)

For this experiment we are still using an I-P2 to implement the police office, and I-

X agents to implement the police forces. However we have incorporated the notion

of collaboration into such components via the commitment and mutual support ideas,

discussed in Sections 7.2.3 to 7.2.5. It is important to stress that these mechanisms

are incorporated as part of the I-X architecture, rather than as part of specific plans or

processes. Thus, they intend to support a broad space of coalition planning problems,

acting on abstract concepts of � I-N-C-A � plans such as activities and constraints.

Starting by the commitments idea, Figure 9.5 illustrates how such notion works in

this experiment.

Figure 9.5: I-P2 using commitments and reports.

Figure 9.5a shows the initial stage where the allocation handler has assigned the

task of clearing 5 different roads to 5 different agents. At this point no commitment

has been taken (white colour). Figure 9.5b shows that 4 police forces have committed

(orange colour) and one of them (PoliceForce07) already have started the execution

(green colour). Figure 9.5c shows that the last agent (PoliceForce01) has committed

and all the others have started their execution. Figure 9.5d shows that some agents

have completed their tasks (blue colour), and the last figure shows that all agents have

completed their activities successively. Note that while the handler improves the task

division and load balancing, the commitment function provides an appropriate way to

monitor the subordinates’ performance.

In this example we do not have a failure. However consider that the activity “Clear

road 77” has a temporal constraint Interval(“Clear road 77”,(09,14)). However the

agent PoliceForce03 is not able to complete this activity, reporting a failure to the po-

156 Chapter 9. I-Kobe: A Practical Application

lice office. In this case, the item “ScheduleTo PoliceForce03” in Figure 9.3d becomes

red and, following the commitment/report function (Figure 7.8), the I-P2 user or the

I-P2 itself must start a replanning process (e.g., delegate the task to more police forces

so that it can be completed in less cycles). The police office will only report a failure

to the activity’s original source if a replanning is not possible.

In the experiment 2, the first report is sent when agents start the execution of their

activities. In this new version, the first report is generated as soon as a plan is created.

Note that if there is a long period between the plan generation and the plan execution,

the police office will also spend a long period unsure about the status of this activity.

This new version also compels police forces to send progress updates, if some plan

information has changed. In this experiment, when a police force pf commits to the

performance of an activity ac, it also sends the cost of ac to its police office. The cost

here is given by the time, in cycles, that pf will spend to reach the blockage place, plus

the time to clear such blockage. However this cost can change due to, for example,

problems in the path and wrong estimations (e.g., pf usually does an estimation of

the time to clear blockages in the moment of the commitment because it has not seen

the blockage yet). As the allocator handler uses the cost values during the process of

delegation, progress updates help it in keeping its allocation table in accordance with

the real situation of the police forces, improving the process of allocation.

Together with the commitment mechanism, we have also introduced the notion of

mutual support into this experiment. The mutual support function plays an useful role

during the simulation. When a police force receives an activity to clear a road, it shares

(according to Section 7.2.5) the conditions to clear this road. One of these conditions

is that the road is actually blocked. If other agent of the coalition has an information

that contrasts with this condition, it must inform to the police force.

This process indirectly resolves the problem of or-activities discussed in the last

experiment. If two police forces pf 1 and pf 2 receive the same activity to clear a road

and pf 1 finishes such activity before pf 2 has started its execution, the new status of the

road (status road = clear) will contrast with the conditional constraint sent by pf 2 to

pf 1, so that pf 1 informs this new status to pf 2 (note that both agents have received the

conditional constraints of each other). Then, pf 2 automatically reports the completion

9.4. Evaluation and Results 157

of its activity to its police office. Using this mechanism, the police forces become

available faster and the allocator has more options to perform its allocations.

On the other hand, this experiment highlights a potential problem. According to the

mutual support function (Figure 7.9), before pf 1 informs of the new status of the road,

it must try to create an activity that turns the condition true (status road = blocked). This

does not happen in this experiment because police forces do not have this capability.

But, in a general way, conditions that are negations of goals can generate problems, so

that the CreateActivity function (line 05, Figure 7.9) must consider this exception5.

The results of the practical use of such ideas are illustrated in Table 9.3.

Cycle PF allocated time (%): FB Allocated time (%): Buildings

Move Search Clear Move Refill Exting. on fire

10 21.1 61.1 17.8 86.7 2.2 11.1 7

20 41.0 31.6 27.4 71.6 1.0 27.4 10

30 47.9 23.8 28.3 69.0 0.7 30.3 8

40 49.5 20.3 30.2 62.8 7.2 30.0 11

50 49.6 21.6 28.8 55.3 16.9 27.8 10

60 47.3 25.8 26.9 52.2 17.1 30.7 8

70 41.9 33.6 24.5 49.6 18.4 32.0 7

80 36.6 40.1 23.3 46.1 23.5 30.4 6

90 32.5 46.3 21.2 42.9 24.9 32.2 6

100 29.5 50.5 20.0 45.3 23.3 31.4 4

110 27.8 53.6 18.6 45.4 24.5 30.1 5

120 25.6 57.2 17.2 44.6 26.9 28.5 5

130 23.6 60.1 16.3 43.7 29.3 27.0 5

140 21.9 62.7 15.4 41.9 31.8 26.3 5

150 20.5 65.0 14.5 40.2 35.0 24.8 5

Table 9.3: Simulation results for a coalition using a coordination/collaboration model.

According to the table, this coalition has a better performance as a whole so that
5This is a common problem in AI planning and planners often use “constraint types” to indicate

which constraints are intended to be tested and which are intended to be achieved [Tate, 1995].

158 Chapter 9. I-Kobe: A Practical Application

at the final round of the simulation (cycle 150) we have 5 buildings on fire (against 16

from the experiment 2), together with 14 partially burnt (against 18 from experiment

2). The behaviour of the police forces is better represented in the graphic below (Figure

9.6).

Figure 9.6: Activity allocation for police forces during the experiment 3.

The graphic shows that the Clear curve is almost the same as in the last experiment.

However in this case we are sure that the clear actions are associated with the requests

of the police office because such a curve follows the behaviour of the Move curve.

In other words the police forces are moving to the blockages indicated by the police

office. Note that there are two perspectives in which we can analyse the efficiency of

Θp. From the Θp’s perspective, such sub-coalition is efficient if it is able to clear a big

number of roads. From the perspective of the coalition as a whole, which is the focus

of this experiment, Θp is efficient if it is able to clear the necessary roads. Thus, rather

than a quantitative result, we are interested in a qualitative measure on the performance

of clear actions.

If we compare this graphic with the graphic of the experiment 2 (Figure 9.4), we

9.4. Evaluation and Results 159

can also notice that the Move curve and Search curve are more regular and narrower.

This indicates that the police forces finish their delegated activities faster than the last

experiment, returning to their original action of searching blockages by themselves.

The analysis of the number of messages changed in Θp for this case is more com-

plex than for the last experiments. Considering TSN = ∑Rclear
i * 1 Nsubnodes � activityi � and

NS the number of subordinates in Θp, the number of messages is given by the expres-

sion below:

Nmessages = 3 x TSN + ∑TSN
i * 1 f � subnodei � + TSN x (NS-1) + ∑NS

j * 1 g � po j �

The terms of this expression have the following meaning:

� 3 x TSN, represents the three basic messages generated by each subnode: the

activity delegation, the commitment and the final message of completion or fail-

ure;

� ∑TSN
i * 1 f � subnodei � , represents the sum of all execution reports generated to each

subnodei. The abstract function f returns the value for each subnode, however

such value cannot be precisely defined because it depends on the dynamic (vari-

ation degree of the initial state) of the system;

� TSN x (NS-1), represents the messages that an agent sends to its peers, containing

the conditional constraints associated with each subnode;

� ∑NS
j * 1 g � po j � , represents the update messages related to the conditional constraints

shared among the peers. The abstract function g returns the value for each peer,

however such value cannot be precisely defined because it also depends on the

dynamic of the system;

Note that we are considering an ideal case where all agents commit on the perfor-

mance of the subnodes delegated. In cases where an agent does not commit, there are

only two messages changed between it and its superior: the delegation and the non-

commit messages. Applying the expression to the current experiment and setting the

value of Nsubnodes to the same constant value 2, we obtains the following result:

160 Chapter 9. I-Kobe: A Practical Application

Nmessages = 3 x 80 + ∑80
i * 1 f � subnodei � + 80 x (10-1) + ∑10

j * 1 g � x � j

Nmessages = 960 + ∑80
i * 1 f � subnodei � + ∑10

j * 1 g � x � j

According to the expression, Θp changes at least 960 messages. Considering that

the values of the undefined terms (∑f and ∑g) do not have a great influence in this

value (if this is not true, the plans developed by the agents are not robust or do not have

a good quality), the principal problem is that each agent needs to receive conditional

constraints of every subnode. Directions of this work could consider algorithms to

filter the set of agents that really need to receive such kind of information. The big

challenge is to create a general solution rather than one associated with a particular

domain.

Finally, for this experiment we have designed both the commitment and mutual

support ideas as I-X constraint managers. The commitment manager accounts for mon-

itoring the commitment constraints, signalising the changes of activities’ status and,

consequently, when reports must be sent to. The mutual support manager accounts for

monitoring the external conditional constraints and, according with the constraint pro-

cessing, signalising the report of information or creation of new activities. Appendices

F and G present the pseudocode in Java for these constraint managers, explaining how

they interact with other modules of the I-X system.

9.4.1.4 Experiment 4: Avoiding Conflict via Mutual Support

This additional experiment is associated with the mutual support notion, however it is

not related to the past experiments so that it uses a different context and sub-coalition

to better express the problem of conflicts . The objective is to verify if our planning

model is able to avoid conflict between activities. As commented in Section 2.2, there

are two principal approaches (centralised and distributed) to avoid conflict during hier-

archical planning. The mutual support function indirectly implements the distributed

approach because each agent shares its conditional constraints, which other agents

must considerer during their planning process.

The first step of this experiment is to identify a common scenario for potential

activity conflict inside the RoboCup Rescue scenario. For that end consider the sub-

coalition Θa composed of one ambulance centre and five ambulances. The objective of

9.4. Evaluation and Results 161

Θa is to rescue injured civilians and move them to refuges. The scenario has a total of

four refuges (Ra, Rb, Rc and Rd) and each of them can receive a maximum number of

injured civilians6. A conflict of activities appears when two or more ambulances have

planned to unload injured civilians in a refuge with only one place left.

Considering this scenario, the following activities (Figure 9.7) are commonly cre-

ated during the planning process of ambulance agents. Note that if the current avail-

ability of Rb is 1, then the two activities will raise a conflict. This is more usual in the

final part of the simulation. However, the mutual support function avoids this conflict

because the constraint , ((availability Rb),0), first created at the cycle 139, is sent to

AmbulanceTeam2 (and all other agents of Θa). Thus such agent knows that its activity

cannot be executed because it generates a state, represented by the effect constraints,

that has collateral damage for the coalition.

Figure 9.7: Diagrammatic notation for the activity Unload(?injured), where conditions

appear above the box, and the effects below.

However this approach for conflict resolution is dependent and limited by the sub-

coalitions arrangement. In this example the approach works properly because all the

agents involved in the conflict are in the same sub-coalition Θa. But consider the other

constraint ((status roadm),clear). The ideal case is to send it to Θp (Section 9.4.1)

because agents of Θp have the capacity of creating activities to keep this constraint

true. This limitation could be avoided if all agents of the tactical level receive the

broadcasted messages. However this solution increases the number of messages inside

the coalition and the majority of messages will probably be out of the logical scope of
6This feature is not implemented in the current RCR simulator yet (Version 0.47), however it was

discussed during the last RoboCup Symposium as one of the suggestions to the ongoing simulation
development. Such a feature was motivated by the real limited capability of the health care centres.

162 Chapter 9. I-Kobe: A Practical Application

each sub-coalition processing. Thus a better investigation must be considered on this

approach so that we could decide the communication boundaries.

9.4.2 The Human Interaction Aspect

The second part of the experiments focus on two concepts associated with human-

agent interaction: adjustable autonomy and generation of explanations. The idea is to

show how such ideas can be implemented and integrated in the I-X architecture.

9.4.2.1 Experiment 5: Adjusting Autonomy

As discussed before, we have introduced a special kind of � I-N-C-A � constraint (au-

tonomy) to define if an activity needs permission to be added in the plan. Thus we

must also implement the I-X constraint manager that understands the meaning of such

constraints. At this point it is important to remember the idea of an I-X constraint man-

ager. In a practical way, the role of each constraint manager is to answer if a constraint

does (or does not) hold. Then if the planner tries to add the activity a with a condi-

tional constraint c into a plan p, the planner must firstly send c to a specific constraint

manager. If such a constraint manager says that c holds, then a can be added into p.

Based on this explanation, the implementation of an autonomy constraint manager

is simple. If the context defined by the parameters is true and the relation attribute is

permission, then the constraint passes the decision to the sender-id value, generally its

human user. For example, consider the constraint in Figure 9.8.

� constraint type=“autonomy” relation=“permission” sender-id=“me” �
� parameters � � list �

((speed Wind),(� ,20mph))

((water-tank FireBrigadeOne),(� ,6000000mm)
� /list � � /parameters �

� /constraint �
Figure 9.8: Example of autonomy constraint (relaxed syntax representation).

9.4. Evaluation and Results 163

This constraint means that if the wind speed is greater than 20mph and the amount

of water in the FireBrigade1 tank is less than 6000000mm, then the activity associated

with this constraint must ask permission to be performed by the agent. Note that such a

constraint tries to configure an inappropriate scenario (low amount of water and violent

wind) for fire brigade performance. Then the agent must pass the final decision to its

human user, which can be done via a simple confirmation window. The solution is

elegant because the constraint manager just needs to identify the scenario and pass its

decision process to the constraint sender. However there is an inconvenient detail in

terms of implementation. If we observe the two constraint parameters in Figure 9.8,

the first is a world-state constraint, while the second is a resource constraint. Thus, the

processes of dealing with such constraints were already implemented by the respective

constraint managers, so that a considerable part of the code is repeated in the autonomy

constraint manager. A possible solution is to modify the autonomy constraint syntax

as showed in Figure 9.9.

� constraint type=“autonomy” relation=“permission” sender-id=“me” �
� parameters � � list �

� constraint type=“world-state” relation=“condition” �
� parameters � � list �

((speed Wind),(� ,20mph))
� /list � � /parameters �

� /constraint �
� constraint type=“resource” relation=“condition” �

� parameters � � list �
((water-tank FireBrigadeOne),(� ,6000000mm))

� /list � � /parameters �
� /constraint �

� /list � � /parameters �
� /constraint �

Figure 9.9: Possible redefinition for autonomy constraints.

164 Chapter 9. I-Kobe: A Practical Application

According to this redefinition, autonomy constraints allow constraints as param-

eters, so that the autonomy constraint manager should just ask other managers if the

parameters of its constraints hold. Using such a definition we ensure that the auton-

omy constraint manager can respectively use the world-state and resource constraint

managers to validate its constraint parameters. However note that we must keep the

ontology simple and intelligible so that we ensure an easy development of processes

to manipulate such an ontology. In this case (Figure 9.9) we are trying to modify the

ontology to facilitate the implementation of a particular module. This is not good prac-

tise in terms of software engineering and a better investigation on the representation of

scenarios must be done so that we are able to find the balance between a clear syntax

and an easy implementation.

A second possible solution also involves a constraint redefinition, as illustrated

below (Figure 9.10).

� constraint type=“autonomy” relation=“permission” type=“world-state”

subtype=“condition” sender-id=“me” �
� parameters � � list �

((speed Wind),(� ,20mph))
� /list � � /parameters �

� /constraint �

� constraint type=“autonomy” relation=“permission” type=“resource”

subtype=“consumable” sender-id=“me” �
� parameters � � list �

((water-tank FireBrigadeOne),(� ,6000000mm))
� /list � � /parameters �

� /constraint �
Figure 9.10: Another possible redefinition for autonomy constraints.

According to this redefinition, the autonomy constraint is wrapping other types

of constraints. For that, two additional attributes, type and subtype, are needed to

9.4. Evaluation and Results 165

respectively receive the type and relation of the wrapped constraints. Then, similarly

to the previous case, the autonomy constraint manager could just ask to other managers

if the constrains are holding.

The inconvenient point of this option is that a scenario will be usually composed

by several sparse constraints. If we want to define more that a scenario, where the

autonomy constraint must be applied, we need to relate the constraints of each scenario.

For example, we could add a scenario identifier attribute to the constraints. Note that

we are still doing several changes in the general/original definition of constraints, so

that this approach does not avoid the disadvantages of the previous redefinition.

9.4.2.2 Experiment 6: Creating Explanations

For this experiment we have focused on the generation of explanations to cases where

activities become invalid. In other words, we try to show appropriate explanations to

users about the motives that an activity cannot be included or executed. For example,

consider that the I-P2 below (Figure 9.11) represents the fire station component. One of

its activities a2 is “Face fire F12”, which is delegated to a fire brigade fb. Note that this

activity is invalid (red colour) and there is an annotation7 that, in this case, provides an

explanation about this impossible status.

Figure 9.11: Example explanation as an activity annotation.

A possible implementation based on our proposal and supported by the I-X archi-

tecture works in the following way. Suppose that when fb receives a2, it decomposes

such activity to:

� a2 � 1: Refill water-tank in refuge;
7The annotation is: Face fire F12 is not valid because ((condition R104),clear) is in conflict with

((condition R104),blocked) set by world.

166 Chapter 9. I-Kobe: A Practical Application

� a2 � 2: Go from refuge to F12;

� a2 � 3: Extinguish F12.

Then, fb applies a path finder handler to a2 � 2, which returns a solution with the

following constraints: ((status R76),clear), ((status R98),clear) and ((status R104),clear).

However, R104 is blocked during the simulation and fb is not able to find another plan

(route) for this activity. At this point the explanation must be generated.

We have implemented the explanation module as a special kind of handler that is

automatically applied to every activity in I-P2. Rather than decomposing or executing

the activity, this handler just adds a listener to each activity so that the change of

status is captured and, if such status becomes invalid, the handler starts the explanation

process. After capturing the event, we can access the associated template and bind

its variables. For the conflict template we must instantiate four variables: the activity

identifier (activity), the activity constraint in conflict (cactivity), the current constraint

that has triggered the conflict (ctrigger) and the source of such constraint (source). The

instantiation of such variables is performed in the following way:

� activity: the activity identifier can be directly extracted from the event;

� cactivity: as discussed before, we are considering that constraint managers only

return a yes or no to indicate that the constraint is (not) holding. In this way

there is not a direct way to know which constraint was violated. However, using

a loop we can retest all the activity constraints and know which one accounts for

the problem;

� ctrigger: if we have the problematic constraint, we can use its pattern to ask the

model manager for the current ctrigger value (cactivity and ctrigger logically have

the same pattern);

� source: the source of ctrigger can be directly extracted from the definition of such

a constraint (sender-id attribute).

Note that in this case we are using a default template. As discussed before, a more

interesting explanation could be generated if we use specialised templates. In this case

9.4. Evaluation and Results 167

each handler should provide a method so that the explanation process could access it.

The problem is to decide who will bind the template (the explanation process or the

handler itself). The problems for each of the options are:

� Explanation process: in this case the process needs to know the meaning of each

variable of different templates. For example, in the template “ activity is not valid

because c.patternactivity of c.objectactivity is c.valuetrigger rather than c.valueactivity

according to current source”, the process should know that c.patternactivity needs

to be instantiated with the pattern of the activity constraint that is in conflict and

so on;

� Each particular handler: in this case the handlers should access the information

that they need. Certainly we will have a considerable repetition of code in each

handler. However the most inconvenient problem is that we are transferring to

the developers of the handlers the responsibility of implementing a function that

must be provided by the architecture. Handlers must only account for dealing

with an activity. Thus, this is a solution that is not in accordance with our pro-

posal.

Again, as in the implementation of autonomy (Section 9.4.2.1), we can be forced

to change or restrict some aspects of our theoretical model so that we can facilitate

the implementation of such model. In this case, for example, a restriction could be

set saying that every explanation associated with conflict uses the same four variables

introduced by the default explanation.

Finally, the discussion of this section was focused on the generation of explanations

for one case in particular: conflict and consequent invalidation of activities. However

the implementation for other kinds of explanations follows the same steps, which are

defined in the explanation function (Figure 7.13): capture the event, choose a template,

bind its variables creating the explanation and associate such explanation to the activity

(as an annotation). Note that in our initial example, the explanation was generated in

the tactical level. However when the agent reports the failure of an activity, it can also

return the explanation as an annotation of this activity. Thus, it is possible to visualise

such explanation, as showed in Figure 9.11.

168 Chapter 9. I-Kobe: A Practical Application

9.5 Summary

This chapter tries to stress the facility of thinking about practical aspects of a system

if we consider all its issues on a unified perspective, in our case on a constraint-based

framework. Then, starting from a planning architecture, we have integrated collabora-

tive mechanisms using the same basis of constraint representation and manipulation.

We must highlight two important concepts that support this process of integration: the

activity handlers and the constraint managers. Both mechanisms have proved to be

very practical ways to develop planning mechanisms to decompose/perform activities

and validate constraints.

The search and rescue scenario associated with earthquakes was very appropriate to

demonstrate the system features. Using such a domain we were able to create different

and unpredicted situations. Initial experiments in such a domain have shown how the

use of collaborative mechanisms improve the efficiency of the system as a whole. In

fact the better results were already expected and other works have demonstrated that

systems using a collaborative model have a better performance. The important point to

be stressed here is the easy way to integrate collaboration via the development of new

constraint managers and extensions in the representational model. Such an approach

does not have an influence on the development of planning mechanisms (handlers),

which are still independent of this collaborative framework.

It is also important to stress the role of the mutual support function. The idea of

mutual support is not commonly found in other works, however we can notice that it

brings several advantages such as better information sharing, conflict resolution and

the basis for agents to perform activities to help other agents. However we still need

to fix some matters. For example, if an agent abandons an activity, all the constraints

associated with this activity that were shared inside the sub-coalition have to be can-

celled.

Some initial experiments, associated with human-agent interaction (HAI), were

also discussed in this chapter. The idea was to show that, as for the collaborative

mechanisms, the HAI mechanisms can also be naturally integrated if we consider the

same constraint-based framework. To that end we have developed simple mechanisms

9.5. Summary 169

associated with adjustable autonomy and generation of explanations. The autonomy

module is particularly interesting because it works as any other I-X constraint manager

(returning yes or no), however its decisions are passed to users or other components

depending on the current scenario. The generation of explanations is simple if we

consider the use of default explanations. However some restrictions must be set if we

intend to use specialised templates provided by different handlers.

A last implementational aspect that was not commented on here, and is likely to

be one of our future directions, is associated with the implementation of preferences.

The principal problem associated with this feature is the development of a general

mechanism that enables the influence of preferences during the reasoning of differ-

ent handlers, so that the implementation of such handlers is still independent of this

mechanism.

Chapter 10

Potential Applications in

Space-related Domains

The past chapters have used disaster relief scenarios as a basis for examples and an

evaluation domain. However, the technology proposed here is not domain-restricted

so that other domains can make use of it. This chapter demonstrates such a feature, ad-

dressing the potential use of our approach in two future space-related applications: the

satellites’ constellation and the human-agent Mars mission. Most of the information

contained in this chapter resulted from discussions which took place at the Fourth In-

ternational Workshop on Planning and Scheduling for Space. This chapter summarises

such discussions in the following way: Section 10.1 brings up a review about the use

of planning in the space domain, showing that the long-term agenda of the space agen-

cies supports the efforts toward the definition of a collaborative human-agent planning

framework. Section 10.2 introduces the motivations for the development of a system

that supports the operation of satellites’ constellations. Section 10.3 discusses the chal-

lenges of such systems, showing how the technology presented in this thesis could be

used to face them. Section 10.4 introduces a futuristic but realistic scenario, whose

specification is likely to be addressed in future space-related works. Finally, Section

10.5 concludes the chapter.

171

172 Chapter 10. Potential Applications in Space-related Domains

10.1 Planning in Space Domain

The use of intelligent planning in long-term space missions has mainly been focused

on providing levels of autonomy to spacecraft (e.g., orbiters) and, more recently, rovers

(e.g., the MER rovers). In fact, the use of a planner/scheduler (PS) in space is a very

new experience if we consider that the first real application was in 1999, during the Re-

mote Agent Experiment (RAX) [Muscettola et al., 1998], on board of the Deep Space

One spacecraft. The purpose of RAX-PS [Jonsson et al., 2000] was to generate plans

that could be executed on board to achieve specified high-level goals. Its principal dif-

ferences from classical STRIPS planning were that: actions can occur concurrently and

can have different durations, and goals can include time and maintenance conditions.

ASPEN, Automated Scheduling and Planning Environment [Rabideau et al., 1999],

was intended to explore approaches complementary to RAX-PS. The principal focus

was on classifying and repairing conflicts in the spacecraft models, which are de-

scribed via the ASPEN Modelling Language (AML) [Smith et al., 1998]. The Con-

tinuous Activity Scheduling Planning Execution and Replanning (CASPER) system

[Chien et al., 2000] is an evolution of ASPEN that integrates repair planning with ex-

ecution. The idea is to continuously replan around updated information coming from

execution monitoring. CASPER was used in Earth Observing-1 [Chien et al., 2003],

the first satellite in NASA’s New Millennium Program Earth Observing series.

The beginning of rover missions to Mars created a new scenario for planning tech-

nology. This technology, however, is still based on earlier approaches. The OASIS

system [Estlin et al., 2003], for example, uses CASPER as a planner in its proposal of

mixing techniques from both machine learning and planning to rover control.

Efforts, as in the OASIS system, aim to provide more autonomy to rovers. So-

journer (the first rover to operate on Mars), for example, travelled about 100 me-

ters during its 90-day lifetime [Mishkin et al., 1998]. However the Mars Exploration

Rovers (Spirit and Opportunity) were designed to travel up to 100 meters per day. Au-

tonomy is important because the rovers have intermittent and delayed communication

with Earth. In fact the time of travel of a radio signal from Mars to Earth (about 10

minutes) precludes any real-time idea of continuous human operator control. Further-

10.1. Planning in Space Domain 173

more, capacity issues of the Deep Space Network (DSN), an international network

of antennas that supports interplanetary spacecraft missions, and planetary dynamics

(position and rotation of the planets) also impose restrictions on communication.

According to [Ball et al., 2002], the risk to human health during missions beyond

Earth orbit (as exposure to high levels of radiation) is the greatest challenge to human

exploration of deep space. Despite this threat, human interplanetary missions have

seriously been discussed and some dates were already presented1 as suitable to such

missions.

The beginning of human interplanetary missions may lighten the communication

delay problems. In this new scenario, astronauts will carry out joint experiments with

robots on planetary surfaces, so that several high-level goals and decisions could be

taken into the work environment rather than made on Earth. This scenario will bring

new requirements regarding joint human-agent planning [Allen and Ferguson, 2002,

Sierhuis et al., 2003], which differ from the current approaches to space missions.

Figure 10.1 illustrates this evolution of the planning technology for space applica-

tions. At the moment, planning has been applied to provide autonomy to spacecraft

such as Deep Space One and Earth Observing-1. The technology is also being ex-

tended to rovers, but until now only in an experimental way.

Figure 10.1: Evolution of planning technology in space applications.

1In the XVI Congress of the Association of Space Explorers in 2000, for example, 6-May-2018 was
presented as a suitable date for the first human mission to Mars due to the planets’ orbits.

174 Chapter 10. Potential Applications in Space-related Domains

In the near-future we will not only need autonomy, but also notions of collaboration

to support multi-rover missions (e.g., MISUS project [Estlin, 2004]) and spacecraft

constellations, which are the focus of this chapter. Then, the next step will be the

involvement of humans (astronauts) in the planning process to support missions such

as that specified in the Aurora schedule, which dates a human mission to the Moon in

2024 and to Mars in 2033.

10.2 The Satellites’ Constellation Domain

The satellites’ constellation domain (Figure 10.2) consists of a group of low-Earth or-

biting satellites that have cross-link communication capability, each carrying nearly the

same suite of instruments. Each satellite receives high-level goals from ground station

operators, or other satellites. Then, it will perform its own planning by decomposing

a goal into a set of sub-goals to be achieved with its onboard subsystems (satellites’

resources) and in cooperation with other satellites.

Figure 10.2: Perspective of a constellation.

The onboard resources of satellites are: Ozone Mapping Spectrometer (OMS),

Microwave Scanning Radiometer (MRS), Moderate Resolution Imaging Spectrora-

10.2. The Satellites’ Constellation Domain 175

diometer (MRIS), Hyperspectral Imager (HI) and Advanced Microwave Sounding Unit

(AMSU). A request from the ground station operators is defined as a goal that requires

use of one or more these resources, together with associated data memory storage,

containing start/stop times and operational parameters specified here as constraints.

We have used the idea of hierarchical coalitions to specify a possible configura-

tion for this domain, based on the Europe Space Agency (ESA) resources. In order,

the strategic level is represented by the European Space Operations Centre (ESOC),

localised in Darmstadt (Germany), whose function is in accordance with the idea of

providing directions and analysis of information to missions. The tactical level is

represented by the five ESA tracking stations (Kourou-French Guiana, Maspalomas-

Canary Island, Perth-Australia, Redu-Belgium and Villafranca-Spain) and their respec-

tive satellite leaders, which control a group of six satellites and whose principal func-

tion is to decompose and schedule the given goals. Note that for a large constellation,

it is not efficient to command satellites individually. In this case it is more efficient to

only send commands to the satellite leader and it either parses the command string and

forward the commands to the appropriate satellites, or makes some intelligent decision

by itself. Finally the satellites compose the tactical level, accounting for task execution

and returning of results.

A wide variety of missions can be better implemented with satellites working to-

gether to meet a single objective. Reasons cited for using constellations include lower

mission cost, the need for coordinated science and special coverage of survey require-

ments. For example storms and other phenomena observed from multiple angles can

be used to generate 3-D views; or a cluster of satellites flying in formation and working

together can form a virtual lens hundreds of miles across.

However the most widely used application of satellite constellations is for rea-

sons of extended area coverage. Low earth orbiting constellations such as Globalstar

use dozens of satellites to provide continuous global or near-global coverage. The

GPS system uses a constellation to provide global coverage and spatial diversity of

the multiple satellites in view. Earth mapping missions can use multiple satellites to

shorten the time between successive observations of the same area. NASA is plan-

ning missions of up to 100 satellites for magnetosphere research with orbits nearly

176 Chapter 10. Potential Applications in Space-related Domains

as distant as the moon. A single-satellite approach would require many years of

data collection to match what the constellation can survey in a short amount of time

[Verfaillie et al., 2003].

10.3 Issues and Solutions

The first issue to the development of systems for satellites constellations (henceforth

SC) control is the number of satellites that could compose the constellation. The do-

main described in the last section is represented by 30 satellites divided in 6 subgroups.

However, future missions will tend to use more satellites so that the idea of scalability

must be considered. According to previous works in this area [Richards et al., 2001],

the management role of the Earth operation centre could be simplified by a hierarchical

organisation, since the operation centre needs to interact with a few entities in order

to direct the activities of several satellites. This affirmation is in accordance with our

work, which was developed to support such a kind of organisation. However, there is

an important feature that has not been discussed yet. Architectures for SC are likely to

employ a dynamic hierarchical organisation to combine the efficiency of hierarchical

activity delegation with the robustness afforded by dynamic reorganisation.

The idea behind dynamic organisations is that they are able to reorganise them-

selves to adapt to changes and minimise, for example, the impact caused by the in-

troduction of new members or the loss of old members due to failures. To include

dynamic organisations in our approach, we should extend it so that the organisation

model could be represented via constraints, and agents could be able to reason on re-

lations and their features.

A second issue is associated with the resource and temporal reasoning process. In

fact, the idea of resources is very important because decisions of employing satellites

must consider the availability of onboard resources (e.g., memory, power, downlink

accesses and bandwidth) as well as the satellites’ current status (e.g., viewing geom-

etry, reference trajectory, sensor states, etc.). For example, in low Earth orbit, micro-

satellites are in view of a ground station for approximately four minutes at a time,

about four times a day [Mohammed, 2001]. If we consider 35 Gigabytes the total

10.3. Issues and Solutions 177

amount of data generated during a 2 minutes observation, and that such data could be

continuously downlinked at the bandwidth of 150 Mbps, this process will take about

32 minutes. However, with the previous restriction (16 minutes a day), this process

can take two days to downlink the data from a short two-minutes observation session.

We can note that resources such as onboard memory, downlink accesses and band-

width capabilities, are elements that in fact limit the number of experiments that can

be performed, so that they should be explicitly represented as constraints in the plan-

ning process. Our model supports this idea, providing a specific kind of constraint to

represent the satellites’ resources and their features. Thus, specific resource constraint

manager modules can be implemented to reason on such constraints according to the

requisites of the application.

Similarly to resources, time is also fundamental to SC. For example, an image of a

certain region of Earth can only be taken within a certain time frame while a satellite

is over that location. In a general way, satellites whose missions involve observations

and/or communication with the ground must take into account access windows, which

are intervals of opportunity defined by when the satellite is in view of the target on the

ground. This case can be easily specified using our model. For example, to restrict the

time of an observation we could use: interval(“Observe region ?x”,(?start,?finish)).

However, for SC the problem is more complex because the relative position of

individual satellites must be taken into account when assessing viewing geometry. In

other words, all the satellites need to be in a specific position during a specific time.

Our model also supports this case via the temporal relations. For example, we could

use the temporal relation constraints start and finish to indicate that the satellites must

start and finish the observation activity at the same time. Similarly, we could define

more complex cases using other temporal constraints.

Note that if a satellite leader is trying to form a specific 6-size viewing geometry, it

must delegate activities and receive back commitments of the participants so that it can

confirm the experiment. Approaches in SC control system are already considering this

issue, so that knowledge bases of satellites are being developed to store information

and to support reasoning about commitments of other satellites [Richards et al., 2001].

Together with commitments we must also stress the importance of reports. Con-

178 Chapter 10. Potential Applications in Space-related Domains

sider the situation where all satellites commit on the observation activity. However

when one of them reaches the pre-defined position, it notes that its vision is blocked by

clouds. In this case, such a satellite must report this fact so that the leader decides what

must be done, such as changing (replanning) or cancelling the previous commitments.

The idea of mutual support can also be used in this domain to generalise the con-

cept of collaboration. Consider the following example: a satellite sat moves out of

the range of a ground station for a specified time period, such that it can lose impor-

tant messages. Using our proposal, if the acquisition of such messages is declared as

conditional constraints to the performance of sat’s plan, the system will account for

informing this fact to other satellites so that the required messages may be relayed

through the system using other agents in the constellation to still allow messages to

reach their destination. Note that we do not need to define specific processes to treat

this case.

A last issue is associated with the autonomy of SC control systems. In general,

important uses of autonomy in SC are: to enable that satellites fly within specified tol-

erance levels; avoid collisions; address fault detection, isolation and resolution; share

knowledge, and plan and schedule activities [Zetocha et al., 2000]. Autonomy entails

a higher level of risk, so that safeguards must be put in place to ensure that no ad-

verse conditions arise. Note that our proposal also considers this problem and provide

mechanisms for human users to restrict scenarios where autonomous components are

allowed to take decisions by themselves, or ask permission to other components. Fur-

thermore, the use of preference constraints could also be important in such situations

as a way to reflect the preferences of users in the autonomous reasoning of satellites.

In brief, the principal idea of this section is to show that the SC domain presents

several opportunities to apply the technology developed during this thesis. Another

interesting advantage of the SC domain is that it can be used to validate collaborative

planning and schedule approaches for space, being a first step for the development of

more challenging applications as the scenario discussed in the next section. A short in-

troduction to the SC research area and current efforts, such as the TechSat 21 Program,

is presented in [Zetocha et al., 2000].

10.4. Future Space Scenario 179

10.4 Future Space Scenario

Section 10.2 has described a possible application that mainly covers the second phase

of the planning evolution to space applications (Figure 10.1). This section shows, via a

descriptive example, how we can apply the technology to cover the third phase of such

evolution, where human users are actively involved during the process of planning and

execution [Siebra et al., 2004].

For that end, we exemplify the features of I-P2 via a fictitious one-sol (one Martian

day) mission. The duration of daylight is itself a constraint to the mission, because

some rovers have devices that only work with solar energy (e.g., APXS spectrometer).

The mission is realised during the summer in the Southern hemisphere on Mars be-

cause of higher temperatures. However this temperature may change significantly due

to perihelic dust-storm activity, requiring continual replanning.

Figure 10.3 shows the mission scenario displayed via two I-X viewers. At the left

hand-side the I-X Map Viewer uses a JPG image as the surface, however the viewer

enables the plug-in of a PDS (Planetary Data System) layer to manipulate real surface

data. In the I-X 3D Viewer (right-hand side), objects are modelled via VRML (Virtual

Reality Modelling Language) and I-P2 imports them using the Java 3D API.

Figure 10.3: Futuristic scenario for human mission displayed via two I-X viewers.

The mission has several decision-making levels. The ground team on Earth sets the

macro goals, sharing the activities with the Mars-Habitats. Each Mars-Habitat has one

or more exploration teams, which are composed of a lander, two rovers (r1 and r2) and

180 Chapter 10. Potential Applications in Space-related Domains

two astronauts (a1 and a2). Orbiters provide some auxiliary services. In our example

there are two principal objectives for each exploration team: studying the surface of

Mars (activity assigned to rovers) and looking for some sign of life (activity assigned

to astronauts). The lander provides a higher bandwidth communication channel (e.g.,

for high-quality images transmission) and a mobile micro-laboratory.

Supposing an exploration team has a sol-mission set to start at 06:00h and to finish

at 18:00h. During this period, information on the current state of the environment can

be passed to I-X Process Panels via “world state” constraints. These might come from

sensors directly, or from some analysis or reporting system. Additional I-X viewers

(Figure 10.3) can display the world state in a more natural way to astronauts, and also

work as a data input mechanism.

At 06:00h the team members begin their work together with their I-X Process pan-

els, which represent what they need to do (activities), directions of how to do these

(sub-activities), along with constraints on those activities. Issues will appear during

the performance of the activities. For example, at 10:00h the temperature quickly

starts to decrease, so that the exploration activities of a1 and a2 are paused. This fact

also generates a new issue: “What should we do about the fall in temperature?”. Thus

the I-X agent, using its own capability or external services, returns possible actions to

deal with this new issue.

At 12:00h the Mars-Habitat notices a failure in rover r2. Then it sets a new activity

with highest priority to astronaut a1: “Fix r2”. For that, a1 makes use of the library

of plans, which contains standard operating procedures about how to discover and fix

rover problems. This new activity delays a1. However Mars-Habitat knows this fact

because a1, via its I-P2, is always sending reports about its performance. In this way,

Mars-Habitat is able to predict global failures and replan new schedules.

At 14:30h r1 finds a possible sign of life during its soil analysis, whose investiga-

tion is not part of its activities. However, as the rovers implement the idea of mutual

support, a1 and a2 are informed about this information when r1 adds it into its current

knowledge as a world state constraint. In this case, the location of the event could

determine which astronaut/panel will create a new activity (“examine event”), in ac-

cordance with the area assigned to the astronauts.

10.5. Summary 181

At 16:05h the orbiter reports a strong solar activity, which increases the emission

of solar energetic particles. Thus all outdoor human activities are cancelled and a1

and a2 are not able to complete all their activities. In this case the Mars Habitat team,

supported by its I-P2, must provide a new plan that involves the remaining activities of

the day. If this plan is not possible, the team reports the situation to the Earth team.

10.5 Summary

This chapter has presented a potential domain where we can apply the technology

discussed through this thesis, demonstrating in this way its generality. A particular

advantage of this approach for space domains is that it considers the requirements of

current missions, but also provides the required support for joint human-agent activities

in future interplanetary missions. In addition, the open style of architecture that has

been adopted enables the use/integration of our approach with current space-related

technologies. For example, a specific schedule already in use for satellites could be

adapted to be used as an activity handler.

There are several other domains where we could use this collaborative human-agent

planning approach. The main examples are military applications, which are naturally

in accordance with this approach because they already consider hierarchical coalitions

as organisational option.

Finally, we can note that the basic work in creating a new domain is associated with

the definition of new operations to decompose plans/activities, and maybe additional

activity handlers together with constraint managers, which deal with particular reason-

ing related to the domain. The remaining processes such as the making of commit-

ments, information sharing and conflicts associated with default constraints (temporal,

resource, etc.) are automatically provided by the architecture.

Chapter 11

Final Remarks

This final chapter starts by tracing a comparative discussion of our approach with sys-

tems that could also be used to support coalition operations. Then, we highlight im-

portant points discussed through this thesis, such as its contributions, limitations and

problems. We also discuss possible future directions, which have the principal objec-

tive of investigating and overpassing the limitations of our approach.

11.1 Related Projects and Comparative Discussion

Several systems have been developed with similar objectives to this thesis: supporting

the planning and execution performance of joint groups. This section summarises the

main ideas of some of these systems, comparing such ideas with our approach.

11.1.1 Coalition Agents eXperiment (CoAX)

As already discussed in Chapter 1, the CoAX Project [Allsopp et al., 2002] demon-

strates the use of the agent-based paradigm as a way to deal with the technical issue

of integrating different technologies in a coalition organisation. In other words, het-

erogeneous components are seen as a set of distributed agents that are able to share

understanding and information among themselves.

The principal proposal of this project is to use agents to wrap different systems,

enabling their integration via a common infrastructure. Differently, we have used the

183

184 Chapter 11. Final Remarks

concept of ontology to integrate components. According to this approach, every ex-

ternal component that needs to be integrated to the system must respect ontological

commitments when receiving and sending information to the coalition. For example,

the RoboCup Rescue Simulator uses a specific method provided by the I-X architec-

ture to send information about the disaster space to the coalition. However, first of all

it needs to translate its spatial representation (x and y orthogonal points) to the I-X

representation (latitude and longitude). Another example is when we use external sys-

tems as handlers. As discussed in Chapter 10, rather than developing a new scheduler

for space applications using the I-X approach, we could use the CASPER scheduler

that already involves considerable know-how in this area. In this case, we also need a

bidirectional translation between the two computing environments.

11.1.2 CplanT System

CplanT [Pechoucek et al., 2002], a multiagent system that belongs to the area of war

avoidance operations, developed a formal knowledge based approach to the coalition

formation problem. The principal issue in this approach is that agents may agree to

collaborate, but they are often reluctant to share their knowledge and resources. Thus,

negotiation mechanisms are necessary to support the various levels of collaboration.

In our approach we do not discuss any kind of negotiation process associated with

information sharing. In fact, at the current stage, agents must share any kind of in-

formation that should be important to the performance of other coalition members.

Negotiation is very suitable at pre-operation moments, when a coalition is involved in

discussions related to which role will be played by sub-coalitions or members. How-

ever we are aware that in more complex kinds of coalitions, such as multinational

coalitions, the idea of classifying and restricting the information access is appropriated

and must be considered.

11.1.3 DIPART System

DIPART [Pollack, 1996], acronym for “Distributed, Interactive Planner’s Assistant for

Real-time Transportation planning”, is a prototype simulation system that includes a

11.1. Related Projects and Comparative Discussion 185

network of agents, each of which assists a human user. The internal architecture of

each DIPART agent is based on a generic model of process scheduling, where incom-

ing messages are stored on a queue, indicating events that may require attention. The

architecture provides a component (Locus of Meta-Level Control - LMC) that deter-

mines which processes should be invoked in response to each message, scheduling

these selected processes.

DIPART and I-P2 agents are based on similar ideas. While users can submit goals

to the agents and receive current status information, agents are responsible for generat-

ing, dispatching and monitoring the execution of a plan to carry out those goals. In this

context, we could say that DIPART messages, processes and LMC are respectively

similar to � I-N-C-A � activity messages, activity handlers and constraint managers.

However DIPART has been mostly concerned with the investigation and experiment

of scheduling algorithms, which could be applied by the LMC. In other words, the

LMC is a real scheduler. Differently, constraint managers do not take decisions, but

provide information about the constraints that they are managing and respond to ac-

tions’ requests about the possibility of including activities into the agent’s plan.

11.1.4 Coordination of distributed Activities (CODA) System

CODA [Myers et al., 2001] is a system that proposes to improve the coordination pro-

cess using targeted information dissemination among distributed human planners. Ac-

cording to the CODA approach, each planner declares interest in different kinds of plan

changes that could impact his/her local plan development. Thus, CODA is based on

plan authoring tools, which are able to monitor the activities of users so that changes

that match awareness are forwarded automatically to the person who declared interest

in them. An interesting feature of CODA is related to the selectivity of information.

Because local planners exactly declare which they are interested in, there is a balance

between sharing too little and too much information. This information is sent in real-

time so that plans can be updated in a timely manner to ensure adequate time for users

to consider impact on their local plans and develop appropriate repairs.

Our approach implements a similar idea, however without the need of users to

declare which information they want. This information is directly extracted from the

186 Chapter 11. Final Remarks

conditional constraints of each activity and analysed by the mutual support function.

In the same way that happens in CODA, such a function provides an adequate way to

share information, supporting conflict detection and resolution.

11.1.5 DSIPE

DSIPE [DesJardins and Wolverton, 1999] is a distributed planning system that pro-

vides decision support to human planners in a joint planning environment. DSIPE uses

a hierarchical model where each agent is a separate DSIPE planner instance that sup-

ports a human user. The top agent of the hierarchy accounts for the development of

high-level plans and distribution of sub-goals among lower-level agents.

DSIPE uses the same hierarchical structure for agents that we are using, however

with a different approach to plan decomposition. In DSIPE each planning agent has

a complete representation of its own subplan as well as a partial representation of the

subplans being developed by other planning agents, with explicit dependencies and

relationships with its local subplan. Thus the project implements a specific algorithm

for information sharing where each agent knows the kind of information that could be

important to other agents so that they can update their partial representations. In brief,

the idea is to automatically filter the information that is sent from one planning agent to

another by eliminating the information that are provably irrelevant to the latter agent’s

decision-making process.

The DSIPE approach certainly increases the system complexity because the filter

algorithm needs to have specific information about other agents and their activities.

However such algorithm could be interesting for us. Note that our proposal for mutual

support is based on a broadcast of conditional constraints to a sub-coalition. Probably,

some agents from this sub-coalition will not use these constraints in their process. Thus

we could use a filter algorithm to change the broadcast for a peer-to-peer process.

11.1.6 Anticipatory Planning Support System (APSS)

APSS [Hill et al., 2000] is a proposal of decision support system that seeks to merge

planning and execution, and replaces reaction to events with anticipation of events.

11.1. Related Projects and Comparative Discussion 187

For that, rather than choosing a single course of action (COA) and following it to

conclusion, the system maintains many possible COAs so that the plan is considered

to be a tree. Nodes of this tree represent states and decision points in the plan. The

branches represent the transition to a new state based on a particular action. As new

branches are developed, the system will continue planning along those branches. Thus,

anticipatory planning for a branch can be done well in advance, rather than reactive

planning once the branch occurs.

The point stressed by the APSS project is the importance of the plan information

collection to quickly confirm or deny the viability of branches. In our approach we

do not try to create and maintain a tree with several branches, however we also con-

sider fundamental the use of information to anticipate possible failures. Such an idea is

mainly implemented via reports on execution progress, which try to capture the infor-

mation that could support the reasoning of superior agents in detecting and resolving

possible failures in a sub-coalition plan.

11.1.7 Advisable Planning (AP) System

The aim of the AP system [Myers, 1996] is to make planning technology more acces-

sible to users via the metaphor of advice-taking. This approach is close to the ideas

presented by the O-Plan and TRAINS systems. Such works support interactions on

the part of humans, however AP proposes interactions between users and the planning

process at a higher level. Basically, advice is modelled as task-specific filters on the set

of solutions to a specific planning problem. The AP system does not require advice for

its operation. Instead, advice simply influences the set of solutions that the planning

process could provide for a task.

We can note that the concept of advice is very similar with the idea of preferences

discussed in this thesis. Both approaches try to set recommendations that must be

initially considered by the planning process. However the AP system does a more in

deep investigation of this problem, identifying kinds of influences required by users

of planning systems. Such influences are: Task Advice - designates specific goals to

be achieved and actions to be performed; Strategic Advice - consists of recommen-

dations on how goals and actions are to be accomplished, and; Evaluational Advice -

188 Chapter 11. Final Remarks

encompasses constraints on some metric defined for the overall plan, such as resource

usage, execution time and solution quality. This study could be very useful for guiding

a redefinition of our preferences model in future works.

11.2 Contributions

The principal contribution of this thesis is the specification of a computational frame-

work that supports the implementation of important requirements to the development

of hierarchical coalition support systems. Such requirements were collected from three

different research areas (multiagent planning, collaborative systems and human-agent

interaction) so that the definition of such requirements and posterior identification of

theoretical solutions are themselves also contributions of this thesis.

The contribution associated with the framework specification can be divided into

two parts. First, the extension and adaptation of a constraint-based ontology (� I-N-

C-A �). Second, the definition of a set of functions to manipulate the elements of this

ontology. The advantage of our approach is that the implementation of all requirements

can be understood from the same perspective because all of them can be implemented

on the same basis. In other words, the implementation of the requirements was based

on the same principles: constraints representation and manipulation. In a sequential

order, we can list the relevant set of contributions of this thesis as:

� Formalisation of hierarchical coalitions, showing that this kind of organisational

structure brings several advantages for the development of collaborative pro-

cesses;

� Discussion about the design of hierarchical coalition support systems, stressing

the several types of requirements associated with joint human-agent planning

and appropriated theoretical solutions for them;

� Proposal of a unified platform, underlined by an existent constraint-based on-

tology, which was extended and adapted to support the implementation of the

pre-defined requirements;

11.3. Limitations and Problems 189

� Specification of collaborative functions that provide agents with a general model

of teamwork, enabling that such agents reason by themselves about their re-

sponsibilities as members of a coalition. In this context we could highlight the

mutual support function that is a simple way to support several capacities such

as conflict detection, information sharing and joint activity support;

� Proposals on how to integrate important mechanisms associated with human-

agent interaction (adjustable autonomy, generation of explanations, user control

and control on users) using the same constraint-based framework;

� Use of several of these ideas in a practical experiment, which demonstrates how

they can be implemented using the I-X Architecture and mainly the concepts of

constraint managers and activity handlers. Potential scenarios based on space

applications were also discussed, showing that our proposal is not a domain

specific technology;

One of the practical advantages of I-X is that its concepts are being implemented as

a Java API so that coalition systems’ developers can use all the advantages of object-

oriented programming. Furthermore, the I-X architecture is domain independent so

that several different domains can be configured without changes in the functions or

tools. The users’ role during the preparation of systems is restricted to describe do-

mains and possible standard operating procedures using the � I-N-C-A � ontology.

The inclusion of new activity handlers or constraint managers is optional and depends

on the necessity of additional abilities required by the application.

11.3 Limitations and Problems

The use of our approach in practical experiments was also important to highlight some

of its problems. A considerable part of such problems are derived from processes asso-

ciated with the sharing and maintenance of distributed knowledge. In a more specific

way, these problems are associated with our approach for mutual support. Further-

more, our approach still needs a deeper investigation in some issues associated with

190 Chapter 11. Final Remarks

human-agent interaction mechanisms, mainly when we consider their practical imple-

mentation. The next sections discuss such aspects.

11.3.1 Distributed Knowledge

An interesting deficiency in the current planning literature is the lack of discussions

about the amount and kind of knowledge that each agent of a coalition must maintain

about the coalition’s activities so that they mutually support one another. According

to our approach to mutual support, we are arguing that the knowledge about the con-

ditions required by each agent is appropriate to enable such support. However, based

on our experiments, it is not possible to demonstrate the real efficiency of such an

approach. A detailed investigation of this issue could be done via measures of the

usefulness and usability of the knowledge, in our case the activities’ conditions shared

through the coalition.

Other practical matters associated with the mutual support approach are the elim-

ination of useless information, the number of messages and the post-conflict decision

process. As discussed previously, the solution applied to eliminate conditions is to

stamp a timeline in each constraint saying the period that it should be considered valid.

However such a solution was not very useful in our application because the major-

ity of the activities did not have a defined timeline (start and finish times). Another

pertinent problem appears when an agent abandons an activity. In this case its condi-

tional constraints are no longer valid, but as they were shared into the coalition, they

are still generating unnecessary reasoning and performance of activities. Thus, the

development of a process like a coalition garbage collection, applied to unnecessary

constraints, could be appropriate to avoid collateral effects.

Concerning the number of messages, the experiments have demonstrated that the

mutual support function is likely to require considerable communication. The idea

of filter algorithms, as discussed in DSIPE (Section 11.1.5), could be applied to this

problem, avoiding that an agent sends its conditional constraints for all agents of its

(sub-) coalition.

The post-conflict decision process is another possible reason for low efficiency.

Consider the following scenario: an agent a1 generates a plan p1 with a conditional

11.3. Limitations and Problems 191

constraint c1, which is shared into the coalition. Meanwhile, an agent a2 is trying to

generate a plan p2, however their possible plans are in conflict with c1. According to

the simple post-conflict decision process that we are applying, all the agents must con-

sider the constraints already shared. Thus, a2 will not be able to complete its activity.

This problem becomes worse if the performance of a2 is critical to the coalition aim.

In this case a1 should replan its activities, eliminating c1 and enabling the generation

of p2 by a2. We can conclude that the simple use of time is not adequate for the post-

conflict decision process and the priority of the activities is a very important attribute

that must be considered during such process.

11.3.2 Human-Agent Interaction Mechanisms

The principal problems associated with HAI were raised when we tried to implement

the theoretical solutions. The implementation of the adjustable autonomy module,

for example, could have a better solution to the treatment of scenarios. Currently we

need to reuse a considerable part of other constraint managers to define the autonomy

constraint manager. The module of explanation also requires a better implementational

investigation if we intend to use specialised templates provided by different handlers.

However, the principal HAI lack in our approach is related to the preferences mod-

ule. The concept of preferences is very important and suitable to be implemented in

systems that intend to provide some kind of autonomy. The simple definition of weak-

constraints (constraints that can be eliminated in case of conflict) could be a simple

solution for preferences. However we argue that the restriction of possible values to

plan variables could increase the number of preference styles defined by the model.

The evaluation and test of preferences’ models require a considerable change in the

planning process. Note that if there is a preference type of constraint, then, for this to

be useful, we must also implement a constraint manager that understands the meaning

of such constraints. However a “no” answer from this constraint manager does not

invalidate the activity. Furthermore this constraint should also work as a consultant

component to the variable binder. Thus the relation of such a constraint manager,

having these features, with other components of the system is not clear for us yet.

192 Chapter 11. Final Remarks

11.4 Future Directions

The definition of possible extensions for this thesis is directly indicated by the prob-

lems and limitations summarised in the last section. Such extensions are listed below:

� Development of experiments that measure the usefulness and usability of con-

ditional constraints, considering the process of mutual support. The idea is to

investigate, from the set of all constraints received by an agent, which of such

constraints are useful for the different processes provided by the mutual sup-

port approach (conflict resolution, information sharing and activity generation).

Based on the results of this experiment, we could also be able to know which

information, other than conditional constraints, is important to agents. If we ap-

ply such experiments to all the hierarchical levels, we can produce the basis for

supplying the lack in the current planning literature discussed in Section 11.3.1;

� Study and implementation of mechanisms that enable the elimination of knowl-

edge which is no longer valid from the coalition. Rather than agents exchanging

messages saying which information must be eliminated, agents should be able to

reason about such elimination by themselves. An interesting metaphor, used in

the previous section, is to think about this process as a garbage collection used

for some object-oriented languages. In Java, for example, each virtual machine

uses a specific rule (there are no longer any references to an object) to eliminate

unnecessary objects. In the same way, we could implement some rule in each

agent so that they eliminate unnecessary knowledge;

� Specification and test of a post-conflict decision process so that it considers the

idea of priority. In fact the � I-N-C-A � ontology already provides a represen-

tational attribute for priority in the activity definition. Thus we could use this

attribute to decide which agent must replan in case of conflict. Note that a typ-

ical solution in this case is the use of negotiation. However, as discussed in

Chapter 2, we are avoiding this kind of interaction between agents;

� Investigation of better implementational solutions for both modules of adjustable

11.4. Future Directions 193

autonomy and explanation generation, looking for a balance between represen-

tational and implementational complexities;

� Complete study about the impact of the use of preferences in the I-X architecture

and if our solution is really adequate to be implemented in such architecture.

Independently of our future directions, the idea is to still follow the implementa-

tional basis of the I-X approach during the investigation and development of new fea-

tures. As proposed by I-X, all the functionalities must be provided as an Java API so

that the coalition support systems’ developers can choose which modules and features

their applications will use.

Another possible direction of this work could consider its extension to applications

whose features are incompatible with our current approach. Note that our approach

assumes some restrictions on the coalition domains that intend to use it. The principal

restrictions are:

� Coalition members must present fixed roles in the hierarchical structure because

the approach does not provide ways to a self-reconfiguration of roles and posi-

tions in the hierarchy;

� The domains must consider the process of coordination as a simple delegation

of activities from superior to subordinate members. The feedback from subordi-

nates is just a commitment or non-commitment to such activities;

� Coalition members must present a form of reasoning based on an explicit goal-

based reasoning. This means that coalition components must plan sequences

of activities or make decisions on sets of possible actions to reach pre-specified

goals.

The first restriction indicates that our approach is not compatible with domains that

require dynamic and autonomous change of roles. An example is the satellite constel-

lation domain, discussed in Section 10.3. In this domain it is important that, in case of

failure of a critical satellite, the most adequate satellite of the coalition substitutes the

place and functions of such a critical satellite. Note that this issue is very important in

194 Chapter 11. Final Remarks

hierarchical structures because each superior member is a critical component and its

failure can set apart all the sub-coalition from which it is a top component.

The second restriction indicates that our approach is not compatible with domains

that require negotiation during the process of activity delegation. For example, in a

multinational military coalition, countries could join a runtime process of negotiation

to decide which areas they are going to perform in. To provide negotiation at that

level, we should extend the commitment function so that it also considers, for example,

ideas of a negotiation protocol [Conry et al., 1988]. Such an extension could define

several types of commitment constraints (Figure 7.7) so that such commitments can be

associated with negotiable conditions.

The last requirement indicates that our proposal does not support a direct imple-

mentation of reactive behaviour. According to our three-levels hierarchical structure

(Figure 2.3), we can note that the approach considers reaction as one of the principal

features of the tactical level. However the closer mechanism to reactive behaviour that

we have provided is the definition of SOPs. Probably such pre-planned sequences of

activities are not enough to cope with the dynamic of domains such as the RoboCup

Soccer [RoboCup, 2006].

11.5 Conclusion

During his invited talk entitled “Adventures in Artificial Intelligence” and proffered

in the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI-03),

Nils Nilsson (IJCAI-03 award for Research Excellence) discussed the evolution of

AI over the past 40 years. According to Nilsson, one big problem of the current AI

research is its continuing fragmentation/specialisation into sub-areas, which leads in-

vestigations and new proposals to deal with very specific problems. Thus the original

aim and effort of AI, which could be summarised as to create intelligent machines or

extend the cognitive human abilities, is losing force. Nilsson also used his talk to mo-

tivate young researchers so that they try to integrate some of these specific works and

create more general intelligent systems.

The work developed during the elaboration of this thesis was in part influenced

11.5. Conclusion 195

by this talk. During our initial study in coalition support systems, we have noticed

that existent solutions could be individually applied to resolve particular problems.

However, such solutions may not be compatible with other solutions already in use

by ongoing systems. Based on this fact, this thesis focused on the investigation of

a unique basis on which we could unify and implement several conceptual solutions,

which are very suitable to the development of coalition support systems.

The study of coalition support systems is itself very motivating because such sys-

tems are in fact able to extend the abilities of a team to perform tasks. Furthermore

there are several applications, from disaster relief to space domains, which can take

advantage of such systems.

As we can notice from the discussion in Section 11.1, proposed systems that can

be used to support coalitions focus their proposals on specific problems. In a different

way, we try to present a broader approach that considers several important require-

ments for such systems, however not going so deep in all of them. In this way, the

principal contribution of our approach is to offer a unique basis for integrating differ-

ent requirements. Anchored in this basis, we build up specific solutions for problems

such as resource representation, mutual support, explanation generation and so on.

The choice of a constraint-based ontology as the basis for our approach was very

appropriate, providing a good support for the implementation of the three main groups

of requirements: multiagent planning, collaboration and HAI. Associated with plan-

ning, constraints have interesting properties (Section 3.2), some of them complemen-

tary to the abilities of HTN planning that we are exploring. Several projects have been

using constraints as a basis for their planning approaches, demonstrating that the union

of planning and constraints is already a promising and well-known approach.

In the research field of collaboration we did not find a clear study about the mod-

elling of collaborative concepts based on constraints. None of the projects discussed

in Section 11.1 ever directly discusses the role of collaboration, in a general way, in

their analysis. However we demonstrate that such an approach can be easily done if

we consider commitments as a kind of constraint on the planning process, reports as

resultant events of the constraint processing, and mutual support as a process based on

the knowledge that one agent has about the conditional constraints of other agents.

196 Chapter 11. Final Remarks

Finally, constraints are also suitable to HAI. As previously discussed, constraints

are declarative so that human users only need to specify what relationships must hold

without specifying a computational procedure to enforce those relationships.

The practical idealisation of our project, considering disaster relief domains, is the

development of an International Rescue Support Site (Figure 11.1) whose basic idea

is to provide ways for the stabilisation of search and rescue coalitions in moments just

after disasters are identified. In this context, the site could be a repository of I-X agents

and domain libraries that, together, could provide the power of avant-garde computer

technology in favour of human life.

Figure 11.1: Logo of the I-Rescue web page (http://i-rescue.org).

Appendix A

Y I-N-C-A Z Specification for Plans

PLAN ::=
� plan �

� plan-variable-declarations �
� list � PLAN-VARIABLE-DECLARATION � /list �

� /plan-variable-declarations �
� plan-issues �

� list � PLAN-ISSUE � /list �
� /plan-issues �
� plan-issue-refinements �

� list � PLAN-ISSUE-REFINEMENT � /list �
� /plan-issue-refinements �
� plan-nodes �

� list � PLAN-NODE � /list �
� /plan-nodes �
� plan-node-refinements �

� list � PLAN-NODE-REFINEMENT � /list �
� /plan-node-refinements �
� constraints �

� list � CONSTRAINER � /list �
� /constraints �

197

198 Appendix A. � I-N-C-A � Specification for Plans

� annotations �
� map � MAP-ENTRY � /map �

� /annotations �
� /plan �

MAP-ENTRY ::=
� map-entry �

� key � OBJECT � /key �
� value � OBJECT � /value �

� /map-entry �

PLAN-VARIABLE-DECLARATION ::=
� plan-variable-declaration id=“NAME” name=“SYMBOL” scope=“VARIABLE-SCOPE” �

� annotations � � map � MAP-ENTRY � /map � � /annotations �
� /plan-variable-declaration �

VARIABLE-SCOPE ::= local � global

PLAN-ISSUE ::=
� plan-issue id=“NAME” expansion=“NAME” �

� issue � ISSUE � /issue �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-issue �

ISSUE ::=
� issue status=“STATUS” priority=“PRIORITY” sender-id=“NAME” ref=“NAME”

report-back=YES-NO �
� pattern � � list � PATTERN � /list � � /pattern �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /issue �

199

STATUS ::= blank � complete � executing � possible � impossible � n/a

PRIORITY ::= lowest � low � normal � high � highest

YES-NO ::= yes � no

CONSTRAINER ::= CONSTRAINT � ORDERING

PLAN-ISSUE-REFINEMENT ::=
� plan-issue-refinement id=“NAME” expands=“NAME” �

� plan-variable-declarations �
� list � PLAN-VARIABLE-DECLARATION � /list �

� /plan-variable-declarations �
� plan-issues �

� list � PLAN-ISSUE � /list �
� /plan-issues �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-issue-refinement �

PLAN-NODE ::=
� plan-node id=“NAME” expansion=“NAME” �

� activity � ACTIVITY � /activity �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-node �

ACTIVITY ::=
� activity status=“STATUS” priority=“PRIORITY” sender-id=“NAME” ref=“NAME”

report-back=YES-NO �
� pattern � � list � PATTERN � /list � � /pattern �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /activity �

200 Appendix A. � I-N-C-A � Specification for Plans

PLAN-NODE-REFINEMENT ::=
� plan-node-refinement id=“NAME” expands=“NAME” �

� plan-variable-declarations �
� list � PLAN-VARIABLE-DECLARATION � /list �

� /plan-variable-declarations �
� plan-nodes �

� list � PLAN-NODE � /list �
� /plan-nodes �
� constraints � � list � CONSTRAINER � /list � � /constraints �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /plan-node-refinement �

PATTERN-ASSIGNMENT ::=
� pattern-assignment �

� pattern � � list � PATTERN � /list � � /pattern �
� value � OBJECT � /value �

� /pattern-assignment �

CONSTRAINT ::=
� constraint type=“SYMBOL” relation=“SYMBOL” sender-id=“NAME” �

� parameters � � list � PARAMETER � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �

CONSTRAINT ::= KNOWN-CONSTRAINT

KNOWN-CONSTRAINT ::=
� constraint type=“world-state” relation=“condition” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� /constraint �

A.1. Observations 201

KNOWN-CONSTRAINT ::=
� constraint type=“world-state” relation=“effect” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� /constraint �

ORDERING ::=
� ordering �

� from � NODE-END-REF � /from �
� to � NODE-END-REF � /to �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /ordering �

NODE-END-REF ::=
� node-end-ref end=“END” node=“NAME” �
� /node-end-ref �

END ::= begin � end

A.1 Observations

1. OBJECT: objects are instances of I-X (e.g., ACTIVITY, ISSUE, etc.) or atomic

(float, integer, string, etc.) classes;

2. NAME and SYMBOL: they essentially represent short and relatively simple

strings. Symbols correspond to the symbol type, familiar to Lisp and Prolog

programmers;

3. PATTERN: patterns are lists of objects. For example, “size of car” could be a

3-elements list representing a pattern;

4. PARAMETER: parameters are an open kind of element that will be defined ac-

cording to the constraint to be created.

Appendix B

Y I-N-C-A Z Proposed Extensions

PLAN ::=
� plan �

...
� constraints �

� list � CONSTRAINT � /list �
� /constraints �
...

� /plan �

CONSTRAINT ::= KNOWN-CONSTRAINT

KNOWN-CONSTRAINT ::=
� constraint type=“temporal” relation=“TEMP-TYPE” sender-id=“NAME” �

� parameters � � list � TEMPORAL-PA � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �

KNOWN-CONSTRAINT ::=
� constraint type=“resource” relation=“RESOURCE-TYPE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
203

204 Appendix B. � I-N-C-A � Proposed Extensions

� annotations � � map � MAP-ENTRY � /map � � /annotations �
� /constraint �

KNOWN-CONSTRAINT ::=
� constraint type=“commitment” relation=“COMMIT-TYPE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �

KNOWN-CONSTRAINT ::=
� constraint type=“autonomy” relation=“DEGREE” sender-id=“NAME” �

� parameters � � list � PATTERN-ASSIGNMENT � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �

KNOWN-CONSTRAINT ::=
� constraint type=“preference” relation=“PREF-TYPE” sender-id=“NAME” �

� parameters � � list � PREFERENCE-PA � /list � � /parameters �
� annotations � � map � MAP-ENTRY � /map � � /annotations �

� /constraint �

TEMP-TYPE ::= interval � TEMPORAL-RELATION

RESOURCE-TYPE ::= reusable � consumable

COMMIT-TYPE ::= nil

PREF-TYPE ::= world-state � temporal � resource � instantiation

DEGREE ::= permission � in-control

205

TEMPORAL-RELATION ::= before � equal � meets � during � overlaps � finishes

TEMPORAL-PA ::= TEMPORAL-INTERVAL-PA �
TEMPORAL-RELATION-PA

TEMPORAL-INTERVAL-PA ::=
� temporal-interval-pa �

� pattern � � list �
� name � NODE-ID � /name �

� /list � � /pattern �
� value � INTERVAL � /value �

� /temporal-interval-pa �

TEMPORAL-RELATION-PA ::=
� temporal-relation-pa �

� pattern � � list �
� name � NODE-ID � /name �
� name � NODE-ID � /name �

� /list � � /pattern �
� /temporal-relation-pa �

PREFERENCE-PA ::= PATTERN-ASSIGNMENT � INSTANTIATION-PA

INSTANTIATION-PA ::=
� preference-pa �

� pattern � � list � PATTERN � /list � � /pattern �
� variable � VARIABLE-ID � /variable �
� value � OBJECT � /value �

� /preference-pa �

206 Appendix B. � I-N-C-A � Proposed Extensions

INTERVAL ::=
� interval �

� numeric � initial-time � /numeric �
� numeric � final-time � /numeric �

� /interval �

B.1 Observations

1. Note that this extended proposal has eliminated the CONSTRAINER element

(see Appendix A). This element is necessary to represent ordering as a type of

constraint. However we have also eliminated the ORDERING element because

its role can be played by the “before” temporal relation;

2. The sender-id attribute has an important role of classifying the constraints in in-

ternal and external. If such attribute is not specified, the default value is internal.

Source of internal constraints are the agent itself and its user;

3. The NODE-ID element must be filled by one id attribute value of the PLAN-

NODE element (see Appendix A);

4. The VARIABLE-ID element must be filled by one id attribute value of the

PLAN-VARIABLE-DECLARATION element (see Appendix A);

5. The COMMIT-TYPE is not used in this current version, so that its value is nil.

However we are considering support to a possible expansion, which could pro-

vide types of commitments such as temporal (e.g., I am committed to do the

activity x during the interval i), or conditional (e.g., I will commit to do the

activity y if I receive the correct payment).

Appendix C

Search Patterns as Standard

Operating Procedures

Search Patterns (SPs) are suggestions on routes that can be used during activities of

searching. According to the features of environment and current goals, there is a more

appropriate SP that can be applied to define a route to perform this search.

An interesting way to incorporate this concept in our approach is to implement

each search pattern as a SOP so that it can be applied as an action to specific activities.

For example, the general format for such activities could be:

Search ?object-to-be found in ?region-for-searching

Then, any SOP that matches this activity format is provided by the system as an

action. The specification of SPs as SOPs also involves the definition of variables,

whose function is to configure parameters of the route. For example, consider the

search pattern illustrated in Figure C.1d. For this SP there is a variable S (Tracking

spacing) that must be bound before the performance of such SP. Thus, a value for this

variable, and for any other more, must be specified in the system.

Another option to incorporate SPs in the system is to provide only one action (ac-

tivity handler), called “Apply search pattern”, that should decide by itself which SP is

more appropriate to be carried out. However, note that in this case the action needs to

present a more complex reasoning method to be able to take this decision.

207

208 Appendix C. Search Patterns as Standard Operating Procedures

Figure C.1: Six different search patterns (from [Joint Chiefs of Staff, 1996]).

Appendix D

Disaster Evolution in RCR Simulator

Figure D.1: Four different moments of an experiment in the RoboCup Rescue Simulator.

209

Appendix E

Initialisation File for Experiments in

RCR Simulator

The lines in follow represent the content of the gisini.txt file, whose function is to

mainly indicate the number and initial position of agents and some other objects (fire

points and refuges) to the simulator. Note that if we define a number x for some kind

of object, we must also define one entry for each of these x objects. For example, if we

have ambulanceTeamNum=5, we must define 5 entries like AmbulanceTeam0=7....

[MotionLessObject]

AmbulanceCenterNum=1

FireStationNum=1

PoliceOfficeNum=1

RefugeNum=7

AmbulanceCenter0=2,1,713,230518,37249 FireStation0=3,1,306,229997,36914

PoliceOffice0=4,1,140,228214,36563 Refuge0=5,1,331,231370,35376

Refuge1=5,1,288,229327,35695 Refuge2=5,1,389,228542,36445

Refuge3=5,1,216,230594,35305 Refuge4=5,1,579,230928,35685

Refuge5=5,1,567,229765,38020 Refuge6=5,1,670,231163,37141

[MoveObject]

CivilianNum=72

AmbulanceTeamNum=5

211

212 Appendix E. Initialisation File for Experiments in RCR Simulator

FireBrigadeNum=10

PoliceForceNum=10

Civilian0=6,1,331,231370,35376,-1,0,0,0 Civilian1=6,1,331,231370,35376,-1,0,0,0

Civilian2=6,1,331,231370,35376,-1,0,0,0 Civilian3=6,1,331,231370,35376,-1,0,0,0

Civilian4=6,1,331,231370,35376,-1,0,0,0 Civilian5=6,1,331,231370,35376,-1,0,0,0

Civilian6=6,1,331,231370,35376,-1,0,0,0 Civilian7=6,1,331,231370,35376,-1,0,0,0

Civilian8=6,1,331,231370,35376,-1,0,0,0 Civilian9=6,1,331,231370,35376,-1,0,0,0

Civilian10=6,1,331,231370,35376,-1,0,0,0 Civilian11=6,1,331,231370,35376,-1,0,0,0

Civilian12=6,1,331,231370,35376,-1,0,0,0 Civilian13=6,1,331,231370,35376,-1,0,0,0

Civilian14=6,1,331,231370,35376,-1,0,0,0 Civilian15=6,1,331,231370,35376,-1,0,0,0

Civilian16=6,1,331,231370,35376,-1,0,0,0 Civilian17=6,0,543,230125,35573,-1,0,0,0

Civilian18=6,0,243,228084,37690,-1,0,0,0 Civilian19=6,0,78,231586,37069,-1,0,0,0

Civilian20=6,1,3,228612,35726,-1,0,0,0 Civilian21=6,0,100,230954,35758,-1,0,0,0

Civilian22=6,1,621,230685,37021,-1,0,0,0 Civilian23=6,1,386,228878,36958,-1,0,0,0

Civilian24=6,1,545,227726,36359,-1,0,0,0 Civilian25=6,1,545,227726,36359,-1,0,0,0

Civilian26=6,1,545,227726,36359,-1,0,0,0 Civilian27=6,1,545,227726,36359,-1,0,0,0

Civilian28=6,1,545,227726,36359,-1,0,0,0 Civilian29=6,1,47,228353,36735,-1,0,0,0

Civilian30=6,1,47,228353,36735,-1,0,0,0 Civilian31=6,1,47,228353,36735,-1,0,0,0

Civilian32=6,1,652,228148,36802,-1,0,0,0 Civilian33=6,1,652,228148,36802,-1,0,0,0

Civilian34=6,1,652,228148,36802,-1,0,0,0 Civilian35=6,1,339,228370,37290,-1,0,0,0

Civilian36=6,1,339,228370,37290,-1,0,0,0 Civilian37=6,1,385,227859,37071,-1,0,0,0

Civilian38=6,1,385,227859,37071,-1,0,0,0 Civilian39=6,1,385,227859,37071,-1,0,0,0

Civilian40=6,1,308,228816,37817,-1,0,0,0 Civilian41=6,1,308,228816,37817,-1,0,0,0

Civilian42=6,1,308,228816,37817,-1,0,0,0 Civilian43=6,1,150,228945,37847,-1,0,0,0

Civilian44=6,1,150,228945,37847,-1,0,0,0 Civilian45=6,1,150,228945,37847,-1,0,0,0

Civilian46=6,1,660,228892,37727,-1,0,0,0 Civilian47=6,1,660,228892,37727,-1,0,0,0

Civilian48=6,1,660,228892,37727,-1,0,0,0 Civilian49=6,1,561,229275,37592,-1,0,0,0

Civilian50=6,1,561,229275,37592,-1,0,0,0 Civilian51=6,1,561,229275,37592,-1,0,0,0

Civilian52=6,1,60,229191,37352,-1,0,0,0 Civilian53=6,1,60,229191,37352,-1,0,0,0

Civilian54=6,0,475,229692,37520,-1,0,0,0 Civilian55=6,1,752,229098,37335,-1,0,0,0

Civilian56=6,1,752,229098,37335,-1,0,0,0 Civilian57=6,1,752,229098,37335,-1,0,0,0

213

Civilian58=6,1,752,229098,37335,-1,0,0,0 Civilian59=6,1,658,229874,36907,-1,0,0,0

Civilian60=6,1,202,230450,37861,-1,0,0,0 Civilian61=6,1,202,230450,37861,-1,0,0,0

Civilian62=6,1,202,230450,37861,-1,0,0,0 Civilian63=6,1,202,230450,37861,-1,0,0,0

Civilian64=6,1,756,230695,37973,-1,0,0,0 Civilian65=6,1,756,230695,37973,-1,0,0,0

Civilian66=6,1,756,230695,37973,-1,0,0,0 Civilian67=6,1,405,231306,38043,-1,0,0,0

Civilian68=6,1,405,231306,38043,-1,0,0,0 Civilian69=6,1,405,231306,38043,-1,0,0,0

Civilian70=6,1,405,231306,38043,-1,0,0,0 Civilian71=6,1,405,231306,38043,-1,0,0,0

AmbulanceTeam0=7,0,16,229387,36873,-1,0,0,0

AmbulanceTeam1=7,0,223,229531,36682,-1,0,0,0

AmbulanceTeam2=7,0,21,230369,36665,-1,0,0,0

AmbulanceTeam3=7,0,273,230302,37181,-1,0,0,0

AmbulanceTeam4=7,0,68,229500,36365,-1,0,0,0

FireBrigade0=8,0,156,231260,35626,-1,0,0,0 FireBrigade1=8,0,71,229480,37338,-1,0,0,0

FireBrigade2=8,0,175,230580,36830,-1,0,0,0 FireBrigade3=8,0,528,231149,35535,-1,0,0,0

FireBrigade4=8,0,581,230701,36308,-1,0,0,0 FireBrigade5=8,0,740,231630,35524,-1,0,0,0

FireBrigade6=8,0,471,229803,35980,-1,0,0,0 FireBrigade7=8,0,625,229851,36238,-1,0,0,0

FireBrigade8=8,0,667,229694,36113,-1,0,0,0 FireBrigade9=8,0,189,229145,36814,-1,0,0,0

PoliceForce0=9,2,284,230201,36476,636,230272,36388,7

PoliceForce1=9,0,431,229653,36885,-1,0,0,0

PoliceForce2=9,0,160,230159,36493,-1,0,0,0 PoliceForce3=9,0,389,231441,35762,-1,0,0,0

PoliceForce4=9,0,343,229841,36461,-1,0,0,0 PoliceForce5=9,0,474,229235,36690,-1,0,0,0

PoliceForce6=9,0,314,228899,37109,-1,0,0,0 PoliceForce7=9,0,263,229119,37051,-1,0,0,0

PoliceForce8=9,0,533,229336,37273,-1,0,0,0 PoliceForce9=9,0,81,230447,37004,-1,0,0,0

[FirePoint]

FirePointNum=5

FirePoint0=10,1,668,229833,38095 FirePoint1=10,1,266,229891,37551

FirePoint2=10,1,630,231163,36423 FirePoint3=10,1,470,229701,35243

FirePoint4=10,1,648,228074,35789

Appendix F

Pseudocode in Java of the

Commitment Constraint Manager

Creating constraints: the first step of the commitment process is to create constraints

of commitment. We are considering that all delegated activities must have an associ-

ated commitment constraint. Thus, we have extended the ForwardingHandler class,

which accounts for the activities’ delegation process, so that it automatically creates

a commitment constraint for each delegated activity. The code1 below represents the

handler method of the ForwardingHandler class and the bold face text represents the

new code associated with the commitment constraint creation.

public void handle(AgendaItem item) !
item.getAbout().forwardTo(toName, reportBack);

...

LList pattern = Lisp.list(toName,item.getId());
PatternAssignment pa = new PatternAssignment(pattern,new Variable());
Constraint c = new Constraint(“commitment”,null,pa);
modelManager.addConstraint(item.getParent(),c);

#

1The pieces of code showed through this appendix give a general idea about the relations between
different components of the architecture. Note, however, that they hide several details and cannot be
directly implemented.

215

216 Appendix F. Pseudocode in Java of the Commitment Constraint Manager

Adding constraints to model manager: the last line in the previous code adds the com-

mitment constraint to the agent model manager, which recognises the constraint type

and sends the constraint to the commitment constraint manager (CCM). The addCon-

straint method is defined below:

public void addConstraint(PNode item,Constraint c) !
item.addExecutionReportListener(this);

if(constraintsSet.hasKey(item)

(constraintsSet.get(item)).add(c);

else !
Vector constraints = new Vector();

constraints.add(c);

constraintsSet.put(item,constraints);

#
#

The second addConstraint method has a different input (just a constraint) and it is

used to receive constraints related to messages of other agents. Such constraints have

a defined value (true or false) that binds the correspondent variable. After that, the

manager checks the effects of this new constraint in the model.

public void addConstraint(Constraint c) !
// variable bindings are carried out by other I-X components

while(constraintsSet.hasMore()) !
constraintSet = constraintsSet.next();

if(constraintSet.forAllTrue())

prepareCommitment(constraintSet.key());

if(constraintSet.existOneFalse())

prepareFailure(constraintSet.key(),constraintSet.values());

#
#

217

Preparing and sending commitments: this method prepares a commitment constraint

with a true boolean value and sends such constraint to the superior agent if there is

one. This method can be triggered by the addConstraint method, or when an activity

becomes possible (there is a plan or action to it).

public void prepareCommitment(PNode node) !
if(node.getSenderId()!= mySelf()) !

LList pattern = Lisp.list(mySelf(),node.getId());

PatternAssignment pa = new PatternAssignment(pattern,true);

Constraint c = new Constraint(“commitment”,null,pa);

IPC.sendMessage(node.getSenderId(),c);

#
#

Preparing the failure report: this method creates an activity clone so that it can be re-

considered by the system. In addition, all the agents that are dealing with sub-activities

associated with the original activity receive a failure report.

public void prepareFailure(PNode node, List constraints) !
agenda.remove(node);

activity = new Activity(node.getPattern());

activityItem = new ActivityItem(activity);

agenda.addItem(activityItem);

while(constraints.hasNext()) !
constraint = constraints.next();

PatternAssignment pv = (PatternAssignment)c.getParameter(0);

report = new Report(ReportType.FAILURE,null);

report.setRef((pv.getPattern()).get(1);

IPC.sendMessage((pv.getPattern()).get(0),report);

#
#

218 Appendix F. Pseudocode in Java of the Commitment Constraint Manager

Sending a failure (non-commit): when the constraint model decides that an activity is

impossible, it changes the status of such an activity so that listeners on this activity

are triggered. The CCM implements the AgendaItemListener interface so that it uses

this event to create a commitment constraint with a false boolean value, sending such

a constraint to its superior.

public void statusChanged(AgendaItemEvent e) !
AgendaItem node = (AgendaItem) e.source();

if(node.getStatus()==Status.IMPOSSIBLE) !
LList pattern = Lisp.list(mySelf(),node.getId());

PatternAssignment pa = new PatternAssignment(pattern,false);

Constraint c = new Constraint(“commitment”,null,pa);

IPC.sendMessage(node.getSenderId(),c);

#
#

Monitoring the activity performance: the monitoring process accounts mainly for send-

ing execution reports to superior agents. The process monitors, via the ExecutionRe-

portListener, constraint events such as changes of values and variable binding. Note

that completion and failure reports are already provided by other components of the

system.

public void newBinding(ConstraintProcessEvent e, PNode item) !
constraint = (Constraint) e.getSource();

IPC.sendMessage(item.getSenderId(),constraint);

#

public void valueChanged(ConstraintProcessEvent e, PNode item) !
constraint = (Constraint) e.getSource();

IPC.sendMessage(item.getSenderId(),constraint);

#

Appendix G

Pseudocode in Java of the Mutual

Support Constraint Manager

Filtering constraints: the model manager uses the id-sender constraint attribute, rather

than the type attribute, to filter the constraints that it will send to the mutual support

constraint manager (MSCM). The current condition is that if the constraints’s id-sender

is part of the peer contact group of an agent,such constraint is sent to its MSCM. The

code1 below shows how we can implement this feature in the ModelManager class.

public void addConstraint(Map idToItemMap, Constraint c) !
...

Name idSender = c.getSenderId();

if((contactManager.getAgentData(AgentRelationship.PEER)).contains(idSender))

mutualSupportCM.add(c);

...

#

Dealing with events: constraints that have been added into MSCM are kept in a list

(constraintList), which is monitored by a listener. This listener generates events, in

case of contrasts, that trigger the method specified in follow. The method initially asks
1The pieces of code showed through this appendix give a general idea about the relations between

different components of the architecture. Note, however, that they hide several details and cannot be
directly implemented.

219

220 Appendix G. Pseudocode in Java of the Mutual Support Constraint Manager

the IPlan component to generate a new node (activity) that considers the constraint

parameter as a goal. If this is not possible (for example, because the agent does not

have the necessary capability), the method sends its current constraint to the external

constraint source. Finally the constraint is removed from the list.

public void newContrast(ContrastProcessEvent e) !
externalC = (Constraint)e.getSource();

currentC = (Constraint)e.getContrastSource();

PNode node = IPlan.generateNode(externalC.getParameter(0));

if(node != null)

agenda.addItem(node);

else

IPC.sendMessage(externalC.getSenderId(),currentC);

constraintList.remove(externalC);

#

Looking for invalid constraints: the process that accounts for eliminating invalid con-

straints is represented by a low priority thread that verifies time stamps of constraints,

removing those with old stamps. This approach enforces two features on the system:

(1) the system needs a temporal notion and (2) external constraints should (but do not

need to) have an interval as last object of their pattern parameters.

public class Eliminator extends Thread !
..

for(;constraintList.hasNext();constraint = (Constraint) constraintList.next()) !
LList pattern = ((PatternAssignment) constraint.getParameter(0)).getPattern();

long endTime = pattern.get(pattern.size()-1);

if(endTime � Util.getWorldTime()) constraintList.remove(constraint);

#
#

Bibliography

[Allen, 1991] Allen, J. (1991). Planning as Temporal Reasoning. Proceedings of the
Second International Conference on Principles of Knowledge Representation and
Reasoning, Cambridge, Massachusetts, USA, pp.3-14.

[Allen and Ferguson, 2002] Allen, J. and Ferguson, G. (2002). Human-Machine Col-
laborative Planning. Proceedings of the Third International NASA Workshop on
Planning and Scheduling for Space, Houston, Texas, USA.

[Allen et al., 1999] Allen, J., Guinn, C. and Horvitz, E. (1999). Mixed-initiative In-
teraction. IEEE Intelligent Systems, 14(5):14-23.

[Allsopp et al., 2002] Allsopp, D., Beautement, P., Bradshaw, J., Durfee, E., Kirton,
M., Knoblock, C., Suri, N., Tate, A. and Thompson, C. (2002). Coalition Agents
Experiment: Multi-Agent Co-operation in an International Coalition Setting. IEEE
Intelligent Systems,17(3):26-35.

[Ankolekar et al., 2002] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Mar-
tin, D., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Payne, T. and
Sycara, K. (2002). DAML-S: Web Service Description for the Semantic Web. Pro-
ceedings of the First International Semantic Web Conference, Chia, Sardegna, Italy.

[Arthur and Stillman, 1992] Arthur, R. and Stillman, J. (1992). Tachyon: A Model
and Environment for Temporal Reasoning. Technical report, GE Corporate Re-
search and Development Center, Schenectady, New York.

[Ball et al., 2002] Ball, H., Evans, C., Ballard, J. and Ball, J. (2002). Safe Passage:
Astronaut Care for Exploration Missions. National Academy Press.

[Bartak, 1999] Bartak, R. (1999). Constraint Programming - What is behind? Pro-
ceedings of the Workshop on Constraint Programming in Decision and Control,
Gliwice, Poland, pp.7-15.

[Bartak, 2001] Bartak, R. (2001). Theory and Practice of Constraint Propagation.
Proceedings of the Third Workshop on Constraint Programming in Decision and
Control, Gliwice, Poland, pp.7-14.

[Beek and Chen, 1999] Beek, P. and Chen, X. (1999). CPlan: A Constraint Program-
ming Approach to Planning. Proceedings of the Sixteenth National Conference on
Artificial intelligence, Orlando, Florida, USA, pp.585-590.

221

222 Bibliography

[Bradshaw et al., 2002] Bradshaw, J., Boy, G., Durfee, E., Gruninger, M., Hexmoor,
H., Suri, N., Tambe, M., Uschold, M. and Vitek, J. (2002). Software Agents for
the Warfighter. ITAC Consortium Report, Cambridge, MA: AAAI Press/The MIT
Press.

[Brenner, 2003] Brenner, M. (2003). A Multiagent Planning Language. Proceedings
of the ICAPS Workshop on PDDL, Trento, Italy.

[Chandrasekaran et al., 1999] Chandrasekaran, B., Josephson, R. and Benjamins, V.
(1999). What are Ontologies, and Why Do We Need Them? IEEE Intelligent
Systems, 14(1):20-26.

[Chapman, 1987] Chapman, D. (1987). Planning for conjunctive goals. Artificial
Intelligence, 32(3):333-377.

[Chaulpsky et al., 2001] Chaulpsky, H., Gil, Y., Knoblock, C., Oh, J., Lerman, K.,
Pynadath, D., Russ, T. and Tambe, M. (2001). Electric Elves: Applying Agent
Technology to Support Human Organizations. Proceedings of the International
Conference on Innovative Applications of Artificial Intelligence, Seattle, Washing-
ton, USA, pp.51-58.

[Chien et al., 2000] Chien, S., Knight, R., Stechert, A., Sherwood, R. and Rabideau,
G. (2000). Using Iterative Repair to Improve the Responsiveness of Planning and
Scheduling. Proceedings of the Fifth International Conference on AI Planning and
Scheduling, Breckenridge, Colorado, USA, pp.300-307.

[Chien et al., 2003] Chien et al. (2003). Autonomous Science on the EO-1 Mission.
Proceedings of the International Symposium on AI, Robotics and Automation in
Space, Nara, Japan.

[CoAX, 2004] CoAX Research Group. (2004). CoAX - Coalition Agents eXperiment.
http://www.aiai.ed.ac.uk/project/coax/.

[Cohen and Levesque, 1991] Cohen, P. and Levesque, H. (1991). Teamwork. Nous,
Special Issue on Cognitive Science and Artificial Intelligence, 25(4):487-512.

[Conklin, 2003] Conklin, J. (2003). Dialog mapping: reflections on an industrial
strength case study. Visualizing argumentation: software tools for collaborative
and educational sense-making, Springer-Verlag: London, pp. 117–136.

[Conry et al., 1988] Conry, S., Meyer, A. and Lesser, V. (1988). Multistage Negotia-
tion in Distributed Planning. Bond, A. and Gasser, L. (Ed.), Readings in Distributed
Artificial Intelligence, Morgan Kaufmann Publishers, California, pp. 367-384.

[Corkill, 1979] Corkill, D. (1979). Hierarchical Planning in a Distributed Environ-
ment. Proceedings of the Sixth International Joint Conference on Artificial Intelli-
gence, Tokyo, Japan, pp. 168-175.

[Decker and Lesser, 1995] Decker, K. and Lesser, V. (1995). Designing a Family of
Coordination Algorithms. Proceedings of the First International Conference on
Multiagent Systems, San Francisco, California, USA, pp.73-80.

Bibliography 223

[DesJardins and Wolverton, 1999] DesJardins, M. and Wolverton, M. (1999). Coor-
dinating a Distributed Planning System. AI Magazine, 20(4):45-53.

[Dix et al., 2002] Dix, J., Munoz-Avila, H., Nau, D. and Zhang, L. (2002). IMPACT-
ing SHOP: Putting an AI Planner into a Multi-Agent Environment. Annals of Math-
ematics and Artificial Intelligence, 37(4):381 - 407.

[Do and Kambhampati, 2000] Do, B. and Kambhampati, S. (2000). Solving Planning
Graph by Compiling it into a CSP. Fifth International Conference on Artificial
Intelligence Planning and Scheduling, Breckenridge, CO, USA.

[Dorais et al., 1998] Dorais, G., Bonasso, R., Kortenkamp, R., Pell, B. and Schreck-
enghost, D. (1998). Adjustable Autonomy for Human-centered Autonomous Sys-
tems on Mars. Proceedings of the First International conference of the Mars Society,
pp. 397-420.

[Durfee et al., 1987] Durfee, E., Lesser, V. and Corkill, D. (1987). Coherent Cooper-
ation among Communication Problem Solvers. IEEE Transactions on Computers,
36(11):1275 - 1291.

[Eiter et al., 1999] Eiter, T., Subrahmanian, V. and Pick, G. (1999). Heterogeneous
Active Agents, I: Semantics. Artificial Intelligence, 108(1-2):179-255.

[Erol et al., 1994] Erol, K., Nau, D. and Hendler, J. (1994). HTN Planning: Complex-
ity and Expressivity. Proceedings of the Twelfth National Conference on Artificial
Intelligence, Seattle, Washington, USA, pp.1123-1128.

[Estlin, 2004] Estlin, T. (2004). MISUS: Multi-Rover Integrated Science Under-
standing system. http://www-aig.jpl.nasa.gov/public/planning/dist-
rovers/

[Estlin et al., 2003] Estlin, T., Castano, R., Anderson, B., Gaines, D., Fisher, F. and
Judd, M. (2003). Learning and Planning for Mars Rover Science. Proceedings of
the IJCAI Workshop on Issues in Designing Physical Agents for Dynamic Real-
Time Environments: World modelling, planning, learning, and communicating,
Acapulco, Mexico.

[Ferguson, 2004] Ferguson, B. (2004). Foundations of New Zealand Military Doc-
trine. Headquarters New Zealand Defence Force.

[Ferguson and Allen, 1998] Ferguson, G. and Allen, J. (1998). TRIPS: An Intelligent
Integrated Problem-Solving Assistant. Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, Madison, Wisconsin, USA, pp. 567-573.

[Ferguson et al., 1996] Ferguson, G., Allen, J. and Miller, B. (1996). TRAINS-95: To-
wards a Mixed-Initiative Planning Assistant. Proceedings of the Third Conference
in AI Planning Systems, AAAI Press, Menlo Park, California, pp.70-77.

[Fikes and Nilsson, 71] Fikes, R. and Nilsson, N. (1971). STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving. Artificial Intelligence,
5(2):189-208.

224 Bibliography

[Fox and Long, 2001] Fox, M. and Long, D. (2001). An Extension to PDDL for Ex-
pressing Temporal Planning Domains. Technical Report, Department of Computer
Science, University of Durham, Durham, UK.

[Frank et al., 2000] Frank, J., Jonsson, A. and Morris, P. (2000). On Reformulating
Planning as Dynamic Constraint Satisfaction. Proceedings of the Fourth Interna-
tional Symposium on Abstraction, Reformulation, and Approximation, Horseshoe
Bay, Texas, USA, pp.271-280

[Freksa, 1992] Freksa, C. (1992). Temporal Reasoning Based on Semi-intervals. Ar-
tificial Intelligence, 54(1-2):199-228.

[Freuder, 1978] Freuder, E. (1978). Synthesizing Constraint Expressions. Communi-
cations ACM, 21(11):958-966.

[Georgeff, 1983] Georgeff, M. (1983). Communication and Interaction in Multi-
Agent Planning. Proceedings of the Third National Conference in Artificial In-
telligence, pp.125-129.

[Ghallab et al., 2004] Ghallab, M., Nau, D. and Traverso, P. (2004). Automated Plan-
ning: theory and practice. Morgan Kaufmann, San Francisco, California, USA.

[Goldman et al., 2000] Goldman, R., Haigh, K., Musliner, D. and Pelican, M. (2000).
MACBeth: A Multi-Agent Constraint-Based Planner. AAAI Workshop on Con-
straints and AI Planning, Austin, Texas, USA, pp.11-17.

[Grosz, 1996] Grosz, B. (1996). Collaborative Systems. AI Magazine, 17(2):67–85.

[Grosz et al., 1999] Grosz, B., Hunsberger, L. and Kraus, S. (1999). Planning and
Acting Together. AI Magazine, 5(2):23-34.

[Gruber, 1995] Gruber, T. (1995). Toward Principles for the Design of Ontologies
Used for Knowledge Sharing. Journal of Human-Computer Studies, 43(5/6):907-
928.

[Hadad, 1997] Hadad, M. (1997). Using SharedPlan Model in Electronic Commerce
Environment. Master’s Thesis, Bar Ilan University, Ramat-Gan, Israel.

[Hayes-Roth, 1985] Hayes-Roth, B. (1985). A Blackboard Architecture for Control.
Artificial Intelligence, 26(3):251-321.

[Hill et al., 2000] Hill, J., Surdu, J., Ragsdale, D. and Schafer, J. (2000). Anticipatory
Planning in Information Operations. IEEE International Conference on Systems,
Man and Cybernetics, Nashville, Tennessee, USA, pp.2350-2355.

[Horvitz et al., 1999] Horvitz, E., Jacobs, A. and Hovel, D. (1999). Attention-
sensitive Alerting. Proceedings of the Third Conference on Uncertainty and Ar-
tificial Intelligence, Stockholm, Sweden, pp.305-313.

[Jennings, 1990] Jennings, N. (1990). Coordination Techniques for Distributed Artifi-
cial Intelligence. Foundations of Distributed Artificial Intelligence, London, Wiley,
pp. 187-210.

Bibliography 225

[Jennings, 1992] Jennings, N. (1992). Towards a Cooperation Knowledge Level for
Collaborative Problem Solving. Proceedings of the Tenth European Conference on
Artificial Intelligence, Vienna, Austria, 224-228.

[Jennings, 1995] Jennings, N. (1995). Controlling Cooperative Problem Solving
in Industrial Multiagent Systems Using Joint Intentions. Artificial Intelligence,
75(2):195-240.

[Jennings et al., 1998] Jennings, N., Sycara, K. and Wooldridge, M. (1998). A
Roadmap of Agent Research and Development. Autonomous Agents and Multi-
Agent Systems, 1(1):7-38.

[Joint Chiefs of Staff, 1996] Joint Chiefs of Staff. (1996). US Joint Publication for
Doctrine for Combat Search and Rescue. Joint Publication 3-50.2

[Jonsson et al., 2000] Jonsson, A., Morris, P., Muscettola, N., Rajan, K. and Smith, B.
(2000). Planning in interplanetary space: theory and practice. Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and Scheduling,
Breckenridge, Colorado, USA, pp.177-186.

[Joslin and Pollack, 1995] Joslin, D. and Pollack, M. (1995). Passive and Active De-
cision Postponement in Plan Generation. Proceedings of the European Workshop
on Planning, Assisi, Italy.

[Killion, 2000] Killion, T. (2000). Decision Making and the Levels of War. Military
Review, 80(6):66-70.

[Kinny et al., 1992] Kinny, D., Ljungberg, M., Rao, A., Tidhar, G. and Werner, E.
(1992). Planned Team Activity. Proceedings of the Fourth European Workshop on
Modelling Autonomous Agents in a Multiagent World, Rome, Italy, pp.227-256.

[Kitano and Tadokoro, 2001] Kitano, H. and Tadokoro, S. (2001). RoboCup Rescue:
A Grand Challenge for Multiagent and Intelligent Systems. AI Magazine, 22(1):39-
52.

[Knoblock and Minton, 1998] Knoblock, C. and Minton, S. (1998). The Ariadne Ap-
proach to Web-based Information Integration. IEEE Intelligent Systems, 13(5):17-
20.

[Kunz and Rittel, 1970] Kunz, W. and Rittel, H. (1970). Issues as Elements of Infor-
mation Systems. Working Paper 131, Institute of Urban and Regional Development,
University of California, Berkeley, California, USA.

[Lever and Richards, 1994] Lever, J. and Richards, B. (1994). parcPLAN: a Plan-
ning Architecture with Parallel Actions, Resources and Constraints. Proceedings of
the Ninth International Symposium on Methodologies for Intelligent Systems, Za-
kopane, Poland, pp.213-222.

[Levesque et al., 1990] Levesque, J., Cohen, P. and Nunes, J. (1990). On Acting To-
gether. Proceedings of the Eighth National Conference on Artificial Intelligence,
Los Altos, California, USA, pp.94-99.

226 Bibliography

[Lino et al., 2003] Lino, N., Tate, A., Siebra, C. and Chen-Burger, Y. (2003). De-
livering Intelligent Planning Information to Mobile Devices Users in Collaborative
Environments. Proceedings of the IJCAI Workshop on Artificial Intelligence, Infor-
mation Access and Mobile Computing, Acapulco, Mexico.

[MacLean et al., 1991] MacLean, A., Young, R., Berllotti, V. and Moran, T. (1991).
Questions, Options, and Criteria: Elements of Design Space Analysis. Human-
Computer Interaction, 6(3-4):201- 250.

[Maheswaran et al., 2004] Maheswaran, R., Tambe, M., Varakantham, P. and Myers,
K. (2004). Adjustable Autonomy: Challenges in Personal Assistant Agents: A
Position Paper. In Klusch, M., Weiss, G. and Rovatsos, M. (Ed.), Agents and Com-
putational Autonomy: Potential, Risks and Solutions, Lecture Notes in Computer
Science, Vol. 2969, Springer Verlag, pp.187-194.

[McDermott et al., 1998] McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso M., Weld, D. and Wilkins, D. (1998). PDDL - The Planning Do-
main Definition Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control.

[Mishkin et al., 1998] Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper, B.
and Wilcox, B. (1998). Experiences with Operations and Autonomy of the Mars
Pathfinder Microrover. Proceedings of the IEEE Aerospace Conference, Aspen,
Colorado, USA, 2:337-351.

[Mohammed, 2001] Mohammed, J. (2001). Mission Planning for Formation-Flying
Satellite Cluster. Proceedings of the Fourteenth International Florida Artificial In-
telligence Research Society Conference, Key West, Florida, USA, pp.58-62.

[Moran et al., 1997] Moran, D., Cheyer, A., Julia, L., Martin, D. and Park, S. (1997).
Multimodal User Interfaces in the Open Agent Architecture. Proceedings of the
International Conference on Intelligent User Interfaces, Orlando, Florida, USA,
pp.61-68.

[MPAT, 2004a] MPAT. (2004). Multinational Planning Augmentation Team.
http://www2.apan-info.net/mpat/

[MPAT, 2004b] MPAT. (2004). Multinational Forces Standard Operating Procedures
http://www2.apan-info.net/mnfsop/

[Muscettola et al., 1998] Muscettola, N., Nayak, P., Pell, B. and William, B. (1998).
Remote Agent: to boldly go where no AI system has gone before. Artificial Intelli-
gence, 103(1-2):5-48.

[Myers, 1996] Myers, K. (1996). Advisable Planning Systems. Advanced Planning
Technology, AAAI Press, pp.206-209.

[Myers and Morley, 2003] Myers. K. and Morley, D. (2003). Policy-based agent di-
rectability. Hexmoor, H., Falcone, R. and Castelfranchi, C. (Ed.), Agent Autonomy,
pp. 187-210, Kluwer Academic Publishers.

Bibliography 227

[Myers et al., 2001] Myers, K., Jarvis, P. and Lee, T. (2001). CODA: Coordinating
Human Planners. Proceedings of the Sixth European Conference on Planning,
Toledo, Spain.

[Nareyek, 2000] Nareyek, A. (2000). Open World Planning as SCSP. Proceedings
of the AAAI-2000 Workshop on Constraints and AI Planning, Austin, Texas, USA,
pp.35–46.

[Narayek, 2001] Nareyek, A. (2001). Constraint-Based Agents - An Architecture for
Constraint-Based Modeling and Local-Search-Based Reasoning for Planning and
Scheduling in Open and Dynamic Worlds. Reading, Springer LNAI 2062.

[Nareyek et al., 2005] Nareyek, A., Freuder, E., Fourer, R., Giunchiglia, E., Goldman,
R., Kautz, H., Rintanen, J. and Tate, A. (2005). Constraints and AI Planning. IEEE
Intelligent Systems, 20(2):62-72

[Nwana et al., 1996] Nwana, H., Lee, L. and Jennings, N. (1996). Coordination in
Software Agent Systems. BT Technology Journal, 14(4):79-88.

[Pechoucek et al., 2002] Pechoucek, M., Marik, V. and Barta, J (2002). A Knowledge-
Based Approach to Coalition Formation. IEEE Intelligent Systems, 17(3):17-25.

[Pegram et al., 1999] Pegram, D., Amant, R. and Riedl, M. (1999). An approach to
visual interaction in mixed-initiative planning. Proceedings of the AAAI Workshop
on Mixed-Initiative Intelligence, Orlando, Florida, USA, pp. 15-23.

[Pollack, 1996] Pollack, M. (1996). Planning in Dynamic Environments: The DI-
PART System. Advanced Planning Technology, AAAI Press, pp.218-225.

[Polyak and Tate, 1998] Rationale in Planning: Causality, Dependencies and Deci-
sions. Knowledge Engineering Review, 13(3):247-262.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, New York, NY, USA.

[Rabideau et al., 1999] Rabideau, G., Knight, R., Chien, S., Fukunaga, A. and Govin-
djee, A. (1999). Iterative Repair Planning for Spacecraft Operations in the AS-
PEN System. Proceedings of the International Symposium on Artificial Intelligence
Robotics and Automation in Space, Noordwijk, The Netherlands.

[Rao and Georgeff, 1991] Rao, A. and Georgeff, M. (1991). Toward a Formal The-
ory of Deliberation and its Role in the Formation of Intentions. Technical report,
Australian Artificial Intelligence Institute, Victoria, Australia.

[Rao and Georgeff, 1995] Rao, A. and Georgeff, M. (1995). BDI Agents: From The-
ory to Practice. Proceedings of the First International Conference on Multiagent
Systems, San Francisco, California, USA, pp.312-319.

[Rao et al., 1993] Rao, A., Lucas, A., Morley, D. and Selvestrel, M. (1993). Agent-
Oriented Architecture for Air Combat Simulation. Technical Note 42, Australian
Artificial Intelligence Institute, Melbourne, Australia.

228 Bibliography

[Rathmell, 1999] Rathmell, R. (1999). A Coalition Force Scenario: Binni - Gate-
way to the Golden Bowl of Africa. Proceedings of the International Workshop on
Knowledge-Based Planning for Coalition Forces, Edinburgh, UK, pp.115-125.

[Rich and Sidner, 1997] Rich, C. and Sidner, C. (1997). Collagen: When Agents col-
laborate with People. Proceedings of the First International Conference on Au-
tonomous Agents, Marina del Ray, California, USA, pp.284-291.

[Richards et al., 2001] Richards, R., Houlette, R. and Mohammed, J. (2001). Dis-
tributed Satellite Constellation Planning and Scheduling. Proceedings of the Four-
teenth International Florida Artificial Intelligence Research Society Conference,
Key West, Florida, USA, pp.68-72.

[RoboCup, 2006] The RoboCup Federation. (2006). The RoboCup Soccer Web Page.
http://www.robocup.org

[Sacerdoti, 1977] Sacerdoti, E. (1977). A Structure for Plans and Behavior. New
York: American Elsevier.

[Saint-Andre, 2001] Saint-Andre, P. (2001) Jabber Technology Overview. Jabber
Software Foundation.

[Scerri et al., 2001] Scerri, P., Pynadath, D. and Tambe, M. (2001). Adjustable Auton-
omy in Real-world Multiagent Environments. Proceedings of the Fifth International
Conference on Autonomous Agents, Montreal, Canada, pp.300-307.

[Schmorrow, 2002] Schmorrow, D. (2002). The DARPA Control of Agent Based Sys-
tems (CoABS) Program and Challenges for Collaborative Coalitions. Proceedings
of the Second International Conference on Knowledge Systems for Coalition Oper-
ations, Toulouse, France, pp.182-183.

[Schreiber et al., 1999] Schreiber, G., Akkermas, H., Anjewierden, A., de Hoog, R.,
Shadbolt, N., Van de Velde, W. and Wielinga, B. Knowledge engineering and man-
agement. The CommonKADS methodology.Bradford book, MIT Press, London.

[Schwalb and Vila, 1998] Schwalb, E. and Vila, L. (1998). Temporal Constraints: A
Survey. Constraints, Kluwer Academic Publishers, Boston, 3:129-149.

[Siebra, 2005] Siebra, C. (2005). Planning Requirements for Hierarchical Coalitions
in Disaster Relief Domains. Expert Update, 8(1):20-24, Summer 2005, The Spe-
cialist Group on Artificial Intelligence, British Computer Society (BCS-SGAI).

[Siebra and Ramalho, 1999] Siebra, C. and Ramalho, G. (1999). Uma Arquitetura
para Suporte de Atores Sinteticos em Ambientes Virtuais. Second Brazilian Work-
shop on Artificial Intelligence, Rio de Janeiro, Brazil.

[Siebra and Tate, 2003] Siebra, C. and Tate, A. (2003). I-Rescue: A Coalition Based
System to Support Disaster Relief Operations. Proceedings of the Third Interna-
tional Conference on Artificial Intelligence and Applications, Benalmadena, Spain,
pp.289-294.

Bibliography 229

[Siebra and Tate, 2004] Siebra, C. and Tate, A. (2004). Implementing Hierarchical
Agent-Human Teamworks via Constraint-Based Models. Proceedings of the In-
ternational Conference on Artificial Intelligence and Applications, as part of the
Twenty-Second International Multi-Conference on Applied Informatics, Innsbruck,
Austria.

[Siebra and Tate, 2005] Siebra, C. and Tate, A. (2005). Integrating Collaboration and
Activity-Oriented Planning for Coalition Operations Support. Springer Lecture
Notes on Artificial Intelligence, (Volume to be published).

[Siebra et al., 2004] Siebra, C., Tate, A. and Lino, N. (2004). Planning and Represen-
tation of Joint Human-Agent Space Missions via Constraint-Based Models. Fourth
International Workshop on Planning and Scheduling for Space, Darmstadt, Ger-
many, pp.180-188.

[Sierhuis et al., 2003] Sierhuis, M., Bradshaw, J., Acquisti, A., Hoof, R., Jeffers, R.
and Uszok, A. (2003). Human-Agent Teamwork and Adjustable Autonomy in Prac-
tice. Proceedings of the Seventh International Symposium on Artificial Intelligence,
Robotics and Automation in Space, Nara, Japan.

[Silva et al., 2001] Silva, D., Siebra, C., Valadares, J., Frery, A., Falcao, J. and Ra-
malho, G. (2001). Synthetic Actor Model for Long-Term Computer Games. Virtual
Reality, 5:1-10.

[Smith, 1988] Smith, R. (1988). The Contract Net Protocol: High-Level Communica-
tion and Control in a Distributed Problem Solver. Distributed Artificial Intelligence,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 357–366.

[Smith, 1994] Smith, S. (1994). OPIS: A Methodology and Architecture for Reactive
Scheduling Intelligent Scheduling, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, pp. 29-66.

[Smith et al., 1998] Smith, B., Sherwood, R., Govindjee, A., Yan, D., Rabideau, G.,
Chien, S. and Fukunaga, A. (1998). Representing Spacecraft Mission Planning
Knowledge in ASPEN. Proceedings of the AI Planning Systems Workshop on
Knowledge Acquisition, Pittsburgh, Pennsylvania, USA.

[Sqalli and Freuder, 1996] Sqalli. M. and Freuder, E. (1996). Inference-Based Con-
straint Satisfaction Supports Explanation. Proceedings of the Thirteenth National
Conference on Artificial Intelligence, Portland, Oregon, USA, pp.318-325.

[Stefik, 1981] Stefik, M. (1981). Planning with constraints (MOLGEN: Part 1). Arti-
ficial Intelligence, 16(2):111-140.

[Sycara, 1989] Sycara, K. (1989). Multi-Agent Compromise via Negotiation. Dis-
tributed Artificial Intelligence, Volume 2, Morgan Kaufmann, Los Altos, CA.

[Sycara, 1998] Sycara, K. (1998). Multiagent Systems. AI Magazine, 19(2):79-92.

[Tambe, 1997a] Tambe, M. (1997). Towards Flexible Teamwork. Journal of Artificial
Intelligence Research, 7:83-124.

230 Bibliography

[Tambe, 1997b] Tambe, M. (1997). Agent Architectures for Flexible, Practical Team-
work. Proceedings of the Fourteenth National Conference on Artificial Intelligence,
Providence, Rhode Island, USA, pp. 22-28.

[Tambe, 2003] Tambe, M. (2003). Multiagent and Agent-Human Teamwork: Theory
and Practice. IJCAI-03 Tutorial, Acapulco, Mexico.

[Tate, 1977] Tate, A. (1977). Generating Project Networks. Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mas-
sachusetts, USA, pp.888-893.

[Tate, 1995] Tate, A. (1995). Integrating Constraint Management into an AI Planner.
Journal of Artificial Intelligence in Engineering, 9(3):221-228.

[Tate, 1997] Tate, A. (1997). Mixed Initiative Interaction in O-Plan. Proceedings of
the AAAI Spring Symposium on Computational Models for Mixed Initiative Inter-
action, Stanford, California, USA.

[Tate, 2003] Tate, A. (2003). � I-N-C-A � : an Ontology for Mixed-Initiative Synthesis
Tasks. Proceedings of the IJCAI Workshop on Mixed-Initiative Intelligent Systems,
Acapulco, Mexico.

[Tate, 2004] Tate, A. (2004). I-X: Technology for Intelligent Systems.
http://www.aiai.ed.ac.uk/project/ix/

[Tate et al., 1994] Tate, A., Drabble, B. and Kirby, R. (1994). O-Plan2: An Open
Architecture for Command, Planning and Control. In Fox, M. and Zweben, M.
(Ed.), Intelligent Scheduling, Morgan Kaufmann, pp.213-239.

[Tate et al.,2002] Tate, A., Dalton, J. and Stader, J. (2002). I-P2 - Intelligent Process
Panels to Support Coalition Operations. Proceedings of the Second International
Conference on Knowledge Systems for Coalition Operations, Toulouse, France,
pp.184-190.

[Tate et al., 2004] Tate, A., Dalton, J., Siebra, C., Aitken, S., Bradshaw, J. and Uszok,
A. (2004). Intelligent Agents for Coalition Search and Rescue Task Support. Pro-
ceedings of the Nineteenth AAAI National Conference on Artificial Intelligence, San
Jose, California, USA.

[Tidhar et al., 1996] Tidhar, G., Rao, A. and Sonenberg, E. (1996). Guided Team Se-
lection. Proceedings of the Second International Conference on Multiagent Systems,
Kyoto, Japan, pp.369-376.

[U.S Marine, 1994] U.S. Marine Corps. (1994). Intelligence Preparation of the Bat-
tlefield. Doctrine Division, Department of Army, Washington, DC, USA.

[Valente et al., 1999] Valente, A., Russ, T., MacGregor, R. and Swartout, W. (1999).
Building and (Re)Using an Ontology of Air Campaign Planning. IEEE Intelligent
Systems, 14(1):27-36.

Bibliography 231

[Verfaillie and Schiex, 1994] Verfaillie, G. and Schiex, T. (1994). Solution Reuse in
Dynamic Constraint Satisfaction Problems. Proceedings of the Twelfth National
Conference on Artificial Intelligence, Seattle, Washington, USA, pp.307-312.

[Verfaillie et al., 2003] Verfaillie, G., Garcia, F. and Peret. L. (2003). Deployment and
Maintenance of a Constellation of Satellites. Proceedings of the ICAPS Workshop
on Planning under Uncertainty and Incomplete Information, Trento, Italy.

[Walker, 1999] Walker, E. (1999). Coalition Planning for Operations Other Than
War. Proceedings of the International Workshop on Knowledge-Based Planning
for Coalition Forces, Edinburgh, UK, pp.23-27.

[Wilkins, 1988] Wilkins, D. (1988). Practical Planning: Extending the Classical AI
Planning Paradigm. Morgan-Kaufmann, San Francisco, California, USA.

[Wilkins and Myers, 1998] Wilkins, D. and Myers, K. (1998). A Multiagent Planning
Architecture. Proceedings of the Forth International Conference on AI Planning
Systems, Pittsburgh, USA, pp.154-162.

[Wilkins et al., 1995] Wilkins, D., Myers, K., Lowrance, J. and Wesley, L. (1995).
Planning and Reacting in Uncertain and Dynamic Environments. Journal of Exper-
imental and Theoretical AI, 7(1):197-227.

[Zetocha et al., 2000] Zetocha, P., Self, L., Wainwright, R., Burns, R., Brito, M. and
Surka, D. (2000). Commanding and Controlling Satellite Clusters. IEEE Intelligent
Systems, 15(6):8-13.

