
Multi-Perspective Modeling for Knowledge Management
and Knowledge Engineering

John Kingston

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

Ph.D.

University of Edinburgh
2007



ii



Abstract

It seems almost self-evident that “knowledge management” and “knowledge engineer-
ing” should be related disciplines that may share techniques and methods between
them. However, attempts by knowledge engineers to apply their techniques to knowl-
edge management have been praised by some and derided by others, who claim that
knowledge engineers have a fundamentally wrong concept of what “knowledge man-
agement” is. The critics also point to specific weaknesses of knowledge engineering,
notably the lack of a broad context for the knowledge.

Knowledge engineering has suffered some criticism from within its own ranks, too,
particularly of the “rapid prototyping” approach, in which acquired knowledge was
encoded directly into an iteratively developed computer system. This approach was
indeed rapid, but when used to deliver a final system, it became nearly impossible to
verify and validate the system or to maintain it. A solution to this has come in the
form of knowledge engineering methodology, and particularly in the CommonKADS
methodology, which proposes developing a number of models of the knowledge from
different viewpoints at different levels of detail. CommonKADS also offers a library
of generic models for the “inference structures” – the steps by which certain types
of knowledge-based task are tackled. CommonKADS is now the most widely used
non-proprietary knowledge engineering methodology.

The purpose of this thesis is to show how an analytical framework originally intended
for information systems architecture can be used to support knowledge management,
knowledge engineering and the closely related discipline of ontology engineering. The
framework suggests analysing information or knowledge from six perspectives (Who,
What, How, When, Where and Why) at up to six levels of detail (ranging from “scop-
ing” the problem to an implemented solution). The application of this framework to
each of CommonKADS’ models is discussed, in the context of several practical appli-
cations of the CommonKADS methodology. Strengths and weaknesses in the models
that are highlighted by the practical applications are analysed using the framework,
with the overall goal of showing where CommonKADS is currently useful and where
it could be usefully extended. The same framework is also applied to knowledge man-
agement; it is established that “knowledge management” is in fact a wide collection of
different approaches and techniques, and the framework can support and extend every
approach to some extent, as well as the decision which approach is best for a particular
case. Specific applications of using the framework to model medical knowledge and to
resolve common problems in ontology development are presented.

The thesis also includes research on mapping knowledge acquisition techniques to
CommonKADS’ models (and to the framework); proposing some extensions to Com-
monKADS’ library of generic inference structures; and it concludes with a suggestion
for a “pragmatic” KADS for use on small projects. The aim is to show that this frame-
work both characterises the knowledge required for both knowledge management and
knowledge engineering, and can provide a guide to good selection of knowledge man-
agement techniques. If the chosen technique should involve knowledge engineering, the
wealth of practical advice on CommonKADS in this thesis should also be beneficial.
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Chapter 1

Introduction

The subjects of this thesis are knowledge management, knowledge engineering, and

ontological engineering. It has become increasingly clear that these subjects are in-

terrelated. The goals of this thesis are to propose an underlying framework for all

three of these subjects; to discuss the application of this framework and its potential

advantages; and to illustrate this with detailed worked examples.

1.1 Thesis overview

The work in this thesis spans several years’ worth of applied research. The research

began by applying the CommonKADS methodology to a number of knowledge engi-

neering projects, identifying strengths and weaknesses of the method, and proposing

improvements to it. The projects required knowledge acquisition and/or knowledge

based system development to a commercially acceptable standard. Typically, each

project involved doing some knowledge acquisition, deciding which CommonKADS

model(s) to develop, and then working with the “official” definition of the model and

the acquired knowledge to produce an instantiated version of that model that repre-

sented the acquired knowledge. Depending on the results of these efforts, the next

stage might include further knowledge acquisition and model instantiation; identifying

weaknesses in the model definition that made it difficult or impossible to represent

features of the task, and adapting the model accordingly; or even partially discarding

the models recommended by CommonKADS in favour of another modeling technique.

Each task therefore constituted an empirical test of the adequacy and applicability of

1
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CommonKADS models to real-world knowledge modeling.

After a while, the various projects described above spawned broader research into a

consideration of the principles underlying CommonKADS. Experience has suggested

that applying CommonKADS is not as straightforward as it seems (see for example the

results of the Sisyphus project [68], in which four research groups using CommonKADS

to solve the same problem produced four very different knowledge models), and the

goal of the research was to consider the basis on which CommonKADS was built in

order to understand how to use it most effectively. Why were some knowledge models

recommended and others not? How did the models relate to each other? This was

coupled with an ongoing interest in which models were most useful in practice and

which might not be needed in typical knowledge engineering projects.

The primary observation from this research was that CommonKADS is based on mod-

eling knowledge and information using multiple perspectives at multiple levels of detail,

and that as detail is added, an organisational goal is gradually refined into domain-

specific or task-specific knowledge, which is then transformed into a design specification

for a knowledge based system. Given that CommonKADS begins by modeling organi-

sational knowledge, it can be seen that the research described in this thesis will touch

on principles of knowledge management as well as knowledge engineering.

Chapters 2 to 5 of this thesis focus on knowledge management and on ontology engi-

neering. Chapter 2 describes the multi-perspective modeling approach used through-

out this thesis, and considers its implications and benefits for the selection and use

of the various approaches and techniques that are collectively referred to as “knowl-

edge management”. Chapters 3 and 4 look at the implications of the multi-perspective

framework for ontology development. Chapter 5 then begins the examination of the

CommonKADS methodology by considering an application of CommonKADS’ “knowl-

edge management level” models, using a range of modeling formats.

The remaining chapters (chapter 6 onwards) discuss applications of CommonKADS

models within various projects, including discussion of knowledge acquisition, generic

knowledge models, ontology, and other issues. The chapters are ordered according

to the recommended order of model development within CommonKADS: so chapter
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5 comes first, followed by chapter 6 which deals with the Agent and Communication

Models (which are seen as representing part of the organisational context within which

a knowledge based system can be developed, though the chapter argues that revised

versions of these models are also useful to model the knowledge for the knowledge

based system itself); chapters 7 through to 11 discuss the Expertise Model; chapter

12 discusses the Design Model; and chapter 13 serves as a summary by proposing

“Pragmatic KADS” i.e. identifying a minimal set of CommonKADS models for use on

small KBS development projects.

1.2 Definitions

1.2.1 Knowledge Management

The exact definition of knowledge management has been, and is, a matter of consider-

able debate. Definitions range from “a method for gathering information and making

it available to others”1 through “capturing, organizing, and storing knowledge and

experiences of individual workers and groups within an organization and making this

information available to others in the organization”2 to “the strategic use of infor-

mation and knowledge resources to an organizations best advantage”3. Perhaps the

most widely known definition (though arguably one that only describes some aspects

of knowledge management) is that of Nonaka and Takeuchi [132], who argue that a

successful KM program needs to “convert internalised tacit knowledge into explicit

codified knowledge in order to share it, but also on the other hand for individuals and

groups to internalise and make personally meaningful codified knowledge once it is

retrieved from the KM system.”

It’s clear that the common theme is the application of knowledge throughout an or-

ganisation. The disagreements that arise are often connected with the focus of the

definition ... is it on the knowledge itself, the process of distributing that knowledge,

or the people who give/receive the knowledge? These disagreements are partly based

on fundamentally different views on the nature of knowledge; those holding construc-

1 www.qualishealth.org/qi/collaboratives/glossary.cfm

2 library.ahima.org/xpedio/groups/public/documents/ahima/pub bok1 025042.html

3 www.gov.bc.ca/prem/popt/service plans/srv pln/pssg/appen a.htm
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tivist views of knowledge tend to favour approaches that focus on people, while those

with a more cognitive view of knowledge are more inclined to focus on the knowledge

itself. These views are discussed further in the review chapters of this thesis (chap-

ters 16 to 15), but for now, it will simply be noted that a ‘spectrum’ of definitions

exists, ranging from knowledge engineering solutions (‘transactional’ knowledge man-

agement) to community-based approaches (‘innovation’ knowledge management). This

‘KM spectrum’ was first proposed in [39] and was further discussed and developed in

[78].

1.2.2 Knowledge engineering

Knowledge engineering is the science/practice of developing knowledge based systems.

It is directly analogous to software engineering of more conventional computer pro-

grams. It requires:

• identifying a human expert or another source of valuable knowledge;

• acquiring that knowledge in a systematic form;

• encoding that knowledge in a knowledge based computer program.

Typically, the resulting “knowledge based system” will ask users of the system for

information and then process that information according to the knowledge that it

possesses, in order to produce a reasoned conclusion. Many systems can also provide

explanations of their reasoning.

1.2.3 CommonKADS: A Knowledge Engineering methodology

CommonKADS (and its predecessor, KADS – the acronym stood for either “Knowl-

edge Acquisition and Design System” or “Knowledge Analysis and Design System”)

views knowledge engineering as a modeling activity, where each model is “a purposeful

abstraction of some part of reality” (i.e. an “intermediate representation” between

reality and some application of that model e.g. implementation in a knowledge based

system). Each model focuses on certain aspects of the knowledge and ignores others. A
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knowledge engineering project entails the construction of a set of models that together

constitute the knowledge that is being engineered. Knowledge models typically consist

of one or more diagrams containing nodes (boxes, ellipses, or other icons) represent-

ing knowledge items, and arcs (arrows) between nodes representing input/output, flow

of control, or other relationships. CommonKADS proposes a suite of six knowledge

models that could be developed; if all are developed, they should gradually transform

knowledge from a set of organisational needs & requirements to a high level design

specification for a knowledge based system. The six models are:

• An Organisational model that represents the processes, structure and resources

within an organisation, with the aim of identifying fruitful areas for better ap-

plication of knowledge;

• A Task model to show the activities carried out in the course of a particular

organisational process;

• An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

• A Communication model to show the communication required between agents

during a process;

• An Expertise4 model, which is a model of the expertise required to perform a

particular task;

• A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

1.2.4 Ontology

Like “knowledge management”, the term “ontology” has been defined in various ways.

Guarino & Giaretta [77] have identified no less than eight different meanings of it in

the relevant literature:

4 The “CommonKADS book” [147] refers to this model as the “Knowledge Model”. While the original
label of “Expertise Model” was sometimes inaccurate, because the knowledge needed to carry out
tasks is not always expert knowledge, “knowledge model” is a very general term that could encompass
any or all of the CommonKADS models. I have chosen to use the original name to avoid confusion
with multiple other uses of the terms ‘knowledge’ and “knowledge model” within this thesis.
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1. Ontology as a philosophical discipline

2. Ontology as an informal conceptual system

3. Ontology as a formal semantic account

4. Ontology as a specification of a “conceptualization”

5. Ontology as a representation of a conceptual system via a logical theory

• characterized by specific formal properties

• characterized only by its specific purposes

6. Ontology as the vocabulary used by a logical theory

7. Ontology as a (meta-level) specification of a logical theory

There are three main themes in the above list. Definition 1 is quite different from all

the others, and reflects the original meaning of the word ‘ontology’, before it became a

widely used term in the knowledge management community ... ontology is a philosoph-

ical discipline is “the study of the nature of being, reality and substance”. Definitions

2 and 3 conceive an ontology as a conceptual “semantic” entity, either formal or in-

formal, while according to the interpretations 5-7 an ontology is a specific “syntactic”

object ... or rather, a syntactic descriptive scheme that can be used to label other

objects and to describe their interrelationships.

For the purposes of this thesis, a pragmatic definition will be used, that follows the

latter theme. The definition is based on that of Gruber [75], who stated (inter alia)

that “an ontology is an explicit specification of a conceptualisation.” To this, I will

add the following: “In knowledge engineering practice, an ’ontology’ often equates to

the definition of what can be represented within a computer program.”

1.2.5 Knowledge Engineering Methods: A Brief History

Early approaches and reusability

When expert systems initially emerged from the research laboratory into the commer-

cial world with systems such as MYCIN [154] and PROSPECTOR [25], they were
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typically developed by “rapid prototyping”. This was a recognised technique in soft-

ware engineering, where a “quick and dirty” version of the final system was developed

in order to test out certain programming approaches, and to show to the end users as

an aid to requirements capture. Since the acquisition of expert knowledge has many

similarities to requirements capture, knowledge engineers seized on this method as a

way of quickly developing an impressive-looking system. The method employed was

typically to obtain some knowledge from the expert, to program this into an “expert

system shell” usually in the form of IF-THEN rules, and then to show the resulting

program to the expert both to verify that the system correctly reflected the expert’s

knowledge to date and also as an aide memoire to the acquisition of further knowledge.

The method was very effective in triggering expert’s memories and in developing small

systems with impressive speed. However, in software engineering, rapidly prototyped

systems are normally considered to be “throwaway prototypes”, whereas early expert

system developers often developed the prototype to the point where it included suffi-

cient expert knowledge to be considered an adequate expert system, and then delivered

it to the users. This led to considerable problems when the knowledge needed updat-

ing or the system needed future maintenance, because there was often little or no

documentation describing the system’s structure, nor was there any “intermediate rep-

resentation” of the expert’s knowledge. In one case (reported in [80]), even the original

designer and programmer of an expert system was unable to understand its code six

months after the system was initially delivered.

Rapid prototyping led to some other problems, too. In some cases, the expert’s knowl-

edge was not necessarily suitable for encoding as IF-THEN rules, but the constraints

of the programming environment led to knowledge engineers trying to squeeze the

knowledge into that format5. Another problem was that knowledge engineers who

developed several systems, particularly in the same domain, began to notice certain

patterns emerging but had no way of recording thos patterns for re-use in future sys-

tems. Eventually, it was realised that the patterns recurred across domains as long

as the same type of task was being tackled (see e.g. [95]). It was this observation,

5 For an illustration of a task where the same system was programmed using three different “expert
system shells” offering different programming environments, and the advantages of having object-
oriented programming available to complement IF-THEN rules, see [84].
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coupled with a desire to introduce some good practice from software engineering into

the development of expert systems, that led to the development of KADS.

Software engineering and the development of CommonKADS

Software engineering methods were largely ignored by early expert system developers.

The reasons are not clear; it may be that most of these developers came from research

laboratories where such methods were not part of the culture, or that the methods

themselves were considered inadequate for a system that encoded expert knowledge. If

the latter is true, it may be that expert system developers were actually criticising the

wrong target – the “waterfall model”, first identified by Royce [143]. In the waterfall

model, the various phases of software engineering (requirements, design, implementa-

tion, verification and maintenance) proceed in a purely sequential manner; once a stage

has been completed, and its outputs handed on to the next stage, it is never revisited.

This model has certain advantages; getting the early stages 100% right saves consid-

erable time in later stages, and also facilitates the distribution of a project between

departments. But it has been heavily criticised for its lack of iteration; in fact, Royce

himself only identified it in order to make this criticism and to recommend a more

iterative model. Since rapid prototyping of expert systems is perhaps the ultimate

iterative system development technique, it is hardly surprising that a “culture gap”

existed between expert system developers and software engineering methods that were

perceived to be based on the waterfall model.

Yet software engineering methods offer far more than just a lifecycle process. They also

offer recommended documents that are needed for describing the outputs of each stage;

notations for modeling the flow of information and other processes within the planned

software system; and design and testing techniques. The original KADS methodology

was largely focused on its library of “interpretation models” (i.e. attempts to capture

some of the patterns that recurred across different knowledge-based tasks), but Com-

monKADS was explicitly designed to incorporate aspects of other software engineering

methods. Its notation drew on methods such as PRINCE [133], Rumbaugh’s and Your-

don’s object-oriented state diagrams [144] [32], and Jackson’s structured programming

methods [54], especially in the notation for its diagrams. It also extended its libraries
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(it started to build a library of “problem solving methods” – more detailed process

control descriptions for knowledge based tasks) and created a conceptual modeling

language (CML) into which instantiated knowledge models could be translated. There

was even a formal modeling language (FML, later (ML)2) into which CML could be

transformed for logical verification purposes; this language was highly regarded in the

knowledge engineering community [181]. When the CommonKADS book was pub-

lished in 1999 [147], a number of documents were recommended to accompany (or, in

some cases, embody) some of the knowledge models.

Today, most software engineering methods prefer a “spiral lifecycle” model (see [11])

in which (in general terms) several iterations of the entire ‘waterfall’ are carried out,

with risk assessments performed before each new iteration is begun; and many of the

software engineering notations that CommonKADS drew on have been superseded by,

or incorporated into, the Unified Modeling Language (UML) [137]. CommonKADS’

notation, as defined in the CommonKADS book, has many similarities with UML

notation.

Other knowledge engineering methods and knowledge engineering work-
benches

KADS and CommonKADS were not the only knowledge engineering methods devel-

oped in late 1980s and early 1990s, but they were easily the most influential. At least

one project funded under the ESPRIT programme, VITAL (see e.g. [51]), aimed to

provide a competing methodology and an associated workbench6; however, while the

resulting method was considerably stronger than CommonKADS on the development

and inclusion of knowledge acquisition tools, its library of generic tasks was largely

copied from KADS. A number of management consultancies also developed their own

proprietary methods, but significantly, Touche Ross chose to use KADS and Com-

monKADS, and used them with considerable commercial success.

Following a different thread, Chandrasekaran’s Generic Tasks approach [27] and Steels’

6 A ‘workbench’ is a software system supporting the use of a method. In software engineering they
are often known as CASE (Computer-Aided Software Engineering) tools. The obvious correlate
for knowledge engineers would be CAKE tools; however, this acronym struggled to find widespread
acceptance, and ‘workbench’ is the preferred term in this thesis.
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Components of Expertise [161] provided patterns that represented generic knowledge

based tasks, but in smaller components than KADS did. One of the goals of developing

CommonKADS was to incorporate these approaches into KADS, or at least to make

them usable in parallel. This is discussed in more detail in chapter 8.

Three different workbenches were developed to support KADS: ILOG’s KADSTool, a

well-designed commercial product; Bull’s OpenKADSTool, which attempted to sup-

port a methodology derived from the original KADS and developed in parallel with

CommonKADS; and the CommonKADS workbench, developed as part of the KADS-

II project, which had the most functionality (it allowed output into CommonKADS’

Conceptual Modeling Language, for example, and even promised a CML to FML con-

verter), but was based on software that was perceived not to be commercially robust

(SICStus Prolog). For a comparison of these three workbenches, see [101].

Today, the three KADS workbenches are no longer available. The knowledge acqui-

sition tools from the VITAL workbench survive in the PC Pack tool from Epistemics

Ltd.

1.2.6 Overview of the thesis

The key contributions of this thesis to the field of knowledge engineering are:

• The smooth integration of knowledge management with knowledge engineering.

Knowledge based systems (or other outputs of the knowledge engineering process)

are seen as one possible method of implementing knowledge management for a

particular organisational task; further, it is argued that the analyses carried out

to determine what knowledge management technique is appropriate for a task

can or should be based on knowledge engineering methods;

• A step-by-step guide is given to using the CommonKADS methodology, from

organisational analysis through to knowledge based system design and imple-

mentation;

• Some proposals are made for additions to CommonKADS’ library of inference

structures (see Chapters 9 and 10) and problem solving methods (see Chapter
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8);

• Each aspect of CommonKADS is analysed for its contribution to a typical knowl-

edge engineering task, and a list of the models that are absolutely necessary is

proposed for knowledge engineers carrying out small KBS projects.
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Chapter 2

Multi-Perspective Modeling: A
Framework for Knowledge
Representation and Knowledge
Management1

2.1 Introduction

The subject of this chapter is the modeling of organisational knowledge for the purpose

of knowledge management. Modeling expresses concepts that allow each part of an

organisation to understand and contribute to its own development. A good model can

communicate much of a company’s purpose to stakeholders in the business, whether

they are employees, shareholders, or customers. Modeling can be applied to all stages of

business and systems development, whether at the higher levels of considering business

structure and business processes, or looking at particular tasks or knowledge assets in

more detail.

Many readers will be familiar with modeling of information and of information systems.

The basic approach to modeling knowledge is similar; models typically consist of an-

notated box-and-arrow diagrams, representing processes, taxonomic classification, or

other relationships. This is possible because the relationship between knowledge and

information is similar to the relationship between information and data; information

1 This chapter is an extended version of a paper published in the proceedings of AI-METH 05, Gliwice,
Poland, November 2005.

13
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consists of data that are linked or applied in some way to provide relevance or purpose,

while knowledge consists of pieces of information that are linked or applied, usually in

order to make decisions. To give an example, a car driver may possess the following

data: the price of petrol, the fuel level in his car, the fuel consumption rate of his car,

the distance to his destination, and the amount of cash in his wallet. Information can

be obtained from these data by calculation (how much it would cost to fill the tank;

how much petrol the driver can afford; whether either of these amounts of petrol will

be sufficient to get to the destination). Decisions can then be made based on this infor-

mation; e.g. that it’s necessary for the driver to drive home to collect his credit card,

or that he must drive slowly in order to reduce the fuel consumption rate of the car.

There is some debate whether the knowledge resides in the set of possible decisions,

in the justification for those decisions, or in the deductive process itself; this chapter

considers that any of these may constitute knowledge.

The key to the use of knowledge models within knowledge management is that models

only become meaningful to an enterprise when they cause action and provoke thought.

Since knowledge management typically focuses on knowledge already within the or-

ganisation that is at present being under-used, then understanding the organisation,

provoking thought and supporting action are all crucial aspects of knowledge man-

agement. Models also promote understanding across different business groups in an

organisation. However, some knowledge management researchers have suggested that

modeling’s greatest strength - the elimination of irrelevant information - is also its

greatest weakness, especially in cases where there are many interacting patterns of in-

formation and knowledge, which must all be taken into account in order to understand

the real world fully. While this criticism is primarily based on fundamentally differ-

ing views of the nature of knowledge and hence of knowledge management (a claim

which is discussed more fully in [78]), limitations caused by such elimination do exist,

and those who wish to model knowledge must either accept these limitations or try to

overcome them.

A possible solution to this problem can be found in the use of multi-perspective modeling

- the creation of a number of different models of the same artifact, from different

viewpoints. The term “multi-perspective modeling” has been used in multiple ways by
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previous authors (see discussion below); in this paper, multi-perspective modeling refers

to building a number of models of the same knowledge but with different emphases.

For example, one model might focus on processes, another on agents, another on

communication, and another on concepts or resources.

The multi-perspective approach proposed in this chapter is based on the Zachman

framework for Information Systems Architecture, which provides a framework for cate-

gorizing different information perspectives, at different levels of detail. This chapter de-

scribes the Zachman framework and the derived multi-perspective modeling approach

in some detail, then shows how the models from an existing information modeling

method (UML, the Unified Modeling Language) and an existing knowledge modeling

method (CommonKADS) map onto this framework. The chapter then extends the

framework by applying its principles at a meta level, and validates the usefulness of

the framework by showing how a couple of well known software development techniques

can be derived from this meta-analysis.

2.2 The Zachman framework

The Information Systems Architecture framework proposed by Sowa & Zachman [197]

[159] is intended to provide a framework for creating all the models necessary to create

an overall model of an organisation or enterprise. John Zachman describes it as “a sim-

ple, logical structure of descriptive representations for identifying models that are the

basis for designing the enterprise and for building the enterprise’s systems” [197]. It is

also a good framework for characterizing the role, function and purpose of information

systems within an organisation. The framework consists of a 6x6 matrix (see Table

2.1), whose two dimensions represent the perspective being taken on information and

the level of detail at which this information is being represented. It turns out that the

level of detail corresponds closely with progress in a software development project. So,

if the result of knowledge management is to propose a software development project (or

any other project that requires development of some artifact by progressive refinement

of a specification) then the Zachman framework should provide a structure for that

project.
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Table 2.1: The Zachman framework

2.2.1 Perspectives in the Zachman framework

The “perspectives” dimension of the Zachman framework proposes that six perspectives

on information (and, by extension, knowledge) are necessary, characterised by the

phrases who, what, how, when, where and why. A multi perspective approach to

knowledge modeling will create models that represent only the knowledge relevant to

that perspective: for example, the “who” perspective will focus on agents, representing
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their capabilities and responsibilities, while the “how” perspective will focus on tasks

or processes that need to be performed. A full description of the expected contents of

each perspective can be found in Table 2.2, which is taken from [197].

Table 2.2: Description of perspectives

Why is this approach useful? Well, let us assume that a specialised, experienced de-

partment, whose task is to diagnose unusual faults with products and recommend

solutions, has been identified as a “knowledge asset” during a knowledge management

feasibility exercise. The different perspectives can be thought of as different managers’

views on the department. For example, an operations manager might view the depart-

ment as a user of external resources and a solver of specialised problems; a personnel

manager might view the department as a network of interactions between agents (i.e.

people with defined roles); and the CEO might view it as a producer of reports and a

necessary contributor to the company’s overall vision to supply high quality products

to the market. In other words, the operations manager is concerned with “what” the

department consumes , “where” these resources come from and “how” the department

contributes to the overall process; the personnel manager is concerned with “who” is

involved; and the CEO is concerned with “why” that department exists as well as with

“what” its outputs are. So by modeling each manager’s view separately, while referring

to the same concepts and relationships, it is possible to obtain a more complete view
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of the department than any of the managers hold, whilst enabling each of them to see

(and to verify and approve) a specific model representing their perspective.

2.2.2 Levels of detail in the Zachman framework

As mentioned above, the Zachman framework proposes six levels of detail for models.

Starting from the most general, these are labeled as “scope”, “enterprise”, “system”,

“technology”, “detail”, and “functioning enterprise”2 . These are described further in

Table 2.3, which is partly drawn from [34].

Table 2.3: Description of levels of detail in the Zachman framework

These levels can be seen as the concerns of different professions [159], whereas the

previous section proposed that the perspectives can be considered to be the views of

different managers. So if the overall task is the design and construction of a building,

then the architect is concerned with the broad view of gross sizing, shape and spatial

relationships, as well as the overall structure of the building; the owner is concerned

with floor plans and facilities; the designer must consider strength, support and sta-

bility of each floor; the builder is concerned with beams, junctions, and concrete; the

subcontractor is concerned with a single aspect of the builder’s job (delivering beams,

welding junctions, etc); and the bricklayer and the carpenter are the ones who do most

2 Strictly speaking, the Zachman framework proposes five levels of models, plus the implementation
of those models. As a result, the functioning enterprise level, also called the “implementation” level,
does not appear in some versions of the Zachman framework.
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of the actual building. So each profession must look at the same building at a differ-

ent level of detail in order to understand the design fully enough to carry out their

particular job.

It’s worth noting that the six levels of detail require two rather different types of

model. The first three levels - scope, enterprise and system - are increasingly detailed

models of existing processes and related information/knowledge, while the remain-

ing levels - technology, detailed representation and implementation - are increasingly

detailed representations of a design that meets the requirements of representing a par-

ticular business process. In the language of the CommonKADS methodology (which

is discussed further below), the transformation from one level to the next is usually

a refinement task - describing something in greater detail – but in the case of the

transformation from the system level to the technology level, it is more of a selection

task - choosing design techniques that are suitable for the modeled knowledge. This

implies that this transformation is likely to be knowledge-intensive compared with the

other transformations.

2.2.3 The multi-perspective matrix: the Zachman framework

Having established the need for representing different perspectives, and different levels

of detail, the most important remaining question for practical purposes is whether

all six perspectives need to be modeled at all six levels of detail. To answer this,

let’s return to the example above where an entire department was considered to be a

knowledge asset. Now let’s consider a collection of help desk reports compiled by this

department to be a knowledge asset at a lower level of detail (the “system level”, in

Zachman’s terms). Note that a similar pattern emerges: the departmental librarian

treats the reports as a resource to be managed (“what”), newly recruited technicians

may treat them as a step by step guide to problem solving (“how”), the designer of

the company intranet might link them together as interdependent knowledge sources

(“where” and, if they are linked to their authors for the purposes of establishing trust,

also “who”), while the quality manager may be mostly concerned that the reports

provide sufficient evidence of good practice (“why”) to show that the departmental

quality system is working. For good measure, let’s extend the example to the design
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of a help desk decision support system (i.e. the “technology level”); the designer needs

to consider the static objects (“what”), the process flows and inferences (“how), the

user interface and other interfaces (“who” and “where”), and flow of control (“when”).

In other words, most of the perspectives do seem to be needed at each level of detail.

The Zachman framework is therefore taken to be a reasonably complete specification

of the models needed to represent an organisation or enterprise fully.

2.2.4 Different approaches to multi-perspective modeling

Before continuing with discussion of perspectives and levels of detail in the context

of the Zachman framework, a diversion is necessary to discuss the use of the term

“multi-perspective modeling” in software engineering literature. The reason for this is

that two or three distinct uses of the term have emerged, but have not been clearly

distinguished. These uses are characterised below as the negotiation approach, the

crystallography approach and the stereoscopy approach.

Negotiation approach: This approach uses the term “multi-perspective modeling”

to refer to the representation of conflicting views of different agents about the same ar-

tifact or concept. Each agent involved in a development process has its own view on the

artifact or system it is trying to describe or model, and these views may contain con-

flicting information. The goal of multi-perspective modeling is therefore a negotiated

settlement of conflicting views, and the two critical issues are the choice of viewpoints

to represent an artifact fully, and the management of inconsistencies between views

[160]. At least one workshop has been held that brought together researchers in this

area [56]; other publications in this area include [66] and [29].

Crystallography approach: Researchers on the Tropos project [107] consider a

software development project from different angles (e.g. in terms of actors and their

capabilities; in terms of goals and intentions; or in terms of processes or in terms of

constituent objects). To them, the purpose of “multi-perspective modeling” is for an

individual to understand the structure of a project by assembling several partial views

of the structure into a single conception. Similarly, another project which used mul-
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tiple modeling techniques for an interface design problem was “not looking at widely

different techniques to see which one of them is best, but ... argue[d] that the impact

from a collection of techniques is greater than the sum of their individual contribu-

tions” [196] - in other words, these researchers also considered that multiple consistent

perspectives may be held by a single individual, but extended the idea to claim that

the interaction of the multiple perspectives provides additional information. This view

of multi-perspective modeling as being “examination of a single artifact from many

angles by an individual” is the approach taken in this chapter.

Stereoscopy approach: A project on image rendering of Chinese landscape paint-

ings [30] is concerned with perspectives in the literal sense - visual angles on a physical

object (in this case, a Chinese painting). This approach is akin to stereoscopy, which

gives an impression of three dimensions by using multiple two-dimensional images of

the same objects, taken from slightly different angles. This use of the term “multi-

perspective modeling” is rare in the software engineering literature, but is noted for

completeness.

The reason why this analysis is needed is that without it, very different understand-

ings of the Zachman framework can arise. For the “crystallography” approach, the

perspectives are represented by the columns of the Zachman framework, while the

rows represent levels of detail. But for the “negotiation” approach, the perspectives

could be represented by the columns or the rows, depending on whether the conflicting

opinions were held by different managers or different professions (or both!). And for

the stereoscopy approach, the Zachman framework has little relevance. It’s also worth

noting that the term “viewpoints” is highly ambiguous; while the term has been used

extensively by researchers following the “negotiation” approach to represent conflicting

opinions, it could equally be used in its more literal sense by the other two approaches.

For simplicity, therefore, the term “viewpoints” is avoided in this thesis.
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2.3 Worked example: Diagnosis and treatment of parotid
tumours

At this point, a worked example of multi-perspective modeling would be helpful. The

example below is taken from [100], and consists of a number of models of a medical

process: the diagnosis and treatment of tumours on the parotid gland (which is in the

neck). The models are considered to be at the second (enterprise) level of detail.

2.3.1 The “How” perspective: Clinical protocol

Figure 2.1 shows a portion of a clinical protocol (i.e. recommended procedure) for

diagnosis and treatment of parotid tumours. This portion of the protocol is concerned

with diagnosis and treatment selection for a progressive lump (i.e. a lump on or

near the parotid gland that is growing progressively larger). The model of the full

clinical protocol consists of about 10 diagrams of similar size; see [155] for details.

This diagram, which is drawn using a diagramming technique known as ProFORMA

[64], shows that the first stage of investigating a progressive lump is to carry out fine

needle aspiration cytology (FNAC), which draws some fluid out from the lump and

then to send it away for analysis. Once the results of this enquiry have been returned,

two decisions are needed; what type of scan is required (CT scan, ultrasound and MRI

are the usual options) and what treatment is required. The remaining boxes represent

links to other process diagrams.

2.3.2 The “Where” Perspective: Inter-Department Communication

The “where” perspective shows communication that is needed during a procedure.

At the enterprise level of abstraction, communication is generally concerned with the

transfer of information or artifacts between individuals or departments. In this exam-

ple, the clinician must communicate with the laboratory that performs the FNAC tests,

with the radiology department that performs scans, and with the surgical unit that

arranges operations. This information can be represented in a Role Activity Diagram

(RAD) [135], which shows which departments (or, more generally, which roles) perform

which activities; by including the sequence of activities, the needs for communication
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Figure 2.1: Protocol for diagnosing a progressive lump

become obvious. An example of a RAD can be seen in Figure 2.2.

Figure 2.2: The “where” perspective – Role Activity Diagram
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2.3.3 The Who Perspective: Agent Modeling

In addition to the information captured in a Role Activity diagram, there is a need

for the “who” perspective to represent the capability of agents, departments, or other

role-players to perform certain actions and the authority that certain agents have to

perform those actions or to use, consume or modify resources (Figure 2.3). At an

enterprise level of abstraction, capability and authority may be expressed by defining

the rights and responsibilities of an agent. For example, a doctor may have rights

to add to a patient’s medical record, implying both authority to change an artifact

and the capability to do so, as well as responsibilities such as making sure a patient’s

medical record is kept up to date.

Figure 2.3: Capabilities, authorities, rights and responsibilities of agents

The modeling technique used here is loosely based on the ORDIT method for require-

ments definition [50] and the CommonKADS Agent Model [186]. Capability, authority,

rights and responsibilities are represented by four different types of arc: these arcs are

labeled “can”, “may”, “has rights to” and “must” respectively.
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2.3.4 The What Perspective: Data, Information and Resources

The “what” perspective considers the data and information that are referred to and

the resources that are used, consumed, modified, manipulated or otherwise involved in

the overall process. Cook (op.cit.) argues that ”the data architecture is more critical

than the process architecture because most business processes exist to manage the as-

sets, not the other way around”. She proposes that the enterprise level of the “what”

perspective should contain data classes, which are subclasses of global data classes;

the relationships between classes can be defined using entity relationship diagrams. In

practice, these data classes often subsume information such as summations or categori-

sations as well as data. In this example, data classes might include clinical tests and

patients; information represented in data classes might include results of tests; and

resources include the machines required for scanning, the chemical solutions required

as “markers” for scanning, and the needles required for extracting fluid for an FNAC.

The resources may have associated constraints; for example, that use of a scanning

machine requires several weeks notice, or that patients might be allergic to the iodine-

based “contrast” that is injected as a marker for CT scans. At the system level of

abstraction, where resources, constraints, and information artifacts are identified indi-

vidually, there are several ways in which resources might need to be modeled. If the

resources can be grouped into classes, then a taxonomic hierarchy might be advanta-

geous; for example, it might be helpful to know if scanning machines belong to a class of

machines that uses X-rays, and if so, whether they belong to the sub-class of machines

that includes automatic cut-outs to prevent overdoses. If a detailed representation of

relationships between resources was needed, then a semantic network could be drawn.

However, at the enterprise level of abstraction, a more general representation is more

appropriate; an entity-relationship diagram could be used, but we have chosen to use a

UML class diagram, to represent constraints more clearly. Figure 2.4 therefore shows a

UML class diagram representing a simple hierarchy of resources and a simple hierarchy

of test results.
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Figure 2.4: UML class diagram: resources and test results

2.3.5 The When Perspective: Schedules

Information about timing of activities and actions is very important in a planning

problem; for other tasks, such as this diagnostic task, there is less need for such infor-

mation. It is, nevertheless, advisable to draw a PERT chart, GANTT chart, or simple

timeline of activities and any necessary inter-activity delay (such as the waiting list for

scanning appointments) in order to highlight any time-related issues (such as the fact

that the chemicals used for marker solutions have a limited shelf life) or bottlenecks.

Figure 2.5 shows a PERT chart of activities and inter-activity delays; the durations

(which appear at the bottom of the activity nodes) are in hours. It shows the two

bottlenecks in the process (waiting lists for scanning and for operations) clearly. N.B.

For illustrative purposes, it has been assumed that the “select scan type” activity can

be carried out in parallel with awaiting the results of the FNAC.

2.3.6 The Why Perspective: Published Clinical Evidence

The “why” knowledge for a clinical protocol consists of clinical evidence - published

results of clinical trials, meta-studies, and expert opinions. The relative importance
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of different types of clinical evidence has been discussed in [122]. For the small part

of the clinical process that we are considering, the “why” knowledge consists of all

known articles published to date; at the time when this protocol was prepared, there

were eight relevant published articles. Five of them argue for or against particular

types of scan, the others argue for or (primarily) against formal parotidectomy. These

justifications can be represented in a rationale diagram; Figure 2.6 uses and extends

the QOC (Questions, Options & Criteria) notation [119] to represent rationale for the

“Select Scan Type” decision.

Figure 2.5: A timeline of activities in diagnosing progressive lumps

2.4 Multi-perspective modeling and Knowledge Manage-
ment

In this section, we look at two approaches to characterizing knowledge management

activities: Derek Binney’s KM spectrum and Boisot’s knowledge asset description

characteristics. Both are considered from the viewpoint of multi-perspective modeling

to show the advantages this brings.
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Figure 2.6: Extended QOC diagram showing the rationale for a decision

2.4.1 Binney’s KM spectrum

The KM spectrum proposed by Derek Binney [39] identifies six3 ways in which knowl-

edge management is typically carried out within organisations:

• Transactional knowledge management

• Analytic knowledge management

• Asset management

• Process management

• Development & training

• Innovation & creation

The spectrum can be seen in Table 2.4. Note that the spectrum focuses on highly

codified knowledge at the top and highly tacit knowledge at the bottom. Binney also

3 A seventh category, Asset Improvement, is needed for completeness, to deal with applications that
optimize existing assets; this should appear between Analytic KM and Asset management. See [78]
for a more detailed discussion of this point.
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identifies technologies or methods that are associated with each of these approaches to

knowledge management, and typical applications that address these.

From a multi-perspective viewpoint, Binney has classified knowledge management ac-

tivities according to a why dimension (i.e. according to the organisational goal), and

has proposed that this is correlated with a what dimension (applications) and therefore

also a howdimension (technologies/methods appropriate for each application). A brief

consideration of the remaining three perspectives suggests that correlations may also

exist on the who perspective with professions (ranging from software/knowledge en-

gineers to ethnographers/psychologists via librarians and operations researchers), and

on the when perspective with organisational maturity (older, larger organisations will

focus on best practice and standardisation while newer organisations may focus on

innovation and creativity). Correlations with the where perspective may occur, but

there’s no hard and fast rule; indeed, it may be profitable for an organisation to in-

vestigate why a branch in one country is focusing heavily on innovation and creation

while another focuses on best practice.

2.4.2 Boisot’s knowledge asset description characteristics

The concept of an I-Space, which measures knowledge assets on three dimensions,

is proposed in [12]. Codification represents the degree to which knowledge has been

encoded, ranging from zero (it resides in an expert’s head and is so intuitive that he

cannot explain it even to himself) to maximum (it is written down in a concise logical

format). Abstraction represents the level to which the knowledge has been generalized,

ranging from zero (individual and independent specific cases are recorded) through

to very high (a set of generally applicable principles). And Diffusion is similar to

scarcity, in that it reflects the number of people who have access to the knowledge.

These dimensions make it possible to establish how far a particular group of knowledge

assets are structured and shared within a given population. They also make it possible

to draw up a value map for the analysis of knowledge assets.
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Table 2.4: Binney’s KM Spectrum with associated applications and technologies

It is clear that the value of knowledge is increased by abstraction (for abstract knowl-

edge has wider utility) and decreased by diffusion (because diffusion is inversely pro-

portional to scarcity). Codification can be a two-edged sword, for increased codifica-

tion increases the utility of knowledge by making it more comprehensible, but only

for those who do not possess it in the first place (thus implying increasing diffusion).

The swiftness of diffusion with modern technology sharpens both edges of the sword;

knowledge can be made widely available to those who need it more quickly, but by

definition also becomes diffused more quickly. The maximum value of an information
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good in the space is therefore achieved when its degree of codification and abstraction

are at a maximum; but at this point, entropy level is high because of swift diffusion.

Conversely the minimum value of such good is reached either when diffusion is at a

maximum or when codification and abstraction are at a minimum. Boisot uses this

analysis to suggest a tripartite classification of knowledge assets:

• Base technologies are well codified and have a large diffusion across industries;

• Key technologies are codified and usually abstracted, but not yet diffused and

can be a source of competitive advantage. These technologies are the highest

value technologies. However, the paradox of value is that the more competitive

value is derived from a key technology, the more precarious is its status as a key

technology on account of the diffusion of know how that using the technology

sets in motion.

• Emergent technologies are not yet codified, abstracted or diffused. It’s neces-

sary to develop these technologies for them to become a source of competitive

advantage.

From the viewpoint of multi-perspective modeling, Boisot’s characteristics can be

viewed as follows:

• Abstraction is concerned with where the knowledge is applicable;

• Diffusion is concerned with who possesses the knowledge;

• Codification is concerned with how the knowledge is stored or presented.

A brief analysis of the remaining three perspectives suggests that knowledge assets

have no value at all unless they are available when needed, their content (what) is

actually useful, and they contribute to the goals of the process or the organisation

(why). So we can conclude that:

• a knowledge asset has virtually no value unless it meets criteria of content, avail-

ability at the point of need, and purpose (what, when and why);

• its value is modified by applicability, form and uniqueness (where, how and who).



Multi-Perspective Modeling 32

2.5 Multi-perspective modeling and software/knowledge
engineering: UML and CommonKADS

In this section, the relationship between an information modeling method (UML), a

knowledge modeling method (CommonKADS) and the Zachman framework will be

discussed.

2.5.1 UML and the Zachman framework

UML (the Unified Modeling Language) prescribes a standard set of diagrams and

notations for modeling object-oriented systems, and describes the underlying semantics

of what these diagrams and symbols mean. It’s a consolidation of many of the most used

object-oriented notations and concepts, especially the work of Grady Booch, James

Rumbaugh, and Ivar Jacobson. It has become widely accepted as a de facto standard

for modeling information related to software systems, hardware systems, and real-world

organisations.

UML offers nine diagrams with which to model systems:

• Use Case diagram for modeling the business processes;

• Sequence diagram for modeling message passing between objects;

• Collaboration diagram for modeling object interactions;

• State diagram for modeling the behaviour of objects in the system;

• Activity diagram for modeling the behaviour of Use Cases, objects, or operations;

• Class diagram for modeling the static structure of classes in the system;

• Object diagram for modeling the static structure of objects in the system;

• Component diagram for modeling components;

• Deployment diagram for modeling distribution of the system.
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These diagrams represent different perspectives. The Activity diagram represents

“how” (processes); the Sequence diagram represents “when” (ordering); the Collabora-

tion diagram represents “where” (interactions); the State, Class and Object diagrams

represent “what” (concepts and states, static or dynamic); and the Use Case diagram,

despite claiming to model business processes, actually models the links between busi-

ness processes and their agents, and therefore represents “who” rather than “how”. As

for the Component and Deployment diagrams, these represent the same perspective

(“what”, in the sense of “what parts are required”) but at different levels of detail; it

can also be seen that the Class and Object diagrams represent two different levels of

detail of the “what” perspective.

The Zachman framework therefore implies that UML is a reasonable complete model-

ing method in terms of the perspectives that it covers, except that there is no specific

facility for modeling rationale and justifications (“why”). However, UML only ex-

plicitly covers two or three different levels of detail, and so it is likely that a full

set of UML diagrams to support organisational analysis and software development

would require extensive decomposition, or repeated use of the same UML diagrams

to capture information at each level of detail. It’s also worth noting that UML sep-

arates static taxonomic information (classes/objects), dynamic information (states),

and parts (components) under the “what” perspective, a distinction that is not made

clearly by the Zachman framework.

2.5.2 CommonKADS and the Zachman Framework

CommonKADS [147] is a collection of structured methods for building knowledge based

systems, analogous to structured methods for software engineering; as such, it provides

an enabling technology for the analysis of acquired knowledge and the design of knowl-

edge based systems. It was developed between 1983 and 1994 on two projects funded

by the European Community’s ESPRIT program. CommonKADS proposes that up to

six models (some with several subcomponents) should be developed in order to repre-

sent the knowledge management and knowledge engineering process from application

selection through to developing a design specification for a knowledge-based system.

These models are:
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• An Organisation model which represent the processes, structure and resources

within an organisation, with the aim of identifying fruitful areas for better ap-

plication of knowledge. The organisation model has various suggested subcom-

ponents: these include a diagram of the organisation’s structure, a diagram of

its important business functions, a “power and authority” diagram (recognizing

that such relationships are not always defined by the organisation structure), and

diagrams of various resources [45].

• A Task model to show the activities carried out in the course of a particular

organisational process;

• An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

• A Communication model to show the communication required between agents

during a process;

• An Expertise model, which is a model of the expertise required to perform a

particular task. This has three major subcomponents: domain models which

represent concepts and their relationships; an inference structure which records

the inference processes required during problem solving; and a task structure

which accompanies the inference structure to describe ordering of the inference

processes and other control features.

• A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

The way the models relate to each other as shown in Figure 2.74. It can be seen

that the models are considered to represent four different stages in the knowledge

management/knowledge engineering process:

1. The Organisation model is used for identifying organisational strengths, weak-

ness, opportunities and threats;

4 N.B. The distinction between “within a task” and “between tasks” for the Agent and Communication
models is an extension to CommonKADS proposed in [100]
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2. The Task and Agent models are used to analyse a key business process and to

select a task within that process that would benefit from being supported by a

knowledge based system or another knowledge based artifact (e.g. a good manual

or an interactive training program);

3. The Expertise model captures, records and structures the knowledge that is used

to carry out that knowledge based task, while the Communication model records

the interactions that take place during the task;

4. The Design model records decisions made about how each function and concept

in the Expertise model can be implemented, and draws on the Communication

model as well for interface design. It then brings these recommendations together

into a structured design specification.

Organisation

Model

Task Model

Agent Model

(between

tasks)

Knowledge

(Expertise)

Model

Communication

Model (between

tasks)

Design

Model

Context/

Scope

Concept

(System)

Artifact

(Technological)

Context/

Enterprise

Communication

Model (within

a task)

Agent Model

(within a

task)

Figure 2.7: Relationship between the various CommonKADS models

These models can therefore be seen to cover the top four levels of the Zachman frame-

work. The Organisational model represents the Scoping level, and its various sub-

diagrams cover the “who”, “how”, and “what” perspectives. The Task, Agent and

Communication models represent individual perspectives (how, who and where) at

the Enterprise level. The three components of the Expertise model represent the

“what”, “how” and “when” perspectives at the System level; these can be coupled

with “within task” versions of the Agent and Communication models to model the

“who” and “where” perspectives as well. Finally, the Design model represents the

transformation of the Expertise and Communication models into a high level design

specification at the Technology level.
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Comparing this analysis against the Zachman framework, it can be seen that Com-

monKADS provides more comprehensive coverage of the cells of the Zachman frame-

work than UML does. However, neither UML nor CommonKADS provide an explicit

representation of the “why” perspective; and neither method represents the lowest two

levels of the Zachman framework. With these exceptions, however, CommonKADS

seems to be capable of representing almost everything that the Zachman framework

recommends. It’s also worth noting that the Expertise model carries the responsibil-

ity of representing the transformation from the System level to the Technology level,

which was identified above as a knowledge-intensive selection operation rather than a

refinement operation, and that the Expertise model is usually the model that is devel-

oped in most detail by CommonKADS users, with its three subcomponents (domain,

inference and task) each represented by a number of diagrams.

2.6 Deriving software/knowledge engineering principles
from meta-analysis of the Zachman framework

2.6.1 Meta-analysis of the Zachman framework: Perspectives

It’s obvious that the Zachman framework is a 2-dimensional categorisation of informa-

tion and knowledge. If it is assumed that each of the six “who, what, how, when, where

and why” perspectives can be represented on an ordinal or categorical scale, then the

2-dimensional nature of the Zachman framework implies that it only represents two out

of six perspectives. Since the columns of the Zachman framework describe different

categories of knowledge while the rows bear a strong resemblance to a design pro-

cess, the Zachman framework seems to represent the “what” and “how” of knowledge

representation.

If the Zachman framework was extended to six dimensions, what should appear on the

four new axes? Here are some suggestions, with specific reference to the representation

of knowledge assets:

• Where: Knowledge sources, such as: experts, protocols, text, machine learn-

ing/data mining. In this case, the “where” perspective would be a nominal

dimension (like the perspectives) rather than an ordinal dimension (like the lev-
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els of detail). It might be beneficial to introduce some ordering criterion, such as

“perspicacity of knowledge” (high for experts, low for machine learning) or “can

be automated” (low for experts, high for data mining).

• Who: Involved agents - expert users, lay users, funding sources, project man-

agers, experts, programmers, senior management. Zachman’s examples of the

framework assume that these professions are correlated with the columns of the

framework, but this is not always going to be entirely accurate, and so provisions

should be made for modeling the interests and involvement of various professions.

Again, this is a nominal categorisation rather than an ordinal or cardinal dimen-

sion. An obvious ordering criterion is the level of detail they are likely to be

concerned with, so senior managers and strategists would appear at one end of

the scale while programmers or bricklayers appear at the other end. Other order-

ing criteria might include “importance to the project” or “degree of involvement

with the project”, which could be used to assess project risks.

• When: The “when” perspective represents both time constraints (schedule, tim-

ing description) and also other constraints that control processing of the steps de-

scribed in the “how” perspective (processing structure, control structure). Since

the meta-how dimension is represented by the rows of the Zachman framework,

the meta-when perspective must represent constraints and criteria for moving

from one level to the next. These might include achieving agreed criteria in de-

scribing a level, completing enough to achieve the required functionality at the

next level, or simply reaching the point in a schedule where the handover must

take place.

• Why: reasons that knowledge must be represented. These might include knowl-

edge archiving (a key expert is leaving the company), standardisation of practice,

knowledge discovery (e.g. identifying connections between two knowledge sources

that had never been noticed before), knowledge distribution (getting knowledge

gained from many years’ experience to practitioners who lack that experience),

or simply knowledge organisation (e.g. a taxonomy or ontology is required to

facilitate future operations). A possible ordering criterion would be a financial

one, based on the opportunity cost of not gathering the knowledge; this would be
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company-specific to some extent, but knowledge archiving is likely to score highly

in many cases, while knowledge organisation will be more difficult to quantify.

This six-dimensional framework is capable of representing multiple views of the same

artifact (meta-what), at multiple levels of details (meta-how), according to different

agents’ possibly conflicting perceptions (meta-who), drawing on various knowledge

sources (meta-where), under various constraints (meta-when), and for various purposes

(meta-why). It is, of course, unlikely that all six dimensions will be represented fully

in any single project because of the effort involved in representing a framework with

66 cells, but this is often not necessary. Assuming that the two dimensions of the

“normal” Zachman framework are always required, a problem requiring negotiation of

conflicting opinions (as discussed in section 2.2.4), for example, will require the meta-

who dimension to represent the different views of the different agents alongside one (or

both?) of the original two dimensions. A problem concerning organisational priorities,

on the other hand, might require a meta-why dimension, to describe the effect on the

knowledge, resources and processes of the company of various organisational emphases.

And a problem concerning resource allocation might use the meta-when dimension to

consider different views of the workloads that can be allocated to particular tasks. Only

the most intractable problems - for example, differences of opinion that are actually

based on different views of organisational priorities - are likely to require four or more

dimensions.

Applying this analysis to knowledge management (as illustrated in Figure 2.8), it is

possible to derive a large part of the information that is needed for initiating a successful

knowledge management project:

• The need for knowledge management in a particular area is usually determined

by the desires or requirements of various agents - senior managers or funding

agencies who want to see certain knowledge made more widely available, or users

and programmers who need knowledge that is not available to them.

• The best way of implementing knowledge management can be derived from the

meta-where perspective (i.e. where the knowledge resides at present) and the

meta-why perspective (what is this exercise trying to achieve?). If the purpose
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of the knowledge management exercise is to standardize on best practice or to

archive knowledge, then a knowledge engineering approach is a good idea; if the

main purpose is knowledge discovery or innovation, then there are strong argu-

ments for an approach that uses data mining rather than knowledge engineering,

or even for an approach that does not “capture” knowledge at all, but merely

facilitates communication (possibly via an intranet) in order to allow new knowl-

edge to emerge from interactions among key individuals. See [78] for further

discussion of the mapping of knowledge management approaches to goals.

• Feasibility and risk assessment can be derived by comparison with past projects

with similar features. Also, available skills within the organisation and activities

that need to be carried out for successful knowledge management can be mapped

to identify organisational strengths and weaknesses.

Figure 2.8: A meta-perspective view of the Zachman framework (with an emphasis on
knowledge management issues)
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2.6.2 Meta-Analysis of the Zachman framework: Levels of detail

There is one more meta-level of knowledge modeling to consider. We have considered

whether the Zachman framework itself represents a full range of perspectives - the

columns of the original Zachman framework – and suggested that a six-dimensional

framework might be required rather than a mere two-dimensional framework. So we

now need to consider whether the Zachman framework itself should be subject to

multiple levels of detail. In other words, is this Zachman framework only one framework

in a set of six, each of which is a specialisation, refinement or realisation of another?

In principle, the answer is “yes”, but the sheer number of cells in meta-frameworks

(up to 67, allowing for meta-perspectives) makes this concept overwhelming both to

analyse and to use. To make this discussion tractable, we will focus on only one of the

six perspectives - the “how” perspective.

Meta-analysis of levels of abstraction: the “how” perspective

This chapter has claimed that the levels of detail in the original Zachman framework

actually represent a design process; when considering knowledge assets, this might

begin with a “knowledge management” task (is the development of this knowledge

asset feasible?) through a “system” level (exactly what will be developed?) and a

“technological” level (design specification) to a “functioning enterprise” (i.e. some

kind of implementation). Yet the output of each of these stages is itself a knowledge

asset of some description: a feasibility study, a set of knowledge models, a design

specification, or an efficient and robust implementation. It therefore seems that each

of the key stages (feasibility, analysis, design, implementation) can be decomposed into

a series of sub-tasks.

Let’s assume that the knowledge asset to be represented is diagnostic expertise for

personal computers, in the context of a help desk. This knowledge asset will probably

appear at the System level in a “normal” Zachman framework, with the following

instantiations of the different System level perspectives:

• “Who”: the technicians, the help desk operators, the knowledge engineers and
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the management in the help centre;

• “Where”: technicians’ experience, previous call logs, and system manuals;

• “What”: PC components, common faults, and known solutions;

• “How”: probably a combination of gathering routine information and asking

questions to narrow down the fault - a technique known as “cover-and-differentiate”;

• “When”: determined by the organisation’s requirements on the help desk - an

example requirement might be “If you can’t solve it in 5 minutes, refer it up-

wards”;

• “Why”: to make the technicians’ expertise available to help desk operators.

The tasks that must be carried out to turn this knowledge asset into a working knowl-

edge based system include knowledge acquisition, knowledge representation & analysis,

KBS design, and KBS implementation. Each of these requires three or four subtasks

to be carried out by knowledge engineers. Knowledge acquisition requires determin-

ing the feasibility of acquiring knowledge from various sources; determining which KA

technique(s) to use; designing a knowledge acquisition schedule; and carrying it out.

Knowledge representation & analysis requires determining the feasibility and utility of

using various knowledge modeling techniques; deciding how particular items of knowl-

edge should be represented; and producing knowledge models. KBS design starts

by determining whether it’s advisable to use a recognized AI paradigm (e.g. model-

based reasoning) throughout the design; continues by choosing a design approach (e.g.

object-oriented design); and produces a design specification. And implementation of

the system is essentially a software engineering task, and implementers must consider

the feasibility of using different programming approaches to implement the design

specification; do some prototyping to determine if these programming approaches are

efficient (or even possible) in the chosen programming language; produce a detailed

design specification (or at least, add comments to their code); and generate usable

code (by compiling, testing, or whatever).

If the form of the knowledge asset was something quite different - case histories stored

in a database, perhaps - then the stages followed would be different, but would still
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decompose in the same way, In this case, KBS development might be replaced by data

mining. Knowledge acquisition, representation, analysis and design would be replaced

by selection of a suitable data mining algorithm, pre-processing of the data, selecting

algorithm parameters, and applying the algorithm, plus additional steps needed for

creating and applying a test suite to the results. All of these tasks decompose into

subtasks; for example, any selection task breaks down into at least three stages (col-

lecting data about the target and the selection set, matching that data against each

member of the selection set, and choosing the one with the optimal match results),

while pre-processing of data requires one or more of data cleaning (removing or reduc-

ing noise, inconsistencies, and incompleteness), data integration (merging data from a

number of sources), data transformation (into forms more suitable for the algorithm

in question) and data reduction (to manageable volumes).

So it can be seen that each stage of development of the “how” perspective in a normal

Zachman framework can be decomposed into a sub-process. Further, we can see that

each series of subtasks follows a pattern that more or less corresponds to feasibility-

analysis-design-implementation, which (roughly) corresponds with the six levels of de-

tail in a Zachman framework. So we can claim that the Zachman framework can always

be decomposed into lower levels of abstraction. This concept is illustrated in Figure

2.9.

Supertasks of the “how” perspective

Having seen that the Zachman framework decomposes downwards, does it also ’com-

pose’ upwards? It has been claimed that the supertask of the “how” perspective of a

typical Zachman framework could be “knowledge engineering” or “data mining”. In

practice, however, it’s rare for any software system to be developed once and to be de-

clared complete; instead, systems are developed in increments of functional capability

(progressing from a “proof of concept” system to a “prototype”, “alpha test”, “beta

test”, and eventually to “version 1.0”).

It can therefore be considered that the development of each incremental version of the

system is a supertask of the “typical” Zachman framework. That is, for each version

of the system, the entire feasibility-analysis-design-implementation process must be
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Figure 2.9: Decomposing different stages of the “how” perspective in a Zachman frame-
work

followed. Moreover, the “proof of concept” can be viewed as a way of determining the

feasibility of the system, while the prototype can be seen as an aid to analysis, and so

on; so the task of “developing a functioning software system” can be seen as a further

level up the meta-Zachman framework.

Deriving project lifecycle models

So it has been demonstrated (for the “how” perspective) that the Zachman framework

itself can be usefully considered to have at least four levels of abstraction. Since we

derived a number of knowledge management considerations from our meta-analysis of

perspectives, can we derive anything useful from this analysis?

I will claim that at least two different approaches to managing project lifecycles can

be derived from this. The first is the “waterfall” project lifecycle. The “waterfall”

(Figure 2.10) assumes a sequence of activities with defined inputs and outputs and

no iteration; i.e. feasibility, analysis, design and implementation are performed once,

in sequence. This can be considered to correspond to the “how” perspective of the

“typical” Zachman framework. However, this approach has been criticized for its
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inflexibility, and other approaches have been suggested.

Figure 2.10: The waterfall lifecycle model

One of these other approaches is Boehm’s spiral lifecycle model [11] (Figure 2.11), in

which a series of activities (under the four general categories of review, risk, plan and

monitor) are carried out, and the end result is a new incremental development of the

system; the stages in the lifecycle are then repeated for the next incremental stage.

This approach can be derived from the meta-analyses of the Zachman framework; the

concept of incremental development and the four overall stages can be derived from

the multiple levels of abstraction of the “how” perspective of the Zachman framework,

whilst the specific activities that are carried out on each iteration can be derived from

the meta-analysis of the perspectives.

So it can be shown that recognized project management lifecycles can be derived from

this meta-analysis of the levels of detail in the Zachman framework. This supports the

contention that the Zachman framework is indeed a good structure for representing

both knowledge in general, and knowledge about software development in particular.

2.7 Discussion

The thesis of this chapter was that the perspectives and levels of the Zachman frame-

work can represent any knowledge asset. We have seen that the framework (when

understood from a “crystallography” viewpoint) can represent all the knowledge (and
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Figure 2.11: Boehm’s spiral lifecycle model

more) required by a major software engineering method (UML) and a major knowledge

engineering method (CommonKADS). This implies that, for practical purposes (i.e.

representing a knowledge asset in order to develop or distribute it), multi-perspective

modeling based on the Zachman framework is indeed capable of representing all the

knowledge required about a knowledge asset.

In terms of guidance provided to developers of knowledge systems, the development

of several knowledge models covering different perspectives provides an excellent basis

both for analysis (has all the relevant knowledge been acquired?) and for design (by

preserving the structure of the models, which in turn should reflect the experts’ way

of thinking). While modeling clearly eliminates some information that is considered

irrelevant, multi-perspective models run far less risk of eliminating information that

might be important. KM researchers who claim that any elimination of information is

potentially fatal to obtaining a holistic understanding of shared knowledge should note

that Binney’s KM spectrum demonstrates that the term “knowledge management” ac-

tually covers a range of applications, and probably of different types of knowledge, and
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that “holistic views of shared knowledge” are probably only necessary for applications

that fall into the Innovation & Creation category in the spectrum.

The Zachman framework is also shown to be a robust framework for software de-

velopment because meta-analysis of it is able to derive common software engineering

approaches. Further work on meta-analysis of perspectives other than “what” and

“how” also shows how key considerations can be modeled as needed.

One issue that was raised by the analysis of UML and CommonKADS was the absence

of any facilities to model “why” knowledge. The main reason seems to be that there

are always at least two answers to the question “why are you doing this?” - one

that justifies the process being used and the other that describes the goal that is being

sought. In the former case, modeling the ‘why’ perspective is beneficial, though is often

only conducted in situations when the validity of rules or laws are under discussion. In

the latter case, the answer to most ’why’ questions within the context of the Zachman

framework is “in order to achieve the next level up in the framework”. For example, the

goal of a house designer is to provide the owner with the desired floorspace at sufficient

strength. In such cases, there is no need for explicit models of ’why’ knowledge; all that

is needed is some pointers to levels above. Further work on methods and applications

of ’why’ knowledge is suggested.

This chapter has shown how the Zachman framework can be used as an overall structure

to support knowledge management and knowledge engineering. The next chapter will

look at whether this structure can be used in conjunction with an ontology to provide

a rich description of knowledge.



Chapter 3

Multi-perspective Ontologies:
Resolving Common Ontology
Problems1

3.1 Introduction

Ontology - the theory of objects and their relationships - has become a hot topic

in recent years. One reason is that organisations that have entered into knowledge

management have discovered the need to classify their knowledge in a manner that is

both accessible to users and robust enough to represent different types of knowledge

in a coherent manner and have developed taxonomies (ontologies that use only the

IS-A relation) to address this need. Another reason is that object-oriented software

development, which is a widely used approach to producing software, requires an un-

derstanding of ontological principles: authors in the field have claimed that “a clear

understanding of ontology helps to avoid the introduction of accidental, as opposed to

essential, objects”, and “the exploding interest, both theoretical and practical, in the

development of object-oriented languages ... has led computer science squarely into

the business of doing research in ontology. This is an unavoidable conclusion of taking

a serious look at practice” [74] [157].

However, attempts to develop taxonomies for classification purposes have run into var-

ious difficulties, and it has been recognised that taxonomies, and ontologies in general,

1 Originally published in Expert Systems with Applications, 34, 1, 541-550, Jan 2008
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suffer from a number of problems in practical situations. These problems do not pre-

vent usable ontologies from being developed, but they do make it difficult to develop

ontologies in a standardised manner; this reduces the extensibility and reusability of

ontologies, and makes it particularly difficult to merge ontologies created separately,

even if they address the same areas. This chapter outlines an approach to ontology

development based on multi-perspective modeling that is able to resolve some of the

common problems that arise in ontology development.

3.2 Multi-level Ontologies

The working definition of an ontology being used in this thesis is that defined by

Gruber [75]: an ontology is an explicit specification of a conceptualisation which, in

knowledge engineering practice, equates to the definition of what can be represented

within a computer program.

However, there is considerable debate about the exact definition of ontology and on-

tologies. Guarino and Giaretta [77] present 8 definitions that are in use in the literature

today:

1. Ontology as a philosophical discipline;

2. Ontology as an informal conceptual system;

3. Ontology as a formal semantic account;

4. Ontology as a specification of a conceptualisation;

5. Ontology as a representation of a conceptual system via a logical theory

(a) characterized by specific formal properties;

(b) characterized only by its specific purposes;

6. Ontology as the vocabulary used by a logical theory;

7. Ontology as a (meta-level) specification of a logical theory.
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Guarino and Giaretta favour interpretation 5a - an ontology is a logical theory, char-

acterized by specific formal properties. This is because this definition fits with three

common technical uses of the term “ontology”: meaning an ontological theory; a spec-

ification of an ontological commitment; or a conceptualisation. However, they also

give some credence to the other interpretations, because ontologies typically exist at

different levels. For example, definition 1 tries to answer the question “What are the

features common to all beings?” and results in a generic ontology that is common to

all domains but describes very little that is specific to any domain.

The practical implications of this (heavily abbreviated) discussion are that ontologies

can be separated into core ontologies (meta-descriptions of ontological terms), general

ontologies (definitions of common sense concepts) and domain-specific or company-

specific ontologies. The remainder of this chapter is concerned with domain or company-

specific ontologies, unless stated otherwise, for these are the ontologies that are most

obviously useful for knowledge management.

3.3 Problems with Ontologies

So what are the main problems that arise with such ontologies? A selection of problems

is outlined below, drawn from [35] and other sources.

3.3.1 IS-A overloading

“IS-A overloading” [128] is the use of the IS-A relation to carry multiple meanings

in a single taxonomy. Guarino identifies five such misuses from a survey of popular

ontologies: confusion of senses (for example, in Mikrokosmos, a window is both an

artifact and a place); reduction of sense (e.g. in Pangloss, a person is both a physical

object and a living thing); overgeneralisation (a place is a physical object in both

Mikrokosmos and WordNet); suspect type-to-role links (in WordNet, a person is both

a living thing and a causal agent); and confusion of taxonomic roles (both Pangloss and

Penman offer a taxonomy of qualities, but qualities are better represented as properties

only rather than as concepts). While these misuses may reflect accepted practice in

natural language (for example, the term ’window’ can refer either to a single window



Multi-Perspective Ontologies 50

pane, a connected set of multiple panes, or the space that pane occupies), they can

cause great difficulties in accurate ontological classification, and they make logical

inference across multiple ontologies very difficult.

3.3.2 Inaccurate expert responses

Another problem that arises from loose use of natural language is that ontological

questions supplied to knowledge experts may be answered incorrectly, either through

the experts misunderstanding the question or misunderstanding the ontological impli-

cations of their answer. For example, experts who are asked, “Please give a subclass

of X i.e. tell me something that is a X” may answer with a superclass of X; they may

provide a member of the class X rather than a subclass; or they may supply a concept

that is related to X by some relation apart from IS-A, such as naming subparts of an

object (e.g. giving “engine” as a subclass of “car”). These faults are multiplied when

developing ontologies other than taxonomies; for example, asking experts “what causes

A” sometimes elicits a response of the form “A causes B”, while asking experts “how

do I do C” (aiming to elicit subtasks of C) may bring the response “Well, first you do

D and then E, and then you can do C”. So the difficulty for the ontology engineer lies

in transforming the answers provided by experts into a valid taxonomy or other type

of ontology.

3.3.3 Levels of detail and inferencing bias

Inferencing bias occurs because it’s not practical to define all ontologies at a universally

accepted “primitive” level - which, most people would agree, corresponds to an atomic

or molecular level. However, the level of detail that is appropriate is usually determined

by the problem being tackled rather than the domain. So different ontologies of the

same domain may be incompatible because they were developed to solve different

problems. As an example, let’s consider ontological definitions of colour. In this

case, there is probably general agreement that a ’primitive’ definition of colour should

consist of the intensity of light of different wavelengths that is reflected or emitted

by the ’coloured’ objects. However, while an ontology for physicists may require this

level of detail, photographers and artists only need an ontology that specifies colour
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as a concept with properties such as hue, brightness and intensity, and a car salesman

probably views colour merely as a property of the cars he sells.

These varying levels of detail would be less of a problem if there was agreement on how

to combine ’primitive’ definitions into higher level concepts. This is definitely not the

case for colour, however; in a project to build an ontology of art objects for Interpol

[193] [172], the researchers discovered that colour terms used to describe paintings

are entirely different to the colour terms used to describe ceramics [Wielinga, personal

communication]. In practice, colour is an exceptionally hard concept to define, because

its ’categories’ are actually composed of arbitrarily defined points on three continuous

dimensions (red, green and blue light); the philosophical term for this is that colours

are determinable concepts as opposed to determinate concepts. So perhaps the problem

of inferencing bias is more acute for colour and other determinable concepts (such as

geographical location or price) than for determinate concepts such as physical objects.

For ontological engineers, inferencing bias is an inescapable fact that should, at least,

be identified when building an ontology.

3.3.4 Dependence relations

As stated above, experts who are asked to give subclasses of concept X will often answer

with concept Y, which is related to X in some other way. Typically, the reason is that

concept Y depends on X in some fashion. Corazzon [35] identifies many kinds of depen-

dence relations, including dependencies between levels of reality, between wholes and

their parts, between parts, between wholes and their environments, between wholes,

and between particulars and determinations. However, it is difficult to model these

relationships clearly in any ontology, and well-nigh impossible in a taxonomy.

3.3.5 Particulars

Taxonomies often represent particulars (i.e. individuals, or individual objects) well, but

struggle with other types of concept, such as Processes, Groups, or Stuff (substances

described as “an amount of” rather than “a collection of” - water is a good example).

But the need to represent these concepts in ontologies has been clearly identified (see

e.g. [113]). So what is to be done about these issues? In the next section I will describe
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an approach to ontology development that can address at least some of these problems.

3.4 Multi perspective ontologies

Imagine that you have been asked to rent a DVD to watch that will be appropriate for

yourself and five friends. When asked for their preferences, the first friend wants to see

action, horror or science fiction; the second wants innovative special effects; the third

wants something that wasn’t filmed in the USA; the fourth asks for a film made fairly

recently - “not a classic oldie”; and the fifth wants a film that features her favourite

actor, who turns out to be Keanu Reeves. You may not realise it, but you have been

given a multi-perspective classification problem. Each of your friends classifies films in

a different way (or at least, prioritises their classification of films in a different way);

one cares what genre of film it is, another how the film was made, another where it

was made, the fourth when it was made, and the fifth who is in it. As you stroll

away from the shop with a copy of The Matrix in your hand, it occurs to you that

these different classifications map neatly to the different perspectives on information

and knowledge proposed in another matrix - the Zachman framework for Information

Systems Architecture.

The Zachman framework suggests that multiple perspectives and multiple levels of de-

tail are needed for full-scale knowledge representation. Since organisational ontologies

already exist at multiple levels of detail (domain, general, and core ontologies), the

main message of the Zachman framework for developers of organisational ontologies is

the need to develop ontologies from different perspectives. Continuing the cinematic

example, ontologies of film genres can be obtained from Yahoo (www.yahoo.com) and

from the Internet Movie Database (www.imdb.com). It can be seen that these ontolo-

gies attempt to address the multi-perspective problem by providing a range of ways

of searching for films; the Internet Movie Database (see Table 3.1) allows searching

for films by genre, co-stars, location, or release date, thus covering the ’what’, ’who’,

’where’ and ’when’ perspectives proposed by the Zachman framework, while Yahoo

(Table 3.2) offers a broad range of categories that cover not just films themselves but

also related information (reviews, spoilers, fan fiction, cinemas, etc.). In fact, a de-

tailed examination shows that both ontologies provide indexing on all six perspectives
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Table 3.1: Classification of films, as provided by the Internet Movie Database

suggested by the Zachman framework; the Internet Movie Database offers a keyword

search facility that can be used to browse the ’how’ or ’why’ perspectives, while Yahoo

offers a particularly rich indexing of the ’why’ perspective, by offering categories such

as ’Made-for-TV movies’ ’Theory and Criticism’, ’History’ and ’Cultures and Groups’.

Both ontologies also offer an additional domain-specific perspective of identifying the

’best’ films, according to box office ratings, critics’ choices, or votes by users of the

website.

What this discussion highlights is that, in practical ontology building, there will almost

always be a need - or at least, a demand from users – to represent non-taxonomic meth-

ods of classification. This chapter proposes that the best way to clarify these various

classification methods is to build separate ontologies based on separate relationships.

The need for separate ontologies can be identified according to the relations that need

to be represented. Relations that are typically associated with each of Zachman’s six

perspectives are suggested below:

• WHAT perspective: is-a (taxonomy), part-of (mereonomy)

• HOW perspective: achieves (goal), transforms, creates/destroys, any term re-
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Table 3.2: Classifications of films (as opposed to film-related topics) provided by Yahoo

flecting a specific action (selects, matches, etc);

• WHO perspective: plays-the-role-of, responsible-for, has-rights-to;

• WHEN perspective: precedes/follows (possibly with time intervals specified);

• WHERE perspective: location, connected-to, or terms reflecting geographical

relationships (close-to, south-of, etc);

• WHY perspective: causes, justifies.

Note that the suggestions above are intentionally limited to those that relate two

items of the same type2 – for while there are many relationships between items of

different types (e.g. relationships between agents and the tasks they are responsible

for), it is usually unproductive to use these as a basis for classification, since these

relationships are typically temporary assignments rather than inherent characteristics.

Further examples of existing ontologies are given in the next section, showing how

multiple perspectives can enrich the representation of each of them.

2 with the possible exception of the HOW perspective - for example, matches relates 3 items, 2 of the
same type and one Boolean value
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3.5 Multi-perspective ontologies - Examples

3.5.1 Example 1: Scientific Knowledge Management

A worked example of multi-perspective ontologies is drawn from a top level ontology of

“Scientific Knowledge Management” (i.e. academics, their projects and publications),

whose development was discussed in [87]. The ontology in its current form is shown in

Figure 3.1. This ontology was designed based on several principles, but the main ones

were to fit in with two existing upper level ontologies: one from the Open University,

whose top level categories were Tangible Thing, Intangible Thing, and Temporal Thing,

and one from the Ontoclean ontology, the top level of which consisted of six categories:

Abstraction, Quality, Aggregate, Feature, Object, and Event. It was decided that the

OU’s three categories should represent the top level of the ontology and the Ontoclean

categories should represent the second level. The concepts that had to be classified,

and their classifications in the above scheme, are as follows:

• Documents, publications, etc. - Objects (Tangible Thing);

• Conferences, workshops, seminars - Events (Temporal Thing);

• Research groups, universities, funding bodies - Organisations (Tangible Thing);

• Students, professors, supervisors - People (Tangible Thing);

• Research areas (Generic Areas of Interest) - Abstractions (Intangible Thing);

• Projects, grants - Tasks (Temporal Thing).

These top level categories are reasonably well separated from a multi-perspective view-

point. Objects address the WHAT perspective, People and Organisations address the

WHO perspective, and Tasks (which are a subcategory of Event, not shown in Figure

3.1 for reasons of space) address the HOW perspective. The WHEN and WHERE per-

spectives are also addressed to some extent, by the categories of “Temporal Things”

and “Aggregates”, respectively.

However, this ontology is not perfect, because it attempts to use taxonomic links

to represent relationships that are not truly taxonomic. For example, Kingston [99]
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Figure 3.1: Current ontology of Scientific Knowledge Management

pointed out that Publications are not really a subclass (i.e. in a taxonomic WHAT

relationship) to Documents but are dependent on (the existence of) a document. This

can be resolved using multi-perspective ontologies by stating that publications express

WHERE a document can be found in the public domain. This allows the dependence

to be expressed, as well as correctly allowing more than one publication of a single

document. Similarly, Methods are taxonomically classified as Abstractions but are

more commonly thought of in terms of the goal that they can achieve, and this can

be captured in an ontology for the HOW perspective. And People and Organisations
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may be classified taxonomically as Legal Agents, but as Guarino highlighted in his

discussion on IS-A overloading, they actually play the role of agents (a WHO link)

rather than being a kind of agent (a WHAT link).

3.5.2 Example 2: the ACM classification scheme

The top level of the ACM classification scheme for computer-related topics is shown in

Table 3.3. An extension to the Artificial Intelligence classification has been designed

by Scientific Datalink [40], and part of this extended classification is shown in Tables

3.4 and 3.5.

The ACM classification covers several of the multiple perspectives. The perspectives

covered include WHAT is needed for a computer system (hardware and software),

HOW to build a computer system (techniques), and WHY systems are built (computing

milieux). The categories also cover different levels of abstraction: some categories

consider the contents of the computer itself (hardware, software, computer systems

organisation, data, information systems) while other categories consider the computer

as a single concept in the context of applications (computing methodologies, computer

applications, computing milieux). There’s also a third level of detail to be found in the

two theoretical categories (Theory of Computation and Mathematics of Computing),

which provide the foundational techniques for computer systems organisation, data

and information systems.

The Scientific Datalink extension also uses a formula where formalisms/resources (WHAT

knowledge) are mixed with methods/techniques (“how” knowledge) to generate subcat-

egories. For example, most of the subcategories of Knowledge Representation are con-

cerned with different knowledge representation formalisms - the WHAT of knowledge

representation – but two (Representation of the Physical World and Representation of

Natural Language Semantics) are primarily concerned with knowledge representation

as a task rather than a formalism – i.e. with HOW rather than WHAT.3 Similarly,

3 Some may argue that knowledge representation formalisms such as predicate logic or semantic
networks are methods and therefore belong under the HOW perspective, while “representation of
the physical world” describes WHAT is to be represented, thus reversing the perspectives proposed in
this chapter. Strictly speaking, most of the subcategories of Knowledge Representation are methods
while the categories 4.11 and 4.12 are goals to be achieved. From a knowledge engineer’s viewpoint,
methods constitute the resources available (WHAT) while goals represent a problem to be solved
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Table 3.3: Top level of the 1998 ACM classification scheme

most of the subcategories of Applications and Expert Systems are concerned with

different domains in which expert systems have been applied (similar to the ACM’s

taxonomic breakdown of Computer Systems Applications into different disciplines),

but I.2.1.15 (“Expert Systems”) and I.2.1.5 (“Natural Language Interfaces”) are more

concerned with techniques for expert system construction, and I.2.1.14 (“System Trou-

bleshooting”) focuses on a particular task rather than on a domain. And one of the

subcategories of “Problem Solving, Control Methods and Search” - the category of

“Plan Execution, Formation & Generation” - is arguably concerned primarily with

WHEN knowledge.

In short, the ACM classification scheme and the Scientific Datalink extension would

be better structured if they were split into at least two ontologies, one reflecting the

“what” perspective (i.e. a taxonomy) and the other representing the “how” perspective

(i.e. methods and techniques). This would allow more complete representation of

(e.g.) goals for knowledge representation, techniques for expert system construction,

and task-focused categories. Further perspectives might also prove beneficial.

This example is discussed in more detail in chapter 4.

(HOW).
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Table 3.4: Part of the Scientific Datalink AI classification scheme
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Table 3.5: Another part of the Scientific Datalink AI classification scheme

3.5.3 Example 3: Struts example

Swartout et al [165] highlight a problem with ontological classification in which the

concept “strut” can be linked to the top level concept “Thing” in two different ways.

In one way, “strut” is a subclass of “support”, which is a subclass of “decomposable

object”, which is a subclass of “Thing”; in the other, “strut” is a subclass of both

“durable good” and “load bearing member”, which are both subclasses of “physical

object”, which is a subclass of “Thing”.

From a multi-perspective viewpoint, there are several difficulties with this apparently

simple ontology. Webster’s dictionary defines ’strut’ as “a structural piece designed to

resist pressure in the direction of its length”, while a ’support’ is simply “something

that carries out the act of supporting”. So ’strut’ is indeed a subclass of ’support’,

since they are both playing a similar role, but the latter subsumes the former - and,

in fact, ’load bearing member’ is a superclass of ’strut’ (since buildings include not

only struts but also rafters, purlins and other load bearing members) but a subclass of

’support’ (since something can be a ’support’ without necessarily being a ’member’ of

a building - indeed, it need not be a physical object at all, for gravity or magnetism
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Figure 3.2: Two alternative ontologies for ’strut’

can act as supports). Yet we can also see that a strut will in fact be a beam (of

wood or metal, usually) that plays the role of a structural component in a building.

Furthermore, the link between beams and durable goods is another plays the role of

link, for beams are only goods (Webster: “something that has economic utility or

satisfies an economic want” or “something manufactured and produced for sale”) as

long as they are in demand, or as long as they are offered for sale. And finally, the

concept of “decomposable object” is one that is criticised by Guarino & Giaretta under

the heading of confusion of senses; they believe that this should only ever be a property

rather than a concept in a taxonomy.

In short, these two apparently contradictory taxonomies can be sorted out by rewriting

them using both taxonomic links and a “who” ontology based on the relation “plays

the role of”:
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Figure 3.3: Representing “strut” with a set of multi-perspective ontologies

3.6 Multi perspective ontologies: Dealing with ontology
problems

In this section, the ontology problems listed above will be considered in turn, with

indications on how or whether multi-perspective ontologies can resolve the problem.

3.6.1 IS-A overloading

Five types of ontology problem due to IS-A overloading were identified by Guarino et

al. Multi-perspective ontologies can deal with two of these directly: suspect type-to-

role links should be eliminated if an ontology based on the relation plays the role of is

developed; and confusion of taxonomic roles should also be eliminated (since qualities

and decomposable objects don’t appear as one of the recommended perspectives, it

is unlikely that a taxonomy of them will be developed). The remaining problems are

due to weak consideration by knowledge engineers of the ontological links that can be

introduced into an ontology; multi-perspective ontologies don’t deal with this directly,

but by breaking down ontologies into a number of single-perspective ontologies, they

should make it easier to identify the implications of making certain links.
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3.6.2 Inaccurate expert responses

Multi-perspective ontologies can be of great help in dealing with inaccurate expert

responses, particularly if they are combined with a software tool that allows swift rep-

resentation and display of acquired knowledge. If, for example, a knowledge engineer

asks “what causes A?” and the expert inaccurately replies “B” when in fact A causes

B, an ontology based on the ‘causes’ relation can be created or opened, the relationship

can be entered, and the results displayed to the expert. The expert can then immedi-

ately see their statement in the context of other knowledge, and should recognise their

mistake.

3.6.3 Levels of detail and inferencing bias

The Zachman framework clearly suggests that knowledge or information assets need

to be represented not only from different perspectives but also at different levels of

detail, as discussed in chapter 2. It’s clear that the concept of agreed levels of detail of

ontologies is needed, but it’s far from clear that the levels proposed by the Zachman

framework map well to levels for ontology representations - not least because the six

levels of the Zachman framework do not in fact represent six increasing levels of detail,

but rather three levels of detail of models of the world (scoping, enterprise, system)

followed by three levels of detail of models of a system (technology, details representa-

tion, functioning enterprise). The subject of appropriate levels of detail for an ontology

is therefore a subject for future work. Interested readers might want to look at the

nine ontology levels proposed by Guarino [128].

Another suggestion, made by Corazzon [35], is that a Standard Template Library or

a Pattern for ontological categories and constructs should be developed, akin to the

templates used by the software patterns movement. These templates would be used

to classify “fragments of reality”, and would implicitly allocate those fragments to an

appropriate level of detail. However, as Corazzon points out, there is no general con-

sensus on the general features of an ontology, never mind an appropriate standardised

format for them.
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3.6.4 Dependence relations

The problem of representing dependence relations is greatly simplified by using multi-

perspective ontologies. The reason is that the most common dependence relationships

can actually be expressed as other relations that fit into the multi-perspective frame-

work. One example appears in the worked example of scientific knowledge manage-

ment: the existence of a Publication depends on the existence of a Document, but can

be re-expressed by saying that a Publication gives a (public) location of a document - a

relation that can be found in an ontology based on the WHERE perspective. Similarly,

the existence of a car can be said to depend on the continued existence of (most of) its

parts, which can be modeled using part-of relationships; and the continued existence

of a procedure depends (or ought to depend) on there being continued justification for

it being performed, which can be modeled in a WHY ontology.

3.6.5 Particulars

The representation of processes and groups also fits very well with the philosophy

of multi-perspective modeling. It is to be expected that the majority of concepts in

a HOW ontology will be processes or events rather than individuals. And a WHO

ontology, showing capability, authority, rights and responsibilities as well as organisa-

tional structures, can represent links between individuals and groups. The distinction

between “stuff” and discrete objects is a high level concept better represented using def-

initional properties in general ontologies rather than with relations in domain-specific

ontologies.

3.7 Discussion

It seems that the ability to search for a concept or category by more than one route is

highly prized by users, and multi-perspective ontologies are ideal for supporting this.

We have seen that the creation of multi-perspective ontologies is capable of resolving

several of the most common problems that arise in ontology development. Some is-

sues remain to be resolved, such as defining agreed “levels of detail” for ontologies,

and determining the most appropriate set of definitional properties for ontological con-
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cepts. Readers interested in these concepts are directed to discussions in [99] and [128]

respectively.

Some may argue that multi-perspective ontologies introduce multiple inheritance onto

ontologies and that this is unacceptable. While multiple inheritance clearly is intro-

duced, this is not so much unacceptable as inevitable for real world ontologies. Indeed,

multiple inheritance already appears in existing ontologies such as the ontology of Sci-

entific Knowledge Management shown in Figure 3.1 (where Person and Organisation

have multiple superclasses). If the argument against multiple inheritance is based on

the (common) inability of certain knowledge management software tools to support

multiple inheritance, the message of this chapter is that it’s time for a new version of

that software tool to be developed.

This chapter has shown how the perspectives of the Zachman framework can be used

to tackle common ontology problems. The next chapter looks at a detailed example of

this: the framework is applied to the ACM classification scheme to see if it has any of

the common ontology problems, and to determine if a multi-perspective analysis could

help to solve them.
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Chapter 4

Ontology, Knowledge
Management, Knowledge
Engineering and the ACM
Classification Scheme1

4.1 Introduction

Much work is being carried out these days on the classification of objects or concepts in

a standardised manner; such a classification is often referred to as an ontology. Various

researchers are promoting different ontologies, approaches to building ontologies, stan-

dards for ontologies, and so on. Such work is valuable and worthy of respect, but often

a single ontology cannot describe an object or concept fully. It is proposed in chapter 2

(with a case study in [103]) that representing an object or concept completely may re-

quire up to six ontologies, covering who, what, how, where, when and why perspectives,

and furthermore that these perspectives may recur at different levels of abstraction,

from an “organisational” level right down to a “system implementation” level. This

is referred to as a multi-perspective modeling approach. The contents of the “what”

perspective on knowledge are typically resources of some kind; the “how” perspective

contains methods or techniques; the “who” perspective will typically contain agents;

the “where” perspective will demonstrate external connections; the “when” perspective

will include control and constraints; and the “why” perspective will include justifica-

1 Published in proceedings of ES ’02, the annual conference of the British Computer Society’s Spe-
cialist Group on Artificial Intelligence, Peterhouse College, Cambridge, 10-12 December 2002
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tions and goals.

The purpose of this paper is to test the theory of multiple perspectives being necessary

for completeness in ontologies by applying it to the task of placing “knowledge manage-

ment” and “knowledge engineering” within the ACM classification scheme. This task

arose from a request by the librarian of the Artificial Intelligence library at the Univer-

sity of Edinburgh. For several years, the AI library has been classifying its collection

according to the ACM classification scheme, along with an extension to the Artificial

Intelligence section of the scheme that was published in the AI magazine in 1985 [40].

However, recent interest in knowledge management from commercial and research or-

ganisations, along with a grant from EPSRC to develop a Master’s Training Package

in Knowledge Management and Knowledge Engineering, has led to an influx of books

and other materials on these topics. There is no entry in the current ACM scheme for

knowledge management, and although there is an existing category for knowledge engi-

neering in the extended version of the scheme (as a subclass of Learning), the librarian

had noticed that books on knowledge engineering were being classified in four differ-

ent places, which suggests that there may be a problem with the current classification

scheme.

The thesis of this paper is that a multi-perspective analysis of the ACM classification

scheme and the AI extension should demonstrate some of the principles on which the

classification is based, and therefore help in deciding where knowledge management

and knowledge engineering should appear in the classification.

4.2 The ACM Classification Scheme and the Scientific
Datalink extension

The ACM classification scheme [127] was first published in 1964, with seven top level

topics. In its third revision, produced in 1998, the number of top level categories had

increased to 11 (see Table 4.1), along with major extensions of lower level categories.2

2 The report accompanying the 1998 classification suggests that another major revision is needed,
but because deletion of categories would render historical indexes inaccurate, it was decided that a
major revision would be delayed; and in addition, categories that were considered redundant would
be “retired” rather than being deleted from the hierarchy.
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A General literature

B Hardware

C Computer systems organisation

D Software

E Data

F Theory of computation

G Mathematics of computing

H Information systems

I Computing methodologies

J Computer applications

K Computer milieux (philosophy, legislation,
administration)

Table 4.1: Top level of the 1998 ACM classification scheme

Artificial Intelligence appears in the ACM classification scheme as a subcategory of

one of the newer top level categories, “Computing Methodologies”, alongside “sym-

bolic and algebraic manipulation”, “computer graphics”, “simulation and modeling”,

“document and text processing”, and others. The subcategories of AI (apart from

General and Miscellaneous, which appear in every list of subcategories) are Applica-

tions and Expert Systems; Automatic Programming; Deduction and Theorem Proving;

Knowledge Representation Formalisms and Methods; Programming Languages and

Software; Learning; Natural Language Processing; Problem Solving, Control meth-

ods and Search; Robotics; Vision and Scene Understanding; and Distributed Artificial

Intelligence. Each of these has some suggested interest areas (i.e. a partial list of

possible subcategories); for Applications and Expert Systems, for example, the current

list of interests includes (among others) cartography, games, industrial automation,

law, medicine and science, natural language interfaces, mathematical aids and pros-

thetics. It’s immediately clear to readers familiar with the Artificial Intelligence field

that, however valid this classification was when it was developed, it does not reflect

the current levels of interest in the field very well: an obvious example is cartography,

which is listed as a fourth level classification here, but nowadays would probably not

even make it to the fifth level – it might be regarded as a subclass of “Geographical

applications” which in turn would be a subclass of “Medicine and Science”. Similarly,

it’s hard to believe that a new classification would grant “Distributed Artificial In-

telligence” the same level of prominence as “Applications and Expert Systems”. The
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original classification may have been based on what was known at the time, on the

political preferences of the ACM committee3, or on some other basis. However, this

highlights the need to understand the principles on which ontological decisions are

based to be noted.

In 1985, David Waltz was invited by Scientific Datalink, a division of Comtex Scientific

Corporation to extend the AI classification to account for some of the subdivisions of

AI, to aid Comtex in indexing the series of AI memos and reports that they had been

gathering. The resulting classification, which has been published by Waltz in AI Mag-

azine [40], retains all of the above top level categories except for “Distributed Artificial

Intelligence”, which is replaced by “Specialized AI Architectures”. Two new categories

are also added: “Cognitive Modeling and Psychological Studies of Intelligence”, and

“Social and Philosophical issues”. The contents of most categories have been signifi-

cantly expanded: continuing the earlier example, “Applications and Expert Systems”

now has 19 subcategories, including the 7 proposed as “interests” by the ACM, and

these 19 subcategories have up to 11 sub-sub-categories or even sub-sub-sub-categories.

Space prevents the replication of the entire classification here, but four of the nineteen

categories are described in detail in Table 4.2.

I.2.1. Applications
and Expert Systems

Subcategories

1.0 Cartography

1.1 Games Chess, Checkers, Backgammon, Bidding Games,

Wagering Games, War Games, Other

1.2 Industrial Applications Automatic Assembly, Parts Handling,

Inspection, Welding, Planning for Production,

Inventory

1.3 Law

1.4 Medicine and Science Medical Applications, Chemical Applications,

Biological Applications, Geological Applications

1.5 Natural Language Interfaces

1.6 Office Automation

3 To illustrate “political preferences”, AIAI helped to carry out a project to merge four ontologies
of “scientific knowledge management” (i.e. academics and their publications) prepared by different
universities into one “reference ontology” [99]. When the four original ontologies were compared,
it was noted that there were many similarities, but if a research group’s own special interest area
appeared in the ontology, it was classified at a higher level in its own ontology than in the others’
ontologies.
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1.7 Military Applications Autonomous Vehicles, Integration of

Information, Decisions Aids, Target Tracking,

Communication

1.8 Business and Financial Tax experts, Investment, Financial Planning,

Information Storage and Retrieval

1.9 Natural Language Processing Applications

1.10 Mathematical Aids

1.11 Education Tutoring systems, Intelligent Computer-aided

Instruction, Aids to learning Programming,

Curriculum Design

1.12 Library Applications

1.13 Engineering Automation Computer System Design, VLSI Design Aids,

CAD/CAM, Programming Aids

1.14 System Troubleshooting

1.15 Expert Systems Expert System Languages and Aids for

Building Expert Systems, Acquisition of Expert

Knowledge, Plausible Reasoning,

Representation of Expert Knowledge,

Generation of Explanations, Expert Systems

based on Simulation and Deep Models, User

Interfaces for Expert Systems, Validation of

Expert Systems

1.16 Prosthetics

1.17 Aviation Applications

1.18 Applications, Other

I.2.4 Knowledge Representation

4.0 Frames and Scripts Defaults, Stereotypes and Prototypes,

Generation of Expectations, Frame Languages,

Frame-Driven Systems, Inheritance Hierarchy

4.1 Predicate Logic First Order Predicate Calculus, Skolem

Functions, Second Order Logic, Modal Logics,

Fuzzy Logic

4.2 Relational Systems Relational Data Bases, Associative Memory

4.3 Representation Languages

4.4 Representations (Procedural and

Rule-Based)

Production Rule Systems, Knowledge Bases

4.5 Semantic Networks

4.6 Connectionist Systems

4.7 Multiple Agent/Actor Systems

4.8 Constraints

4.9 Discrimination Trees and Networks

4.10 Belief Models

4.11 Representation of the Physical World

4.12 Representation of Natural Language

Semantics

I.2.6 Learning
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6.0 Analogies Geometric Analogies, Natural Language

Analogies, Structural Analogies, Functional

Analogies

6.1 Concept learning Near-Miss Analysis, Version Spaces, Schema

Acquisition and Generalisation, Learning of

Heuristics, Credit and Blame Assignment,

Conceptual Clustering

6.2 Induction Statistical Methods, Inductive Inference

6.3 Knowledge Acquisition Advice Taking and Learning by Being Told,

Learning from Examples, Learning by

Observation, Learning from Experience,

Learning by Discovery

6.4 Knowledge Engineering Dialogues with Experts, Knowledge Base

Stability, Knowledge Base Consistency

6.5 Language Acquisition Acquisition of Grammar, Learning of Concepts

through Language

6.6 Parameter Learning

6.7 Associative Learning

6.8 Learning of Skills

6.9 Developmental and Incremental Learning

6.10 Evolutionary Models for Learning

I.2.8 Problem Solving, Control
methods and Search

8.0 Backtracking

8.1 Dynamic Programming

8.2 Graph and Tree Search Strategies Depth first, Breadth first, Best first, Branch &

Bound, Hill Climbing, Minimax, Alpha-Beta,

A*, Beam, Dependency-Directed Backtracking,

Constraint Propagation, Relaxation Methods,

Marker Passing, Bidirectional,

Data-Driven/Top-Down

8.3 Heuristic Methods Nature of Heuristics, Heuristic Control of

Search, Strategies, Default Reasoning, Closed

World Heuristics, Induction and Evaluation of

Heuristics, Qualitative Reasoning and

Envisionment

8.4 Plan Execution, Formation, Generation Means-End Analysis, Forward Chaining,

Backward Chaining, Weak methods, Generate

and Test, Hierarchical Planning, Metaplanning

and Multiple Goals, Plan Verification, Plan

Modification

8.5 Matching

Table 4.2: Part of the Scientific Datalink AI classification
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4.3 Dimensions of classification: classes, subclasses and
multi-perspective modeling

The ACM classification scheme is considered to be a four-level, hierarchical taxon-

omy. A “taxonomy” is defined in Merriam-Webster’s dictionary as “a classification,

especially an orderly classification of plants and animals according to their presumed

natural relationships”. Taxonomies are typically used to represent one class of objects

or concepts and its sub-types; that is, objects/concepts that possess all the defining

features4 of the higher level object/concept plus a couple of extra features. A ‘true’

taxonomy therefore includes only one relationship between objects or concepts; one

object/concept is a subclass (or “a kind of”) the other.5

However, when ontologies are built to represent the relationships between tasks, activ-

ities, philosophies, or other conceptual entities, it’s often difficult to connect them all

using only subclass relationships; maybe there are no obvious taxonomic groupings, or

maybe there is a more obvious grouping according to function, form, role or relevance.

An example of a “more obvious” grouping can be found in vegetable classification;

while it might possibly be helpful to know that the Linnaean classification of (most)

tomatoes places them alongside aubergines and potatoes in the Nightshade genus of

the Potato family, many gardeners would probably prefer to see tomatoes classified

alongside other vegetables that grow on vines, vegetables that grow in greenhouses, or

even vegetables that are served in salads. An example of “no obvious groupings” can

be found by looking at cars. Possible classifications include “saloon”, “hatchback”,

“sports car”, etc (based largely on form, but also on role) or “petrol engine cars”,

“diesel engine cars” and “alternative fuel engine cars” (based on function), but such

subdivisions seem less “natural” than the higher level classes – and yet taxonomies are

supposed to be based on “presumed natural relationships”.

In fact, the whole issue of “natural” versus “artificial” classification has been a major

subject of academic debate. A good summary is produced by Wilkins [194] who argues

4 There is much debate in psychological circles about what constitutes a “defining feature”. Interested
readers might look at the work of Rosch on “typicality” [142].

5 There is also a variant of ‘subclass’ – ‘instance-of’ – that allows for individual members of classes;
so an object can be an instance of a class. Strictly speaking, therefore, a taxonomy allows two types
of relationship between objects and concepts.
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that “all classifications are artificial, but some have a degree of naturalness about them”

and quotes R.G. Millikan who proposes that a “natural” concept can be determined by

making a historical investigation of how an object and its name came about, and then

determining what the name refers to today in most cases.6 The practical result of these

“artificial” distinctions is that taxonomies are sometimes based on relationships other

than ‘subclass’. Common ones are ‘part of’, ‘causes/produces’, and ‘has property’7. In

the next section, an analysis of the ACM classification will be carried out to determine

what relationships are actually used.

4.4 The ACM Classification scheme: analysis

The ACM classification covers several of the multiple perspectives. The perspectives

covered include “what” is needed for a computer system (hardware and software),

“how” to build a computer system (techniques), and “why” systems are built (comput-

ing milieux). The categories also cover different levels of abstraction: some categories

consider the contents of the computer itself (hardware, software, computer systems

organisation, data, information systems) while other categories consider the computer

as a single concept in the context of applications (computing methodologies, computer

applications, computing milieux). There’s also a third level of detail to be found in the

two theoretical categories (Theory of Computation and Mathematics of Computing)

which provide the foundational techniques for computer systems organisation, data

and information systems. See Table 4.3 for a summary.

6 This is a highly simplified summary; there is an entire journal devoted to classification. Wilkins’
complete summary quotation is: “All classifications are artificial, but some have a degree of natu-
ralness about them. Natural classifications are the result of a refinement of the intension of terms
based on a very broad and generally culture-neutral set of observations. Species names, indeed all
taxa names, are terms with a proper function assigned by the history of their use, and which may
change as new evidence is arrived at.”

7 Each of these relationships can be broken down into a number of distinct relationships, but this
level of detail is beyond the scope of this paper. For an example, see [1] on the breakdown of ‘part
of’.
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What How Why When Where Who

Com-
puter
applic-
ations

Com-

puter

Applic-

ations

Com-

puting

Method-

ologies

Computer

milieux

What
goes
inside
a
com-
puter

Hardware,

Software

Computer

Systems

Organi-

sation,

Data,

Informa-

tion

Systems

Theoret-
ical
level

Theory

of

Compu-

tation,

Mathe-

matics

of Com-

puting

Table 4.3: Top level categories from the ACM scheme, clas-
sified according to multi-perspective modeling

This organisation is broadly mirrored in the organisation of some of the second level

categories in the ACM classification scheme. For example, the subclasses of Computer

Systems Organisation are Processor Architectures and Computer-Communication Net-

works (two disjoint components that are necessary for a functioning hardware system,

aka Hardware and Software at the top level); while Special Purpose and Application

Based Systems and Computer systems implementation look at the “what” and “how”

perspectives on hardware construction “applications”. There’s also a subcategory for

Performance of systems, which probably falls under the “when” perspective.

The subclasses of Information Systems, Data and Software all use a similar multi-

perspective classification scheme. Not all of the second level categories and their

decompositions fit neatly into this multi-perspective framework, however. The sub-

divisions of Computer Applications appear to be closer to a taxonomy, in that their

second level breakdown consists of different areas of study or different disciplines which

reads like a list of university faculties (Administrative data processing, Physical sciences
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and engineering, Life and medical sciences, Social and behavioural sciences, Arts and

Humanities). While disciplines are not strictly speaking subclasses of “computer ap-

plications”, they do (or should) form a single coherent subclass of a (hypothetical)

taxonomy of knowledge.8 The two top-level categories with a theoretical leaning also

have sub-categories that reflect different areas of study in the disciplines of (applied)

mathematics and (applied) logic.

A third approach is found in the Hardware category; its subcategories name different

areas of hardware design (Control structures, Arithmetic and logic structures, Memory

structures, Input/Output and Data Communications, Register-transfer-level implemen-

tation, Logic Design and Integrated Circuits), each of which includes the same small set

of sub-sub-categories: Design Styles, Design Aids, and (until it became a separate cat-

egory in the 1998 classification), Performance and reliability. It seems, therefore, that

the Hardware category is decomposed into its second level using the ‘part of’ relation

instead of the ‘subclass’ relation (i.e. each subcategory is a “part of” the hardware of

a computer system rather than a subclass) while a multi-perspective approach is used

at the third level, which explains the recurrence of the same subcategories at this level.

4.5 The Scientific Datalink AI extension: analysis

As with the ACM classification, each of the four categories of the Scientific Datalink

AI classification (as reproduced in Table 4.2) can be broken down into subgroups.

• Applications and Expert Systems has nineteen subcategories, seven of which are

drawn from the “interests” in the ACM classification scheme. Most of these are con-

cerned with different domains in which expert systems have been applied (similar to

the ACM’s taxonomic breakdown of Computer Systems Applications into different dis-

ciplines), but I.2.1.15 (“Expert Systems”) and I.2.1.5 (“Natural Language Interfaces”)

are more concerned with techniques for expert system construction, and I.2.1.14 (“Sys-

tem Troubleshooting”) focuses on a particular task rather than on a domain. The

distinction between tasks and domains, which is a key tenet of the CommonKADS

methodology for knowledge engineering [147], corresponds to the distinction between

8 If the subcategories were relabelled “Applications in <Discipline>” rather than just <Discipline>”,
the taxonomic connection would be much clearer.



Ontology: ACM Example 77

“how” and “what” in multi-perspective modeling.

• Most of the subcategories of Knowledge Representation are concerned with differ-

ent knowledge representation formalisms – the “what” of knowledge representation.

Frames and Scripts, Predicate Logic, Procedural & Rule-based Representations, Se-

mantic Networks, Constraints and Connectionist Systems all fall into this category.

The odd ones out are Representation of the Physical World and Representation of

Natural Language Semantics; while these have some correlation with representation

formalisms (e.g. simulation models with Representation of the Physical World), these

two categories are primarily concerned with knowledge representation as a task rather

than a formalism – i.e. with “how” rather than “what”.

• Several subcategories of Learning deal with different methods of learning (by anal-

ogy; induction; associative learning), others deal with subjects to be learned (Concept

learning; Language Acquisition; Learning of Skills). So here there is a multi-perspective

decomposition; some subclasses represent “what” subcategories while others represent

“how”. And then there’s Knowledge Acquisition and Knowledge Engineering. Knowl-

edge Acquisition is apparently categorised under “learning” because its subcategories

include learning from examples (i.e. induction), learning by observation, learning from

experience and learning by discovery. Yet several popular knowledge acquisition tech-

niques are not covered here at all – and while there is a category named “Acquisition

of Expert Knowledge” (I.2.1.15.1) two levels down from “Applications and Expert

Systems”, the popular techniques are classified in various different places rather than

being collected together in I.2.1.15.1. Protocol analysis, for example, is categorised

under I.2.11 Cognitive Modeling and Psychological Studies of Intelligence, while the

analysis of interview transcripts is most closely covered under Dialogues with Experts,

which is considered to be one of only three subcategories of Knowledge Engineering.

The reader is left with a strong feeling that Knowledge Acquisition and Knowledge

Engineering are underspecified, incomplete, and (possibly as a result) misclassified.

• The final category considered here, Problem Solving, Control Methods and Search

seems to be something of a catch-all category for methods of controlling inference in AI

programs. It has six subcategories, two of which are (unsurprisingly) Heuristic Meth-

ods and Graph and Tree Search Strategies. It also has categories for Backtracking,

Dynamic Programming, and Matching, which are concerned with the implementation
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of rule-based systems, and finally a category for Plan Execution, Formation and Gen-

eration. Control knowledge is slightly difficult to categorise within a multi-perspective

framework. In theory, it should be “meta-how” knowledge (i.e. knowledge about the

process of controlling processes); in practice, it often includes information about the

ordering or processes and the timing of key inputs and outputs to a process, and thus

consists of “when” knowledge. This is particularly true of knowledge about planning.

To summarise: Scientific Datalink’s AI extension to the ACM classification seems

to stick with a formula where formalisms/resources (“what” knowledge) are mixed

with methods/techniques (“how” knowledge) to generate subcategories. A taxonomic

breakdown is also used (for Applications).

4.6 Correct classification of Knowledge Management, Knowl-

edge Engineering and Knowledge Acquisition

Having carried out this detailed analysis, it is time to use the principles identified to

meet the original goal of this paper: to determine where Knowledge Management and

Knowledge Engineering should be classified. Knowledge Acquisition will be considered

too.

Correct classification of Knowledge Engineering

Knowledge Engineering has been variously classified as “the design and develop-ment

of knowledge based systems”; “application of logic and ontology to the task of building

computable models of some domain for some purpose”; “[the study of] the development

of information systems in which knowledge and reasoning play pivotal roles”; and “[a]

scientific methodology to analyze and engineer knowledge”. Using the classifications

identified earlier, it’s clear that knowledge engineering is primarily application-focused

(as opposed to concerned with the internal function of knowledge based systems or

theoretical principles of knowledge); and that it focuses on the task of system devel-

opment (i.e., “how” knowledge). From this analysis, the following classifications of

Knowledge Engineering are possible:
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• Knowledge Engineering could be a subclass of I.2.1 Applications and Expert Sys-

tems. Unfortunately, Applications and Expert Systems uses a largely taxonomic break-

down; but there are two subcategories of Applications and Expert Systems that are

concerned with techniques for expert system construction. These do not fit well with

in the taxonomic breakdown of I.2.1, but would be appropriate siblings for Knowledge

Engineering.

• Knowledge Engineering could sit alongside Software Engineering as a subcategory

of D. Software in the ACM classification. The primary objections to this are the “po-

litical” ones – there’s much more interest and activity in Software Engineering than in

Knowledge Engineering, which makes it difficult to place them at the same level.

• Knowledge Engineering could be a subcategory of D.2 Software Engineering. This

is probably the most “principled” place to put it, since knowledge engineering is indeed

a subcategory of software engineering – it is software engineering for a specialised type

of software system. However, this conflicts with the current basis of decomposition

of Software Engineering, which is by subtasks rather than a “taxonomy” of types of

software.

• Knowledge Engineering could appear alongside Representation of the Physical

World and Representation of Natural Language Semantics as a “how” category un-

der I.2.4 Knowledge Representation in the AI extension. The difficulty with this is

that the focus of Knowledge Representation is very much on the internals of a knowl-

edge based system, whereas the focus of Knowledge Engineering is on applications, so

there is a clash in levels of abstraction.

• Finally, Knowledge Engineering could be left in its current location as a subcat-

egory of I.2.6 Learning. This is probably the worst option of all, since knowledge

engineering techniques (with accompanying knowledge models) are only appropriate

for software that doesn’t rely on learning as its primary input method, since it’s hard

to analyse knowledge that has not yet been learned.

In summary, there is no ideal location for Knowledge Engineering in the ACM or

Scientific Datalink hierarchies. Since a proposal is needed, a “tie-breaker” can be found

in the current subcategory I.2.1.15 Expert Systems of I.2.1.Applications and Expert

Systems. This subcategory actually has a number of knowledge engineering subtasks

as its subcategories already. For the sake of backward compatibility, therefore, I.2.1.15
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should be left in its current position in the hierarchy, but be renamed to “Expert

Systems and Knowledge Engineering”.

Correct classification of Knowledge Acquisition

Once the classification of Knowledge Engineering has been decided, the correct classifi-

cation of Knowledge Acquisition is fairly easy to determine, for Knowledge Acquisition

is a subtask of Knowledge Engineering. Indeed, there is already a category I.2.15.1

named “Acquisition of Expert Knowledge”. The only difficulty lies in determining

where to classify those topics that are currently subclasses of I.2.6.3 Learning: Knowl-

edge Acquisition. Since the Learning section needs to revised anyway to take account

of (a) the removal of Knowledge Engineering and (b) the presence of Induction but the

absence of two related technologies, Case Based Reasoning and Neural Networks9, it

is proposed that the subcategories of I.2.6.3 are either transferred to other categories

under Learning (for example, I.2.6.3.1, Learning from Examples, would be appropriate

for this) or moved to I.2.1.15.1, Acquisition of Expert Knowledge.

Correct Classification of Knowledge Management

Deciding where to classify knowledge management is difficult because there is con-

siderable disagreement about the best approach to knowledge management. A good

working definition of knowledge management would be “the deliberate design of arti-

facts with the intent to improve the use of knowledge within an organisation”, but a

range of artifacts have been suggested, from knowledge based systems (thus consid-

ering knowledge management as an early stage in knowledge engineering) through to

communication forums (considering knowledge management as a process of community

interaction in which knowledge-based technology has no part to play). A good survey is

given by Binney [39] in which he identifies a “KM spectrum” where knowledge manage-

ment activities are classified according to their overall goal. Applications that embed

knowledge in organisational transactions lie at the “technology-focused” end of the

9 There are existing Scientific Datalink categories for Connectionist systems under Knowledge Rep-
resentation, and Connectionist Architectures under I.2.12 Specialised AI Architectures, but there is
no explicit category for “how” to build neural networks. There is so much work on neural networks
these days that it probably deserves its own separate category.



Ontology: ACM Example 81

spectrum whereas applications that support innovation and creation of new knowledge

lie at the “community-focused” end of the spectrum. Between these two extremes can

be found “analytical KM” (the use of knowledge to interpret vast amounts of material);

“asset management” KM; “process-based” KM (the codification and improvement of

organisational processes); and “developmental” KM (increasing the competencies or

capabilities of an organisation’s knowledge workers).

KM is therefore generally application-focused; it can be focused on “what”, “how”,

“who” or even “why” depending on the KM approach that is taken; and Binney’s

decomposition of KM is focused on “how” a particular goal should be achieved. From

this analysis, options for classification of Knowledge Management would be:

• As a subclass of I.2.1.15 Applications and Expert Systems, alongside Knowledge

Engineering;

• As a subclass of I.2.4 Knowledge Representation; however, the arguments against

this are the same ones that applied to Knowledge Engineering;

• As a subclass of I.2.13 Social and Philosophical Issues [in Artificial Intelligence].

This, however, is more of a theoretical perspective while Knowledge Management is

more focused on applications;

• As a subclass of H.4 Information Systems in the ACM classification scheme. This

removes the commitment that a KM system must be knowledge-based in some fashion,

and thus encompasses more of the various KM approaches than would otherwise be

the case, but it’s debatable whether or not Knowledge Management should appear at

the same level as Database Management – for despite the similarity in terminology,

these are really quite different tasks;

• As a subclass of H.4.1 Office Automation underneath H.4 Information Systems.

H.4.1 already contains a category for Workflow management, which is a key enabling

technology for process-based KM, and a category for Groupware;

• As a subclass of H.4.2 Types of Systems underneath H.4 Information Systems. This

category currently includes “Decision support systems (e.g. MIS)” and “Logistics”,

both of which are reasonably application-focused and also focus on “how” tasks are

done.

It seems that there are advantages in taking “Knowledge Management” outside the



Ontology: ACM Example 82

Artificial Intelligence classification and using the Information Systems classification in-

stead, since some knowledge management approaches are based on software that is not

knowledge based. The final recommendation is that Knowledge Management should

be a subclass of H.4.2 Types of [Information] Systems, since it fits better alongside

other types of systems (decision support systems and logistics) than alongside its own

enabling technologies (workflow systems and groupware). A new category is therefore

proposed, to be labelled H.4.2.3 Knowledge Management.

4.7 Discussion

It has been shown that the ACM classification, and Scientific Datalink’s extension, are

based on two or three different structuring principles: sometimes taxonomic, sometimes

based on “what” knowledge, (which implies that the subcategory is something that is

used for, or produced by the top level category; it is a resource in the most general

sense of the word), and sometimes based on “how” knowledge – i.e. techniques for, or

methods to achieve the top level category. In addition, the Hardware category has a

‘part of’ decomposition, and some political considerations come into play as well.

What does this tell us about the ACM classification, about multi-perspective modeling,

and about ontologies in general? It tells us that if an ontology tries to use “natural”

categories, then it will almost certainly be developed using multiple perspectives; so

the original thesis of this paper, that multiple ontologies from different perspectives are

needed for completeness, is borne out. However, the “what” and “how” perspectives

are much more common than the “who”, “when”, “where” and “why”, so it seems

that while six ontologies from different perspectives may be necessary, two – with

appropriate attention to whether the ontology is focused on theoretical principles,

system internals, or applications – will often be sufficient.

It also tells us that “political” considerations – the level of interest in a subject – have

considerable weight when determining the level of various categories in the ontology.

The underlying message of this is that there is no canonical way of determining when

a set of subcategories is complete – or at least, no way that is sufficiently widely ac-

cepted to override political concerns. Some guidance on category completeness may be
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available from other research; to give an example, “System Troubleshooting” has been

identified as the only subcategory of I.2.1.15 Applications and Expert Systems that

represents an application-focused task. However, a set of “knowledge based tasks” has

been proposed by the CommonKADS methodology [20], and one of them (diagnosis)

can be instantiated to “troubleshooting”. This implies that all the other knowledge

based tasks should be eligible, or even expected to make an appearance in I.2.1.15; ex-

amples might be “artifact design”, “system monitoring”, and “selection/ assessment”.

But this set of tasks is not theoretically proven to be complete; in fact, the original

author of this set of tasks has since revised his opinions and proposed that the tasks

above are actually composed from a smaller set of five or six “primitive” tasks [18].

So while published sets of categories such as this can be pragmatically useful to ontol-

ogy developers, they rarely actually solve the problem of canonically determining all

possible members of a category.

The ACM classification scheme itself, along with its AI extension, is detailed, widely

accepted, and reasonably principled, and so should continue to be used. Some revisions

are needed, though (especially under I.2.6 Learning in the AI extension), and it is worth

questioning why Hardware uses a different decomposition principle from the rest of the

scheme: is this an artifact of political lobbying, or is there a “natural” principle here

that could be extended to other areas of the classification?

Finally, the new classifications proposed by this paper have classified Knowledge En-

gineering and Knowledge Management very differently. This raises the issue of the

purpose of a classification: should it be carried out according to ontological principles

for robustness, or should it be organised to place relevant subjects close to others, to

facilitate serendipitous browsing? The case of knowledge management is a difficult

one because there are different opinions about it – some books on knowledge manage-

ment will draw heavily on techniques from knowledge engineering and will serve as

useful precursors to knowledge engineering projects, while other books will have little

or no relevance to knowledge engineering. An intriguing alternative to the ontological

approach would be to use learning techniques to create an entirely new classification

scheme based on cluster analysis (using references, keywords, or other criteria); an

examination of this approach is suggested for future research.
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Having shown that the perspectives of the Zachman framework have value in both

knowledge management and ontology analysis, the next chapter of this thesis turns to

the topic of the applicability of the Zachman framework to knowledge engineering.



Chapter 5

Multi-Perspective Knowledge
Modeling in Knowledge
Engineering: the CommonKADS
Methodology1

5.1 Introduction

In previous chapters, the value of a multi-perspective modeling approach in knowledge

management and in ontology development has been discussed. The purpose of this

chapter is to show how this concept can be applied to knowledge engineering: the

acquisition and representation of knowledge, and the implementation of that knowl-

edge in a knowledge-based reasoning system. Specifically, the chapter introduces the

CommonKADS approach to knowledge management and knowledge engineering, and

considers how well it supports a multi-perspective approach to knowledge modeling.

In the early days of the development of expert systems, the construction of these sys-

tems was often carried out by “rapid prototyping”; that is, acquiring some knowledge

from the expert, and immediately implementing this knowledge in software. Future

knowledge acquisition sessions were then used to increment the functionality of the

software. While rapid prototyping has some benefits in swiftly proving the usefulness

of the software, it proved to have numerous disadvantages in maintainability of the

1 This chapter is an extended version of “Multi-Perspective Modelling of the Air Campaign Planning
Process”, John Kingston, Anna Griffith and Terri Lydiard, presented at IJCAI-97.
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systems, not least because there was no representation of the knowledge independent

of its implementation. It was perhaps a growing desire for such an independent rep-

resentation, backed by Newell’s “knowledge level” principle [130] which proposes that

knowledge should be represented at a conceptual level that is independent from specific

computational constructs, that led to the first proposals for knowledge modeling - that

is, representing knowledge as a set of diagrams and accompanying text.

As knowledge based systems became increasingly of interest to the commercial world,

a desire began to grow for knowledge based systems to be developed in traceable

and reliable manner. Software engineering methodologies such as SSADM, Prince, or

the emerging object oriented analysis and design methods viewed the development of

software as a sequential process, with some loopbacks permitted (since it had been

discovered that a pure “waterfall” approach, with no loopbacks to earlier stages al-

lowed, caused some expensive mistakes due to late detection of early errors). Broadly

speaking, these stages were the gathering of system requirements from users; analysis

of these requirements; design of a system that would meet the requirements; imple-

mentation of the system; and testing the system against requirements. To companies

and industries for whom accuracy, reliability and maintainability were far more impor-

tant that speed of development or trying out new technical approaches, this type of

structured methodology was much more acceptable than rapid prototyping.

It was in this environment that the CommonKADS methodology was developed. Com-

monKADS started life as KADS, a methodology developed by a European Union-

funded collaborative project between 1983 and 1987. The acronym either stood for

Knowledge Acquisition Documentation System or Knowledge Analysis and Design

System; it seems that the project was originally motivated by a desire to represent

acquired knowledge at the “knowledge level”, which is referred to frequently in early

documentation, but was later transformed into something more closely resembling a

software engineering methodology.

KADS focused on the transformation of expert knowledge into a system design for

a knowledge based system. It introduced (or popularised) two key concepts to the

knowledge engineering process: the separation of analysis into different but related

layers, and the use of template models to guide both knowledge acquisition and system
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structuring. The “layer” approach encouraged knowledge engineers to model the static

domain knowledge (concepts, instances, relationships) separately from the inference

knowledge (inference steps, and the role that knowledge played in reasoning), with

further layers for the task knowledge (control of the ordering of inference steps, and

of inputs and outputs) and the problem solving knowledge (deciding what strategy to

take in solving a problem). These layers were clearly interrelated, and the separation

proved to be a useful support to knowledge acquisition, for if knowledge was required

by one layer but did not exist in another layer, there was a clear requirement for further

knowledge acquisition.

The second key innovation of KADS was the provision of generic template models for

problem solving. These models were intended to support the inference layer of rea-

soning (some support for the task layer was also provided) by suggesting the types of

knowledge and of inference steps that were required in various problem solving tasks.

The development of an inference layer then switched from being a model creation

task to a model instantiation task. Inspired by Clancey’s generic model of heuris-

tic classification tasks [31], generic template models were developed for a variety of

analytic tasks (diagnosis, assessment, monitoring, etc.), synthetic tasks (design, plan-

ning, configuration) and modification tasks (repair, control). These templates, known

as “interpretation models”, proved to be KADS’ most popular innovation, since they

provide an easy route to choosing an adequate system design.

KADS was criticised, however, from two main camps: those who criticised its model-

ing for not taking into account other modeling approaches (such as Chandrasekaran’s

Generic Tasks approach [27] and Steels’ Components of Expertise approach [161]), and

those who criticised it for being too narrowly focused on the transformation of expert

knowledge into a system design without consideration of the organisational context in

which a system will operate (i.e. without sufficient attention to the requirements and

system analysis stages of KBS development). The result was CommonKADS, devel-

oped on a second EU-funded project (KADS-II, 1989-1994) which extended KADS to

take in many of these components. Some revisions were made to the model of exper-

tise (principally moving problem solving knowledge from being a layer of the expertise

model to being a separate library of problem solving methods), but the biggest change
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came in the introduction of five new models:2 models of the organisation, task, agents

involved, communication, and system design. These embodied an approach that al-

lowed for development of a knowledge based system by progressive transformation of

models from a model of the organisation through increasingly specific models until an

implementable system design is produced. The “CommonKADS book” [147] presents

these models as being at three levels of detail: an organisational level, an expertise

level and a design level. From my own practical experience with CommonKADS, I

have revised this into a four-level model, as shown in Figure 5.1.

By introducing these new models, and encouraging knowledge engineers to work top-

down through them, CommonKADS became a knowledge engineering methodology

that is analogous to software engineering methodologies. This was quite deliberate;

indeed, CommonKADS chose to use (early) UML diagramming conventions for its

models. However, CommonKADS’ use of multiple models at multiple levels of detail

also fits well with the philosophy of the Zachman framework for Information Systems

Architecture [197]. This chapter therefore has two purposes: to describe the upper level

CommonKADS models briefly, and to discuss the mapping between CommonKADS

and the Zachman framework.

5.2 The models proposed by CommonKADS

CommonKADS’ concept of a model includes a range of features: content (elements and

relations), rationale, and possible model states. Model states are considered in some

detail, and are considered to have quality criteria, land mark and transition types, and

internal and external dependencies (see figure 1.1 in [44]). The concept of model states

is considered in some detail throughout the publications of the KADS-II project, and

while it has not been taken up in detail by many knowledge engineers, it fits well into

the concept of CommonKADS as a software engineering methodology.

The six models proposed by CommonKADS are as follows:

• An Organisation model which represent the processes, structure and resources

2 KADS did propose a model of “modality” which formed the foundation of the Agent and Commu-
nication models, so perhaps CommonKADS only introduced three or four ‘new’ models.
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within an organisation, with the aim of identifying fruitful areas for better ap-

plication of knowledge;

• A Task model to show the activities carried out in the course of a particular

organisational process;

• An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

• A Communication model to show the communication required between agents

during a process;

• A model of Expertise which is a model of the expertise required to perform a

particular task;

• A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

This chapter focuses on two of these models - the Organisation and Task models - and

uses them to illustrate the multi-perspective nature of CommonKADS. The remaining

models are discussed in more detail in later chapters. Note that the descriptions given

draw both on the recently published “CommonKADS book” [147], and also on earlier

reports from the KADS and KADS-II projects, Where there are differences between

earlier and later descriptions, these are noted.

Organisation

Model

Task Model

Agent Model

(between

tasks)

Knowledge

(Expertise)

Model

Communication

Model (between

tasks)

Design

Model

Context/

Scope

Concept

(System)

Artifact

(Technological)

Context/

Enterprise

Communication

Model (within

a task)

Agent Model

(within a

task)

Figure 5.1: Relationship between the various CommonKADS models
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5.3 The CommonKADS Organisation Model

The Organisation model of CommonKADS was designed to represent the different as-

pects of an organisation that might be relevant for decision making in a knowledge

based systems project. Its sub-goals are to support the identification of knowledge

based systems applications within the organisation; to facilitate assessing the impact

that a knowledge based system might have when it is introduced into the organisation;

and to familiarise knowledge engineers with the culture (the ‘feeling’) of the organ-

isation. It can be represented as a number of sub-diagrams. The first (published)

proposal [44] was that the sub-diagrams should consider organisational structure, or-

ganisational functions, organisational processes, organisational resources (knowledge,

computing and other), people (i.e. roles and responsibilities), and power/authority re-

lationships that crossed over organisational structure. A case study was published by

the KADS-II project [43] which demonstrated how these aspects were used to represent

the Dutch social security organisation. The structure, process, and power/authority

diagrams are reproduced in Figures 5.2, 5.3 and 5.4 below (note that the process di-

agram incorporates all the identified organisational functions). It can be seen that

the social security organisation had all its computing functions outsourced to an ex-

ternal computing centre (Figure 3); it can also be seen that a number of unofficial

power/authority relationships did exist, including the tester’s power to demand time

of low level branch staff (to carry out tests) and a relationship between the secretary

of one head of unit and the head of another unit (they were married to each other).

But the real benefits of this approach become obvious in the “cross product” diagram

that is reproduced in Figure 5.5, which maps functions to structure. The initial con-

cept behind developing this model was to support the Decision Making function with

a knowledge-based system; but from Figure 5.5, it is obvious that the Decision Making

function is actually distributed over a number of departments, making the implemen-

tation of a knowledge based system difficult in practice. Furthermore, the appearance

of the “Archiving” function in no less than three locations in the diagram led the

researchers to develop another cross product, of functions against resources; in other

words, they investigated how much time was spent on each function. They found that

Decision Making took up relatively little time of the processing of a social security
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application while Archiving took up around 30% of the total time. So not only would

a KBS be complex to put into practice, but also there was little to be gained from

automating the decision making function!

Figure 5.2: Social Security department: organisational structure

The Organisation model has undergone some changes in the CommonKADS book: to

summarise them, the recommended set of perspectives has changed (’functions’ are

no longer recommended since they appear in the process perspective anyway), and

knowledge engineers are encouraged to represent the perspectives using an number of
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Figure 5.3: Social Security department: organisational processes

worksheets rather than as diagrams. However, the general principle of representing the

organisation from a number of different perspectives remains.

5.4 The CommonKADS Task Model

The CommonKADS Task Model examines a single business function in more detail,

focusing on the functions and process(es) that make up that top-level business function.

For example, if the top level function was “Archiving”, the sub-functions might include

“assessing required level of confidentiality”, “indexing”, and “transferring to storage”.

It also includes more detail about the inputs and outputs of the process. Various

aspects of the task may be represented, including:
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Figure 5.4: Social Security department: power & authority links

• The goal of the task and the degree to which it generally can be achieved;

• The preconditions of a task (either inputs or completion of other tasks);

• Control over sub-tasks;

• Knowledge or skills required to complete the task;

• Whether the task decomposes according to time, sub-goals or ingredients;

• How the tasks will differ in the required situation from the current situation.
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Figure 5.5: Social Security department: cross product between structure & process

The end result can be represented as structured text (as recommended by the original

Task model definition report [55]), or as a set of worksheets (as recommended by the

CommonKADS book). However, since all other CommonKADS models have a diagram

format recommended, it is useful to be able to represent the Task model as a diagram

too - perhaps a UML Activity diagram, or using some other process diagramming

format.

The purpose of the Task model is to mitigate certain risks attendant to knowledge

management and knowledge engineering. Duursma [55] identifies the following:
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• A system is constructed that does not benefit the organisation;

• A system is constructed that performs tasks that are not part of the problem;

• Task actors are not clearly specified;

• The organisation model cannot be completed;

• No expertise model can be developed;

• Tasks appear in the design model that were not previously specified;

• Inter-task communication is not understood.

In other words, the Task model is an integral part of the CommonKADS model suite,

and it may be difficult to develop any of the other models without having developed a

task model.

5.5 Worked Example: CommonKADS Models of Air Cam-

paign Planning

This section describes how the CommonKADS Organisation, Task and Agent models

were used to model the top level process of USAF air campaign planning. This example

is based on work carried out to support a consortium of researchers who were developing

knowledge-based software and techniques to support the task of air campaign planning.

5.5.1 Knowledge acquisition

Knowledge acquisition was initially carried out using interviewing techniques. These

interviews provided much useful knowledge, and also highlighted the existence of a

number of relevant documents, from which much further knowledge was acquired.

Two other knowledge acquisition techniques were also used; protocol analysis of a

sample planning scenario provided useful information about the priorities, ordering,

and necessary information for the planning process; and the repertory grid knowledge

elicitation technique was used at a later stage to determine which activities within the

planning process were difficult or had highest impact, to determine which activities

might benefit from knowledge based system support.
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The knowledge that was acquired showed that air campaign planning is hierarchically

organised. When a crisis occurs, the Commander in Chief (CinC) provides planning

guidance to the Joint Forces Commander (JFC). This guidance is communicated to

the component commanders (e.g. the Air Component commander), who will in turn

communicate the guidance to the air campaign planners. Based on the guidance,

the planning staff will take between 3 days and 1 week to build a plan that may be

executed. The acquired knowledge also showed that certain documents (such as the

Master Attack Plan and the Air Tasking Order) form the outputs of key activities, and

constitute a major method of communication within the planning process.

5.5.2 Knowledge modeling

The acquired knowledge was then classified into appropriate CommonKADS models.

Organisation model

A number of organisation model perspectives were developed, including organisational

structure, resources, and process. The representation of power/authority relationships

was considered superfluous by the experts because power/authority maps closely to

structure within a military organisation, and so this perspective was not developed.

The resulting organisation model consisted of diagrams of activities (such as Figure

5.6), agents within an organisational structure, and resources. These were then com-

bined to produce “cross products”. Figure 5.7 shows an early version of the cross

product between activities and resources. In this diagram, solid links between activi-

ties imply that the first activity precedes the second; dashed links show an information

flow.

The Organisation model helps to identify the following information:

• The air campaign planning process is divided into three or four major phases

which each have their own outputs: the Commander in Chief’s Objectives, the

Master Air Attack Plan, the Air Targets Plan, and finally the Air Tasking Order.

• The total time for development of a plan, even under war conditions, is between
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Figure 5.6: Air Campaign Planning: Top Level Activities

1.5 and 3 days;

• The key decisions are made by small hand-picked “planning cells” for reasons of

experience, efficiency and security.

It therefore seems that there is considerable scope for technological support to improve

the air campaign planning process; and furthermore, that this technological support

should identify clearly which of the four main outputs it is using and which it is helping

to produce.
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Figure 5.7: Air Campaign Planning: Activities/Resources Cross Product

Task Model

For this project, it was decided that the IDEF3 technique for process representation

[92] would be used to represent the Task model.

IDEF3 is a process capture technique which was designed to be tolerant of incomplete

and inconsistent descriptions, and to be flexible enough to deal with the incremental

nature of the information acquisition process. It provides both a process-centred view

of a system, via the Process Flow Network, and an object-centred view of a system via

the Object State Transition Network.

A process flow network displays a sequence of Units of Behaviour (UOB) which rep-
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resent activities, actions, processes or operations. These are linked together by prece-

dence arcs. Where the process flow diverges (fan-out) or converges (fan-in) junction

boxes are used. Junctions are of the AND, OR or Exclusive OR type and can be

synchronous or asynchronous. This notation may impose timing constraints on the

process flow. For example, a synchronous fan-in junction indicates that the incoming

processes must complete simultaneously before the next UOB can begin.

In addition to UOBs and junctions, process flow networks can include referents, elabo-

ration forms and UOB decompositions. Referents are used to indicate context-sensitive

information and may refer to any other type of UOB such as an elaboration form, an-

other process flow network, an object state transition network, an entirely different

scenario, a note, or act as a GO-TO within the network. In some cases referents may

impose timing constraints on the process so there is the option to be synchronous or

asynchronous as needed. An elaboration form holds specific textual information for

each UOB such as the object used by it, constraints acting on it, facts about it and a

description of it. Decompositions enable each step of the process to be broken down

into more detailed process descriptions, allowing descriptions to be held at varying

levels of abstraction. This is indicated on the diagrams by a shadow on the parent

UOB box.

The Task Model consisted of a series of IDEF3 diagrams, representing high level pro-

cesses and their subtasks. An example of one component of the Task model can be

seen in Figure 5.8. From this model we can learn that certain tasks can be carried

out in parallel and others form potential bottlenecks in the process; this helps decide

which tasks need supporting most urgently. It also provides information about other

prerequisites of tasks.

Communication Model

The CommonKADS Agent and Communication models support the Task model by

identifying other information about the sub-processes being modeled. They are dis-

cussed in more detail in the next chapter, so are only briefly covered here. The Agent

model represents the capabilities and skills of the agents (staff, clients, or computer

programs) who perform each activity within a sub-process, while the Communication
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Figure 5.8: An IDEF3 Process Flow Network diagram

model represents all communication that must take place between agents in order for

a process to be completed.

One or the primary uses of the Agent model is to determine which roles can be per-

formed by a human, which by a computer, and which by a human and computer

working together. As this was not a major purpose of this modeling exercise, it was

decided that an Agent model was not required. A Communication model was required,

however, because effective transfer of information from one person or working group

to the next is an important factor in the completion and efficiency of the planning

process.

The diagram format used for the Communication Models was that of Role Activity

Diagrams [135], which actually differs little from the recommended format for the

CommonKADS Communication Model. Part of the Role Activity Diagram that was

developed for Air Campaign Planning can be seen in Figure 5.9; each shaded box

represents a person or group of people.
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Figure 5.9: Role Activity Diagram showing initial communication in the air campaign
planning process

This model tells us which planning cells are actually responsible for which decision

making tasks; for example, it shows us that the “JFACC Guidance letter” is not

actually written by the JFACC (the Joint Forces Air Component Commander) but

by the Air Strategy planning cell, and is then approved and signed by the JFACC.

This therefore provides us with a better idea of which tasks can be supported and,

importantly, of the tasks’ inputs and outputs.
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5.6 Discussion: Multi perspective modeling and Com-
monKADS

Having seen how some of CommonKADS’ top level models are applied, let us return

to the key claim of this chapter: that CommonKADS is based on a multi-perspective

modeling approach. To do this, we must consider whether CommonKADS’ models

map well to the Zachman framework. If each CommonKADS model (or sub-model)

maps to a single cell of the Zachman framework, and most of the cells are covered,

then the claim that CommonKADS supports multi-perspective modeling is supported;

if the models do not map well, then the claim must be rejected.

5.6.1 The Organisation model and multi-perspective modeling

The CommonKADS Organisation model seems to map well to the uppermost (“scop-

ing”) level of the Zachman framework. The brief of the scoping level is to consider “a

number of organisational processes” [34], and this is clearly the role of the Organisation

model. Furthermore, the different sub-models of the Organisation model correspond

to the perspectives of the Zachman framework as follows:

• Function/Process sub-model: HOW perspective;

• Structure sub-model and Power/authority sub-model: WHO perspective;

• Resources sub-model: WHAT perspective (and possibly WHERE resources are

located).

The WHEN perspective can be considered to be covered by the Process sub-model

(showing the order in which functions are carried out) or by a “time per task” analysis

such as that carried out by de Hoog et al. for the Dutch social security department.

The WHY perspective does not map to any sub-model well, but should be covered in

text accompanying the Organisation model discussing the reasons for its development.



CommonKADS Introduction & Upper Level Models 103

5.6.2 The Task, Agent and Communication models and multi-perspective
modeling

The Task, Agent and Communication models are considered together because they

each constitute different perspectives at the second (“enterprise”) level of the Zachman

framework. According to Cook [op. cit.], the enterprise level is concerned with a single

business process, and since the brief of the Task model is to expand the sub-tasks within

a single business process identified from the Organisation model, this is clearly the most

appropriate level for the Task model. The Task model therefore constitutes the HOW

perspective of the Enterprise level. The WHO and WHERE perspectives are covered

by the Agent and Communication models respectively (N.B. the CommonKADS book

considers the Communication model to belong to the “system” level rather than the

“enterprise” level of abstraction, but the next chapter will argue that both Agent

and Communication models are needed at both these levels of abstraction in order to

provide a more complete multi-perspective modeling approach). Again, the WHEN

perspective may be considered to be inherent in the control of tasks in the task model

- certainly, the use of IDEF3 makes ordering constraints very clear. The WHAT

perspective only appears as a property of individual tasks, however, and perhaps it

may be advisable to develop models of resources using either the modeling techniques

recommended for the Organisation model or another modeling format such as UML

class diagrams - the appropriateness of UML class diagrams for representing the WHAT

perspective is illustrated in [103].

In short, the CommonKADS Organisation model does seem to map well to the up-

permost level of the Zachman framework, and hence to a multi-perspective modeling

approach; three of the perspectives at the second level of the framework are also cov-

ered by the Task, Agent and Communication models. Furthermore, it can be seen

that where CommonKADS does not recommend a model, or where a model exists but

CommonKADS’ diagramming format is less favoured, it is possible to substitute mod-

els from other modeling approaches to “fill in the gaps”. However, two principles are

identified that will recur throughout the discussion of mapping CommonKADS to the

Zachman framework: firstly, there is ambiguity over whether the WHEN perspective

concerns the time taken to carry out activities (as may be represented in a PERT
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chart) or the control over processes (i.e. as an addendum to the HOW perspective);

and secondly, the WHY perspective is not supported as well as the other perspectives.

It seems that the perspectives of the Zachman framework map well to the various mod-

els and sub-models suggested by CommonKADS for organisational analysis. The next

chapter continues examination of CommonKADS, looking at two models that bridge

the gap between organisational and task-specific modeling: the Agent and Communi-

cation Models.



Chapter 6

The Agent and Communication
Models1

6.1 Introduction

Knowledge based systems (KBS) have been a commercially viable technology for over a

decade now. As a result of their growing use, users and managers have demanded that

KBS be verifiable, maintainable and repeatable. This has led to the development of a

number of systematic methods which formalise and direct the knowledge engineering

process. A survey of methods can be found in [85].

One such method is the CommonKADS methodology, which recommends that knowl-

edge engineers develop a suite of models that both represent knowledge from different

perspectives and gradually transform knowledge from the real world, via a conceptual

representation, to a system design. Models are typically represented as one or more

node-and-arc diagrams, but may also include tables or other textual representations

of knowledge. This paper examines two of these six models: the Agent model and the

Communication model, which focus on the capability, role, requirements and outputs

of various agents in a knowledge-based process.

The Agent and Communication models are responsible for modeling “roles” and “co-

operation” within CommonKADS. The Agent model majors on who has the capability

1 Originally published as Modelling Agents and Communication using CommonKADS in
Research and Development in Expert Systems XVII, Proceedings of Expert Systems 00, the an-
nual conference of the British Computer Society’s Specialist Group on Expert Systems, Peterhouse
College, Cambridge, December 2000.
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to carry out each task and what role they play in the process, while the Communication

model highlights where information is needed within the process and how information

is transmitted between agents during the process. In conjunction with a third model,

the Task model (which specifies how tasks need to be carried out in order to achieve a

particular goal), these models provide a rich process description that can be used for

a range of purposes, from process re-engineering to intranet development.

6.1.1 The Agent Model

The purpose of the CommonKADS Agent Model is to determine the roles and compe-

tences that the various actors in the organisation bring with them to perform a shared

task ([147], p.48). Tasks are carried out by agents, each of whom must have authority

to perform the task, may be responsible for performing that task, ought to be capa-

ble of performing that task, and should have rights to resources needed to perform

that task. The degree of truth of each of these four statements will determine the

competences of the agents, which in turn will help to define the roles of agents.

CommonKADS recommends that the Agent model is represented by a table defining

the key features of agents ([147], p.50). CommonKADS recommends the use-case

diagrams of UML [137] as a graphical representation of Agent models.

6.1.2 The Communication Model

A task that is carried out by one agent may produce results in the form of infor-

mation objects that need to be communicated to other agents. The purpose of the

Communication model is to identify the information exchange procedures that realise

the knowledge transfer between agents [147]. Each knowledge transfer will have in-

formation content, a sender, one or more receivers, and an initiator; it may also have

internal structure, and/or constraints and preconditions. The Communication model

is intended to capture and represent these features of transfers of information or knowl-

edge.

In the Communication model, each information object that is communicated is de-

scribed as a transaction. CommonKADS recommends that a communication model
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should include:

• A dialogue diagram: a high level description of which tasks send or receive in-

formation.

• A transaction control plan, showing ordering and dependencies of communica-

tions. This is also usually represented as a diagram.

• Specification of individual transactions: a collection of attributes of each infor-

mation exchange. These attributes include the information object(s), the sending

and receiving agent, and any constraints on the transaction occurring. This is

represented in a table.

• A detailed description of the information exchanged, including the structure of

the transaction, the role of the information object (whether it is the ‘core’ of

the transaction or supporting information), the proposed medium of interaction,

and the “illocutionary force” of the communication (e.g. ‘request’, ‘demand’ or

‘warning’). These details also appear in a table.

6.1.3 Thesis of this paper

KADS, which was the predecessor to CommonKADS, did not separate the Agent and

Communication models; both were incorporated into its “model of co-operation” [42],

which could be used to identify the actors carrying out tasks as well as the inputs

and outputs of those tasks. It therefore seems natural that an Agent model should be

accompanied by a Communication model at the same level of abstraction i.e. containing

the same tasks. Yet CommonKADS proposes that an Agent model represents agents’

roles and capabilities for the various tasks in a particular business process, but the

Communication model should represent communication between subtasks within a

single “business process task”. model. This is probably due to the clear need for

communication features to form an input to the Design model; but it seems that

much useful detail is lost if agents’ roles are only assigned at a between-task level of

abstraction, whilst communication is only detailed at a within-task level. The resulting

proposed model suite is shown in Figure 6.1.
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Figure 6.1: Revised view of levels of abstraction of CommonKADS models

This paper will propose that both the Agent and Communication model can usefully be

developed at both between-task and within-task levels of detail. The rest of this paper

will work through an example in which both models are used to represent knowledge at

both the between-task (“enterprise”) level and the within-task (“system”) level. The

example concerns the design of small scale industrial buildings.2

6.2 Example: design of industrial buildings

Any task which involves designing something is a task that requires knowledge – and

considerable amounts of it. It’s necessary to understand how well the artifact be-

ing designed fulfils its performance requirements; which components of the design are

compatible with other components; whether the final design will be robust enough

to withstand the pressures it must face in normal use and in extreme circumstances;

whether components are easy to manufacture; whether the design is feasible to assem-

ble; and so on. As a result, many design companies employ strategies to reduce the

difficulty of the design task. They may offer a number of “standard” designs which

can be adapted to specific requirements; they may generate several design prototypes

which can be critiqued and improved; or they may subdivide the different aspects of

the design work so that one person or group of people is responsible for high level

2 This example is based on a tutorial exercise originally developed with funding from the SERC
Computing Facilities Committee Support for Engineers programme. A proof-of-concept system for
checking standards in portal frame designs was implemented.
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design, another for low level design, another for checking against requirements and

constraints, and so on. They may also take different approaches to generating the de-

sign (transformational design, propose-and-revise design, etc.) – comparison of these

approaches is beyond the scope of this paper, but interested readers should look at [19]

among other references.

The example that will be used in this paper will be a (fictional) small company, referred

to as ABC Holdings Ltd., whose task is to design small-scale industrial buildings. They

specialise in a particular structural technique known as “portal frame” design, which is

commonly used for buildings such as DIY stores. Their strategy is to subdivide design

work between different groups of people, and it is this subdivision which is captured

and represented in the Agent and Communication models below.

Before building the Agent and Communication models, however, it’s necessary to de-

termine what tasks are actually carried out in portal frame design. This is represented

in the CommonKADS Task model. The Task model for designing of portal frame build-

ings is shown in figure 6.2. The upper layer represents the top level tasks, and the lower

layer shows subtasks of “Design building” and “Check building meets specification”.

Obtain

client’s

requirements

Access

local

regulations

Survey site
Design

building

Calculate

forces on

building

Check building

meets

specification

Collate

details of

case

Design

structure

of building

Select

appropriate

sections

Select nuts

& bolts

Check building

meets client’s

specifications

Check building

meets

regulated

standards

Figure 6.2: Task model for designing a portal frame building

The tasks identified in the Task model serve as the starting point for developing the

Agent and Communication models at the enterprise level.

6.2.1 Agent model for portal frame design

When ABC Holdings design a portal frame building, the client’s requirements are gath-

ered by the partners, who then pass the actual design task to one of their engineers.

The engineer creates a design, assisted by technicians (who do the low level design –
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literally, the “nuts and bolts” of the design), a CAD package that generates a numerical

description of the design, and a program (written in FORTRAN) that calculates the

effects of wind and snow forces on the building from that numerical description. The

resulting design is then checked against legislation, company standards, and the client’s

requirements before being passed to the partners for approval. There are therefore at

least six agents involved in the design process: the partners, the engineer, the techni-

cian, the two computer programs, and the client. Some would argue that the legislator

constitutes a seventh agent; other would omit him or her because the legislator does

not have any dynamic input to the design process.

CommonKADS recommends that a set of attributes are identified for each agent and

presented in a table. These attributes are:

• The name of the agent.

• The agent’s position in the organisation. This information should be obtainable

from the Organisational model. This attribute should also define the type of the

agent (typically either ‘human’ or “information system”).

• The tasks that the agent is involved in.

• The agents that this agent communicates with.

• The knowledge items possessed by this agent.

• Other required or present competences of the agent.

• Responsibilities of the agent in task execution, and restrictions in this respect.

This item is also intended to include constraints such as limitations on authority

or responsibility to legal or professional norms.

Many values for these attributes can be derived from other CommonKADS models.

The last two attributes, however, are unique to the Agent model. CommonKADS

doesn’t give much guidance on which “other competences” should be considered, or

what “responsibilities and constraints” might arise. In order to make things a little

clearer, I have drawn on the ORDIT framework for requirements engineering [49],

which defines four roles for an agent with respect to a task: capability (the agent CAN
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do the task), authority (the agent MAY do the task), responsibility (the agent MUST

do the task), and rights (the agent HAS RIGHTS TO use certain resources in order to

perform the task). This definition encompasses three levels of agent-to-task mapping;

CAN is the weakest, MAY is stronger because it (hopefully) implies CAN, and MUST

is stronger still because it implies both CAN and MAY. It also identifies resources that

are needed for a task, providing a useful link to the domain knowledge as well as the

task knowledge.

Table 6.2.1 below represents a CommonKADS Agent Model. It has been extended with

the four attributes derived from ORDIT, plus a catch-all “other constraints” column.

Agent Capability
Author

-ity
Rights Responsibility Other Constraints

Partner
Obtain client’s
requirements

View clients’ requirements
View legislation

View case records
View previous designs

Collate details
of case

Insufficient time
to do all

tasks properly

Engineer
Can perform all
necessary tasks

Access to site, etc.

CAD package
technician
FORTRAN
program
Legislator

Client

Table 6.1: A CommonKADS Agent Model

In order to represent the agent model diagramatically, CommonKADS recommends

the use of UML use case diagrams, in which each “use case” represents one task from

the Task Model. An example is given in Figure 6.3. While use case diagrams are well

understood and widely accepted, they are intended to show which agents are involved

in which use cases; there is no mechanism for representing capability, authority, roles

and responsibilities of agents. As a result, an extended diagram format is proposed in

which the use cases are labelled; this can be seen in Figure 6.4.

6.2.2 Communication model: Designing a Portal Frame building

Each time a new agent takes on a task where the previous task was carried out by a

different agent, communication is required. The Communication model represents the

communications that occur between tasks. If a Communication model is to represent

the same level of abstraction as the Agent model, then it must represent the same

tasks that appear in the Agent model. The reader should therefore refer back to the

Task model in Figure 6.2 for the source of the tasks that appear in this model.
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Figure 6.3: Agent model for designing a portal frame building

Dialogue diagram

The first component of a communication model is a dialogue diagram, which shows

which tasks are carried out by which agents, and where communication is needed

between agents. Figure 6.5 shows a dialogue diagram for portal frame design, using the

format recommended by CommonKADS (p.225 of [147]). Columns headed Dialogue

show communication transactions; each other column represents an agent, with the

darker ellipses representing tasks carried out by that agent.

Note that there are links in the dialogue diagram between tasks performed by the

same agent (e.g. from Survey Site to Design Structure of Building). These links do

not represent communication between agents, but rather dependencies between tasks

(usually inputs/outputs); this can be thought of as communication “within” an agent.

These are worth describing because they may be required as input to more detailed

models of individual tasks.
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Figure 6.4: Agent model for designing a portal frame building: extended format

Control of transaction

The second component of the Communication Model is the transaction control di-

agram, which describes the sequence of transactions. The diagram format used for

these is the state diagram notation taken from UML [137]. Transaction control dia-

grams may not always need to be developed, but can be very useful when flow of control

is complex e.g. when external events conditionally trigger tasks or transactions. These

diagrams also represent, and maybe introduce, certain design decisions regarding com-

munication; a common design decision involves determining who takes the initiative in

a transaction. Figure 6.6 shows the transaction control diagram associated with Figure

6.5.
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Figure 6.5: Dialogue diagram for designing a portal frame building
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with design

Design
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Design
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Redesign]

[Requirements compatible? 

No]

[Requirements compatible? 

No]

Figure 6.6: Transaction control diagram for designing a portal frame building

It can be seen that the flow of control is assumed to be largely sequential, unless a

design fails its checks (against legislation and user requirements), in which case looping

occurs.

Transactions

CommonKADS proposes that a number of properties are identified for each transaction

that appears in a Communication Model. These properties are identified below (from
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p.228 of [147]):

• Transaction Identifier/Name: A transaction is to be defined for each infor-

mation object that is output from some leaf task in the Task Model or in the

Knowledge/Expertise Model (i.e. a transfer function), and that must be com-

municated to another agent for use in its own tasks. The name must reflect,

in a user-understandable way, what is done with the information object by the

transaction. In addition to the name, give a brief explanation here of the purpose

of the transaction.

• Information object: Indicate the (core) information object, and between which

two tasks it is to be transmitted.

• Agents involved: Indicate the agent that is sender of the information object,

and the agent that is receiving it

• Communication plan: Indicate the communication plan of which this trans-

action is a component

• Constraints: Specify the requirements and (pre)conditions that must be ful-

filled so the transaction can be carried out. Sometimes, it is also useful to state

postconditions that are assumed to be valid after the transaction.

• Information Exchange Specification: Transactions can have an internal

structure, in that they consist of several messages of different types, and/or

handle additional supporting information objects such as explanation or help

items.

For the transactions in Figure 6.5, the relevant information is given in Table 6.2.2,

omitting the “communication plan” attribute (which is the same for all transactions)

and the “information exchange specification” (see section 6.2.2 for details).

Information Exchange

The information exchange specification constitutes the third layer of the CommonKADS

Communication Model. It refines the description of transactions in two ways: by giving
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Transaction

Name

Information

object

Agents

involved
Constraints

Information

Exchange

Specification

Requirements
Features of
the building

Client
Partner

A meeting takes place;
Contract agreed/signed

Requirements-IE1

Legislation

Permitted/prohibited
features of
the building
Permitted/prohibited
working practices
and equipment

Legislator
Engineer

Legislation is available
At least one agent

knows all legislation
that is relevant
Legislation is

understandable

Legislation-IE1

Site
Requirements

Load bearing
potential etc.

Partner
engineer

Surveying equipment
is adequate

Site-
Requirements-IE1

Specification
Features of
the building

Partner
engineer

Specification
is understandable

Specification-IE1

Results of
checks

Success/ failures/
warnings

Engineer
partner

Checks can be carried out Checks-IE1

Design
parameters

Features of design
Engineer

CAD package

CAD package is able to
represent desired features

Engineer is able to
use CAD package

Design-
parameters-IE1

Proposed designs
Design diagrams

and tables
CAD package

engineer
All info. for calculations

is entered correctly
Designs-IE1

Structural
design

Structural description
of design

Engineer
technician
FORTRAN
program

Structural-
design-IE1

Forces on
building

Calculations of wind
& snow forces on walls
& both sides of roof

FORTRAN
program
engineer

Forces-IE1

Table 6.2: CommonKADS Communication Model

the internal message typing and structure of the transaction, and by giving information

about the syntactic form and medium of the messages.

The information that could appear in an information exchange specification is shown

below (taken from p. 230 of [147]). A representative example of an information ex-

change specification for one transaction is shown in Table 6.3.

• Transaction Name: Transaction name and identifier of which this information

exchange specification is a part

• Agents involved: The sender (the agent sending the information item/items)

and the receiver (the agent receiving the information item/items)

• Information Items: List all information items that are to be transmitted in

this transaction. This includes the (‘core’) information object, the transfer of

which is the purpose of this transaction. However, it may contain other, sup-

porting information items that provide help or explanation, for example. For

each information item, describe the following:

– Role: whether it is a core object or a support item;

– Form: the syntactic form in which it is transmitted to another agent e.g.

data string, canned text, a certain type of diagram, 2D or 3D plot;
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Attribute Value

Transaction Name Requirements

Agents involved Client & Partner

Information Items

Features of the building
Role: Core object

Form: Requirements
Specification Document

Medium: Negotiation Meetings

Message Specifications

Communication type: Request-Propose
Content: Client’s requirements on the design

– as agreed by the designer
Reference: It may be deemed necessary to refer

to specific laws of contracting here

Control over Messages
The document is iterated between client and partner

until both agree on its contents and sign the final version.

Table 6.3: Transactions

– Medium: the medium through which it is handled in the agent-agent in-

teraction e.g. a pop-up window, navigation and selection within a menu,

command-line interface, human intervention

• Message specifications: Describe all messages that make up the transaction.

For each message, describe:

– Communication type: the communication type of the message, describing

its intention (“illocutionary force”, in speech-act terminology). Some pre-

defined intentions are suggested in [147].

– Content: the statement or proposition contained in the message.

– Reference: in certain cases it may be useful to add a reference, for example

to what domain knowledge model or agent capability is required to be able

to send or process the message.

• Control over messages: Give, if necessary, a control specification over the

messages within the transaction. This can be done in pseudocode format or in

a state-transition diagram, similar to the transaction control diagram described

above. I have chosen to use plain text.



Agent & Communication Models 118

6.3 Concept/System level Models: Checking Design against
Standards

The Concept or System level (the 3rd level identified in Figure 6.1) deals with the

problem solving steps that comprise one of the tasks that were identified in the Task

Model. This reflects the typical knowledge engineering process of examining tasks

within a business process, and deciding which one(s) would benefit from being sup-

ported with a KBS or other automated system. In this example, the task that has

been chosen for further decomposition is “Check building meets regulated standards”.

The knowledge that is required to perform this particular subtask – the steps involved,

the resources and information required, and the order in which the steps are carried

out – is expanded in detail in the Knowledge/Expertise model.

At this level of abstraction, the tasks that provide the source for the Agent and Com-

munication models are drawn from the “task structure” component of the Knowl-

edge/Expertise model. This component can be represented in a diagram (similar in

format to Figure 6.2) or in a semi-formal language (CommonKADS’ Conceptual Mod-

eling Language, or CML) - see Figure 6.7.

task assessing-building-against-British-standards

goal check that a building design conforms to British standards

task structure

assessing-building-against-British-standards(results of checks)

obtain(numerical description of building)

transform(numerical description → model of the building)

loop until all checks are completed

select(a check to perform)

obtain(any further information required for that check)

match(model of building + standards relevant to the chosen check →
result of check)

report(results of check)

Figure 6.7: Task structure for checking a design against standards in CML
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6.3.1 Agent Model: checking a design against standards

The Agent model for checking a design against standards, in “extended use case”

format, is shown in Figure 6.8. It includes a number of information sources (such as

manufacturer’s tables) which are considered too specific to include in the higher level

model. Drawing on ORDIT again, these information sources are treated as resources.

Since resources are static objects, the notation used in the extended agent model

diagram is the notation used for classes in the UML class diagram format.

Since a particular subtask will often be carried out by one or at the most two agents,

it is understandable that CommonKADS did not consider it necessary to prepare an

Agent model at this level of detail. However, when the ORDIT-based constraints of

CAN, MAY, MUST and HAS RIGHTS TO are introduced, then the value of developing

an Agent model at this level of detail can be seen.

Tables 5 and 6 provide some further information on this Agent model.

CAN

MUST

Has rights to

view, use

MUST

MUST

Has rights to 

create, view, use

MAY

Has rights to 

view, apply

Engineer

Select a

check

Obtain further

information

Match design

against relevant

standards

Report results

of check

Obtain design

description

Output of CAD

package

Has rights to 

create, view, use

Manufacturer’s

tables

Has rights to

view, use

Manual of

checks

Has rights to 

view, apply

CAN

MUST

Has rights to

view, use

MUST

MUST

Has rights to 

create, view, use

MAY

Has rights to 

view, apply

Figure 6.8: Agent model for checking a design against regulated standards
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6.3.2 Communication model: Checking design against standards

Dialogue diagram

The dialogue diagram derived from this task structure is shown in Figure 6.9. In this

diagram, as in the Agent model, I have chosen to represent information sources. These

join with the links representing information flow between tasks and transactions to

provide a reasonably good data flow diagram for the task of checking a design against

standards. This is useful information when designing a system (either a technology or

a technique) to support this task.

CAD Package

Engineer

Select a

check

Obtain further

information

for that check

Obtain

description

of design

Match model

against

relevant

standards

Report

results of

check

Manufacturer’s

tables

Manual of

checks

Design

description

Possible

checks

Selected

check

Relevant

information

Results

of check

Generate

design

description

Figure 6.9: Dialogue diagram for checking a design against regulated standards

Transaction control diagram

Much of the transaction control at the system level is represented in the (CML) task

structure, so there is little need for a transaction control diagram at the system level.
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The only remaining feature of control on transactions that needs to be noted is that

the engineer takes the initiative in consulting information sources. This may seem an

obvious statement, but if the reverse was true (such as might occur with an information

source that supplied stock market prices, for example) then there are many important

issues raised for any resulting implementation connected with asynchronous inputs and

real-time processing. This information can be captured in the Information Exchange

Specification tables, however.

Transactions

The transactions for this communication model are represented in Table 7. The most

noteworthy column of this table is the Constraints column, where constraints that

might otherwise be glossed over as being too obvious (e.g. that all relevant checks

must actually be in the manual of checks) are identified.

Information exchange specification

As stated above, the information exchange specification gives details of initiative in

transactions. It also plays a similar role to the Transactions table in that it makes sure

that apparently obvious assumptions, such as that checks are performed one at a time,

are identified.

6.4 Discussion

6.4.1 Benefits

The main benefits of building these models are as follows:

• They serve as an aide memoire; that is, they help raise issues that may have

been overlooked but which are important in understanding the business process

or in system design. For example, the “Transactions” table of the system level

communication model specifies that the CAD package must be in working order.

Being forced to specify this leads to considering alternatives to the process when
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the CAD package is not working, as well as considering the adequacy of backup

procedures for the data stored in the CAD package.

The models are also helpful when they identify key competences that are neces-

sary; for example, highlighting that the engineer must be able to understand the

manual of design checks might suggest that an explanation component should be

included in the final system for the use of more junior engineers who have trouble

understanding the manual.

• When they are used to describe an existing system or process, they organise the

knowledge well, thus both providing clear descriptions of the process and making

it easier to build complete models of all relevant knowledge – for when knowledge

is laid out clearly in separate categories, it becomes easier to identify gaps in that

knowledge.

• These models are arguably most beneficial when they are used to prescribe future

roles and co-operation, rather than describing an existing situation. In this in-

stance, the models can be used to analyse the situation, and to support decisions

about the allocation of roles. Such decisions can have an enormous impact on

the resulting business process (for enterprise level models) or system design (for

system level models).

6.4.2 Drawbacks

The most obvious drawback of developing all these models is the time required to

produce all the tables and diagrams. In some circumstances (e.g. safety critical appli-

cations, or applications where there is a high turnover of staff), the effort of developing

all these models is paid back by reduced risk or higher maintainability of the resulting

system. However, many KBS developers will find the development of a full suite of

agent and communication models to be more effort than it’s worth.

Because of this, a shorthand version of the Agent and Communication models is sug-

gested:

• Agent model: draw the extended use case diagram (i.e. the one with labelled

arcs and “resources”);
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• Communication model: draw the dialogue diagram. This diagram is very similar

to Role Activity Diagrams [135] which have been proposed as a shorthand format

for both the Agent and Communication models in previous publications (e.g.

[102]).

• Communication model: produce a table of communications that combines the

Transactions table and the Information Exchange specification table.

6.4.3 Summary

In summary, the Agent and Communication models represent the roles and capabilities

of agents and the transactions that occur during a particular process. They are a

valuable component of the overall CommonKADS suite of models, and can be used to

support organising acquired knowledge, re-organising a business process, or designing

a knowledge based system. They organise knowledge clearly (if not concisely), and are

particularly useful if used at two different levels of detail, capturing both the agents

and communications at the level of tasks within a particular business process, and at

the level of subtasks within a single (knowledge-based) task.

Having moved from examining the modeling of organisational knowledge to the exami-

nation of task-specific knowledge, the next chapter begins a series of four chapters that

look at the ’heart’ of CommonKADS: the Expertise Model that is designed for mod-

eling the knowledge used in a particular task. The next chapter describes an example

of such modeling, which will be used as an example in later chapters.
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Chapter 7

Knowledge Engineering: the
IMPRESS example1

7.1 Introduction

In January 1992, a small Scottish manufacturing company obtained funding from Scot-

tish Enterprise to help them in the development of a knowledge based system (KBS)

for fault diagnosis. The company manufactured precision plastic mouldings, such as

casings for PCs, or control panels for video recorders. They have a reputation for high

quality, which they want to maintain. However, from time to time, problems with

their injection moulding machines mean that substandard mouldings are produced,

and these have to be scrapped to maintain the reputation for quality. While Plastic

Engineers have technicians who are very competent at solving these problems, these

technicians have a variety of roles to perform. If a technician is working on an urgent

task, or is absent through holidays or illness, it may take some hours before diagnostic

expertise is available. Shift leaders are able to provide some backup to technicians, but

they have even more demands on their time than the technicians do. As a result, there

are times when no-one with diagnostic knowledge is available, particularly during some

night shifts.

After attending a seminar organised by AIAI and the Scottish Office in the summer of

1 Originally published as KBS Methodology as a framework for Co-operative Working in
Research and Development in Expert Systems IX, Proceedings of Expert Systems 92, the annual con-
ference of the British Computer Society’s Specialist Group on Expert Systems, Brighton, December
15-17 1992.
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1991, the idea of building a KBS to help with the diagnostic process was born. The

project was set up in January 1992 with the company releasing one member of staff

to work on the project for two days per week. This member of staff [JM] was a newly

recruited graduate in Polymer Technology with knowledge of the process of injection

moulding, but very little computing experience. AIAI were engaged to provide JM with

initial training in KBS programming, knowledge elicitation and knowledge engineering

(a total of 7 days’ training) and then to provide 15 man days’ consultancy spread over

the 4-month duration of the project. The intention was that by the end of the project,

JM would be fully conversant with the techniques used to develop the KBS, and would

therefore be able to maintain the system if any changes were needed after installation.

AIAI decided to use a methodological approach to this project. The need for a method-

ological approach to KBS development was not widely acknowledged when this system

was developed, but AIAI were sufficiently convinced of the benefits of methods to use

parts of the KADS methodology on this project. However, in this project, the methods

were used not only to formalise and guide the development of the KBS itself, but also

to act as a framework for the division of labour and transfer of KBS expertise. This

paper describes the benefits and drawbacks of using a methodology in this way.

Before any development could take place, however, a number of factors needed to be

established to ensure that the KBS project stood a good chance of success. These

included:

• Economic considerations. The company do have a genuine problem with quality

control - they scrap around 2% of their production each month. The KBS is likely

to make a significant improvement to the availability of diagnostic expertise, and

to the early detection of faults, thus reducing scrap rates.

• Technical considerations. Diagnosis is known to be a task type which KBS are

well suited for; also, the technicians currently take between several minutes and a

few hours to solve problems, so there are unlikely to be any stringent requirements

for real-time problem solving.

• Personnel considerations. The project was initiated by the company’s General

Manager, so management support was assured. The users - the machine operators
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- are likely to appreciate any help their shift leaders can give them in diagnosing

faults. However, the commitment of the shift leaders and technicians themselves

was unclear, so the AIAI consultant [JK] made a presentation to these people,

which included a demonstration of a very simple KBS which diagnosed three

different faults in the plastic moulding process. While the underlying structure of

this demonstration system was very shallow in its reasoning, and drew knowledge

from just one day of knowledge acquisition, it was sufficient to convey the concept

of a KBS to the shift leaders and technicians, and to excite their curiosity so that

they began to ask questions about the capabilities of the system. This was

deemed to be sufficient commitment for the project to proceed.

The project was named IMPRESS (the Injection Moulding PRocess Expert SyStem

project).

7.2 The framework of the IMPRESS project

The KADS methodology divides the process of KBS development into three phases:

knowledge elicitation and analysis, KBS design and KBS implementation. The IM-

PRESS project was set up with a number of intermediate milestones accompanied by

deliverables; these milestones were based around the phases specified by KADS. The

phases specified in the project plan were:

• Knowledge elicitation and analysis - 6 weeks.

• KBS design - 4.5 weeks

• KBS implementation - 4.5 weeks

• Testing and installation - 2 weeks

The workload was divided between JM and JK in a manner which was intended to get

the project completed within the deadline, but also to give JM a sufficient awareness

of KBS development and the contents of the IMPRESS system to enable him to up-

date it. The policy pursued was for both JK and JM to attend knowledge elicitation

sessions; then for JK to perform the knowledge analysis and KBS design while JM
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undertook background reading on KADS so that he understood the deliverables which

JK produced; and finally for JM to undertake the lion’s share of the implementation,

and to carry out user acceptance testing, any consequent alterations, and installation.

The plan was adhered to fairly closely, and JM was indeed able to make alterations to

the KBS himself in response to comments from the users.

7.3 Progress of the project

7.3.1 Knowledge Elicitation

Knowledge elicitation for the IMPRESS system was carried out at Plastic Engineers’

premises in Ayrshire. The first interview was with one of the shift leaders, who was

asked to provide a general overview of the problems which arise in the plastic mould-

ing process. The interview was guided using the “laddered grid” knowledge elicitation

technique [152]. This technique supplies a number of template questions which are de-

signed to prompt experts to supply further information about a taxonomic hierarchy

- for example, the question “Can you give me some examples of Class” will supply

information about instances or subclasses of the class Class. The technique can also

be used to elicit procedural information. In the interview with the shift leader, the

resulting grid comprised both a detailed description of some of the faults which arise

in the plastic moulding process, including descriptions of different symptoms and as-

sociated faults, and also explanations and corrective action for some faults. While it

is not desirable for analysis purposes for the expert to be allowed to mix taxonomic

and procedural information (i.e. descriptions of faults and descriptions of actions) in

his replies, this interview nevertheless provided a concise introduction to the domain

and the diagnostic task.

The next interview was with the Quality Manager, who provided a breakdown of the

five main categories of fault. These categories are

• Contamination - dirty marks of some kind on the final moulding

• Shorts - certain parts of the mould do not fill with plastic

• Burns - discolouration due to plastic being overheated
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• Degate - human error when trimming with a knife

• Others

The Quality Manager keeps detailed statistics of the number of times each fault has

occurred, and how long it takes to solve. From examination of these statistics, it

became obvious that contamination was the most frequently occurring problem, and

that contamination problems took an average of almost 2.5 hours to solve. Based on

this information, it was decided that the KBS would initially be limited to diagnosing

contamination problems only.

All other knowledge elicitation interviews were conducted with technicians, who are

the day to day diagnostic experts. Most of these interviews used a “20 questions”

knowledge elicitation technique [24]. This technique is normally used after several

knowledge elicitation sessions, because it requires the knowledge engineer to be fairly

familiar with the task. The knowledge engineer selects a potential fault, which the

expert is required to diagnose; the expert does this by asking questions, which the

knowledge engineer answers. As JM had some knowledge of the injection moulding

process and of the company’s machinery, it was possible to use this technique from a

very early stage.

A typical “20 Questions” session is shown below. The hypothesised fault was dust

entering the machine via the drier which dries the raw material. The technician was

told that there were “black specks on the moulding”. JM’s answers to the technician’s

questions are shown in brackets.

What’s the tool? [155]

Where are the marks? [Back face, sides - all over]

How long has the job been running? [2 days]

Has the problem been present since start up? [Yes]

Is the problem getting worse? [Yes]

Have you cleaned the shims? [Yes, it caused a little improvement, but

the problem recurred]

Is the temperature unstable, or too high? [No]

Check the thermocouplings [OK]
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Check the condition of the screw, and look for black specks on the screw [OK]

On being told the answer, the technician commented that dust from the drier was al-

most never a problem because of the reliability of the drier’s filtration system. This was

a surprise to both JK and JM, and thus provided some unexpected further knowledge

acquisition.

The technician was then asked to explain his reasons for asking each question. The

information which was extracted from the conversation described above and the sub-

sequent explanation included:

• Possible faults include dirty shims, incorrect temperature settings, loose thermo-

couplings, and dirt on the screw.

• Some faults are more prevalent on certain machine tools - usually tools which

produce large mouldings.

• If the marks had appeared only on the bottom edges of the moulding, this would

have been a very strong indicator of one particular fault.

• Certain faults only occur shortly after the machine has been started up. Many of

these are due to the machine not being cleaned properly before being shut down.

• If the problem only occurs for a short time, then the fault is likely to be contam-

ination in a single batch of raw material.

• If the problem is getting worse, then it is likely to be due to some material which

is trapped in the machine and slowly degrading

• Dust in the drier hardly ever causes a problem because it is filtered out

The “20 Questions” technique proved to be very helpful for eliciting diagnostic infor-

mation, with a lot of useful information obtained in a concise format in a short period

of time.

7.3.2 Knowledge Analysis

The technicians’ knowledge divides into three main categories:
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• Declarative knowledge - the workings of the machine, and knowledge of all faults

which may occur.

• Procedural knowledge - knowing how to test for and how to fix faults.

• Control knowledge - performing tests in a sensible order.

The declarative and procedural knowledge was relatively straightforward to extract

from the results of the “20 Questions” sessions, but the control knowledge required

a little more thought. It was eventually determined that the likelihood of a fault

occurring, and the time required to perform a particular test, were the most important

factors in deciding the order in which tests should be performed. For example, in the

“20 Questions” session quoted above, the technician asked about the condition of the

screw last, because it takes a couple of hours to dismantle the machine sufficiently to

expose the screw, and he did not ask about dust in the drier at all, because it is such

a rare fault.

It turned out that there are quite a number of rare faults. However, as JM spent much

of his time on the shop floor when he was not working on the KBS, it was decided that

JK would press ahead with the analysis phase while JM completed the elicitation of

all possible faults from the experts. The final KBS contains about 40 faults (broken

down into five subclasses) and a similar number of tests.

7.3.3 KBS design, implementation, testing and installation

The analysed knowledge was transformed into a KBS design using techniques based

on the KADS methodology (these techniques are outlined in section 7.4). The KBS

was then implemented in KAPPA-PC version 1.2 on an Apricot 486 PC. The resulting

design suggested that faults, tests, and test results should be represented using individ-

ual objects, while inference should be implemented primarily using a mixture of rules

and functions, with a little use of object-oriented methods and demons. However, it

transpired that some of the desired rule functionality was unavailable in KAPPA-PC;

it also became clear that the time taken to execute a rule which matched on a set of

objects was similar to the time taken for a function to iterate over the same objects.
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As a result, it was decided that rules would not be used at all, and so much of the

inference in the IMPRESS system was implemented using functions.

The KBS was subjected to testing by developers concurrently with the implementation

of the user interface, and was installed in the first week of August 1992. At the time of

writing, few firm results were available, because there have been relatively few occasions

since the installation of the KBS when there has been no technical expert available

to answer questions. However, the fact that the system can be used “off-line” has

been appreciated, and the KBS has been used several times for training purposes by

interested machine operators.

7.4 Using KADS for the IMPRESS project

The KADS methodology for KBS development [82] is intended both to guide and to

formalise KBS development. To this end, it provides guidance on obtaining knowledge,

analysing it, and transforming it into a detailed design for an implemented KBS. The

IMPRESS project focussed on the construction of the Expertise model recommended

by the KADS methodology.2

7.4.1 Knowledge analysis: generic inference structures

Once some knowledge has been acquired, the KADS methodology recommends selec-

tion of a generic inference structure3 from a library. Generic inference structures are

task-specific breakdowns of the inferences and items of knowledge required in a typical

task of that type. These models are intended both to formalise acquired knowledge

and to guide further knowledge acquisition. For the IMPRESS system, it was obvious

from the start that the task type was diagnosis; however, KADS offers several different

generic inference structures for different methods of performing diagnosis. Eventually,

2 KADS was the forerunner of CommonKADS. For the sake of consistency, with other papers, I have
altered the terminology used in this paper where it differs between KADS and CommonKADS.
Footnotes are used to describe these instances.

3 KADS used the term “interpretation models” instead of “generic inference structures”. Interpre-
tation models differed slightly from generic inference structures, because they were permitted to
contain some control information (task structure) as well as a generic inference structure. However,
this feature was hardly ever made use of. The successor in CommonKADS to these “generic task
structures” are problem solving methods, which are described in chapter XX.
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it was decided that the generic inference structure for systematic diagnosis was the

most appropriate. This model is shown in Figure 7.1 below; the ellipses are known as

“inference steps”,4 and the boxes as “knowledge roles”.

This model represents the inference which is expected to be performed when a task

involving systematic diagnosis is executed. For example, if a user reports a problem

with a machine, it is expected that a particular system model representing the correct

operation of that machine will be selected, and a number of faults will be suggested.

Based on a ’focussed’ subset of these faults, a number of characteristics of the machine

will be measured and compared with their expected values in the system model.

This model was then adapted to the domain of the IMPRESS system, as shown in Fig-

ures 7.2 and 7.4.1 below (Figure 7.4.1 is an expansion of the select-1 inference step in

Figure 7.2), to produce a problem-specific inference structure. This inference structure

indicates that the IMPRESS system will identify a set of possible faults (hypotheses)

based on the reported contamination problem. A test is then recommended, based

on the likelihood of the hypotheses, the time required to perform a test and the time

required to alter the state of the machine so that the test can be performed. Once it

has been decided which test will actually be performed, the test is carried out, and

the actual result is compared against a set of expected results (see below) in order to

update the set of hypotheses.

It can be seen that the adaptation from the generic inference structure to the problem-

specific inference structure involved a number of changes. Most of these changes are

relatively minor, such as the removal of the focussing of the set of hypotheses into a

smaller set; it was felt that the set of hypotheses was sufficiently small that such a

step was not necessary. However, one of the changes implies a fundamental change to

the approach taken to reasoning. This change involved replacing the generic inference

structure’s suggestion of comparing values against a system model, which is a model-

based approach to KBS construction, with a set of faults and expected test results,

which is a classification-based approach.5 While a model-based approach would have

4 In KADS, these were referred to as “inference functions”

5 For more on the distinction between these two approaches, see section 18.2.1.
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Figure 7.1: Generic inference structure for systematic diagnosis
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worked adequately for the IMPRESS system, it was felt that explicitly representing

injection moulding processes was not worth the effort, primarily because all the com-

pany’s machines operate in the same manner, and so only one “system model” would

be required. Instead, it was decided that for every known fault, the expected results

of each test would be represented. For example, if the fault was “Contamination of

raw material due to the box of material being left open”, then a check on the material

currently being fed into the machine should produce the result Contamination present,

while a check on a fresh box of material should produce the result Contamination ab-

sent. These values were explicitly represented, and compared against the actual results

of tests, as shown at the bottom of Figure 7.2.

7.4.2 Further guidance provided by KADS

The remaining stages of the KADS analysis and design phases gradually extend and

transform the knowledge which is represented in the inference structure into a detailed

KBS design, with any design decisions being explicitly recorded. These stages are:

Knowledge analysis:

• Flow of control: The task structure, which is a component of the Expertise model,

identifies the flow of control between inference functions, and also identifies any

inputs and outputs of the KBS.

• Task assignment: It’s important to make rational decisions about which agents

carry out which tasks in the final KBS, since this can have a big effect on the re-

quired development time. The tasks include both the inference steps and dealing

with inputs to the system; for example, of data is required from a manual, should

the user be asked to look up that data, or should the system automatically access

a version of that manual stored in a spreadsheet? In CommonKADS, this would

be represented within the Agent and Communication models; for this project,

a model of interaction was developed 6 which is used to determine which of the

inference steps should be performed by the system, which by the user, and which

6 The model of interaction is a locally-developed variant of KADS’ model of co-operation, the fore-
runner of the Agent and Communication models See chapter ZZZ for details.
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Figure 7.2: Inference structure for IMPRESS system
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Figure 7.3: Inference structure for test selection in IMPRESS system
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by the two working together. It also explicitly identifies every input and output

within the system.

The main decision made when developing the model of interaction for the IM-

PRESS system was that the selection of a test to perform would be done by the

KBS and user in conjunction, rather than by the KBS alone; in other words, the

KBS would recommend a test to perform, but the user would be free to reject

the recommendation.

KBS design:

• Application design7 involves laying out the inference functions, knowledge roles

and inputs/outputs in a single diagram, and identifying the data flow between

them.

• Architectural design8 involves the selection of AI “design methods”, such as best-

first search, blackboard reasoning, or truth maintenance, to implement each func-

tion in the application design. AIAI have developed a set of probing questions,

based on the work of Kline & Dolins [104], to recommend design methods; see

chapter D for more details.

• Physical design involves the selection of rules, objects, or other low-level design

techniques to implement the chosen design methods. This proved to be the most

difficult of all the analysis and design stages, partly because the architectural

design stage did not produce many strong recommendations for particular design

methods.

KADS recommends that the selection of a KBS implementation tool should be

based on the results of this stage; however, an implementation tool has often

been chosen by the time this stage of the project is reached, and so it is sensible

if the capabilities of the KBS tool are borne in mind when performing physical

design.

7 In KADS, the only approach recommended for application design was functional decomposition. I
have found it convenient to retain this approach wherever possible. For more on other approaches,
see chapter 12.

8 This was called “behavioural design” in KADS.
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Once the physical design is complete, KADS suggests using conventional software engi-

neering methods. While these methods are likely to work for implementation, they may

not be adequate for verification and validation, which may differ significantly between

a KBS and conventional computer programs [175].

7.4.3 Technology transfer using KADS

During the stages of knowledge analysis and KBS design, technology transfer was

accomplished by introducing JM to KADS. This was achieved during JM’s initial

training. JM was also asked to read sections of the best available book on KADS[82].

With this background, JM was able to understand the deliverables from the analysis

and design phases at a detailed level, and to use these deliverables as a basis for the

implementation of the IMPRESS system.

The aim of using KADS for technology transfer was that JM would understand the

KADS models sufficiently well that, should the occasion arise, he would be able to

make a change to the inference structure and propagate the change through all the

remaining stages in order to produce a revised physical design. This change would

then be implemented in the KBS, and the revised set of models would serve as up to

date documentation for the system. This purpose appears to have been achieved.

7.5 Benefits and weaknesses of using KADS for the IM-
PRESS project

The use of KADS for the IMPRESS project provided a number of benefits, but also

had some weaknesses. These are outlined below.

Benefits: The major advantage of KADS from the point of view of technology trans-

fer is the large number of models which are produced during the development of the

KBS. These models represent the KBS from a number of different viewpoints, so a

novice stands a much greater chance of understanding the workings of the KBS from

these models than from any single document describing the KBS. The variety of mod-

els also helps greatly when a new piece of knowledge or a new procedure must be
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added to the KBS, and it is difficult to decide where this new information fits into the

previous structure. These models also force the KBS developer to document design

decisions explicitly, which is almost essential for successful long-term maintenance, and

can constitute a set of deliverables from each stage of the project for the management

or project monitoring officer.

KADS itself has some particular advantages. The library of generic inference structures

is widely thought to be the most useful contribution of KADS to knowledge engineering,

and it certainly provided a lot of assistance for the IMPRESS project. There is also

some reasonably comprehensible background reading available on KADS which helps

introduce novices to the methodology.

Weaknesses: Perhaps the biggest disadvantage of using KADS, when compared with

a “rapid prototyping” approach to KBS development, is that implementation does not

begin until relatively late in the project. While the preparation of a design which

has been thought out and documented well provides plenty of justification for KADS’

approach, late implementation carries disadvantages both for technical development

and for technology transfer.

From the viewpoint of technical development, KADS’ approach loses the advantages

of iterative prototyping for knowledge acquisition and investigating possible imple-

mentation techniques. KADS does not rule out the use of prototyping as a knowledge

acquisition technique, but it is time-consuming to build a prototype based on an uncer-

tain system design which will eventually be thrown away, and it was decided that this

approach was not worthwhile for a small-scale project such as the IMPRESS project.

Iterative prototyping is also very useful for identifying omissions or misunderstandings

in knowledge acquisition and analysis, and the fact that most of KADS’ models are

based on the analysed knowledge (directly or indirectly) means that errors in knowl-

edge acquisition and analysis are costly, because they require almost all the models to

be updated. A CAKE (computer aided knowledge engineering) tool which supported

the construction of CommonKADS models would go a long way towards alleviating

this difficulty.

From the viewpoint of technology transfer, KADS’ approach means that a novice KBS
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programmer (JM in this project) is thrown into programming at the deep end, rather

than being gradually introduced to implementation techniques as the prototype is

built. While JM was given some training and programming exercises in KAPPA-PC

while the analysis and design phases were being conducted, it is received wisdom that

the only way to understand a KBS implementation tool fully is to use it to develop a

full-scale KBS, and this project reinforced that belief. This unfamiliarity was a major

contributor to the fact that the implementation phase overran by about 3 weeks, the

only phase to show a significant deviation from the initial plan.

Two other features of KADS were noted which were minor disadvantages in the IM-

PRESS project:

• KADS provides little guidance on user interface design, which is something of a

disadvantage since the development of user interfaces may take up a large propor-

tion of the code and the development time for a KBS. For the sake of simplicity,

the IMPRESS project used KAPPA-PC’s built-in user interface facilities (menus,

message boxes and text windows) to develop its user interface.

• The physical design stage should take into account the features of the chosen KBS

implementation tool. KADS recommends that a tool should be chosen based on

the results of the physical design stage, but in practice a tool has almost always

been chosen before this stage. For example, the physical design for the IMPRESS

system recommended the use of a series of demons on the slots of the State of

the machine object to calculate the total time required for the machine to be

put into a particular state. However, demons in KAPPA-PC do not return a

value, so instead of using a return value, the technique had to be implemented

using a global variable to accumulate the total time.

7.6 Conclusion

On the whole, the use of a methodology as a framework for technology transfer worked

well on the IMPRESS project, and is recommended for other projects. However, a
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number of factors must be considered carefully when doing so:9

• Considerable effort is required to make sure that knowledge analysis is done

properly, because of the effort required to correct errors at a later stage. In larger

projects, or other projects where the knowledge to be acquired is particularly

complex, it may well be worth developing a prototype to assist in knowledge

acquisition.

• The implementation stage should be given at least as much time as the analysis

stage, if not more, unless the chief programmer is fully conversant with the KBS

implementation tool before the implementation stage is reached.

• Documentation should be prepared in a format which is fairly easy to update,

since it is expected that the documentation will change over time.

• The features of the chosen implementation tool should be taken into account at

the physical design stage (or equivalent stage in the chosen methodology).

IMPRESS was built before the CommonKADS methodology was published. The next

chapter looks at how CommonKADS updated KADS, and how this would have affected

the IMPRESS project and another project.

9 These comments assume that the methodology uses the three phases of analysis, design and imple-
mentation.



Chapter 8

Knowledge Engineering: The
Expertise Model1

8.1 Introduction

It was decided that two KBS projects which had been originally developed with the aid

of KADS, or a variant of KADS, would be re-engineered using CommonKADS in order

to obtain first-hand experience of the advantages and disadvantages of CommonKADS

over KADS. The projects chosen were the X-MATE project, which developed a KBS

for deciding whether mortgages should be granted [95], and the IMPRESS project,

which produced a KBS for diagnosing faults in plastic moulding machinery [94].

This paper will describe the re-engineering of the domain, inference and task levels of

expertise in IMPRESS and X-MATE.

8.1.1 How to Build the CommonKADS Expertise Model

In KADS, modeling of expertise was usually performed by selecting an generic inference

structure from the appropriate library, modeling the domain sufficiently to instanti-

ate the inference structure to the current application, and then proceeding with task

modeling and design. CommonKADS suggests a number of approaches to modeling

([191]), including:

1 Originally published as Re-engineering IMPRESS and X-MATE using CommonKADS in
Research and Development in Expert Systems X, Proceedings of Expert Systems 93, the annual con-
ference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s College,
Cambridge, December 15-17 1993.
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• bottom-up assembly of models from data;

• model assembly around a problem solving method (e.g. for a constraint satisfac-

tion problem);

• model assembly from generic components (as in KADS);

• model specification based on top-down task decomposition;

• adapting models by knowledge differentiation (introducing new knowledge roles

to circumvent computational or pragmatic constraints);

• model generation by structure mapping.

In the project described in this paper, the primary modeling method used was model

assembly from generic components. However, occasional use of other approaches was

found to be useful - bottom-up assembly was used in domain modeling, and a form of

knowledge differentiation was used to ensure that all relevant domain categories were

represented in the inference structure.

8.1.2 Overview of this Paper

This paper looks at the three levels of expertise modeling in CommonKADS in turn.

For each level, a brief introduction is given, followed by description and results of the

re-engineering of X-MATE and IMPRESS. Finally, an evaluation of the CommonKADS

techniques for that level is provided.

Currently, CommonKADS’ main guidance on generic components is at the inference

level, and so the first step in the re-engineering process was to develop an inference

structure. For this reason, the inference level of CommonKADS is described before

the domain level. In practice, however, it was found that these two levels tended to be

developed simultaneously, with modeling at one level helping to guide and refine the

other. The task level was not developed until the other levels were complete, and so it

is described last. The conclusion to the paper highlights the perceived strengths and

weaknesses of expertise modeling in CommonKADS.
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8.2 The Inference Level in CommonKADS: Configurable
Inference Structures

When developing an expertise model in KADS, one of the first actions which a knowl-

edge engineer performed was to identify the task type of the KBS application (exam-

ples of task types include heuristic classification, assessment, and configuration). On

the basis of this decision, an inference structure was selected from KADS’ library of

task-related models. The next step was to instantiate the knowledge roles and infer-

ence actions in the inference structure to terms from the domain. However, it was

commonly found that this process required alterations to the structure of the generic

model, rather than merely instantiating its nodes; both the X-MATE and the IM-

PRESS projects demonstrated this. At the time of writing, CommonKADS’ proposed

solution to this problem is to decompose the inference structures in the library into

components, and to provide guidance on configuring an inference structure to a partic-

ular application. The guidance is provided by a set of questions which the knowledge

engineer must ask himself about the project.

Configurable inference structure components were defined for the Assessment task type

(see [116]). X-MATE’s task of deciding whether to grant mortgages was identified

as an assessment task, while the IMPRESS project classified the diagnosis faults in

plastic moulding machinery as a systematic diagnosis task. The X-MATE project will

therefore be used to provide the worked example for this section.

8.2.1 Using KADS on the X-MATE Project

The main contribution of KADS to the X-MATE project was the inference structure

for assessment tasks. This inference structure is shown in Figure 8.1. When the X-

MATE project was carried out, it was found that this structure needed to be changed

in at least one respect in order to reflect the task of mortgage application assessment:

the “ideal system model” in the top right-hand corner had to be changed to “several

typical non-ideal cases”. The reason for this change was that mortgage application

assessment is carried out by trying to identify danger signals in mortgage applications,

rather than identifying aspects of the application which match the profile of an ideal
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applicant. See [95] for more details.

Case description System model

Norms

Decision class

Abstract case
description match

abstract specify

Figure 8.1: KADS generic inference structure for Assessment tasks

8.2.2 Using Configurable Inference Structures on the X-MATE Project

In CommonKADS, however, the basic model for Assessment tasks is simply the match-

ing of a case description with a system model to produce a decision (Figure 8.2). This

model is then extended by asking a series of questions about the application.2 These

questions ask the knowledge engineer about each knowledge role. Depending on the

answer to each question, inference functions and knowledge roles may be inserted into

the inference structure. For example, if the question:

• Is the case description already abstract enough to be matched?

was answered NO, then an abstract inference function and an abstract case de-

scription knowledge role would be added between the case description knowledge

role and match case inference function.

For the X-MATE project, the questions were answered as follows:

• Is the case description already abstract enough to be matched?

YES. A mortgage application form contains all the requisite information in an

accessible form.

2 The full set of questions, and of consequent model components, can be found in [116].
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case
description

decision class

system model

match case

Figure 8.2: Basic inference structure for Assessment tasks in CommonKADS

• Is the system model already specific enough to be matched?

NO. As a result of this answer, a specify inference function is added to the infer-

ence structure, and further questions are asked about the specification process.

– Is the system model suitable for use in the specification process (or does it

need to be focused because there is more than one type of system?)

It needs to be FOCUSED since there are 3 “system models”, which corre-

spond to the 3 main reasons for defaulting on mortgages. A focus inference

function is therefore added.

– Is the specification of the measurement system independent from the case

description?

YES. Therefore, the case description should provide input to the focus

inference function, not the specify inference function.

• Is the decision class the direct result of matching the case against the measure-

ment system (i.e. measuring the case)?

NO. The decision class depends on the sum of several matches of the case against

the measurement system.

• Is the decision class the result of a computation?

YES. As a result, a compute inference function and another specify inference
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function are included.

The resulting inference structure is shown in Figure 8.3, and its instantiation to the

domain of mortgage application assessment is shown in Figure 8.4. Note that the

knowledge role that is outlined in bold lines represents static knowledge – that is,

the knowledge in this knowledge role is not changed during the inference process.

The distinction between static and dynamic knowledge roles is another innovation in

CommonKADS.

grade

grading criteriadecision
classes

set of norms specify

compute

measure

system modelcase
description focus

measurement
system

focussed
system model

specify

specify

Figure 8.3: Inference structure for Assessment tasks, configured to the task of mortgage
application assessment
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measure

compute

focus

specify

specify

a typical ‘high
risk’ situation

specify

factors
indicating risk

individual risk
indicators

risk score acceptable
level of risk

above/below
acceptable
threshold

various data
sources e.g.

application form

typical ‘high
risk’ situations

Figure 8.4: Configured inference structure for Assessment tasks, instantiated to the
domain of mortgage application assessment

8.2.3 Evaluation of Configurable Inference Structures

The inference structure in Figure 8.3 reflects the process of mortgage application assess-

ment much more accurately than the structure shown in Figure 8.1. The configuration

process takes little time, and can be done even by novice knowledge engineers (see

[141] or [178]). On the basis of these observations, configurable inference structures

are judged to be a valuable tool for knowledge modeling.
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8.3 The Domain Level in CommonKADS: Domain Mod-
els

Having configured an appropriate inference structure, the domain level of the exper-

tise model can be completed. While domain modeling was recommended in the KADS

methodology, the only real guidance given was on the analysis of transcripts from in-

terviews; it was suggested that the knowledge engineer should identify domain concepts

from the transcript, and if possible, structure these in a hierarchy. CommonKADS has

taken this idea and extended it to suggest the construction of:

• a domain ontology, which broadly corresponds to defining a number of dictio-

naries of domain terms. It is suggested that the knowledge engineer defines

‘dictionaries’ of

– concepts;

– properties;

– relations;

– expressions (one or more statements of the form property = value, which

can be conjoined to produce rules).

• a number of domain models. Typically, there will be one domain model for each

relation identified: for example, if the relation causes(A,B) has been identified

then a causal domain model will be defined, which displays all the terms which

are related by the causes relation.

In addition, CommonKADS suggests that a model ontology and model schema are

defined. These represent the domain models at a more abstract level. The purpose

of these models is to provide an explicit link between the domain models and the

inference structure, and also to produce a representation which can be re-used in other

KBS applications which perform the same task type. The model ontology represents

the domain ontology at a more abstract level (for example, the relation subsystem-of

in the domain ontology might be represented as part-of in the model ontology); the

model schema represents all the domain models, with one node for each domain model,

using the terms defined in the model ontology.
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Technician: Here’s a faulty part – as you can see, the fault is black specks,
on the back face of the moulding, on the sides of the moulding – all over,
in fact. [He scratches a speck with his pocket knife]. They’re quite
deeply embedded – not surface specks. That means that the problem is
being caused by something in the material or in the process, rather than
external dust, or dripping water. [He speaks to the machine operator]. How
long has the job been running?

Figure 8.5: Part of a transcript describing diagnosis of plastic moulding machinery

Concepts (underlined) Properties and values (in italic font)
concept faulty part; property colour of specks
concept fault; black, etc
concept specks; property location of specks
concept contaminated material; value-set: all over, etc;
concept process fault; property depth of specks
concept external dust; value-set: deep, surface, etc;
concept dripping water; property duration of job

value-set: value-set: 2 days, etc;

Relations (in small caps) Tasks (in bold font)
relation causes; task scratch specks with pocket knife;

task ask duration of job;

Table 8.1: Domain ontology elicited from the transcript shown in Figure 8.5

The analyses below were carried out using Kads Tool, which provides good support

for building domain ontologies and defining domain models. The Kads Tool output

for these analyses forms the appendix to [97].

8.3.1 Domain Modeling for the IMPRESS System

Domain ontology: A transcript from an IMPRESS knowledge elicitation session

was used as the basis for the re-engineering exercise. Concepts, properties, relations

and expressions were identified, created in appropriate dictionaries and linked to the

transcript. Kads Tool also supports the identification of inferences and tasks in a

transcript; a number of tasks were identified in the IMPRESS transcript. A portion

of the transcript, with its associated dictionaries (i.e. domain ontology), is shown in

Figure 8.5 and Table 8.3.1.
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Domain models: When the identification of concepts etc. in the acquired knowledge

is complete, the next step is to build one or more domain models. The experience

gained on this project suggests that it is wise to use the inference structure as a guide

in deciding which domain models to build. The configured inference structure for the

IMPRESS system (Figure 8.63), which is derived from the generic inference structure

for systematic diagnosis tasks4, suggests that the domain models might include the

following:

• a link between complaints (symptoms) and hypothesised faults (based on the

decompose inference function);

• a link between tests and observable properties (based on the select inference

function);

• a link between observable properties and hypothesised faults (based on the refine

inference function);

• a decomposition of a plastic moulding machine into its subcomponents (based on

the system model knowledge role).

All of these suggested relationships are supported by the domain ontology:

• The link between complaints and hypothesised faults is represented by the rela-

tion causes;

• The link between tests and observable properties is represented by the relation

observes;

• The link between observable properties and hypothesised faults is represented by

the relation indicates;

3 The rounded rectangle around measure indicates that “measure” is not, strictly speaking, an infer-
ence function; instead, it is a transfer task, (see section 8.3.3). This syntax is another innovation in
CommonKADS.

4 This inference structure is intended to represent the configured inference structure for the IMPRESS
system. In reality, there is no guidance available for configuring inference structures for systematic
diagnosis tasks, and so this model has been based on actual experience with the original IMPRESS
project.
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• The decomposition of a plastic moulding machine into its subcomponents is rep-

resented by the relation part of.

Four domain models were therefore constructed to represent each of these relationships.

Part of the behavioural model (which represents the indicates relation) is shown in

Figure 8.7.5

complaint

set of tests

normobservable

test

set of
hypotheses

system model

refine

specify

select

decompose

measure

Figure 8.6: Configured inference structure for IMPRESS

In addition, there are some concepts which have been identified, but are not yet found

in any domain model. This discovery requires a decision from the knowledge engineer:

5 Note that Figure 8.7 uses the semantic net representation which is usually used within Kads Tool to
represent domain models. The CommonKADS book [147] recommends using UML object notation
for these diagrams.
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Figure 8.7: Part of the behavioural domain model for IMPRESS

do these concepts need to be represented in a domain model, or can they safely be

ignored? In the case of the IMPRESS system, the extra concepts included several

concepts which referred to various states of the machine; from the transcript, it became

obvious that a number of tests required the machine to be in a certain state. As a

result, a new relation – requires – was created, and a domain model of preconditions

was built to represent the requirements of tests for certain states of the machine.

Model ontology and model schema: The model schema for IMPRESS is shown

in Figure 8.8. The terms used (i.e. the model ontology) can readily be seen to map each

node to one domain model, with the exception of manifestations, which are defined

as expressions on observable properties. The relations from the domain ontology are

considered to be sufficiently abstract to be used without alteration.

It can be seen from the model schema that the domain model of machine components,

which represents the decomposition of a plastic moulding machine, has no links with the

remainder of the domain model. This suggests that the use of an explicit decomposition

of the machine is not essential for the process of diagnosis – which was actually the

case in the original IMPRESS project. The model schema can therefore be used to
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Figure 8.8: Model schema for IMPRESS

identify concepts which do not need to be built into the final KBS.

The nodes and relations in the model schema should map directly to knowledge roles

and inference functions in the inference structure. The addition of the domain model

of preconditions therefore necessitated a change in the inference structure. The final

top level inference structure for IMPRESS is shown in Figure 8.9. (The double ellipse

for the select inference function indicates that this inference function is expanded into

a more detailed structure at a lower level in the analysis).

8.3.2 Domain Modeling for the X-MATE Project

The domain model for the X-MATE project turned out to be surprisingly simple. The

domain ontology contained many rules but hardly any relations. As a result, only

two domain models were identified: a hierarchy of professions (since certain categories

of professions are more prone to income fluctuations than others), and a hierarchy of

risks (where the top level nodes in the hierarchy represent the “typical non-ideal cases”

identified in the original X-MATE project). The development of the model ontology

proved useful, because it helped highlight the fact that different properties had to be
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complaint
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machine

possible faults
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Expected value
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for all hyps
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Figure 8.9: Final instantiated inference structure for IMPRESS

acquired from different sources – a factor which was a key to the design of the X-MATE

system, because the different sources required widely different amounts of effort from

the user of X-MATE. This necessitated a change to the inference structure: a select

inference action and a selected data source knowledge role were added between the

various data sources knowledge role and the measure transfer task.

The final inference structure for X-MATE is shown in Figure 8.10, which follows the

discussion of the task level. This is because the development of the task level for

X-MATE resulted in some knowledge roles being identified as static knowledge roles
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rather than as dynamic knowledge roles. Discussion of this transformation can be

found below.

8.3.3 Evaluation of Domain Modeling

Performing the task of domain modeling was an enlightening exercise. The elicitation

of a domain ontology and the subsequent construction of domain models was found to

be a valuable exercise for the following reasons:

• It provided models of various aspects of the domain. This dissection of the

domain, and the “cross-checking” effect of using the same concepts in more than

one domain model, is an effective way of checking that all the necessary knowledge

has been acquired.

• It provides a “theory” of the domain which is consistent, (hopefully) complete,

and which has inter-relationships explicitly represented.

• It provides a structured approach to making alterations to an inference structure

(over and above those made during the configuration process) when instantiating

the inference structure to the domain.

• It provides (and possibly uses) re-usable models of the domain.

During domain modeling, however, some difficulties arose which are worthy of com-

ment. The first difficulty was simply the sheer number of concepts which can be found

in a transcript. The domain modeling exercise was carried out using one transcript of

a protocol analysis session, which contained only 600 words, and yet it produced 50

concepts and 25 other items in the domain ontology. Since an average human being

can speak at about 10,000 words per hour (see [115]), the time required to identify

concepts in a single transcript could potentially be very large indeed6. The use of

Kads Tool (as opposed to using a highlighter pen and paper) makes this task feasi-

ble, but it can still be onerous. A possible solution to this problem would be to use

structured knowledge acquisition techniques such as the laddered grid, the repertory

6 This is acceptable if all these concepts are to be used in the final KBS, but at this stage of the
modeling process bottom-up assembly is being employed, and so it is not known which concepts will
ultimately be used.
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grid, or card sorting ([47]), but none of these are likely to acquire all the necessary

knowledge ([23]), and none are currently supported by Kads Tool.

The second difficulty affects the process of domain modeling itself. The development

of an inference structure provides guidance to a knowledge engineer on which concepts

and relations can be expected in the domain, but this is not always sufficient guidance

on determining the ontological type of a fragment of acquired knowledge. For example,

if the transcript indicated that the complaint may be due to a fault in the thermocou-

plings of the plastic moulding machine, the choices for representation in the domain

ontology might include:

concept thermocouplings-faulty;

concept thermocouplings

property faulty

value-set yes, no;

concept thermocouplings

property status

value-set OK, faulty;

property thermocouplings-status

expression thermocouplings-status = faulty;

An attempt has been made to develop heuristics to help in ontological assignment (e.g.

“If the item can have properties of its own, then it is a concept; if it cannot have

properties of its own, it is a property”), but these heuristics have proved difficult to

apply, largely because different domain models present different views on the knowledge

base ([141]).

For the domain modeling of IMPRESS, the inference structure provided sufficient

guidance to make most ontological decisions. However, the ontological assignment

of tests presented considerable difficulties. In the sample application provided with

Kads Tool (diagnosis of faults in a printer), tests are considered to be transfer

tasks (tasks in which the user or another external information source transfers knowl-

edge to the knowledge base). This is also true of the IMPRESS project – tests obtain
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data about the plastic moulding machine, and this data is reported to the KBS. How-

ever, CommonKADS does not allow tasks to have properties – and yet a key part of

the reasoning in IMPRESS is to decide which test to perform next, on the basis of

the time required for that test and the explanatory power of the properties which are

measured by the test. In order to represent this, tests had to be described both as

tasks and as concepts, which is far from ideal.

A less serious version of this problem can be seen from the above example of repre-

sentation of thermocouplings. It was decided that the information about faulty ther-

mocouplings would be represented as a concept, since thermocouplings-faulty is a

fault, and also as a property, because thermocouplings-status can be checked by

the technician).

A final difficulty is that domain modeling is only intended to represent semantic rela-

tionships, hence the use of semantic nets in Kads Tool to represent domain models.

Semantic networks only allow a given node to appear once in any one model. This is a

problem when using CommonKADS to model non-semantic relationships. An example

can be found in [178], where modeling of molecular structures using Kads Tool proved

difficult because organic molecules may contain many carbon atoms, and Kads Tool

insisted that each atom was represented using a different concept.

On balance, the construction of domain models and a model schema is deemed to be

a useful activity when constructing a KBS. The knowledge engineer should, however,

be aware of the potential difficulties.

8.4 The Task Level in CommonKADS: Problem Solving

Methods

The third level of expertise modeling in CommonKADS is the task level. Com-

monKADS requires a task definition to be written, which is then instantiated into

a task body using one of a number of problem solving methods. For example, if the

task was diagnosing faults in a car engine, the problem solving method chosen might

be “generate (all possible faults) and test (each one)”. The task specification can be

derived from the inference structure (or rather, from the CML description of the infer-
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ence functions – see the appendix of [97] for a worked example); the major decision at

this stage is which problem solving method to use.

Problem solving methods are a prescription of the way in which a certain class of task

definitions can be satisfied. They specify the relation between a task definition and a

task body, by mapping the task specific terms on to the (generic) terms used in the

method description [191]. It follows that the choice of the most appropriate problem

solving method is made by comparing the task definition with the method description

of each problem solving method.

8.4.1 Choosing a Problem Solving Method for IMPRESS

The top level task definition for the IMPRESS system is given below, using CML and

first order predicate logic. (Note that capital letters such as H and M are used to

represent sets of data.)

Task definition for IMPRESS:

task machine-fault-diagnosis(c, f)

goal: Find a fault f that explains a given symptom c

∧ all manifestations observed indicate f

∧ no other fault is indicated by all the observed manifestations

roles:

case-initial-input: c: complaint

case-user-input: M: set of manifestations

solution: f: fault

task-specification:

covers(f, c)

∧ (∀ m:manifestation indicates(m,f))

∧ ¬(∃ f2:fault ∧ covers(f2,c)

∧ (∀ M:manifestation indicates(m,f2)))

⊢ solution(f);
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covers(f, c)

∧ (∀ m:manifestation indicates(m,f))

∧ (∃ f2:fault ∧ covers(f2,c)

∧ (∀ m:manifestation indicates(m,f2)))

∧ (∃ t:test observes(t,m) ∧ indicates(m,f))

⊢ perform(t);

The task specification states that fault f is a solution if:

• f covers (i.e is capable of causing) the observed complaint;

• all the manifestations (observed properties) indicate that f could be true;

• there is no other fault for which the above two conditions are true.

However, if there are still two or more faults under suspicion, the task specification

states that a test should be performed to investigate one of those faults.

The knowledge engineer’s task now is to choose a problem solving method. In this

example, the choice has been narrowed down to two options: generate and test or

confirmation by exclusion. The method definitions for these are given below.

Problem solving method: generate and test:

problem solving method generate and test

goal: G: find(s:solution)

task-characterisation:

criterion1(s) ∧ criterion2(s) ⊢ solution(s)

control-roles:

c: complaint

h: hypothesis → solution

sub-tasks:

generate(complaint, hypothesis)

test(hypothesis)

method-definition:
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A1: ∀ x solution(x) ⊢ generate(x)

A2: ∀ x generate(x) ∧ test(x) ⊢ solution(x)

A3: ∀ x generate(x) ⊢ criterion1(x)

A4: ∀ x test(x) ⊢ criterion2(x)

A1 ∧ A2 ∧ A3 ∧ A4 ⊢<P1> ∃ s solution(s)

task-expression-schema P1

repeat

generate(c,h)

until test(h)

result(h)

Problem solving method: confirmation by exclusion:

problem solving method confirmation by exclusion

goal: G: find(s:solution)

task-characterisation:

criterion1(s) ∧ ¬∃ criterion2(s) ⊢ solution(s)

control-roles:

c: complaint

h: hypothesis → solution

H: set of hypotheses

M: set of manifestations

n: number of hypotheses in H

sub-tasks:

generate(complaint, set of hypotheses)

test(hypothesis)

refine(set of hypotheses)

compute(number of hypotheses in set of hypotheses)

method-definition:

A1: ∀ x solution(x) ⊢ generate(x)

A2: ∀ x generate(x) ∧ set(manifestations) ⊢ solution(x)

A3: ∀ x generate(x) ∧ set(manifestations) ⊢ criterion1(x)
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A4: ∀ x generate(x) ∧ set(manifestations) ⊢ criterion1(x)

A1 ∧ A2 ∧ A3 ∧ A4 ⊢<P2> ∃ s solution(s)

task-expression-schema P2

generate(c,H)

repeat

test(h) → M

refine(M, H)

until

n <= 1

IMPRESS task body: It is clear that these two method definitions are very similar.

Both can be applied if the task specification can be interpreted as a conjunction of two

criteria, and both involve generating and repeatedly testing hypotheses. However, the

task characterisation of the method for confirmation by exclusion indicates that the

method is dependent on the non-existence of the second criterion, which is a key

feature of the task specification. Further examination of the task reveals that it fulfils

all the statements of the method definition, and so confirmation by exclusion is chosen

as the problem solving method for IMPRESS. The resulting task body is as follows:

IMPRESS task body:

task body

sub-goals:

G1: find all fault states h with covers(h,c)

G2: test a manifestation m such that h ∈ H

∧ indicates(m, h)

G3: refine the set of hypotheses by removing all h for which

indicates(¬m, h)

sub-tasks:

G1: generate(c,H)

G2: test(h → m)

G3: refine(m, H)
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control-roles:

hypothesis h: fault

manifestation m: manifestation

number of hypotheses in H n: positive integer

task-expression

generate(c,H)

repeat

test(h) → m

refine(m, H)

until

n <= 1

8.4.2 Choosing a Problem Solving Method for X-MATE

The task modeling for X-MATE produced a very simple task structure. The reason

for this is that much of the knowledge required for mortgage application assessment

– the specification of a measurement system, the specification of risk indicators, and

so on – has been compiled into a set of rules. In CommonKADS terminology, much

of the inference has been done in advance, producing knowledge roles which are now

static knowledge roles, from the viewpoint of the KBS. Figure 8.10 shows an inference

structure which indicates the processing which is actually performed by X-MATE.

The obvious problem solving method for a problem in which matching is the critical

inference step is to use rule-based pattern matching. CommonKADS does not yet

provide any guidance on choosing an appropriate rule-based paradigm (e.g. forward

chaining vs backward chaining); some heuristic guidance can be found in the “probing

questions” approach of [104] (see also appendix C).

8.4.3 Evaluation of Task Modeling

It can be seen that the task body for IMPRESS shown above provides a much more

detailed prescription for the design phase of CommonKADS than the task structure

in the KADS methodology. The use of problem solving methods is therefore recom-

mended. The main difficulty is that the library of problem solving methods currently
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contains just one method (generate and test, specified in [191]) – the method for confir-

mation by exclusion was defined in the course of this project, thus doubling the current

size of the library! It is therefore unsurprising that little is known about techniques for

choosing between similar problem solving methods. It is hoped that such techniques

will be developed in due course. (For guidance on development on problem solving

methods, and a theoretical underpinning of them, see [4]).
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Figure 8.10: The actual inferences performed by X-MATE

8.5 Conclusion

The process of re-engineering two existing KBS applications into CommonKADS has

shown that the refinements introduced to expertise modeling by CommonKADS are
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all useful techniques, and are recommended for future KBS projects. However, both

the guidance on configuring inference structures and the library of problem solving

methods are currently very sparse, and need to be expanded greatly for CommonKADS

techniques to be widely usable. Domain modeling in CommonKADS has undergone the

greatest transformation of all from KADS; it encourages greater understanding of the

domain, provides explicit links with (and justification for adaptations to) the inference

level, and aids in the development of re-usable domain models. Domain modeling can

be a big task, however; it would be made easier by the provision of some guidance on

ontological classification.

Having reviewed the Expertise model in detail, the next two chapters look at research

that I have carried out to extend the library of generic inference structures that is

available to assist with developing the Expertise model. The first chapter looks at a

model for planning tasks, and the second at a model for design tasks.



Chapter 9

An Inference Structure for
Issue-based Planning1

9.1 Introduction

The key element in the success of CommonKADS is the library of generic inference

models which can be applied to tasks of specified types. These models suggest the

inference steps which take place in a typical task of that type, and the roles which are

played by domain knowledge in the problem solving process. For example, the generic

model for a systematic diagnostic task (e.g. [97]) includes inference steps such as de-

composing a set of possible faults, and matching observed values against expected

values. This model also shows that the set of possible faults plays two roles in the

diagnostic process; firstly as a part of a model of the behaviour of a faulty system, and

secondly as hypothesised causes of the symptom(s) currently being observed. These

generic models can either be used in a top-down manner, as frameworks for knowl-

edge acquisition (e.g. [95]), or they can be used to verify the completeness of models

developed bottom-up by analysis of the domain (e.g. [37]).

CommonKADS’ generic model for diagnostic tasks is well-developed and well-understood.

However, the generic models for some task types are not as well developed. This is

true for tasks involving knowledge-based planning; while CommonKADS does give

some guidance in this area [177], this guidance focuses on domain models, rather than

1 Originally published as CommonKADS Models for Knowledge Based Planning in the pro-
ceedings of AAAI-96, the Nineteenth Annual Conference of the American Association for Artificial
Intelligence, Portland, Oregon, July 1996.

167
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inference models. Since knowledge-based planning is an important commercial appli-

cation of Artificial Intelligence, there is a clear need for the development of generic

models for planning tasks.

Many of the generic models which currently exist have been derived from existing

AI systems, whose operation has been modeled and purged of their domain content.

These models have the strength of proven applicability. There are a number of well-

known and well-tried AI planning systems in existence; one of the best known is the

Open Planning Architecture (O-Plan) [170]. O-Plan, which was developed by AIAI’s

Knowledge Based Planning and Scheduling Group, provides a generic domain inde-

pendent computational architecture suitable for command, planning and execution

applications. O-Plan makes use of a variety of AI planning techniques, including a

hierarchical planning system which can produce plans as partial orders on actions

(cf. [145]); an agenda-based control architecture; incremental development of “plan

states”; temporal and resource constraint handling (cf. [184]); and a number of data

structures used in Nonlin [167] which was the forerunner of O-Plan. It therefore seemed

that there would be considerable benefit in using O-Plan as a basis for generating a

CommonKADS generic model for planning tasks.

The purpose of this paper is to describe the CommonKADS models which were devel-

oped from O-Plan. The paper also briefly describes the verification of these models

in the context of a real-life planning task: the assignment and management of Search

and Rescue operations by the Royal Air Force.

The format of the paper is:

• A brief description of the CommonKADS methodology;

• A brief description of O-Plan, and how its components relate to the Com-

monKADS view of knowledge representation;

• A description of the key planning models which were derived from O-Plan;

• A description of how these generic models were verified during the development

of a KBS which supported Search and Rescue planning.
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9.2 Knowledge Representation in CommonKADS

CommonKADS is the name of the methodology developed by the KADS-II project,

which was funded under the CEC ESPRIT programme [149]. It is a collection of

structured methods for building knowledge based systems, analogous to methods such

as SSADM for software engineering. CommonKADS views the construction of KBS as

a modeling activity, and so these methods require a number of models to be constructed

which represent different views on problem solving behaviour, in its organisational and

application context. CommonKADS recommends the construction of six models:

• A model of the organisational function and structure. The key elements of this

model are business processes, structural units, business resources and the various

relationships between them.

• A model of the tasks required to perform a particular operation. The key ele-

ments in this model are the tasks required for a single business process, and the

assignment of tasks to various agents.

• A model of the capabilities required of the agents who perform that operation.

The key elements of this model are agents (human or automated) and their

capabilities.

• A model of the communication required between agents during the operation.

The key elements of this model are transactions.

• A model of the expertise required to perform the operation (see below).

• a model of the design of a KBS to perform all or part of this operation. The key

step in a CommonKADS design model is (usually) a functional decomposition of

a knowledge-based process into its component functional units.

The key model – the expertise model – is divided into three “levels” representing dif-

ferent viewpoints on the expert knowledge:

• The domain knowledge which represents the declarative knowledge in the

knowledge base. The key elements in domain knowledge are concepts, proper-
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ties of concepts, and relations. Tasks can also be considered to be part of the

domain knowledge in some circumstances.

• The inference knowledge which represents the knowledge-based inferences

which are performed during problem solving. Inference knowledge is represented

using inference functions (inferences which must be made in the course of prob-

lem solving) and knowledge roles (domain knowledge which forms the input and

output of the inference functions).

• The task knowledge which defines a procedural ordering on the inferences. The

key elements at this level are tasks and their decomposition; in this respect, this

level is very similar to the CommonKADS task model.

The contents of these three levels can be defined graphically, or using CommonKADS’

Conceptual Modeling Language [19] [46] [148]. For a worked example of the develop-

ment of each of these three levels, see [97].

CommonKADS models are typically developed concurrently with the acquisition of

knowledge; initial knowledge acquisition is used to populate higher level models (e.g.

the organisational or task models) and then these models may be used to document,

structure, or guide knowledge acquisition. Partially completed models and/or generic

models may even be presented to the experts to allow them to comment on the appro-

priateness of the models; this technique is similar to the “rapid prototyping” (iterative

refinement) approach which was popular in the early days of KBS development. The

key difference is that the CommonKADS models are being iteratively refined, rather

than an implemented system; this removes many of the problems which were associated

with “rapid prototyping” of a KBS, such as lack of documentation, and difficulties in

identifying and justifying design decisions.

For more details on the contents of all the models described above, see [46].

9.3 O-Plan: The Open Planning Architecture

The development of open planning and scheduling systems seeks to support incremental

extension and change, and to facilitate communication between processing agents (both
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automated and human). The need to support inter-process communication has become

apparent from practical experience; unforeseen events or consequences of concurrent

activities can have a major effect on planning, and so the role of the human system

operator is crucially important. O-Plan has therefore been designed with an agent-

oriented architecture in which job assignment, planning and execution are separated

[170], and communication between agents is conducted using the same representations

that the planner uses. This separation not only introduces flexibility into the planning

process, but also fits well with CommonKADS’ multi-viewpoint approach to knowledge

representation.

O-Plan is a multi-faceted system, and much has been written about its different features

(e.g. [169] [38] [53]). The main components of O-Plan are:

• Domain information;

• Plan/schedule states;

• Knowledge sources;

• Controller;

• Several support modules, including constraint managers.

The remainder of this section describes how these components relate to the different

models proposed by CommonKADS.

9.3.1 Domain information

The best model in CommonKADS for representing domain information is the domain

level of the expertise model. This model normally contains declarative information

about physical objects, states which objects can be in, and relationships between ob-

jects; objects and states are represented using concepts and properties, while relation-

ships are represented by relations. However, domain information in O-Plan includes

a description of the activities which can be undertaken to achieve various planning

tasks, as well as information on physical resources available to the planning process

(e.g. helicopters, lifeboats, hospitals), and possible states of those resources. The need
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to represent activities in the domain information implies that the corresponding Com-

monKADS domain knowledge will include many tasks - procedures which can or must

be carried out as part of a plan to achieve an objective.2 From this, it becomes clear

that a key factor in knowledge-based planning is the ability to represent activities in a

declarative form, so that these activities can be reasoned about. Using this paradigm,

the constraints between activities can be represented as relationships between tasks in

the CommonKADS domain model.

9.3.2 Plan states

Plan states have three components: a plan agenda, the planning entities, and plan

constraints. The agenda consists of issues to be resolved, such as getting a resource

into a particular state; planning entities typically consist of planned activities which

change the state of resources; and plan constraints provide detailed domain information

which constrains further planning, such as the availability of resources. If the Search

and Rescue planning task (which is described in section 9.5) is taken as an example,

then an issue might be “a helicopter must be present at the site of the operation”;

a planning entity might be “scramble helicopter no. 007 immediately”; and a plan

constraint might be “helicopter no. 007 only has enough fuel for 2 hours’ flying”. 3

This tripartite breakdown of plans corresponds to the <I-N-OVA> (issues, nodes and

constraints) model described in [168].

All these components map to knowledge roles in the inference level of CommonKADS’

expertise model; in other words, they consist of domain knowledge which plays a par-

ticular role in problem solving. As a reminder, domain knowledge consists of possible

activities, physical resources, possible states of those resources, and relationships be-

tween resources and states. At the inference level:

• Issues consist of one or more resource states (which need to be achieved), and

form an input to a particular planning cycle;

2 CommonKADS and O-Plan ascribe different meanings to the term task. For the purposes of this
paper, O-Plan “activities” and CommonKADS “tasks” can be considered to be broadly equivalent.

3 It is convenient to consider these three components separately when making the comparison with
CommonKADS, even though all of these components can be thought of as constraints on future
planning.
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• Planning entities in the plan consist of activities, and form the output of a

planning cycle;

• Plan constraints consist of both the states of physical resources, and of rela-

tionships between planned activities. They provide an intermediate input to a

planning cycle.

9.3.3 Knowledge sources

The knowledge sources in O-Plan address specific planning requirements through the

application of plan state modification operators. These include expanding an activity

into sub-activities; choosing activities to achieve desired domain states; and selecting

resources to perform activities.

These knowledge sources map to inference steps (in the inference knowledge of the

Expertise model) in the CommonKADS framework. The knowledge sources transform

the components of the plan state into other components; for example, an issue from

the agenda which is expanded is likely to produce new issues. Since the components of

the plan state have been identified as CommonKADS knowledge roles, the knowledge

sources must correspond to CommonKADS inference steps.

9.3.4 Controller

Throughout the plan generation process, O-Plan identifies outstanding issues to ad-

dress; these issues are then posted on an agenda list. The controller computes the

context-dependent priority of the agenda items and selects an item for processing.

This provides the fundamental opportunism which is inherent in any planning task.

The knowledge used by the controller could be represented in CommonKADS at the

task level of the Expertise model (with a few extensions to represent opportunism). The

task level specifies ordering on the inference level, and also identifies input and output.

For O-Plan, the task knowledge performs reasoning which dynamically determines an

ordering on the inference knowledge; this is eminently sensible for any task which

involves reacting to a dynamically changing situation, such as planning, scheduling, or

control tasks.
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9.3.5 Support modules

Support modules, such as database management facilities or context-layered access to

the plan state, do not map into CommonKADS knowledge representation; they are

either considered as external agents or extra requirements which have to be considered

when the CommonKADS Design model is produced. However, some support modules

in O-Plan, such as the constraint managers (which track the availability of resources,

the temporal constraints on activities, and the relational constraints on objects), have

a considerable effect on the planning cycle. The constraints themselves can be repre-

sented as knowledge roles in the inference knowledge of the Expertise model.

9.4 Generic CommonKADS models for Planning

It can be seen from the section above that the knowledge representation structure used

in O-Plan corresponds fairly closely with the knowledge representation framework used

by CommonKADS; specifically, by the CommonKADS Expertise Model. This made

it possible to subdivide the next task in this project, which was to derive generic

CommonKADS models for planning from the architecture of O-Plan. It was decided

to focus on deriving generic inference models (“inference structures”) for the inference

level of the CommonKADS Expertise model, since, as noted in section 9.1, these models

often provide most assistance to a KBS developer.4

The derived inference structure can be seen in Figure 9.1. A typical “run” through the

inference structure would see the following operations taking place:

• The current plan state is notionally decomposed into three components: the

agenda of issues which are to be resolved, the current plan entities and the

availability of resources. This decomposition does not alter any of these

structures; it simply makes explicit the role which each component of the plan

state plays in the problem solving process. These roles are described in [169].

4 O-Plan can be used for a variety of tasks, including but not limited to planning. For the sake of
the current project, it is useful to specify an inference structure which represents the operation
of O-Plan as a planner. This inference structure is designed to make explicit the processes which
O-Plan goes through when performing planning tasks.
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Figure 9.1: Top level inference structure for the O-Plan planner

• From the agenda of issues, at least one issue is selected for resolution. The choice

of an issue depends on a number of factors monitored by the controller, such

as the available processing capabilities, the knock-on effect on other issues, etc.

• Pattern matching between issues and possible activities is used to find a way

of resolving the current issue, perhaps by adding activities to the plan, or by

creating new issues. Three ways of resolving issues are shown in Figures 9.2 to

9.4 below.

• The plan is updated with the modified plan state and any new issues that have

arisen.

Figures 9.2 to 9.4 show three of O-Plan’s “knowledge sources”, represented as Com-

monKADS inference structures. These knowledge sources are each capable of resolving

an outstanding issue, but in different ways. The methods used are:

• Adding a new activity, or further constraints on currently planned activities, in

order to resolve the issue (Figure 9.2);
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• “Backward chaining”: adding new issues to the plan which, if resolved, will allow

the current issue to be resolved (Figure 9.3);

• Expanding the issue into a number of sub-issues (Figure 9.4). 5

In CommonKADS terms, these three knowledge sources constitute different possible

decompositions of the match-3 inference step. The three decompositions are described

in more detail in the following paragraphs.

Figure 9.2 represents the resolution of an issue by condition satisfaction: i.e. the

conditions for an activity, that is capable of fulfilling the outstanding issue, are found

to be matched. Conditions typically consist of one or more resources being in one

or more states. For example, if an issue in the plan was to arrange transport for a

mountain rescue team from Kinloss to Ben Nevis, then one possible activity (discovered

by match-3.1.7) might be to transport the team by helicopter. The conditions of this

activity might be that the mountain rescue team is present at a helicopter landing

site, and an airworthy helicopter is also present at that site; constraints determined

by the availability of resources and currently planned activities will determine if these

conditions can be fulfilled (match-3.1.14). If the conditions of an activity can be

fulfilled, and that activity is selected as the best method of transporting the team

(select-3.1.8), then the plan is modified and the issue is removed from the agenda.

It is possible that there may be more than one way of matching the conditions of an

activity; for example, there may be more than one helicopter available. In that case,

O-Plan automatically selects one option which is used for further depth-first reasoning,

and maintains the other Possible modified plans as choice points in case backtracking

is required.

5 The numbering system used for inference steps in these inference structure diagrams is based on
the numbering scheme used in the IDEF3 method for process modeling. In the top level diagram,
every inference step is given a single unique number. At lower levels, inferences are numbered x.y.z,
where:

– x is the unique number of the “parent” inference step;

– y is the number of the decomposition. An inference usually only has one decomposition, but if
there are alternative ways of achieving an inference step then there may be multiple decomposi-
tions;

– z is the unique number of this inference step.
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Figure 9.3 represents the resolution of an issue for which there is no matching ac-

tivity whose conditions are currently satisfied (as determined by match-3.2.9). The

approach taken by O-Plan in this case is a form of “backward chaining”; a search is

made for other activities which, if added to the plan, will create the right conditions

for an activity to be added that fulfils the current issue (specify-3.2.15). If a suitable

activity is found, then the performing of this activity is added to the agenda of issues

(specify-3.2.10). This is known as achieving in O-Plan.

Figure 9.4 represents the resolution of an issue by expansion. If the current issue

matches with an activity (match-3.3.11) which can be decomposed into sub-activities,

then the current issue is removed from the agenda and appropriate sub-issues are cre-

ated and added to the agenda (decompose-3.3.16. For example, if “move mountain

rescue team to pickup point” was an issue, then this might be expanded into “contact

team”, “instruct team”, and “confirm team have arrived at pickup point”.

In summary, these inference structures represent the core activities of the O-Plan

planning process. The system-independence of these inference structures allows them

to be used as generic models of the inference processes required for knowledge-based

planning.6

9.5 Verifying the generic planning models in the context

of Search and Rescue planning

In the previous section, a set of inference structures were derived from the O-Plan ap-

proach to planning, and were proposed as generic inference models for knowledge-based

planning tasks. Despite the fact that O-Plan is intended to be a generic architecture

for implementing different types of knowledge-based planning systems, this proposi-

tion is a strong one, because there is a wide variation in task types which fall under

6 There are also many controls on efficiency and processing capability implemented within the O-Plan
Controller; these are not considered here.
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the category of knowledge-based planning. Knowledge-based planning tasks may vary

in the type of feedback data which is available to the planner7 [176]; in the depth of

search required; and in the type of support which a human user needs (fully automated

planning vs. monitoring and support of human planning).

9.5.1 Inference modeling for Search and Rescue planning

In order to verify the claim that the inference structure presented in the previous sec-

tion can act as a generic inference model for planning tasks, it is therefore important

that these models should be seen to be appropriate for real-life planning tasks. One

such task is that of planning the use of resources in a Search and Rescue incident.

A project entitled “Acquiring and Using Planning Knowledge for Search and Rescue”

[37] was carried out jointly by the University of Nottingham and AIAI, and produced a

prototype KBS for supporting Royal Air Force (RAF) personnel in their allocation and

management of resources such as Search and Rescue helicopters, RAF mountain res-

cue teams, and RAF Nimrod aircraft. The responsibilities of the Rescue Co-ordination

Centres of the RAF include support and co-ordination of civilian emergencies; this in-

cludes direct responsibility for the allocation, application and co-ordination of military

resources, as well as co-ordination with a number of civilian emergency authorities such

as fire, police, ambulance, coastguard and civilian mountain rescue teams. A rescue

incident can vary in scale from retrieving a walker with a sprained ankle to handling a

large aircrash; the Rescue Co-ordination Centres may have to manage several incidents

simultaneously, each requiring one or two aircraft as well as one or more other search

teams or emergency services.

Knowledge acquisition and high-level task modeling for this system are described in

[37]; the result of these activities was to design and develop a system which sup-

ported RAF personnel in making planning decisions, in remembering all the tasks

which needed to be undertaken, in deciding what to do next, and in logging actions

taken. The system was not designed to be a ‘closed-loop’ planner, which would gen-

erate a complete plan with little user consultation; during knowledge acquisition, it

7 Valente classifies planners as linear, non-linear, reflective or skeletal according to the use which they
make of state change data and plan assessment knowledge.
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was noted that the users always maintained control over the planning process, to the

extent that planning is sometimes deliberately delayed until more domain information

has been obtained. If the generic inference models which were derived from O-Plan can

be shown to be applicable to a system which, unlike O-Plan, is not a closed-loop plan-

ner, then the generic models should be applicable to a wide range of knowledge-based

planning tasks.

The approach which was taken to the design of the KBS for search and rescue support

was to develop a domain-specific inference structure in a bottom-up fashion based on

structured interviews, video tape analysis, protocol analysis, incident documentation

and structured analysis of specific incident cases [37]. This inference structure can be

seen in Figure 9.5. Although Figure 9.5 looks very different from Figures 9.1 to 9.4 at

first sight (partly because it uses the terms “goal” and “action” instead of “issue” and

“activity”), there are some common components between the two. Figure 9.5 shows

that planning for Search and Rescue operations takes place by choosing an appropriate

“template plan”, which contains a list of goals (issues) to be satisfied; selecting one

of these goals; either matching the goal to an action, or expanding it into a set of

sub-goals, which are then individually matched against actions; and then adding all

the actions into the current plan. Both Figures 9.1 to 9.4 and Figure 9.5 represent the

matching of issues against possible activities (match-3 in Figure 9.1 and match-1

in Figure 9.5); both allow issues to be decomposed as part of the planning process

(decompose-3.3.16 in Figure 9.4 and decompose in Figure 9.5); and both identify

selection of the next issue as an important inference step in the planning process

(select-2 in Figure 9.1 and select in Figure 9.5).

The generic inference structure was then used to critique the domain-specific inference

structure. The result of the comparison showed that the inference structure derived

from O-Plan:

• had a richer representation of techniques for matching issues to activities (match-

1 in Figure 9.5 is replaced by the whole of Figure 9.2; decompose and match-2

in Figure 9.5 are replaced by Figure 9.4; and there is no representation in Figure

9.5 of the “achieving” represented in Figure 9.3);
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Figure 9.5: Inference structure derived from knowledge acquisition and domain analysis
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• identified some important knowledge roles (resource constraints, and the library

of possible activities) which were not explicitly represented in the domain-driven

inference structure.

while the domain-derived inference structure highlighted knowledge which is particu-

larly important in the Search and Rescue domain. This primarily consisted of the use

of an outline plan template as a framework for planning.

The next stage of modeling is to determine whether the model components which

are present in the generic model but do not appear in the domain-derived model are

in fact applicable to this planning task. It was easy to determine that the task of

Search and Rescue planning is sometimes constrained by available resources (there are

only a few helicopters and aircraft available to them), and that the planners select

from a library of possible activities when deciding how to fulfil an issue (this is most

noticeable when different ways of transporting a casualty to safety are considered).

Further investigation also determined that there was (occasionally) a requirement to

“achieve” a state of affairs by introducing other activities earlier in the plan. This often

occurs when the planners want to use facilities controlled by other authorities, such as

lifeboats; in these situations, the facilities cannot be used until permission has been

granted by the controlling authority. The activity of “scramble lifeboats” therefore

requires the activity of “obtain permission” to be performed before its conditions can

be fulfilled.

The conclusion which can be drawn is that the generic inference models specified in

Figures 9.1 to 9.4 are adequate for representing the task of Search and Rescue planning,

once a few domain-specific adaptations have been made8 ; more importantly, the use of

a generic inference model acts as a completeness check on acquired procedural knowl-

edge, by prompting a knowledge engineer to consider possible aspects of the planning

process which may not have been identified during initial knowledge acquisition.

8 Such adaptations are a common feature of KBS projects which use CommonKADS (see [116], for
example).
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9.5.2 Implementation

In the course of developing the Design Model, it became apparent that there were two

options for implementing the planner, using the CLIPS KBS development package.

The first option was to implement the acquired issue/activity matching rules directly

in CLIPS; the second option was to encode these acquired rules and their conditions

as possible activities, as is done in the domain knowledge of O-Plan. These possible

activities would effectively be declarative rules (i.e. concepts stating that if this activity

was added to the plan, which could only occur IF certain pre-conditions were fulfilled,

THEN certain changes would be made to the plan state), which would then be activated

by a set of meta-rules. In the former approach, planning is achieved by running any or

all rules which are applicable; in the latter approach, planning consists of running rules

which compare the conditions of possible activities with the current state of the world.

If the conditions of an activity are matched, then that activity may be introduced

into the plan; if the conditions are not matched, the system can reason about what is

required in order to permit that activity to be introduced to the plan.

The second approach was chosen. A set of meta-rules were written in CLIPS, which

match a set of possible activities (encoded as instance objects within CLIPS’ object-

oriented language) against data about the Search and Rescue incident and the avail-

ability of resources (also represented as instance objects). This meta-rule approach

enables a virtual planning architecture to be implemented within the CLIPS language.

The identification of this approach was a direct consequence of the use of generic infer-

ence models as a basis for system design, and the structure of the implemented system

reflects the structure of the inference models which were developed.

The system which was constructed was therefore based on an inference structure which

incorporated the best of both worlds; it had all the matching capabilities and inputs of

the generic inference structure, as well as the selection of a “template plan” specified by

the domain-derived inference structure. The structure of the system was based on the

inference structure (with additional transformations and design decisions made using

the CommonKADS Design Model); the reasoning component of the system consisted

of a number of objects representing possible activities, another set of objects repre-
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senting issues on the agenda, and a set of rules which matched issues against possible

activities. The system also used objects to represent resources (helicopters, mountain

rescue teams, etc), and to represent the plan itself, with relations between objects

specifying the order of planned activities. User interfaces included a PERT chart-style

viewer of the planned activities, a TO DO list showing issues on the agenda, and a

“status board” showing the current commitments of resources. For further details, see

[37].

9.6 Future work

We have showed that a set of CommonKADS inference models can be derived to

represent the workings of the O-Plan system. We have also seen that these models can

be beneficially applied to the modeling of a real-life planning task, identifying important

aspects of the task which were not immediately obvious from acquired knowledge. We

can therefore argue that the consideration of these generic models will be beneficial to

anyone constructing a planning system, for these models may highlight aspects of the

problem which should have been considered.

However, this paper does not claim that the generic inference models highlight every

aspect that needs to be considered in any planning task. Knowledge-based planning

is a wide-ranging field, using a number of different approaches. While O-Plan can

perform a wide range of planning tasks (and some other tasks as well), it is based on a

particular approach to planning; the inference models derived from O-Plan inevitably

reflect the approach. If the generic models shown in Figures 9.1 to 9.4 included control

information, then the relationship between O-Plan and the generic models would be the

same as the relationship between MYCIN and the expert system ‘shell’ derived from

it, E-MYCIN. The deliberate exclusion of control information from CommonKADS

inference models helps to lift the generic models to a slightly higher level of abstraction

than E-MYCIN, but these models cannot be considered to be a generic model for all

planning tasks.

What is needed is a top-down approach to classifying planning tasks, which identifies

the important characteristics of different approaches to planning, and suggests the
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types of knowledge which are considered by each type of planning. Since this paper

was originally submitted, a paper has been published [8] which takes such an approach,

using the CommonKADS framework to produce a high-level description of different

planning systems and the approaches which they use. From this perspective, the models

produced by Barros et al are the “generic” models, specifying the types of operation

which a planner is expected to perform (e.g. select goal or critique plan), whereas the

models described in Figures 9.1 to 9.4 are the “domain-derived” models, representing

the actual operation of a particular planning system. By applying the same technique of

comparing and combining “generic” models with “domain-derived” models, the models

described in Figures 9.1 to 9.4 can be verified for completeness, and correctly classified

according to the types of planning task for which they are most appropriate, while the

models described by Barros et al can be enriched. Furthermore, this technique could

be used to incorporate a number of other “generic planning models” which have been

proposed (such as that of [22], and possibly even case-based models such as that used

by [71]) into a common framework, thus permitting rational selection of the “best”

generic planning model for a particular planning task.



Chapter 10

An Inference Structure for
Propose-and-Revise Design1

10.1 Introduction

The original KADS methodology classified task types into a taxonomy [20]. The princi-

pal distinction in this taxonomy is between system analysis tasks and system synthesis

tasks. Analytic tasks, such as diagnosis and assessment, have as their ultimate goal

the establishment of unknown properties or behaviour of the system; synthetic tasks,

such as configuration and planning, aim to define a structural description of a system

in terms of some given set of elements. Certain tasks, such as repair or control, are

considered to involve aspects of both analytic and synthetic tasks; these are known as

system modification tasks. The majority of successful KBS systems have dealt with

analytic tasks, such as diagnosis or selection, although several successful KBS have

been developed for synthetic tasks, either using KADS or CommonKADS (see e.g.

chapter 13) or without such methods (e.g. [124] [169]). There are very few successful

KBS systems which successfully handle modification tasks.

Design problems are classified in the taxonomy as synthetic tasks, and are classified

into three subtypes: design by hierarchical decomposition, design by gradual refine-

ment, and design by transformation. Each of these subtypes has its own inference

structure. The thesis of this paper is that the repertoire of inference structures for

1 Originally published as Design by Exploration: A Proposed CommonKADS Inference

Structure, AIAI Technical Report, number AIAI-PR-62.
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design tasks is incomplete. At least one more model needs to be added: a model which

supports the process of exploration-based design (also known as propose-critique-modify

design). This paper contains a justification for the addition of this model, a suggested

framework for the model, and a discussion of knowledge acquisition techniques suitable

for exploration-based design.

10.2 The design process

10.2.1 KADS modeling of the design process

There is considerable debate about the way in which design is, or should be, carried out.

The underlying reason for this debate is that designers not only work in different ways,

but actually think in different ways. Many textbooks on design encourage designers to

think divergently, deliberately not restricting themselves to a fixed “design process”,

in order to stimulate the emergence of “creativity” which is seen as the key to many

successful designs. Others argue that a design process should be used because, in some

situations, creativity is less important than productivity, reusability, or ensuring that

a design meets safety standards.

While the arguments continue, attempts have been made to categorise the ways in

which design is actually performed (e.g. [121]). KADS offered the following categori-

sation [20]:

1. Hierarchical design. In this process, a design task is broken down into a

number of smaller design tasks, which are tackled separately, and then the results

are recombined. Ideally, each subtask would be further decomposed until it

reaches the stage where there is a well-understood solution: for example, in

software design, a low-level subtask might be to design an ordered set of elements.

This task could be solved by writing a sorting algorithm and applying it to the

elements.

Hierarchical design is used in cases where independent subproblems can be de-

fined, such as software design, where modules only interact via their inputs and

outputs. However, such independence is often impossible to achieve in design
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tasks; for example, the construction of a house cannot be broken down into an

independent consideration of the design of each room in the house, because the

chosen shape and the location of utilities in each room affects the design of the

other rooms.

An example of the use of hierarchical design can be found in [109], which records

an empirical study which aimed to identify the approaches taken by industrial

designers to designing a garbage disposal system for a train.

2. Transformational design. This is a version of design in which a full specifi-

cation of the artifact is available at an early stage of the design process, but is

formulated in a different manner from the elements of the solution domain. A

good example is VLSI design in which an algorithm is input to the design process

(a formal specification) and the layout of the actual chip is the required output

[20].

It is likely that the main knowledge-based components of transformational design

will be problem-specific.

3. Incremental design. This occurs when there is no straightforward transforma-

tion of the conceptual design to a detailed design model; instead, the conceptual

model is separated into design elements and constraints. Both of these are then

transformed (perhaps in several stages) to a form where they can be amalgamated

into a final design model.

In order to understand the above categorisation, it is important to note two points:

1. The categories above represent generic frameworks for performing a design task.

These frameworks need to be instantiated to particular design tasks, which may

involve the addition or removal of some inference steps in order to reflect the

actual inferences which are performed for a particular task. The knowledge en-

gineer is therefore asked to determine the most appropriate generic inference

structure, rather than the only appropriate inference structure.

2. The modeling of expert tasks may require more than one level of decomposition

or refinement: taking hierarchical design as an example, each sub-part of the
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overall design may need to be modeled individually in order to produce a fully

detailed model of the design. It is important to note that tasks specified at a

more detailed level will not necessarily use the same approach to problem solving

(and hence the same generic inference structure) as the top level task; to continue

the example, an approach which uses hierarchical design as the overall approach

to problem solving level may use transformational design or incremental design

to produce certain sub-parts of the design.

10.2.2 Higher level frameworks for design: data flow vs iteration

The different approaches to design suggested by KADS provide a fairly comprehensive

classification of approaches to design – if it is assumed that design is a sequential,

non-iterative process. This can be seen in the KADS “generic design model” (repro-

duced in Figure 10.1), in which an informal problem statement is transformed into a

detailed design with no significant iteration between the various stages of transforma-

tion. The different approaches to design suggested by KADS are essentially special

cases of the generic design model, with emphasis on different inference steps; for ex-

ample, incremental design emphasises the transform/expand/refine inference step

[166].

This sequential approach to design has been recommended by several sources (e.g.

[7] [83]), including the influential Royal Institution of British Architects ([140]). It

has been proposed as a suitable model for software engineering, where it corresponds

to the ‘waterfall’ model of software development (see [143]). However, more recent

writers have criticised the sequential approach to design. It has been claimed that

this approach over-emphasises the need for the communication of data and under-

emphasises the need to integrate the knowledge and information used in design [158];

that the development of sequential models fails to represent the true nature of the

design process [185]; and that the sequential approach has more to do with the job of

managing the people employed in design, rather than with what designers actually do

(cf. pp. 25-26 of [111]). The second and third criticisms certainly seem to be valid

in software design, for very few software projects actually adhere to a strict waterfall

model of development.
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expand/transform

select/aggregate

transform/
expand/refine

Informal problem
statement

Formal
specification

Conceptual model

Detailed design

Figure 10.1: The sequential “generic design model” suggested by KADS

So, if designers do not work according to a sequential model of design, how do they

operate? The alternative to a sequential approach is an iterative approach. In such an

approach, designers do not work through a problem step by step, first analysing and

then synthesising. Instead, designers propose a solution at an early stage, and then

iterate towards a final solution by presenting the early solution for criticism; this may

involve elicitation of further constraints. In software engineering, this approach to de-

sign design corresponds to “rapid prototyping” which has commonly been used for the

development of knowledge based systems, and is sometimes used to aid requirements

specification in large software projects. Rapid prototyping involves preparing and im-

plementing a software design quickly before showing it to the client for criticism; the

implementation is then altered to take account of any changes which are suggested, and

the process is repeated. This iteration normally continues until an acceptable design
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is reached.

The following experiment [112] illustrates the use of iterative design by architectural

designers. Two groups of students - postgraduate science students and final year ar-

chitectural students - were given a set of blocks which had some faces coloured blue

and some coloured red. The students were told to build a structure which had as few

external blue faces as possible. The students were also told that there was another

rule which limited their freedom of choice, but they would not be told what that rule

was. Instead, they could present possible designs for criticism. They were, however,

to present as few intermediate designs as possible.

The experiment revealed that the engineering students tended to focus on determining

the unknown rule. Once they had presented enough attempts to deduce the rule, they

calculated the optimum configuration of blocks. The design students, however, tended

to propose a fairly good solution as a first step; if it was declared to be incorrect, they

altered the design slightly, and continued to make slight alterations until they had

produced the best design possible which was not declared to be incorrect. Analysis

of the results showed that the design students performed as well as the engineering

students in reaching an optimum design, and produced a significantly lower number of

intermediate designs in the process.

There is documented support for the use of iterative design by architectural designers

[111], bridge designers [138] and user interface designers [73] [72], as well as support

from the AI community, with its inherent interest in identifying and modeling hu-

man cognitive processes [10] [158] [28]. Indeed, Chandrasekaran [28] discusses itera-

tive design, which he calls propose-critique-modify design, in detail. While Chan-

drasekaran’s preferred name is an accurate description of the processes involved in

iterative design, this paper follows Smithers et al [158] in using the term “exploration-

based design” to describe this approach to design.2

The thesis of this paper is that exploration-based design is a commonly used approach

to design, and is worthy of being included in the KADS library of generic inference

structures, because it is sufficiently different from the approaches already specified in

2 At the time of writing this Ph.D. thesis, this type of design was widely described as “propose-and-
revise” design.
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the library. The structure of the paper is as follows:

• The next two sections discuss two key aspects of exploration-based design: the

role of constraints in design, and the use of previous models as a basis for a

design;

• The following two sections bring the conclusions together into a suggested infer-

ence structure, and show how that inference structure was applied to a particular

project;

• The final section looks at how knowledge acquisition might be performed for a

task which uses exploration-based design.

10.3 The role of constraints in exploration-based design

In any design task, the key elements of the design problem are the constraints placed

on the designer. Designers must identify these constraints, and then work within them

to produce an acceptable design. If a design cannot be produced which fully satisfies

all constraints, then one or more constraints must be relaxed, or abandoned entirely,

in order to produce a feasible design.

In exploration-based design, a client’s criticisms of a possible design effectively place

more constraints on the design. However, since criticism requires communication, the

designer may take the opportunity to negotiate with the client on which constraints

can be relaxed, and how far. It is therefore crucial for the designer to understand

each constraint, and the consequences of relaxing it, thoroughly. This is particularly

important if there are time restrictions on the design process, which reduce the number

of explorative iterations which can be performed.

10.3.1 Understanding constraints

In order to understand constraints fully, Lawson [111] suggests that constraints should

be analysed on three dimensions:

• Is the constraint imposed internally or externally? An internal constraint is one
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imposed by a decision of an interested party; for example, an architectural design

may be required to include ramps throughout for use by disabled people, or a

graphic design may be required to make use of the colours associated with the

client company’s corporate image. An external constraint is one which cannot

be altered by any decision of the project team; the points of the compass (and

hence the position of the sun) is an important external constraint on the design

of housing.

• Who imposes the constraint? Is it the designer, the client, the user (if different

from the client), or legislators? A graphic designer might decide that a better

effect would be achieved if he limits his design to soft pastel colours only, which

is an example of a designer-imposed constraint. The width of corridors and the

number of doors in a building is affected by fire regulations, which is an example

of a legislative constraint. (As an aside, Lawson notes that legislative constraints

tend to be biased towards factors that can easily be measured. This has often

led to designer dissatisfaction with legislation which is seen as overly restrictive,

or failing to take account of special features of the particular design problem).

• What function does the constraint fulfil? Is it a radical constraint, affecting

the fundamental purpose of the design, a practical constraint imposed by the

limitations of technology or nature, a constraint on form, affecting the style

and visual impact of the design or a symbolic constraint, affecting the visual

symbolism of the design? A radical constraint might be that a school building

requires rooms suitable for teaching classes; a practical constraint might be that

the site for a building has a certain load-bearing capacity; a constraint on form

might be that a graphic designer is required to make an advertisement striking,

unusual and memorable; and an example of a symbolic constraint is that the roof

of the Sydney Opera House was designed to be parabolic in shape because it is

intended to symbolise the surrounding marine environment. Practical constraints

can usefully be subdivided into constraints on the parameters of the design and

its environment, and constraints on the process of making, testing or assembling

the artifact [21].
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Gaining an understanding of constraints also requires designers to recognise that they

themselves sometimes place implicit constraints on the design process which are non-

essential. Lawson [111] reports an exercise in which novice designers (architectural

students) were asked to design the floorplan for a block of flats (see Figure 10.2).

The students were unable to produce a design which allowed sufficient light into the

living room of each flat until they relaxed the constraint which they had unconsciously

imposed upon themselves that no part of one flat should overlap with a neighbouring

flat. The floorplan shown in the lower half of Figure 2 allows plenty of light into both

living room and kitchen, makes each flat slightly narrower, and also provides a recessed

“entrance area” for each flat. The lesson to draw from this example is that the students

did not recognise the constraint on overlapping, and therefore did not realise that this

constraint could be relaxed.

BathroomKitchen

Living room Bedroom

Bathroom

Bedroom

Kitchen

Living room

Figure 10.2: Proposed designs for single-bedroom deck-access flats (a) with a rectan-
gular floorplan (b) with one flat overlapping the next
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10.3.2 Prioritising constraints

A second key factor in exploration-based design is that designers who are presented

with a large number of constraints to fulfil tend to focus on fulfilling a small number

of constraints which are perceived to be important. In another experiment on students

of architectural design [111], three groups of students were asked to design an office

building for a design competition. They were told that the building would be sited

between two major roads, across the line of an existing public footpath, and that it

should not present a remote or forbidding image to local ratepayers. The students all

appeared to focus on one aspect of the problem, and to design their whole solution

around that one aspect. One group focussed on the office environment, and designed

an office layout with careful attention to the provision of service ducts and flexibility

of partitioning. Another group focussed on making the building visitor-friendly, and so

designed a building with different departments in different blocks leading off a central

court. The third group, however, focussed on the image presented to ratepayers, and

particularly on the public footpath. They proceeded to design an arch-shaped building

with a covered mall in the centre doubling as the footpath!

It is important that this prioritisation of constraints is made explicit, so that a reasoned

decision can be made on the relative advantages of one constraint against another.

10.4 The use of previous designs as a basis for current
designs

An obvious possibility for reducing the time required to perform exploration-based

design is to start with a design used in a previous similar situation, which therefore

ought to satisfy most of the constraints. The issue of whether it is wise to use a

previous design as a basis for a current design has been a subject of considerable

debate within the design community. On the positive side, the main advantage of

using an existing design is that this design (presumably) satisfies all the constraints

which were imposed on it, and so is likely to satisfy many of the constraints which will

be imposed in a similar situation. Some would also claim that it is well-nigh impossible

for a designer to ignore his previous experience of similar designs when producing a
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new design, and so the process might as well be explicit. On the negative side, it is

claimed that re-use of existing designs stifles creativity in design; the experiment cited

in section 10.3.1 showed how the unconscious effects of previous experience hindered

the students from arriving at an acceptable solution to their design problem. It is

accepted that innovative design is largely dependent on improvement of a feature of

an existing design, but it is argued that truly creative design is crucially dependent

on freedom from such restrictions. This argument is at the heart of much criticism of

designs (from both sides), and it is unlikely that designers will ever agree completely

on this matter.

In the AI community, the recent successes of case-based reasoning technology for design

tasks [183] have swung the pendulum towards favouring re-use of existing designs.

Case-based reasoning attempts to match the key features of the current design task

against the key features of previous design tasks. If it finds a previous task which

closely matched the current task, it retrieves the solution to that previous task, and

then presents that solution to the user for minor modifications, or possibly attempts

to make modifications itself.

Given the potential of case-based reasoning, and a degree of suspicion about whether

AI is appropriate for “creative” design, it seems pragmatic to assume that any AI-

based approach to exploration-based design is likely to make use of an existing design

as a basis for the current design.

10.5 The inference structure

Based on the above analyses of the process of exploration-based design, a generic

inference structure should include:

• acquisition of constraints

• ordering of constraints

• creation of a possible solution

• verification of that solution
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• feedback from verification to an earlier stage in the process, thus creating an

iterative loop

• potential input from previous design models

In some cases, it is possible that attempts at producing a design may prove to be

dead-ends, because constraints cannot be relaxed sufficiently to produce an acceptable

design. In these cases, the designer has to choose another initial model, and re-start

the reasoning process. The inference structure should therefore also represent the

possibility of selecting a new initial model from the model library.

The suggested inference structure is shown in Figure 10.3. As described in section

10.2.1, KADS allows inference structure diagrams to be hierarchically decomposed.

In this case, it is convenient to decompose the transform-2 inference function in the

top level model. This inference function, which represents the process of assigning

importance to constraints, is shown in Figure 4.

Design problem

Constraintsspecify-1 transform-1 Possible solution

verify Final solution

Model library

Rejected design

Reasons for
rejection

select

Initial modelrefine Domain entities

transform-2 (Partially) ordered
constraints

Figure 10.3: Top level inference structure for exploration-based design

The inference structure shown above is not intended to make every aspect of the de-

sign process explicit; it only shows the typical processes in exploration-based design.

Certain information which is specific to the problem domain must be added for the

model to be complete. For example, the model does not indicate which constraints

should be relaxed or abandoned if it proves impossible to produce a design which fully
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specify-2

specify-3

sort

Cost of relaxing
constraints

Constraints

Degree to which
constraints can be

relaxed

(Partially) ordered
constraints

Figure 10.4: Expansion of transform-2

satisfies all constraints; nor does it provide any information about how an appropriate

initial model is selected from the model library. Both of these factors form a signifi-

cant component of design expertise, and should be specified as part of the process of

instantiating the generic inference structure to a particular task.

Task structure for the top level inference structure

task design

goal to synthesise a solution to a design problem

task structure

refine(design problem → domain entities)

specify(design problem → constraints)

select(model library → initial model)

for all constraint ∈ constraints do

specify(constraint → degree to which constraint can be relaxed)

specify(constraint → cost of relaxing constraint)

sort(constraints & cost of relaxing constraints & degree to which constraints can

be relaxed → (partially) ordered constraints)

transform(domain entities & initial model & (partially) ordered constraints →
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possible solution)

loop

verify(possible solution → rejected design & reasons for rejection OR final so-

lution)

specify(reasons for rejection → further constraints OR select new model from

model library)

transform(rejected design & constraints → possible solution)

10.6 Validation of the inference structure

The suggested inference structure has been validated by applying it to a real-life

knowledge-based design problem. The problem chosen was that of a consultant or

subcontractor negotiating an acceptable workplan for a commercial contract. The

tasks to be done, the skills required for each task, and the overall cost of the task must

all be defined by the consultant and agreed by the client. Previous workplans may be

used as a basis for a current workplan, especially in companies which have well-defined

“packages” of work which are sold as a whole.

The application of an inference structure requires the knowledge roles to be instantiated

to entities from the domain. If necessary, inference functions and knowledge roles may

be added or deleted. In this case, no alterations were required; the mapping was as

follows:

This study indicates that the proposed generic inference structure for exploration-based

design can indeed be instantiated to a real-world design problem.

10.7 Knowledge Acquisition for exploration-based design

The process of instantiating a generic inference structure requires that knowledge ac-

quisition is carried out which identifies the information required for each knowledge

role. The information which must be acquired includes the domain entities and initial

constraint which form the design problem, the contents of the model library, and the
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importance
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Figure 10.5: The processes involved in discussing a proposal with a client

format of knowledge generated from these initial inputs.

The most obvious technique for acquiring knowledge for exploration-based design is

to perform exploration-based design; this quickly provides a lot of useful knowledge,

particularly about constraints. This technique has been used successfully in a number

of knowledge based projects, by using “rapid prototyping” as a basis for knowledge

acquisition. However, some information has to be gathered before an initial design can

be produced; there may also be some benefit in reducing the number of times that

solutions are presented to the client/expert, to avoid causing irritation, or to reduce

the total time required for design. It therefore seems wise to devise techniques which

can acquire as much knowledge as possible before presenting a solution to a client, and

on each iterative loop thereafter.

This section presents some suggested techniques for knowledge acquisition, looking

particularly at acquisition of constraints.

10.7.1 Knowledge Acquisition for constraints

According to the inference structure, a design problem can be described in terms

of the constraints which are placed on the design, and the domain entities. It is

rarely difficult to determine what the domain entities are (although the relationships

between them may require a little more thought); many of the difficulties in design
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revolve around undetermined or underspecified constraints. Knowledge acquisition for

a design problem is therefore primarily concerned with the acquisition of constraints.

Interviews

So how can constraints be acquired? An obvious method for acquiring knowledge of

any sort is to perform interviews with experts in the field. While interviews have advan-

tages, particularly at early stages of a knowledge engineering project, they also have

considerable disadvantages, particularly in the elicitation of tacit knowledge. Many

designers find it easier to work on refining an actual design rather than attempting to

analyse every constraint, and many design faults are due to unidentified constraints; it

follows that many constraints on design problems are either within the designer’s mind

but unexpressed, or within the problem but unnoticed. These constraints can there-

fore be classified as tacit knowledge. While it is possible that structured interviews

may have value at later stages of the knowledge acquisition process (for example, a

designer may be asked to critique a written list of constraints), it seems that knowl-

edge engineers will need to rely on techniques other than interviews in order to acquire

constraints successfully.

The Problem Identification Game

For the early stages of constraint acquisition, Lawson [111] suggests the “Problem

Identification Game”, which was devised at the Open University as an aid to identifying

constraints. The ‘game’ requires designers to start by making a short and simple

statement of the design problem as a contrasting pair; an example might be “slum

clearance – aged slum dwellers”. Next, designers are asked to amplify this statement

by considering the following principles:

• Conflict - convert the statement into interested parties who might be viewed as in

conflict. For example, “Town planners see a need for change and renewal which

is not necessarily appreciated by the aged who have lived in the area all their

lives”;

• Contradiction - trying to contradict an earlier statement by taking an opposing
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viewpoint (e.g. “slum clearance – old people need safety & hygiene”);

• Complication - identify any factors which should really have been considered

when making a previous statement e.g. “Old folk need modern housing because

they need safety & hygiene” is subject to the complication “But modernisation

usually means increased rent charges”;

• Similarity - try to think of, and then think through, an analogous situation (e.g.

slum clearance is to housing as a plough is to a field; the process of slum clearance

destroys previous street patterns, but opens up the area for new growth);

• Chance - pick a word from a dictionary and see if it sparks any new ideas. For

example, the word “softly” might suggest soft music, which in turn leads to a

consideration of the difficulties of moving grand pianos and other accumulated

furniture into modern housing.

It is usually a simple task to extract constraints from these statements, although further

analysis may have be done on the degree to which the constraints can be relaxed and

the cost of relaxing them. For example, two constraints which can be extracted from

the example given above are “Old folk prefer large housing to accommodate their

possessions” and “Old folk prefer low-rent housing”. However, these two constraints

are (usually) in opposition, and further analysis is needed to determine how resistant

old people would be to giving up possessions in order to live in smaller housing, or how

heavy the financial burden of large housing would be.

Multi-dimensional techniques

Once some constraints have been identified, it is also possible to elicit constraints

using multi-dimensional knowledge elicitation techniques such as the card sort [152]

and the repertory grid [93]. To use the card sort technique for acquiring constraints,

the name of each constraint is written on an individual index card, and the designer

is asked to sort the cards into piles, in any way which seems sensible. This technique

is repeated several times, until the constraints have been classified in several different

ways. The key step in eliciting constraints is to ask the designer, after each sort has

been completed, if there are any other constraints which belong in the categories he has
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created, but which are not represented on cards. Despite its simplicity, card sorting

has proved to be an effective technique in commercial projects.

The repertory grid is used in a similar fashion. The repertory grid technique identifies

problem elements which have constructs (attributes).For constraint elicitation, con-

straints form the elements of the grid, and the designer is then presented with three

constraints (chosen at random) and asked to state how two of them differ from the

third. The designer’s answer (e.g. “Two of these have a low impact on cost of the

design, while one has a high impact”) is taken to be an attribute of all constraints,

and is defined as a construct. Each constraint is then assigned a value for this con-

struct on a continuous scale. If the scale used for constructs is the same throughout

the grid, and is numerical, then repertory grids can be subjected to statistical analysis

which produces an implicit clustering of elements. This clustering can be discussed

with the expert designer, with emphasis on unexpected assignment to clusters and the

nature of the clusters themselves. As with the card sort, it is possible to enquire if any

constraints which are not yet represented belong in the clusters.

Eliciting constraints by identifying incompatibilities in possible solutions

It is possible to use a variation of the repertory grid knowledge acquisition technique to

analyse constraints, if possible solutions to the design problem (or parts of the design

problem) can be defined. Bradshaw [16] shows how “possibility grids” can be defined,

in which possible solutions are assigned “goodness” values on a range of constraints.

The grid is then analysed in terms of the “goodness values”; incompatible combinations

of values are ruled out, and all other possible combinations are generated. If there is

a combination of constraint values which does not match an existing design solution,

then either a new possible solution has been found (if this combination is permissible),

or a new constraint is elicited (if this combination is deemed unacceptable).

10.7.2 Knowledge Acquisition of model library

At first sight, it might appear that obtaining examples of previous designs would not be

difficult. In practice, the situation is more complex. The problem lies in deciding how

to represent designs within a library. Either the library will contain a large number of
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previous designs, which must be indexed by some key design features in order to allow

for efficient search through the library, or it will contain an abstracted set of “typical”

designs, in which certain specific features of real-life designs are not represented.

In either case, it is crucial that the key factors which differentiate designs are defined

carefully. The existence of differentiating factors implies an underlying classification

scheme; however, there is no agreed classification for design tasks in general. As a

result, key differentiating factors must be defined for each domain. This is a significant

task in knowledge acquisition. It is possible that machine learning techniques, such as

rule induction or neural networks, may be of assistance here, but little empirical work

has been done to verify this.

10.7.3 Knowledge Acquisition of inference functions

The best way of acquiring knowledge about the various inference processes in a design

task is likely to be highly domain-dependent. If there are a considerable number of

procedural steps to be followed, however, then certain knowledge acquisition techniques

such as protocol analysis, the laddered grid [152] or the “20 Questions” technique [24]

may be useful. For an example of the use of these techniques, see [94].

10.8 Conclusion

This paper has demonstrated that an iterative approach to design, which is termed

“exploration-based design”, is used by real-life designers. It is not used by all de-

signers – sequential approaches to design are often used where they are feasible. The

existing KADS library of generic inference structures provides a useful classification of

techniques for sequential design. However, some designers clearly do use exploration-

based design, and the library lacks an inference structure for exploration-based design.

A suitable inference structure is therefore proposed, and tested in the field. Techniques

for acquiring the knowledge required for exploration-based design are also suggested.

In order to introduce the subject of exploration-based design, this paper has given

considerable space to discussion of the nature of design tasks. A key conclusion of this

discussion is that design tasks can be classified at two levels of abstraction. At the
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higher level, design tasks can be classified as either sequential or iterative. At a lower

level, sequential design tasks can be classified as hierarchical design, transformational

design or incremental design. Iterative design tasks currently include exploration-

based design only; it is possible that further research may produce more categories of

iterative design, which would help to expand the KADS library of inference structures

even further.

The next chapter looks at knowledge acquisition techniques, and how (or whether) they

can be used to acquire specific kinds of knowledge as recognised by CommonKADS.



Chapter 11

Knowledge Acquisition
techniques for the Expertise
Model1

11.1 Introduction

The major difference between knowledge engineering – the science of constructing

knowledge-based software systems – and ‘conventional’ software engineering is the re-

quirement for knowledge engineers to capture, represent, analyse and exploit knowl-

edge in order to produce a successful system. Experience has shown that none of these

tasks are simple; taking knowledge capture as an example, knowledge is typically only

available within the head of an expert, or implicitly within written procedures or case

records, and cannot be extracted from these sources without considerable effort. These

difficulties have provided an incentive for the development of a variety of techniques to

overcome the problems; techniques for knowledge capture, for example, are known as

knowledge acquisition techniques. There is considerable literature proposing, analysing

and advising on the use of knowledge acquisition techniques (e.g. [125]; [93]).

The task of representing the acquired knowledge in a format suitable for analysis is

equally important for successful knowledge engineering; yet it has had a comparatively

low profile. A number of different approaches have been suggested and used, including

1 Originally published as “Linking Knowledge Acquisition with CommonKADS Knowledge Analysis”
in Research and Development in Expert Systems XI, Proceedings of Expert Systems 94, the an-
nual conference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s
College, Cambridge, December 15-17 1994.
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encoding the knowledge in a prototype knowledge based system (KBS); identifying

and extracting rules within acquired knowledge (both “production rules” [65] and rules

for qualitative simulation [110]); using “systemic grammar networks” [89]; and using

semantic networks. Sometimes, more than one representation is used, which suggests

that no one representation is entirely adequate to represent acquired knowledge. It

seems that there are different types of knowledge, which are better suited to different

representations.

The KADS methodology for developing knowledge-based systems has attempted to

resolve the problem of adequate representation of acquired knowledge by suggesting

that knowledge should be represented and analysed on several different levels simul-

taneously. KADS encourages the development of models of knowledge viewed from

different perspectives; these models include hierarchies of domain concepts, “infer-

ence structures” which show the inferences required to perform a particular task, and

“task structures” which impose procedural information on inference structures. Com-

monKADS, the recent successor to KADS, has extended and refined the recommended

representations for each level, so that CommonKADS now provides a comprehensive

suite of representations for the analysis of knowledge. In particular, CommonKADS has

introduced a set of ontological primitives for domain knowledge, which allows distinc-

tions to be drawn between concepts, properties, relations, and other ontological types

at the domain level. These recommendations, coupled with a library of generic tem-

plates for inference and task structures, have provided a workable and useful solution to

the problem of representing acquired knowledge, with the result that CommonKADS

is probably the most widely used methodology for KBS development in Europe.

However, there are no knowledge acquisition techniques which generate output in a

form suitable for direct input into CommonKADS models. Instead, knowledge ac-

quisition techniques typically produce textual transcripts, or classifications of domain

terms on many different dimensions. This means that the knowledge engineer is re-

quired to identify relevant terms within the acquired knowledge, and to classify these

manually into CommonKADS’ ontology. This is an onerous task, even with the as-

sistance of hypertext-based software support, such as the transcript editors available

within ILOG’s Kads Tool and Bull’s Open KADS. The main difficulty lies in the fact
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that CommonKADS provides little guidance on how to identify relevant knowledge in

a transcript, or to classify acquired knowledge into its ontology; such decisions are

dependent on the expertise of the knowledge engineer.

It has been observed, however, that the output generated by most knowledge acquisi-

tion techniques is not an unsorted jumble of items of knowledge; instead, the acquired

knowledge is usually structured in one way or another. All knowledge acquisition

techniques produce output which is structured to some degree; even the transcript

of an interview is structured according to the rules of natural language. Knowledge

acquisition, which used to be viewed as the “mining” of chunks of knowledge, is now

considered to be more like crystallography; the knowledge must be viewed from vari-

ous viewpoints in order to determine how individual items of knowledge relate to each

other. The implication here is that expert knowledge exists within a structure, and

that the output of a knowledge acquisition technique may not reflect the whole struc-

ture, but it will reflect some of it. Experience suggests that it is important to discern

the structure in order to understand fully the knowledge contained within it; indeed, it

has been suggested that knowledge acquisition and subsequent modeling actually helps

experts in a domain to develop and improve their own structuring that domain [63],

which suggests that even the experts themselves find it useful to discern the structure

of their knowledge.

The thesis of this paper is that it is possible to automate much of the identification

and classification of domain knowledge by identifying and exploiting the structure of

acquired knowledge. Some previous work has been done in this area, including the

generation of production rules from a repertory grid (e.g [153]), and the production of

a logical framework into which the results of card sorting, laddered grids and repertory

grids can be written (cf. [139]). However, no one has yet attempted to make use

of the structure of acquired knowledge to perform the classifications required for the

CommonKADS ontology.

The purpose of this paper is to describe how such links were devised and implemented in

a knowledge engineering toolkit, known as TOPKAT (The Open Practical Knowledge

Acquisition Toolkit). The format of the paper is:



Knowledge Acquisition for the Expertise Model 210

• A description of the implementation of TOPKAT;

• A description of the knowledge acquisition techniques which are implemented in

TOPKAT;

• A description of the CommonKADS methodology (with particular emphasis on

the domain knowledge in the expertise model);

• A description of the links between each knowledge acquisition technique and the

CommonKADS classification system.

Figures 11.1 to 11.5.1 in this paper are drawn from applications modeled using TOP-

KAT.

11.2 Implementation of TOPKAT

TOPKAT (The Open Practical Knowledge Acquisition Toolkit) is a hypertext and

diagram-based toolkit which supports the acquisition of knowledge using various knowl-

edge acquisition techniques, as well as supporting much of the CommonKADS modeling

framework. TOPKAT has been implemented in CLIPS and in HARDY. HARDY [156]

is a tool which uses node and link diagrams, hypertext and hyperlinks to allow the

creation of graphical models representing many different processes and relationships.

The key to HARDY’s usefulness in this situation is the ability to define a diagram type,

which allows a system developer to define permitted nodes and arcs for a particular

diagramming style; this means that HARDY can be used to produce modeling tools

for a wide range of graphical formalisms with little effort. HARDY also provides an

interface to CLIPS, allowing CLIPS functions to automate much of the functional-

ity for diagram manipulation which is available interactively. HARDY is available on

machines which support X Windows, Open Windows or Microsoft Windows.

TOPKAT consists of a hierarchy of hypercards, which act as an index for the different

facilities available. The “leaf cards” of the hierarchy each support a diagramming type

suitable for a particular knowledge acquisition technique or CommonKADS model;

the diagrams are drawn on newly created hypercards which are “instances” of the pre-
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defined card, and therefore share the same diagramming type. TOPKAT currently

supports the following knowledge acquisition techniques:

• transcript analysis;

• laddered grid;

• card sort;

• repertory grid.

The support for transcript analysis is based on a hypertext card, rather than a dia-

gram card with an appropriate diagram style. HARDY permits the development of

a hypertext type in a similar fashion to a diagram type; this allows blocks of text,

highlighted in appropriate fonts and colours, to be linked to diagram nodes or other

hypertext blocks. This linking can be accomplished manually or (as in TOPKAT) it

can be automated using CLIPS, so that complex linking operations can be executed

with a few mouse clicks.

TOPKAT also provides support for representing the following elements of the Com-

monKADS Expertise Model:

• Domain Knowledge

– Domain ontology

– Domain models

– Model ontology

– Model schema

• Inference Knowledge

– Inference structures

– Library of inference structures

• Task Knowledge

– Task structures
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In addition, facilities exist within TOPKAT for representing parts of the CommonKADS

Task Model, Communication Model and Design Model.

TOPKAT is currently being re-implemented in version 6.0 of CLIPS, which permits full

integration of object hierarchies with CLIPS’ other facilities. This feature is being used

to allow CLIPS objects to serve as a knowledge repository, with HARDY being used as

a tool for visualising and manipulating that knowledge; this is achieved using a small

set of event handlers (daemons) which create TOPKAT nodes or arcs to correspond

to CLIPS instances or slot/value pairs, and another set of handlers which generate

CLIPS whenever nodes or arcs are created in TOPKAT. This allows the functions

within TOPKAT which perform verification, analysis and automated linking to be

implemented entirely in CLIPS, thus increasing the portability of TOPKAT.

11.3 Techniques for knowledge acquisition

The most widely used method for knowledge acquisition has been the interview which,

as the name implies, requires a knowledge engineer to interview an expert, and to record

the entire conversation. This approach requires the knowledge engineer to transcribe

the interview and analyse the transcript in order to identify and extract relevant items

of knowledge. Transcript analysis does provide useful knowledge, and the transcript

forms a good record of the source of that knowledge; however, transcript analysis is

time-consuming, prone to generate much irrelevant information, and provides no guar-

antees about the completeness of the knowledge acquired [188]. Alternative methods

for obtaining a transcript, such as performing carefully structured interviews, or asking

the expert to talk through a case history (protocol analysis), have been developed to

provide more structured transcripts; such transcripts alleviate the problems associated

with transcript analysis, but do not remove them.

In order to overcome some of these problems, knowledge engineers have drawn on the

field of psychology, and particularly on psychometric testing, to produce techniques

such as the card sort, the repertory grid and the laddered grid. The benefits of these

techniques are that they provide output in the form of categorisations and relationships;

they ensure complete coverage of knowledge, by continual prompting or by requiring
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Figure 11.1: Screendump showing some of TOPKAT’s hypercards

all items to be categorised; and they are relatively simple to administer. The repertory

grid has been particularly well used, with over 150 applications to date having used

this technique successfully [13].

11.3.1 Card Sort

The card sort is a simple but surprisingly effective technique in which an expert cate-

gorises cards which represent terms from the knowledge domain [152]. The names of

various terms from the domain are written on individual index cards, and the expert

is presented with the pile of cards and asked to sort them into piles in any way which

seems sensible. When this has been accomplished, the classification of each card is
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noted, the cards are shuffled, and the expert is asked to repeat the procedure using a

different criterion for sorting. This process is repeated until the expert cannot think

of any more criteria on which to differentiate the cards.

Refinements to the procedure include sorting large piles into several smaller piles; and

asking the expert to name any domain terms which could be in a pile but are not

represented on a card. The output of the card sort is a set of classifications of domain

terms into one or more categories on many different dimensions.

Figure 11.2 shows the result of a single categorisation of a set of ‘cards’ represent-

ing vehicles. In TOPKAT, the ‘cards’ are sorted into columns rather than piles; the

columns are created by creating an (invisible) arc between the ‘card’ and its category,

which updates the list of ‘cards’ in the category, as well as moving the ‘card’ into the

appropriate column.

11.3.2 Repertory Grid

The repertory grid is a technique derived from psychotherapy in which an expert

makes distinctions between terms in the domain on chosen criteria [15]. The criteria

are similar to the categories generated by card sorting, except that they are all assumed

to be continuous variables; for example, “price” would be a suitable distinction for a

repertory grid, because all prices lie on a continuous numeric scale between zero and

infinity, whereas “nationality” would not be suitable. Criteria are usually generated by

the ‘triadic’ technique – selecting three domain terms at random and asking the expert

to name one way in which two of them differ from the third. All domain terms in the

grid are then classified on each criterion (normally using a 1-5 or 1-7 scale), resulting

in a grid in which every term is categorised on every variable (see Figure 11.3).

One of the features of the repertory grid which sets it apart from other knowledge

acquisition techniques is that the classifications in the grid can be analysed statistically,

using cluster analysis, to see if the expert has implicitly categorised the terms in any

way. The clustering of concepts produced by statistical analysis of the repertory grid is

normally represented by a dendogram (literally, a tree diagram), in which every domain

term is a leaf node, and closeness in the ‘tree’ represents statistical similarity. However,
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Figure 11.2: A set of cards representing vehicles, sorted according to price

dendograms often require some interpretation and rationalisation by an expert in order

to be meaningful; also, a dendogram bears a considerable resemblance to a taxonomic

hierarchy. TOPKAT makes use of these two observations to represent the statistical

clustering as a laddered grid, in which the domain terms form the leaf nodes, and the

“classes” indicate the level of similarity between domain terms using a percentage value

(100% indicates the two objects are identical on all the dimensions, 0% indicates that

they are at opposite ends of the spectrum on every dimension). The expert and/or

the knowledge engineer is then allowed to rationalise this laddered grid by assigning

meaningful names to some classes and deleting others. For example, Figure 11.4 shows

statistical similarity of crimes (derived from the repertory grid shown in Figure 11.3),

and Figure 11.5 shows a rationalised version of this hierarchy.
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Figure 11.3: A repertory grid classifying crimes

11.3.3 Laddered Grid

The laddered grid uses pre-defined questions to persuade an expert to expand a tax-

onomic hierarchy to its fullest extent [24]. Starting with a single domain term, the

questions can elicit superclasses, subclasses or members of classes, which are linked

to the existing object in a hierarchical “grid”. Typical questions include “What is

term and example of?”, or “What other examples of term 1 are there apart from term

2?”. By repeatedly applying the same procedure to newly elicited objects, an extensive

taxonomy can be built up.
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Figure 11.4: A statistical analysis showing an implicit categorisation of crimes

11.4 Knowledge analysis using CommonKADS

CommonKADS is the name of the methodology developed by the KADS-II project,

which was funded under the ESPRIT programme ([191]). CommonKADS is an ex-

tended and revised version of the KADS methodology; in addition to KADS, it draws

on ideas from other knowledge engineering methods, principally the Generic Tasks

approach [27] and the Components of Expertise approach [161].

CommonKADS views KBS development as a modeling process. Knowledge analysis

is performed by drawing up a number of models which represent the knowledge from

different viewpoints. CommonKADS recommends a number of different models, which

start with the identification of business problems within an organisation, and support
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Figure 11.5: The hierarchy of crimes shown in Figure 11.4, after being rationalised

the whole knowledge engineering process up to the point of producing an implementable

design. The recommended models are:

• the organisational model, which examines an organisation from various perspec-

tives in order to identify business problems ([44]);

• the task model, which describes how a particular process is carried out, and

assigns roles to each sub-task. This model is based on the KADS “model of

cooperation” [42];

• the agent model and the communication model, which represent the capabilities of

various agents who perform subtasks, and the communication protocols between

agents [186] [187];
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Figure 11.6: A laddered grid diagram

• the expertise model, which models acquired knowledge for a KBS [192]. This

model is described further below;

• the design model, which transforms analysed knowledge into a design suitable to

be implemented in the chosen tool [179].

The key model – the expertise model – is itself divided into three “levels” representing

different viewpoints on the expert knowledge. These levels are:

• The domain knowledge which represents the declarative knowledge in the

knowledge base;

• The inference knowledge which represents the knowledge-based inferences



Knowledge Acquisition for the Expertise Model 220

which are performed during problem solving. The knowledge roles which form

the input and output for the inferences are also defined;

• The task knowledge which defines a procedural ordering on the inferences.

The contents of these three levels can be defined graphically, or using CommonKADS’

Conceptual Modeling Language. For a worked example of the development of each of

these three levels, see [97].

11.4.1 Modeling domain knowledge

The domain knowledge in the model of expertise represents the declarative knowl-

edge which has been acquired. CommonKADS suggests that each item of declarative

knowledge is classified into one of six ontological types. These types are:

• Concepts: classes of objects in the real or mental world of the domain studied,

representing physical objects or states. Instances of concepts can also be defined;

TOPKAT (and other existing KADS support tools) categorise these with the

concepts.

• Properties: attributes of concepts;2

• Expressions: statements of the form “the property of concept is value”;

• Relations: links between concepts. Relations are more than a juxtaposition of

two concepts to produce a compound concept (e.g. machine tool or government

department); one concept must affect the other in some way. An example of a

relation might be “concept 1 causes concept 2”;

• Inferences: single inference steps;

• Tasks: actions which are performed, but which do not require reasoning.3

2 CommonKADS also defines a type called “attributes”; these do not differ greatly from properties.
Most KADS support tools do not differentiate attributes from properties.

3 Strictly speaking, inference steps and tasks belong to the other levels of the CommonKADS expertise
model; however, their identification often takes place at the same time as domain level items, and
so they are described along with the domain level ontology.
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Once items of domain knowledge have been classified, they can be used in domain mod-

els, which show relations between different items of knowledge. The CommonKADS

convention is for each domain model to display all tuples of a particular relation. For

example, a single domain model might show all acquired examples of a concept caus-

ing a concept or value; or it might show a taxonomic hierarchy of concepts, connected

to each other by is-a relations. See Figure 11.7 for an example of a taxonomic domain

model.

Figure 11.7: A domain model which represents a taxonomy of faults

In addition, CommonKADS suggests that a model ontology and model schema are

defined. These represent the domain models at a more abstract level; their purpose is

to provide an explicit link between the domain knowledge and the inference knowledge,

and to produce a re-usable domain level representation.
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11.5 Mapping acquired knowledge to the domain level

It can be seen from the previous two sections that the four knowledge acquisition

techniques which are supported by TOPKAT produce output in differing formats,

some of which are similar to certain aspects of CommonKADS modeling, and some of

which are not. The task of the knowledge engineer is to transfer knowledge from the

format produced by the knowledge acquisition technique to the formats required for

CommonKADS. TOPKAT provides functions for each knowledge acquisition technique

to support this transfer process: the functionality is based on the structure provided by

the knowledge acquisition technique, and on experience of developing CommonKADS

models. The functionality provided is described below.

11.5.1 Transcript analysis: classification according to word class

Textual transcripts differ from the output of the other knowledge acquisition tech-

niques supported by TOPKAT in that they rarely produce knowledge which is obvi-

ously structured in a taxonomic or relational manner. Despite this, transcripts are

by far the most widely available form of acquired knowledge; they may be produced

from interviews, protocol analysis, or scanning of existing documentation. Of course,

language has a structure of its own; words are classified as different word classes (parts

of speech), which may only appear in particular combinations permitted by the rules

of grammar. Is it possible to make use of the grammatical structure of language to

perform ontological classification?

The starting point for this discussion is Woods’ linguistic test [195]. In the course of

a discussion on the nature of links in semantic networks, Woods asserts that, given an

object O, it is possible to use a linguistic test to determine if A is an attribute of O.

The test is that it must be possible to state that “V is the/an A of (some) O”. If this

test is passed, then in CommonKADS terminology, O is an concept, A is a property

of that concept, and V is a value of that property. From a grammatical viewpoint,

however, it can be seen that O must be a noun, A must be a singular noun, and V

must be an adjective which modifies O. From this analysis, it seems that there is some

connection between the CommonKADS ontology and word classes.
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A second link between the CommonKADS ontology and word classes can be found

in the definitions of the different ontological types within CommonKADS (see section

11.4.1).

• Concepts are classes which represent objects or states. The Shorter Oxford Dic-

tionary defines nouns as “names of persons or things”; if it is assumed that all

objects or states are “persons or things” in the “real or mental world of the

domain” (cf. [191]), then it can be seen that all concepts can be named using

nouns.

• Properties are attributes of concepts. It is difficult to assign attributes to partic-

ular word classes, because, while attributes can be represented as singular nouns

(according to Woods’ linguistic test), they may also be identified using plural

nouns (e.g instances) or verbs (e.g. has component). Nor is the preposition “of”

a universal indicator of a property: other prepositions may sometimes be used

instead (e.g. O1 is connected to O2), and the word “of” may appear in idioms

such as “a matter of course”.

• Expressions are derived from a concept, a property, and a value. CommonKADS

anticipates that values could be strings, numbers, booleans, or of a domain-

specific type; it is difficult to generalise about word classes which are associated

with all these types, although it can be seen that certain specific categories of

words (such as nouns or adjectives describing numbers) are likely to be associated

with values.

• Relations form links between concepts in which one concept affects another. This

is normally accomplished linguistically by a verb, and so it seems that a verb

which links two objects or states probably indicates a relation. The identifica-

tion of verbs with relations is further supported by the correspondence between

adverbs and CommonKADS’ facility which allows relations to have properties

of their own; if relations correspond to verbs, then adverbs represent (values

of) properties of relations. For example, in the sentence “Peter married Jane

yesterday”, the adverb (yesterday) is an property of the marry relation.

From these analysis, it seems that identification of nouns, adjectives, verbs, and the



Knowledge Acquisition for the Expertise Model 224

words which they modify (if any) can provide a great deal of information for onto-

logical classification in CommonKADS. There is therefore considerable potential for

automated classification if a textual transcript can be parsed (providing grammati-

cal information), or at least lexically tagged, so that the word class of each word is

known. TOPKAT uses the analyses above to support semi-automatic classification, in

the following manner:

• A textual transcript is written to a file;

• The file is lexically tagged, using a publicly available tagging package;

• TOPKAT re-reads the resulting file to determine the word classes of each word

in the transcript.

Once this has been performed, TOPKAT offers the user the options of identifying

concepts and properties in the transcript. This is accomplished by:

• Collecting all nouns in the transcript into a list (classifying any instances of two

adjacent nouns as a single compound noun);

• Sorting the nouns according to their frequency of occurrence in the transcript,

compared with their expected frequency in everyday English. Nouns which ap-

pear much more frequently than expected are placed at the head of the list, on

the basis that these nouns are more likely to represent domain-specific concepts.

Three measures of expected frequency are used (two based on written frequency

and one on spoken frequency); an average likelihood from all three measures is

used.

• Presenting the list of nouns to the knowledge engineer, and asking which nouns

represent concepts that are relevant to problem solving.

• Identifying any adjectives which immediately precede concepts in the transcript,

and using a question based on Woods’ linguistic test to define a name for the

property associated with that adjective.

This approach has been used successfully to produce the classification shown in Figure

11.5.1.
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Technician: Here’s a faulty part – as you can see, the fault is black specks,
on the back face of the moulding, on the sides of the moulding – all over,
in fact. [He scratches a speck with his pocket knife]. They’re quite deeply
embedded – not surface specks. That means that the problem is being
caused by something in the material or in the process, rather than external
dust, or dripping water. [He speaks to the machine operator]. How long
has the job been running?

Key: Concepts are underlined; Properties are in italics.

Figure 11.8: Transcript classified using semi-automatic natural language analysis

Two features of this approach to classification are immediately obvious: firstly, that it

is highly interactive; and secondly, that it is based on a pragmatic but simple approach

to natural language understanding, which means that it is vulnerable to errors in

lexical tagging and in adjective/noun pairing. The key to the success of TOPKAT’s

approach is that these two features balance each other out. Much of the work which has

been carried out on understanding natural language has attempted to analyse language

with maximum accuracy and minimum human intervention; despite the high level of

sophistication of some systems, it has proved very difficult to comprehend language

unambiguously without considerable use of general knowledge, which is difficult to

encode. TOPKAT’s natural language capabilities, however, are complemented by the

domain knowledge and general knowledge of the knowledge engineer using the system,

which enables an accurate and largely complete classification to be produced; while

for the knowledge engineer, providing guidance to TOPKAT is much less effort than

performing transcript analysis without assistance.

TOPKAT thus makes use of the structure of language to identify appropriate mappings

between acquired knowledge and CommonKADS domain modeling. While the state

of natural language technology does not permit exhaustive identification of ontologi-

cal types in a transcript using automated analysis, the guidance which is provided is

much more useful than simply being presented with a transcript and asked to identify

and classify fragments of text. The usefulness of this technique was verified during a

training course4 in which students were asked to identify concepts, properties and rela-

tions in a transcript similar to the one shown in Figure 11.5.1. Despite the availability

4 The course was entitled “Expertise Modeling”, and was given as part of the Catalyst project, project
no. 10327, supported by the CEC ESSI programme. The aim of this project was to assist selected
companies to learn and apply the CommonKADS methodology.
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of software support for hyperlinking text fragments to items of domain knowledge,

the students spent well over an hour on the task without finishing it. When the

semi-automatic classification of TOPKAT was demonstrated during the course, the

classification process was completed in 6-7 minutes.

11.5.2 Laddered grid: from one taxonomy to another

The output of the laddered grid technique is a taxonomic hierarchy of domain objects.

It is taxonomic because the prompt questions which are used should only generate

examples or subclasses of other domain terms5 ; the domain terms are assumed to be

objects which are capable of possessing subclasses or examples.

On the basis of this structure, each term in the laddered grid is classified as a concept

in the CommonKADS domain ontology, and the entire laddered grid is mapped to a

taxonomic domain model at the CommonKADS domain level.

11.5.3 Card sort: when is a property not a property?

The card sort produces a number of domain terms which are classified into different

categories on a number of dimensions. It can be seen that the categories supplied

for each dimension form a range of possible values for that dimension; this correlates

closely with the relationship between properties and values, and so it seems likely

that dimensions will map to properties in the CommonKADS domain ontology, and

categories will map to values of those properties. Furthermore, it can be seen that

the dimensions must be properties of the domain terms, which implies that, as in the

laddered grid, the domain terms should be mapped to concepts.

TOPKAT uses the information listed above to map all domain terms into concepts in

the CommonKADS domain ontology. However, it turns out that dimensions cannot

be uniformly classified as properties. The reason for this is that the flexibility of the

card sorting technique; the expert is simply asked to “sort the cards in any way which

seems sensible”. The resulting dimensions might differentiate the cards in several ways.

5 The laddered grid technique can also be used with different sets of prompt questions, in which
case the taxonomic assumption will not apply. TOPKAT currently only supports prompt questions
which will generate a taxonomic laddered grid.
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For example, if knowledge acquisition was being performed to learn about the task of

maintaining a zoo, then a card sort might be performed with the name of a zoo animal

on each card. The resulting card sorts might include:

• A sort according to the animals’ lifespan, with categories such as “short”, “aver-

age” and “long”. In this case, lifespan can safely be assumed to be a property of

each animal;

• A sort according to the genus of the animals (reptiles, mammals, etc). This is

clearly a taxonomic classification of animals;

• A sort according to the zoo collection to which animals belong, which may include

categories such as “monkey house” or “children’s corner”. In this case, the ani-

mals are considered as part of a particular collection, which in turn is part of the

zoo’s overall population. This constitutes a hierarchical (though non-taxonomic)

classification of animals.

It can be seen from the above example that dimensions cannot simply be mapped

to properties in the CommonKADS domain ontology without further investigation.

The approach taken in TOPKAT to classification of dimensions is to ask the knowl-

edge engineer some questions about each sort which help to determine the appropriate

classification for that sort. These questions enable the knowledge engineer to make

key distinctions between different subtypes of property, including the identification of

taxonomic relationships and part relationships within card sorts.

TOPKAT’s guidance starts by obtaining a name for the property. The name is obtained

by asking a question based on Woods’ linguistic test (see section 11.5.1). Using the card

sort shown in Figure 11.2 as an example, the question derived from Woods’ linguistic

test would be:

Cheap is the/an WHAT of Mini?

which is generated by selecting one card (Mini) from the first category (Cheap) and

instantiating a template question with these two values. Wood’s linguistic test is useful
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in enforcing discipline on the naming of properties, by preventing names with prepo-

sitions (connected-to), verbs (is-needed) or plurals instances); instead, these names

must be transformed into equivalent singular nouns (such as connection, acquisition-

procedure and instance). This naming discipline helps to standardise the properties

which are created, and the effort of finding a suitable name may also lead to new

insights about the conceptual structure of the domain [76].

Once the prospective property has been named, it is necessary to determine whether

it really is a property. This is achieved in TOPKAT by asking further questions of

the knowledge engineer. The questions are derived from a semi-formal approach to

classification emerging from the Italian National Project on Hybrid Systems [76]; they

not only determine whether the prospective property is genuinely a property, but they

also introduce a sub-classification of properties.6 This classification is illustrated in

Figure 11.9.

It can be seen from Figure 11.9 that classification depends on determining :

• Whether the prospective property is founded or essentially independent. A prop-

erty is considered to be founded if it can only exist if its accompanying concept

also exists; for example, the price of a car is founded, but the wheel of a car

is essentially independent, because the wheel can exist even if the car does not

exist. The foundedness of a prospective property is determined by asking “ Can

the/an property of concept exist if (the/an) concept does not exist?”; for exam-

ple, Can the/an Nationality of Mini exist even if (the/an) Mini does

not exist?

• Whether the property is semantically rigid or not. A property is semantically

rigid if it is a necessary condition for the identity of its value; for example, colour

is semantically rigid, because red must be a colour in order to exist, but driver

is not semantically rigid, since Fred does not necessarily have to be a driver of

6 All the types of “property” described in this section (roles, qualities, and parts) can also be con-
sidered as concepts in their own right; Guarino’s discussion is phrased in terms of concepts and at-
tributes. This is de-emphasised in this paper, however, to avoid confusion with the CommonKADS
domain ontology.
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Figure 11.9: Ontology of attributes (from [76])

a car in order to exist.

Developing a suitable question to determine semantic rigidity is not as simple

as it first appears. For example, the template “Is value necessarily a property?”

should elicit the correct answer (No) when instantiated with Wheel and Part; it

should also elicit the correct answer when instantiated with Fred and Person.

It is therefore suitable for distinguishing between part names and natural con-

cepts (which may, despite Woods’ linguistic test, occasionally occur as property

names). However, it is likely to obtain the wrong answer (No) when instantiated

with Short and Lifespan, because Short is a possible value of many properties.

It is possible to circumvent this problem by making use of another of Guarino’s
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observations: that the values of qualities (which are semantically rigid) can be

considered as predicates, whereas the values of roles (which are not semantically

rigid) can be described as instances of the property. On the basis of this, the

question which was devised for distinguishing between relational roles and qual-

ities was “Is value an instance of property, or a predicate describing the value of

property?”. For example, fg

Is Fred an instance of Driver, or a predicate describing the value of

Driver?

TOPKAT therefore asks if a dimension is founded, and then asks the appropriate

question to determine semantic rigidity. On the basis of the answers to these two

questions, a property can be classified into Guarino’s suggested ontology of attributes.

If a property is defined as a relational role or a quality, then it is simply added to

CommonKADS’ domain ontology as a property; if it is a part name, a part relation

is created in an appropriate domain model; and if it is a natural concept, then a

taxonomic hierarchy is created, in which each category is linked to the dimension by

a subclass link. For example, cars could be classified according to their manufacturer;

the manufacturer of a car can exist even if the car does not exist (assuming that car

is not their only product), and Vauxhall (for example) is necessarily a manufacturer.

Manufacturer is therefore a natural concept; TOPKAT’s response to this situation

is to define Manufacturer as a concept, and then define each category (i.e. each

manufacturer) to be a subclass of Manufacturer.

Non-relational roles (such as pedestrian or by-pass capacitor) should be filtered out by

Wood’s linguistic test.

11.5.4 Repertory grid: assigning meaning to numbers

The repertory grid technique produces two outputs. The first is the repertory grid

itself, which is a two-dimensional table in which domain terms (elements) are assigned

numeric values on several dimensions (constructs). The second is the statistical cluster-

ing produced by comparing these numbers. It has already been seen (in section 11.3.2)

that the statistical clustering bears some resemblance to a laddered grid; in order to
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produce a meaningful hierarchy, the “classes” which represent statistical closeness must

be interpreted as representing semantic closeness, or as irrelevant, and the hierarchy

must be updated accordingly. TOPKAT currently handles this task by asking the

knowledge engineer and/or the expert to perform it.

Once the hierarchy has been rationalised, TOPKAT treats it as if it were a laddered

grid. The domain terms (which appear in the repertory grid and in the statistical

clustering) are therefore mapped to concepts in the CommonKADS domain ontology,

and the (rationalised) statistical clustering is converted into a taxonomic domain model.

Having decided that the domain terms which appear in the repertory grid should be

mapped to concepts, it is necessary to decide how the dimensions and the accompanying

numeric values should be treated. Dimensions in the repertory grid are restricted to be

continuous variables, which makes it likely that the majority of them will be qualities

in Guarino’s classification. However, it is possible that binary dimensions will be

introduced (e.g. whether a crime is or is not a felony); such dimensions may well

represent relational roles, taxonomic hierarchies or part hierarchies, and so the two

questions used to determine the correct classification of card sorts must be used again

to classify dimensions accurately.

Before the property classification questions can be asked, however, the numeric values

in the repertory grid must be translated into textual values. While numeric values are

acceptable as values of properties, they are not very informative outside the context of

the repertory grid, and numbers make little sense when instantiated into the property

classification questions. TOPKAT makes use of the observation that most dimensions

in the repertory grid are continuous to generate text which corresponds to each value;

this text is based on the name of the dimension, and the names of the poles (low

and high values) assigned by the knowledge engineer. The knowledge engineer is then

prompted to edit that text until satisfied with it. Using the repertory grid shown in

Figure 11.3 as an example, TOPKAT will generate the following text for the Frequency

dimension:

1. Sensational

2. Fairly Sensational
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3. Average Frequency

4. Fairly Common

5. Common

This text will then be used in the property classification questions; so the knowledge

engineer will be asked:

Can the/an Frequency of Theft exist even if Theft does not exist?

and

Is Sensational an instance of Frequency, or a predicate describing the value

of Frequency?

The answers to these questions should be “No” and “Predicate” respectively, which

classifies Frequency as a quality.

The repertory grid can also be used to generate a large number of expressions in the

CommonKADS domain ontology – one expression for each numeric value in the grid.

These expressions could be used as individual conditions of production rules, which

is the principle used by tools such as KITTEN and NEXTRA to derive rules from

repertory grids [153].

11.6 Summary

It can be seen that all the knowledge elicitation techniques supported by TOPKAT

produce output which consists not only of knowledge, but of a structure within which

knowledge is stored. The output of these knowledge elicitation techniques can be

used to generate concepts, properties, expressions, relations, and even domain models

directly, with only occasional assistance from the knowledge engineer.

There are many opportunities for future work on improving the linking of knowledge

elicitation techniques to CommonKADS knowledge analysis
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• For the card sort, the classification of properties into relational roles, qualities,

part relations and natural concepts could be extended by using the mereology

(classification scheme for part relations) suggested in [70].

• For the card sort and the repertory grid, Woods’ linguistic test could be used

when dimensions are created. While this might restrict the breadth of the ac-

quired knowledge, it should produce a more coherent set of dimensions, which

is particularly important in the repertory grid where dimensions are compared

against one another. The effort of finding a correct name would also be trans-

ferred from the knowledge engineer to the expert by this technique, which may

lead to further knowledge acquisition as the expert reconsiders the conceptual

structure of his knowledge.

• For transcript analysis, there are many possible improvements:

– Use a chart parser to obtain linguistic information, permitting extensive

automatic identification of properties, and perhaps of relations;

– Feed back linguistic information obtained from a knowledge engineer to the

parser or lexical tagger, to improve accuracy;

– Define and apply a “coding schema” [189] – a set of phrases which are known

to indicate the presence of certain ontological types;

– Use questionnaires or structured interviews to obtain highly structured tran-

scripts which are written in simple declarative sentences. It should be pos-

sible to parse these transcripts and classify the knowledge contained therein

without human intervention (see [86]).

• For knowledge in the inference and task levels of CommonKADS, define a map-

ping between knowledge acquisition techniques which acquire procedural knowl-

edge (such as protocol analysis, or the “20 Questions” technique [152]) and Com-

monKADS inference steps and primitive tasks. TOPKAT already supports a

simple decision tree editor.

There is one final CommonKADS model to be considered: the Design model. This is

discussed in the next chapter.



Knowledge Acquisition for the Expertise Model 234



Chapter 12

Knowledge Engineering: Design
Modeling1

12.1 Introduction

The problem of designing a knowledge based system well is one of the most com-

plex problems that knowledge engineers face. When knowledge based systems are

developed by rapid prototyping, good design relies on the knowledge engineer’s pro-

gramming skills, and on his ability to devise, remember, and dynamically update a

design specification. This is a difficult task for all but the smallest knowledge based

systems, especially if the system intermixes expert knowledge with system control oper-

ations.2 It is possible for the system to get out of control so that even its author cannot

understand why apparently small changes have large effects on the overall system.

These problems can be alleviated by producing representations of the expert’s knowl-

edge and of the design specification in the form of text or diagrams, thus documenting

the expert’s knowledge and the important design decisions independently of the sys-

tem. CommonKADS recommends such an approach, derived from its Expertise Model,

which models expert problem solving in three components: domain (declarative) knowl-

edge, inference (procedural) knowledge and task (control) knowledge.

1 Originally published as Designing Knowledge Based Systems: The CommonKADS Design

Model in Research and Development in Expert Systems XIV, Proceedings of Expert Systems 97, the
annual conference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s
College, Cambridge, December 15-17 1997. Also published in a special double issue of the Knowledge

Based Systems Journal containing the twelve best papers from ES ’97: Elsevier, May/June 1998.

2 (MYCIN did this; and this was a primary reason for the failure of the GUIDON system, which
attempted to “teach back” MYCIN’s knowledge to users [81].

235
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The responsibility for representing design decisions is passed to the CommonKADS

Design Model. The Expertise Model is intended to represent knowledge at a level of

abstraction which is independent of implementation; it neither allows representation

of, nor gives guidance on, decisions about which programming techniques to use in

order to represent the acquired knowledge.

The Design Model was specified towards the end of the CommonKADS project [180];

apart from a worked example published by the project team [150], little or nothing

has been published describing its use in realistic applications. The purpose of this

chapter is to describe the CommonKADS Design Model, including sources of guidance

for making design decisions. The chapter illustrates the use of the Design Model by

reverse engineering two existing KBS systems to show how the CommonKADS Design

Model would have applied to them. The example systems are the same ones which

were described in chapter 8.

12.2 The CommonKADS Design Model

The CommonKADS Design Model is intended to support knowledge engineers in choos-

ing knowledge representations and programming techniques in order to produce a good

design of a KBS system. It aims to do this in a way which is both generic (i.e. platform-

independent for as long as possible), and economical (it encourages preservation of the

structures within the expertise model). It also makes use of the CommonKADS Com-

munication Model (see chapter 6) as a source for user interface requirements.

The Design Model supports selection of representations and techniques by encouraging

the designer to start with the knowledge contained in an expertise model, and to per-

form a three-stage transformation process in order to produce design recommendations.

These three stages are:

• Application design: choosing an overall approach to design decomposition;

• Architectural design: choosing ideal knowledge representation and programming

techniques;

• Platform design: deciding how to implement the recommended techniques in the
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chosen software.

12.2.1 Application Design

The application design is the first of these three stages. The purpose of application

design is to decompose the knowledge into manageable “chunks”. The size and content

of each chunk depends on the approach to decomposition which is used. Broadly

speaking, three approaches to decomposition are available:

• Functional decomposition;

• Object-oriented decomposition;

• Various AI paradigms.

Functional decomposition involves treating each inference step from the Expertise

Model as being a “chunk” of functionality. Functional decomposition is therefore a

structure-preserving approach to design, because the form of the inference structure

is maintained in the design specification. The benefits of this are that the KBS will

replicate the expert’s problem solving process (or whatever process was modeled in the

inference structure); any inference step that is identified as a canonical inference (see

[2]) will have its expected functionality clearly defined; and perhaps most important

of all, preserving the inference structure usually preserves the task structure from the

Expertise Model as well. The task structure is very important for KBS design because

it provides a semi-formal specification of the required flow of control for knowledge

based processing, while the Design Model recommends only a high-level textual de-

scription. Knowledge engineers therefore need to use both the Design Model and the

task structure as a specification for KBS implementation.

Object-oriented decomposition treats each concept from the domain model as being a

“chunk” of information - i.e. each concept is treated as an object class. Since concepts

have properties with values, and relationships with other concepts, it’s often helpful

to represent concepts as objects in object-oriented design. Object-oriented decompo-

sition preserves the structure of the domain models in the expertise model; indeed,

CommonKADS domain modeling can be seen as a generalisation of object oriented
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data modeling [88]. Preserving the inference and task structures is harder in object-

oriented design, though some benefits can be obtained by considering the inference

structure to be broadly equivalent to the Object Management Technique’s Functional

model, while the task model is compared with OMT’s Dynamic model. Individual rules

can, if necessary, be represented in the domain models using expressions; see section

8.3 for a description of these.

Another option for knowledge engineer is to decide that an “AI paradigm” – a well-

known approach to AI problem solving – is appropriate. Possible AI paradigms might

include blackboard systems, constraint-based programming, qualitative simulation or

model-based reasoning. In this case, the “chunks” of knowledge may be constraints,

knowledge sources, cause-and-effect rules or whatever is appropriate for the chosen

approach. If an AI paradigm is chosen, it may be that little of the structure of the

Expertise model will be maintained. In practice, this means that the knowledge en-

gineer will either have identified the likelihood of an AI paradigm being appropriate

earlier in the development process, and will have customised the Expertise model ac-

cordingly, or AI paradigms will be considered unfavourably because of the extra effort

required to re-analyse the knowledge. Exceptions to this heuristic would be the use of

a blackboard architecture (where only the task structure of the Expertise Model needs

to be revised) or the use of an AI paradigm for a system subcomponent e.g. model-

based simulation to perform diagnostic tests on a system, under the overall control of

a diagnostic inference structure.

Once decomposition has been performed, it’s necessary to characterise the contents of

each “chunk” in a way that specifies further design requirements. For example, if func-

tional decomposition has been performed, it’s helpful to designate the operation being

performed by each inference step in the form of an architectural command – a “func-

tion name” which describes the action which the function performs. Typical operations

might be subset, get-property-value, or calculate. As mentioned above, the definitions

of canonical inference steps in the CommonKADS expertise model may be helpful in

defining appropriate architectural commands; for example, an inference step of type

select-subset is very likely to be implemented by a subset operation. This process also

helps validate the Expertise Model; if the architectural command differs significantly
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from the inference step definition, then a possible error in labelling or understanding

the inference structure has been highlighted. A full set of possible architectural com-

mands has not been published, but a suggested BNF for these commands is given in

[150], and knowledge engineers are encouraged to use this to help them develop their

own set of commands.

12.2.2 Architectural Design

The task of architectural design is to define a computational infrastructure capable of

implementing all the architecture commands defined in the application design. It is

at this stage that the preferred knowledge representation and programming techniques

are selected.

Knowledge representations available to knowledge engineers typically include objects,

facts, and production rules, as well as more “conventional” representations such as

tables or arrays. Many programming techniques are available including data- and goal-

driven reasoning, truth maintenance, meta-rules, and various search strategies. The

architectural commands specified during the previous phase provide guidance to the

knowledge engineer on which representations and techniques are appropriate; for ex-

ample, a get-property-value operation specifies a preference for objects as a knowledge

representation technique, because properties are an essential feature of objects. The

emphasis in this phase is on choosing ideal techniques; the appropriateness of these for

the available software tool should be considered in the next phase. In practice, most

knowledge engineers know which tool they will be using when this phase is performed,

and so will not select representations or techniques which will be impossible to imple-

ment; this phase is still useful, however, in assessing the appropriateness of the chosen

tool or the chosen AI paradigm.

It is at this stage of design that the experience of a knowledge engineer can be brought

to bear in making good design decisions. If the knowledge engineer knows that a

particular technique or representation has proved suitable (or otherwise) for a similar

problem in the past, then a knowledge engineer can use this information to guide his

choices. There have been some attempts to capture and encode this knowledge for the

use of less experienced knowledge engineers; it turns out that there are a large number
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of features of knowledge based problems which affect the choice of representations and

techniques, so many that an entire book has been filled with probing questions. Probing

questions ask if certain features are present in a knowledge-based problem, and suggest

suitable functionality based on that feature. An example of a probing question is given

below:

On average, do we know five or more new facts about a domain object

simply by being told that it is of type X?

OR

Are these new facts not known with certainty, but assumed unless

there is evidence to the contrary?

Yes → Place the object in a data structure (e.g. frames, semantic

nets or objects) whose inheritance mechanism will provide the facts

when needed, and whose default values will be assumed unless an

exception is specifically asserted.

No → Assert the new facts explicitly, which is a ‘cheap’ solution.

Kline & Dolins’ book [104] contains probing questions based on successful AI systems

up to the time of publication. AIAI has done some further knowledge acquisition

and system development in this area (see chapter D), but there is a need for more

research and development of probing questions to keep pace with new technologies and

techniques.

12.2.3 Platform Design

The final phase of the CommonKADS Design Model considers how (or whether) the

ideal knowledge representations and inference techniques should be implemented in

the chosen software. Most modern KBS tools support both objects and rules, so
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knowledge representation is rarely a problem. However, some programming techniques

can be awkward to implement; for example, implementing data-driven reasoning in

a tool which primarily supports backward chaining. The restrictions of the tool may

mean that a different programming technique needs to be used.

12.3 Worked Example 1: IMPRESS

The use of the CommonKADS Design Model will be demonstrated with two worked

examples – IMPRESS, which diagnoses faults in plastic moulding machinery, and X-

MATE, which assesses the risk of mortgage applicants failing to make repayments.

These two projects have been chosen because their expertise models have been de-

scribed in some detail in chapter 8.3

IMPRESS (the Injection Moulding Process Expert System) diagnoses the causes of

faults in plastic injection mouldings. Given data about the type of fault (e.g. “black

specks in the moulding”), IMPRESS considers all possible causes of the fault, suggests

tests for the system user (a technician or machine operator) to perform on the system,

and iterates through a cycle of test-discard hypotheses-suggest tests until there is only

one hypothesis left.

12.3.1 IMPRESS: Application Design

No AI paradigms appeared to have overriding advantages for IMPRESS, so the choice

of application design became a choice between functional and object-oriented decompo-

sition. A few relations had been identified at the domain level, and a detailed inference

structure with a little extra procedural ordering information had also been developed,

so there was more detail in the inference structure than in the domain models.

It was decided to break down the expertise model using functional decomposition i.e.

to preserve the inference structure, which is shown in Figure 12.1. The chosen functions

are described in Table 12.3.1. It can be seen from the architectural commands that

3 The initial development of these systems pre-date CommonKADS, and so the design models used
in these projects have been reverse engineered, to show how the decisions which were actually taken
during system design would have been represented if a CommonKADS design model had been
developed.
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Figure 12.1: Inference structure for IMPRESS
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Inference step Function Arguments

decompose subset :set all-faults :set hypotheses :key symptom

specify get-property
:concept hypothesis

:property expected-value :key observable

select get-property
:concept hypothesised-fault

:property distinguishing-observables

subset
:set all-tests :set discriminating-tests

:key distinguishing-observables
get-property :concept test :property time-required

sort :set discriminating-tests :key time-required

measure Transfer Task

refine get-property
:concept hypothesised-fault

:property expected-value :key test
match :element observed-value :element expected-value

subset
:set hypotheses

:set remaining-hypotheses :key difference

Table 12.1: Application Design for IMPRESS

IMPRESS requires a subset operation, where a set (of possible fault states) is reduced

to a smaller set which are compatible with all observed symptoms and measurements;

several get-property-value operations, which obtain values such as the expected value

of an observable if a particular hypothesis is true; a sort of tests according to the time

required to undertake them; a transfer task which asks a user to perform a test which

will observe or measure some relevant parameter of the machine, and to report the

measured value to IMPRESS; and a match-2 operation (a match between 2 values) to

compare an observed measurement against the expected value of that observable in

each fault state.

An interesting observation on this mapping is that the decompose inference step in

IMPRESS is mapped to a subset operation, whereas CommonKADS’ definitions of

canonical inference actions suggests that decompose requires replacing a single concept

with a set of its component concepts. The reason for this difference is that the initial

step in IMPRESS’ diagnosis is determining a relevant subset of all possible fault states,

rather than identifying a set of machine components; this was highlighted by Breuker

[18] and is discussed in chapter 18.
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12.3.2 Architectural Design

It should be noted here that a functionally decomposed Design model actually consists

of three diagrams; one for the inference steps, one for the knowledge roles, and one for

the communication transactions. Each of these reflects the three steps of application

design, architectural design and platform design. The relevant diagrams for IMPRESS

can be seen in Figures 12.2, 12.3 and 12.4.

Figure 12.2: IMPRESS Design Model: Inference steps

The design for the inference steps identified a preference for production rules to carry

out the match step. The other steps were identified as capable of being implemented

with simple object-based operations: the subset operation involved a member-of oper-

ation on the symptoms, plus changing values of the “set membership” slot from Yes

to No, while the get-property operation requires reading the value of a slot in an ob-

ject. The measurement task was considered to be a transfer task, so the only design

requirements were for the user interface to instruct the user on the task, and obtain

the result correctly.

The architectural design for IMPRESS’ domain knowledge was not too complex; fault

states, tests and other concepts were implemented using objects, and domain relations
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Figure 12.3: IMPRESS Design Model: Domain Knowledge

were to be represented using slots. Set membership was also indicated using a slot,

which carried the name of the set, and possible values of Yes and No. The user interface

design was also fairly simple, since the most complex user interface feature required

was a multiple-choice menu.

12.3.3 Platform Design

IMPRESS was implemented in KAPPA-PC on a Compaq 386 PC. KAPPA-PC pro-

vided good support for object representations and object accessing functions, so the

relevant architectural design recommendations were followed exactly. However, the

rule system in that version of KAPPA-PC effectively operated as an add-on module to

the rest of the system; it needed to be carefully set up and explicitly invoked. Since the

matching algorithm only needed to match 2 parameters (test results against faults),

and there were approximately 40 faults and 40 tests in the knowledge base, then the

maximum number of possible matches was 1600, and a quick survey of the knowledge
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base established that the mean number of matches was much lower – less than 100. It

was therefore feasible to perform the matching with a doubly-iterative function, thus

avoiding the need to introduce the rule system into the program at all.

Figure 12.4: IMPRESS Design Model: User Interfaces

12.3.4 Flow of Control

Design decisions on flow of control are made on the basis of the task structure from

the Expertise Model. The knowledge representations and programming techniques

recommended by the Design Model must be chained together in order to replicate

the task body specified. For IMPRESS, the task body (see section 8.4.1) specifies a

generate-and-test approach: an initial set of candidate faults is identified, and then

the system enters a REPEAT-UNTIL loop in which tests are selected, performed, and

the set of possible faults is narrowed down, until the set of possible faults has 1 or less

members in it. This was easy to implement in KAPPA-PC.
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12.4 Worked Example 2: X-MATE

X-MATE (eXpert Mortgage Arrears Threat Advisor) [95] was developed for a large

UK building society by Hewlett Packard’s Knowledge Systems Centre with assistance

from AIAI. Its task was to assess the likelihood of mortgage applicants meeting their

loan repayments.

The building society’s problem was that the percentage of defaulters was too high, and

it was difficult to enforce quality control on acceptance of applications because, within

certain guidelines, the acceptance or rejection of applications was almost entirely at

the discretion of the local branch manager. The system was intended to support a

branch manager or branch clerk by highlighting applications which were worthy of

further investigation, and assisting the user in performing some further checks on the

application. It did this by identifying the key features of “typical high risk customers”,

determining what data on the application form would indicate these features, and then

scanning application forms (and, if necessary, data supplied from other sources) for the

presence of these high risk indicators.

12.4.1 X-MATE: Application Design

X-MATE was also decomposed using functional decomposition. The inference struc-

ture for X-MATE is shown in Figure 12.5. The application design for X-MATE can be

seen in Table 12.4.1.

The most obvious factor about this design is that several inference steps are labelled

“pre-compiled”, and no architectural commands are defined for these steps. What has

happened is that several of the problem-solving steps required to perform mortgage

application assessment have been carried out once and for all by the experts who

supplied the knowledge for the system; the system only contains the results of that

process. This “distilled wisdom” is considered to be “shallow” knowledge (i.e. direct

associations between key inputs and important outputs.) in AI terminology, replacing

the “deep knowledge” of the full problem-solving process. This can be reflected in a

revised version of the inference structure; see section 8.2.2.
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Figure 12.5: Inference structure for X-MATE
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Inference step Function Arguments

focus subset
:set all-risk-indicators :set some-risk-indicators

:key situation

select select-simple
:set available-data-sources

:key phase-of-problem-solving

specify pre-compiled

specify pre-compiled

specify pre-compiled

measure match-N
:elements application-form-data

:elements risk-indicators

compute calculate :number risk-score :number risk-threshold

Table 12.2: Application Design for X-MATE

The application design also contains an extra problem solving step (the selection of

a particular data source) which did not appear in the inference structure. This extra

step reflects a design decision to run the system up to four times, using different sets

of data; the reason for this was to speed up processing by making all automatic checks

first, and only proceeding to ask the user to input data if the application is deemed

to be medium or high risk. While this is a control issue, and therefore is largely the

concern of the task structure, it was necessary to select the appropriate data source

for each run, and this had to appear in the Design model.

The select-simple function is given a list of four data sources; its functionality is to

select the next data source from the list. match-N performs pattern matching between

2 or more items, while calculate performs arithmetic calculations.

12.4.2 Architectural Design

The architectural design for X-MATE’s processes is as follows:

• Select data sources: the key to this selection is the phase of processing. It can

be implemented as a case statement i.e. “if phase 1, select source X; if phase 2,

select source Y; etc.”

• Matching should be implemented using production rules. Note that the rec-

ommendation for production rules is much stronger than it was for IMPRESS,
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Figure 12.6: X-MATE Design Model: Inference steps

because X-MATE correlates multiple features in order to determine risk, whereas

IMPRESS only matched pairs of properties. The theoretical set of possible

matches is therefore much larger in X-MATE.

• Focus on a set of risk indicators: choose an appropriate rule set.

• Computation should be implemented using arithmetic functions.

As for the domain knowledge design, the application form was represented using 2

or more objects: one object for each applicant (instances of a Applicants class) and

one to represent the “case” (details of the property, and other non-applicant-specific

information).

12.4.3 Platform Design

X-MATE was implemented in KAPPA-PC 1.1 on a HP Vectra 386 PC. The platform

design mirrored the architectural design; no changes were deemed necessary.

The full design model for processes in X-MATE can be seen in Figure 12.6.
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12.4.4 Flow of Control

The flow of control specified for X-MATE (see section 8.4.2 is to repeat running

through the whole inference structure until the computed risk score doesn’t meet

a particular threshold, or until there are no more rule sets to be processed (each

rule set corresponded to a different data source). When an application comes in, the

first rule set is selected and is run on the objects representing the applicants and the

case. If the resulting risk score does not reach a certain threshold, the application is

deemed OK; if it does reach the threshold, another rule set is loaded and run on the

same objects after extra data have been added by an automatic request to a credit

search bureau. If a second threshold is breached, a third rule set is loaded which asks

the user questions about the text in the application and accompanying references; if

another threshold is breached, then the system loads its final ruleset, which requires

the applicants themselves to attend an interview to answer further questions.

The final accumulated risk score is then recorded and can be displayed later, or sorted

to produce a list of the riskiest applications for forwarding to Head Office. The system

has been designed not to reject any applications without further consultation.

12.5 Conclusion

It can be seen that the CommonKADS Design Model is a useful way of recording

design decisions, and of viewing how one design decision flows from another; it therefore

provides useful documentation of the process of system design. The separation of flow-

of-control design from selection of representations & techniques is a consequence of

a similar separation in the Expertise Model; this encourages greater modularity and

reusability of designs. The three-stage design process helps to validate the Expertise

Model and to separate decisions on good design techniques from decisions on what can

be implemented.

Weaknesses in the Design Model include a lack of guidance on selection of techniques;

probing questions provide some remedy for this. The lack of a defined set of architec-

tural commands is also a weakness.
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In summary, the CommonKADS Design Model is a useful aid to knowledge engineers

in representing and recording design decisions, especially if an Expertise Model and a

Communication Model have been developed previously. The usefulness of the Design

Model will be improved by further recommendations on content (particularly archi-

tectural commands) and guidance on making selections (i.e. development of further

“probing questions”).

The final chapter of this thesis (excluding the “critical review” chapters) suggests

which aspects of CommonKADS are really necessary, in the context of a very short

KBS development project.



Chapter 13

Pragmatic KADS: A
methodological approach to a
small knowledge based systems
project1

13.1 Introduction

It might be thought that KADS, with its specific guidance for the system developer

and flow of information for the project manager, would quickly become the standard

approach to KBS development.

There is, however, a vociferous faction amongst KBS developers which believes that

methodological approaches to KBS development add so much overhead to some projects

that they are not worth using. For example, the KADS methodology has been criti-

cised both for the time required to construct all the detailed models, and for the large

number of reports which are required to document progress made and decisions taken.

KADS’ approach may be essential for large-scale commercial projects, but it is argued

that this approach is not appropriate for many KBS developments.

This overhead causes particularly severe problems for small and medium-sized KBS

projects. There is also less perceived need for methodology on these projects, since

they are typically least at risk from informal KBS development procedures. In order

1 Originally published (with the same title) in Research and Development in Expert Systems VIII,
Proceedings of Expert Systems 91, the annual conference of the British Computer Society’s Specialist
Group on Expert Systems, St. John’s College, Cambridge, December 15-17 1991.
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to solve this problem, some KBS developers have rejected methodological approaches

altogether; others have developed their own streamlined methodology; and others still

have used parts of a recognised methodology, attempting to extract the benefits of

formalisation and guidance for developers while minimising document preparation and

other overheads.

course selector is a small KBS, developed by the Artificial Intelligence Applications

Institute of the University of Edinburgh in 6 man weeks. The use of a full-scale

method for such a short project would have been prohibitively time-consuming, and

so a pragmatic version of the KADS methodology was used. This paper describes

the use of “pragmatic KADS” in the development of the course selector system,

highlighting those parts of KADS which were found to be particularly useful. For

comparison purposes, it also shows CommonKADS models that represent the same

knowledge.

13.2 course selector: The problem

The course selector system was implemented for the Department of Business Stud-

ies in the University of Edinburgh. The Department’s problem was that, in the first

two weeks of the Autumn term, every student is required to choose courses for the

coming year. Each student has a Director of Studies who is responsible for ensuring

that a legitimate combination of courses has been chosen, and every Director of Stud-

ies finds that the whole of the first week of term, plus a significant proportion of time

thereafter, is taken up with advising students on this complex problem. The task of

choosing an acceptable combination of courses is complex, for the following reasons:

• The University of Edinburgh permits students to choose from a very wide range

of courses. While most Business Studies students choose their courses from the

20 subjects offered within the Faculty of Social Science, it is not unknown for

students to take courses such as Chinese Civilisation, or Forensic Medicine. As

a result, there are a large number of potential timetable clashes.

• The Department of Business Studies requires students to take certain combina-

tions of courses in their second and third years. All Honours students are required
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to take Business Studies 1, Business Studies 2 and Business Studies 3 in their

first three years; in addition, most students must take six other courses, in one

of the following combinations:

– Levels 1, 2, and 3 in a single subject, and three other level 1 courses

– Levels 1 and 2 in two subjects, and two other level 1 courses

– Levels 1 and 2 in a single subject, three level 1 courses, and two extra

half-courses in Business Studies

These regulations can be difficult to coordinate with timetable clashes and stu-

dents’ preferences.

• The Department of Business Studies offers ten different Bachelor degrees which

include a Business Studies component. Each of these has different compulsory

courses, and some require 2nd and 3rd year students to take more than six courses

(in addition to Business Studies 1, 2 and 3).

• Students are permitted to transfer to Business Studies from other degrees, pos-

sibly from other Faculties, and students with appropriate qualifications are per-

mitted to start in 2nd year.

• All the above requirements may be overridden at the discretion of the Head of

the Department(s) concerned.

The current procedure (in theory) is for the students to examine the University Calen-

dar, an 800-page volume describing the regulations and timetables of every available

course, and to make their course choices which are then verified by their Director of

Studies. In practice, many students rely on their Director of Studies to be a source of

wisdom, making little or no effort to look at the University Calendar themselves. The

result is that the Director has to conduct one or more lengthy interviews with each

student. Since each Director is currently responsible for 60 students, the workload is

large. There is also considerable scope for error; the number of possible interactions

between courses is so great that, during the development of the course selector sys-

tem, the University Calendar itself was found to have omitted to mention a timetable

clash between two courses which were recommended for a particular degree.
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The course selector system was designed to encode the knowledge stored in the

University Calendar, with some additional input from two experienced Directors of

Studies. It was initially used by 2nd and 3rd year undergraduates and later by 1st

years as well.

13.3 Analysis: Modeling expertise

Despite the short time available for the construction of the course selector system,

it was decided that the guidance for KBS development provided by an Expertise model

was worth the effort required to develop the model. A communication model was also

developed, as a necessary input to the design phase.

As described in chapters 7 and 8, the Expertise model consists of one or more models

of:

• Domain knowledge: knowledge about concepts, objects, properties, and values

that are important in this domain.

• Inference knowledge: knowledge about the deductions that must be carried out

to solve a problem.

• Task knowledge: knowledge about the order in which inferences are carried out.

The development of the expertise model for the course selector system proceeded

as follows:

13.3.1 The model of expertise: Domain knowledge

The vast majority of the domain information was laid out clearly and succinctly in

the University Calendar. Only one knowledge acquisition session (plus a few telephone

calls) was necessary, in order to elicit some Department-specific regulations which were

not represented in the University Calendar; some knowledge about optional courses

which fitted well with certain degrees; and some examples of typical course combi-

nations. As a result, the creation and structuring of the domain knowledge model

required comparatively little effort.
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13.3.2 The model of expertise: Inference knowledge

The creation of an inference structure involves:

• deciding what type of task the KBS is tackling;

• finding the interpretation model for that task type;

• adapting and instantiating that interpretation model for the particular domain.

It was decided that the task of generating a schedule of courses which fitted in with a

range of different restrictions was a configuration task. An example of a configuration

task is the task tackled by the XCON knowledge based system, where a number of

components had to be chosen and then correctly placed into boxes to create a VAX

computer [124]. In the course selector system, a course schedule must be built up

from a number of individual courses, some of which are incompatible with each other;

the task is therefore analogous to the task performed by XCON, with a course schedule

replacing a VAX computer, and individual courses replacing computer components.

Having decided that the course selector system was performing a configuration

task, the next step was to find the appropriate generic inference structure for modeling

configuration tasks. The library of generic inference structures available when course

selector was developed [20] did not include an inference structure for configuration

tasks; instead, a “generic” inference structure was adapted from the inference structure

used in a previous case study [190], which used KADS to support the development of

a KBS for configuring industrial mixers. This inference structure is shown in Figure

13.1.

According to Figure 13.1, a configuration is generated by:

1. Producing a list of all components that need to be added to the configuration

(the component list);

2. Adding one component to a partial configuration (represented by the instantiate-

1 inference action)
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Figure 13.1: ”Generic” inference structure for configuration tasks

3. Calculating all the ramifications of that addition (represented by the verify

inference action)

4. If the configuration is not yet complete, and is still within its constraints, return

to step (2)

5. If the configuration is complete, perform some final actions and produce some

output

This generic inference structure was adapted for the course selector system to

produce an problem-specific inference structure, which is shown in Figures 13.3.2 and

13.3.2. While this inference structure appears to differ considerably from the generic

inference structure, it follows the same principles:

• All students are required to take certain courses, and these are added to the

course schedule first (one at a time) - this is represented by the identify-1 and

assemble inference steps. Students are then allowed to select further courses, a

process which is represented by the inference step select. These courses (both



Pragmatic KADS 259

required and optional courses) correspond to the component list in the generic

inference structure.

• Each course is then added to the course schedule (one at a time). This is repre-

sented by the assemble inference step, which corresponds to the instantiate-1

inference step in the generic inference structure.

• The current course schedule knowledge role corresponds to the partial configura-

tion in the generic inference structure.

• The selection of a course may make some other courses ineligible, because of

timetable clashes or University regulations on the allowed combinations of courses.

This is represented by the inference step refine-1. This corresponds to the verify

inference step in the generic inference structure.

• The student continues selecting courses until his schedule is full. The check on

whether a student’s course schedule is full is represented by compare-1 on the

right hand side of the diagram.

Sometimes, certain inference steps are sufficiently complex that they must be decom-

posed into a number of inference steps and knowledge roles. This is the case with

the refine-1 inference step. The breakdown of this inference step is shown in Figure

13.3.2.

These two diagrams describe the instantiated inference structure (or, in the language

of the Zachman framework, the system level process model) for the course selector

system.

13.3.3 Strategy level

Strategy level comments for this system include:

• When generating or updating the initial list of Eligible courses, course combi-

nation regulations will rule out some courses. It is probably more efficient to

generate the list once and to remove non-permitted courses from the Eligible
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Figure 13.2: Instantiated inference structure for course selector: top level

courses than to repeatedly construct a new list of those which are still permit-

ted. This is because it is likely that more courses will be permitted than will be

forbidden whenever a new course is added to the course schedule.

• A caveat to the statement above is that the user may sometimes want to ‘undo’

selections, which could require adding deleted courses back into the list. Con-

sequently, a form of truth maintenance should be used; the preferred option is

a “negative truth maintenance” approach where the system maintains a set of

all courses that the user might be permitted to choose; when a choice is made,

all courses are checked; and courses that clash with the chosen course due to

timetabling or regulations are marked as unavailable due to that course. An ad-

vantage of this approach is that a course which is unavailable due to clashes with

two selected courses will not become available again if one of these two courses

is de-selected.

• The inference structure suggests that the generation of eligible courses, and the
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initial filtering based on last year’s grades, can be done in parallel to the iden-

tification of required courses. In practice, it is proposed that the list of eligible

courses is generated before the required courses are dealt with; furthermore, it

is proposed that the list of eligible courses should initially include the required

courses. This is because the initial filtering based on low grades may apply

equally to required courses as to optional courses.

13.3.4 The model of expertise: Task knowledge

Once an instantiated inference structure has been developed, and the strategy level

issues have been identified, a task structure must be developed to determine the order

in which these tasks are carried out. This task structure describes the task (control)
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knowledge within the model of expertise. The chosen order is shown below; it can be

seen that, although this may have been a short project, it required a lot of inference

and control knowledge.

task configure-course-schedule

goal allow a student to select a legitimate combination of courses

control-terms

Eligible courses → the set of all courses which students can choose

Required courses → those courses which this student must take

task structure

configure-course-schedule (Initial Specification + Regulations → Course Schedule)

obtain(Initial Specification) i.e. the student’s name, degree course, and year of

study

identify-1(Initial Specification + Degree regulations → Required Courses)

identify-2(Initial Specification + Regulations on allowed optional courses + De-

partments’ own regulations → Eligible Courses)

identify-3(Initial Specification + Degree regulations → Number of Courses to be

taken)

for all (course in Required Courses)

assemble(Course Schedule + course → Course Schedule)

inform(user)

end

begin loop

compute(Course Schedule → Number or courses chosen so far)

compare(Number of Courses chosen so far vs Number of Courses to be taken)
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if comparison = equal then exit loop

ask(user)

select(Eligible Courses → Chosen Course)

assemble(Course Schedule + course → Course Schedule)

inform(user)

refine-1(Eligible Courses → Eligible Courses):

remove(Chosen Course + Eligible Courses→ Eligible Courses)

for all (course in Courses with timetable clashes with Chosen Course)

refine-2(course + Eligible Courses → Eligible Courses)

end

for all (course in Courses no longer permitted by course combination regula-

tions)

refine-2(course + Eligible Courses → Eligible Courses)

end

ask(user)

select(Course Schedule → Deselected Course)

assemble(Course Schedule + Deselected Course → Course Schedule)

inform(user)

refine-1(Eligible Courses → Eligible Courses):

add(Eligible Courses→ Eligible Courses + Deselected Course)

for all (course in Courses with timetable clashes with Deselected Course)

add(Eligible Courses → Eligible Courses + course)

end

for all (course in Courses not permitted by course combination regulations)
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if level of course = level of Deselected course

then add(Eligible Courses → Eligible Courses + course)

end

end loop

The primary purpose of the task structure is to specify a procedural ordering of tasks.

For example, the step of comparing the number of courses chosen against the number

required to be taken was placed at the beginning of the loop, because it is possible

that the student’s course schedule may be filled by the required courses; so the loop

may never need to be executed at all.

Some parts of the task structure would benefit from further explanation. It might

appear that the task structure given above is self-defeating: within the loop, the user

adds a course to their schedule and then removes a course, thus ensuring that the

schedule will never be complete. This is not the case; it is envisaged that the user

will be offered a menu of options, which will include adding a course to their course

schedule or removing a course from their course schedule. Neither of these options is

compulsory, and since the execution of the loop is dependent on the user’s selected

option, the loop will not always be executed in its entirety.

13.4 Analysis: Modeling Communication

The communication model was developed by identifying all tasks identified in the task

structure, identifying dependencies between tasks to the diagram, and then making a

decision about which tasks would be performed by the KBS, and which by the student

– in other words, a model of interaction was developed. The result, which is shown

in Figure 13.6, suggests that most of the tasks will be performed by the knowledge

based system; this is to be expected, since the KBS is intended for (highly) non-expert

users. However, the completed communication model also highlights several occasions

in which the KBS is required to communicate with the user or with files elsewhere in

the system; this information is worth modeling for completeness, and as an input to

the design phase.



Pragmatic KADS 265

from list of eligible courses
by course combination regulations

Remove courses not  permitted
Allow student to

look at future
implications

Write report
for DoS

Add one course to
course schedule

Determine 
required courses

Plan course
schedule

Gather initial
information

Determine eligible
optional courses

Check if 
schedule is full

course schedule
Add one course to

of allowed
Offer a description 

course combinations

courses to
Add required

the schedule

Remove timetable 
clashes from list

of eligible courses

user’s selection
Obtain and confirm

them to the schedule
courses and add
Choose optional

Offer suggestions

of options
Display a list 

Figure 13.4: Task hierarchy in course selector

13.5 Design phase

The design phase is the next major phase of the KADS methodology. In both Com-

monKADS and Pragmatic KADS, this involves the construction of a Design Model.
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Figure 13.5: Tasks plus dependencies in course selector

13.5.1 course selector: Application design

Application design was performed using functional decomposition for the course se-

lector project. The functional decomposition can be found in the Application Design
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Figure 13.6: Model of interaction for course selector

columns of Figures 13.5.3 to 13.5.3.

A more detailed functional decomposition, showing the links between inference steps,

knowledge roles and interface functions, was also prepared. This was recommended by

the original KADS methodology, and users of Pragmatic KADS may use this approach
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Figure 13.7: Communication model for course selector

in preference to the CommonKADS Design Model if they prefer, since it summarises

more information in fewer diagrams than the Design Model achieves. However, this

approach is only recommended for systems with less knowledge than the course se-

lector system; it can be seen from Figure 13.5.1 that this diagram quickly becomes

too detailed to be of any real use.

Developing this detailed functional decomposition did prove useful in identifying a few

communication paths and minor knowledge roles which had been omitted from, or not

fully specified in, the Expertise and Communication models.

13.5.2 Architectural design

KADS and CommonKADS provide almost no guidance on architectural design; while

this is consistent with the overall descriptive rather than prescriptive approach, guid-

ance is particularly missed at this stage. What guidance there is can be found in [146],

but the suggestions provided are not very detailed, and there is no guidance at all for
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Figure 13.8: Detailed functional decomposition of course selector

configuration tasks. As a result, the “probing questions” approach (see chapter 12)

was identified (based on the work of Kline & Dolins at Rome Labs [105]) and used.

The full set of probing questions asked of the course selector system can be seen

at the end of this section. Only two “probing questions” (6 and 15) affected the ar-
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chitectural design. Question 6 asked whether it was sensible to enumerate all possible

solutions to the problem, or whether the system should be capable of generating solu-

tions. In a configuration problem, there are a very large number of possible solutions,

and so it is better that solutions are generated. Data-driven reasoning is therefore sug-

gested. It is also likely that the partial configuration will need to be represented, which

suggests the use of objects and dynamic object creation. Question 15 asked whether

the system has to re-make elaborate decisions; the answer is yes, if the user should

decide to undo a choice. The consequent suggestion is to use either backtracking or

truth maintenance. Since it is very difficult to combine backtracking with data-driven

reasoning, truth maintenance seems to be the preferred approach.

As far as KBS programming is concerned, the probing questions analysis recommended

the use of data-driven reasoning and truth maintenance. It also suggested that objects,

with dynamic object creation, might be useful as well.

Architectural design is recommended not only for problem solving techniques, but

also for domain information, and for communication. An analysis of the maintenance

requirements for the course selector system had determined that the characteristics

of courses are likely to change frequently (every year, at least). Probing question 16

suggests that it would be helpful if the domain information about courses could be

read from a file, rather than being hard-coded into the KBS, thus allowing it to be

updated without having to re-program the whole KBS. This suggestion was adopted;

its main effect on the architectural design is that the chosen representation for courses

should be human-readable as well as machine-readable.

The decisions regarding communication design were fairly simple, since there were only

three types of communication that needed to take place: users had to type in text, the

system had to offer menus that the users selected an item from, and the system had

to display explanatory text when the users requested it.

See the “Architectural design” columns of Figures 13.5.3 to 13.5.3 for a summary of

the architectural design decisions made for course selector.
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Probing questions for course selector

1. How well designed is the project? A weakly designed one may need a broad range

of features for prototyping.

Answer: The course selector system has been designed in detail using KADS

design techniques.

2. Is the KBS attempting to produce an optimal solution or just a satisfactory one?

Answer: A satisfactory one.

3. How much confidence can one have in the results of the system?

Answer: A lot, since they are based on regulations, rather than possibly inexact

measurements

4. Does the system have to “fuse” data from different sources?

Answer: Not to such an extent that this fusion requires management

5. Will the KBS be using ‘deep’ knowledge?

Answer: No.

6. Is it sensible to enumerate all possible solutions, or should the system be capable

of generating solutions?

Answer: In a configuration problem, solutions should be generated. It is likely

that the partial configuration will need to be represented, which suggests the use

of objects and dynamic object creation. Data-driven reasoning is also suggested.

In practice, the partial configuration is unlikely to be very complex (it is simply

a list of the names of courses plus their timetables), and so objects may not be

necessary to represent this.

7. How many things will the system have to consider simultaneously?

Answer: One course at a time.

8. Will the KBS have to reason about relationships between things?

Answer: No, with the exception of courses that make other courses ineligible.

This isn’t a relationship in the normal AI use of the term.
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9. Will the KBS include a hierarchy of classified objects?

Answer: No.

10. Will the KBS have to consider a number of possibilities simultaneously?

Answer: No. Only one course schedule will be considered at a time.

11. Will the system have to determine what step to take next, depending on the

partial solutions?

Answer: No. While the system will perform some reasoning based on partial

solutions, it will not alter its order of reasoning.

12. Is the system expected to reason with incomplete data?

Answer: No.

13. How large will the system be?

Answer: Not large enough to consider using an AI language rather than a shell

or toolkit.

14. Does the system have requirements for speed?

Answer: No stated requirements.

15. Does the system have to re-make elaborate decisions?

Answer: Yes, if the user decides to undo a choice. The consequent suggestion is to

use either backtracking or truth maintenance, which had already been identified

as options.

16. Does the information vary over time?

Answer: No, as far as the system is concerned. It changes every year; this will

be handled by representing certain information in a spreadsheet file that can be

updated by someone who has no KBS programming knowledge.

17. Will the system allow the user to request explanations, refuse to answer a ques-

tion, or volunteer information?

Answer: No.
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18. Does the system have any real time constraints?

Answer: No.

19. Does the system have to produce responses within a certain time?

Answer: The system is supposed to be interactive.

20. Does the system have to handle multiple problems concurrently?

Answer: No.

13.5.3 Platform design

There are two major issues in the platform design of a knowledge base that has been

developed using KADS: preserving the structure of the model of expertise (unless an

AI paradigm is being used), and deciding how to implement the chosen architectural

design. In the course selector project, the knowledge base of the course selec-

tor system was designed to be broken down into a number of files, where each major

inference step was implemented by code stored in a separate file.

The second issue was deciding on the most appropriate programming tool. In the

course selector project, as in many projects, there were a number of other factors

apart from the architectural design components affecting the choice of tool: principally

that the course selector system should be able to run on an 8086 PC with 640Kb

of RAM2, and that the tool should cost very little.

The tool chosen was CLIPS version 5.0. CLIPS is a KBS toolkit whose primary

form of representation is forward chaining rules, which are similar to the rule-based

component of Inference ART[85]. It includes a simple truth maintenance system, and

dynamic creation of symbolic facts. Version 5.0 of CLIPS also introduced object-

oriented programming and functions, but one of the advantages of CLIPS for this

project was that it can be compiled with or without its various program components;

because of restrictions of speed and memory on the target PCs, the object-oriented

and function facilities of CLIPS were compiled out.

2 This is not a typing error. The course selector system was developed in 1991, and the system
was to be used in a student computing laboratory filled with low-cost PCs.
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The platform design chosen for each of the architectural design components was:

• Data driven reasoning would be implemented using forward chaining rules.

• The required object functionality would be implemented using multiple facts,

where the first element in each fact was the name of the “object”.

• Truth maintenance would also be implemented using facts, since the built-in truth

maintenance facility was not sufficiently expressive to represent the reason(s) that

a course was unavailable. Truth maintenance was implemented by the simple but

powerful technique of creating a fact to represent a course which was known not

to be eligible for selection. This contrasts with the normal truth maintenance

technique of keeping track of valid assumptions; the reason for this choice is that

there are likely to be fewer ineligible courses than eligible ones, and so fewer facts

will be required. The “truth maintenance” facts note the reason for the creation

of the fact, which will be the addition of a certain course to the course schedule;

if that course is ever removed from the schedule, then any “truth maintenance”

facts associated with it are also removed. This technique is powerful because it is

able to handle a situation where a course is ineligible for more than one reason;

a course is only considered eligible if all the “truth maintenance” facts affecting

it are removed.

• The external file of course information was developed by using a spreadsheet,

and writing out a text file containing the fields of the spreadsheet. This file was

then parsed using an ASCII parser.

See the “Platform design” columns of Figures 13.5.3 to 13.5.3 for a summary of the

platform design decisions made for course selector.

13.6 The KADS methodology: Implementation phase

The implementation phase is the last major phase of KBS development; it involves

writing code, interfacing with other software, and verification and validation. Both

CommonKADS and Pragmatic KADS have very little to say about it; once the plat-

form design has been completed, implementation is seen as a programming task, where
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Figure 13.9: Design model: inference steps: top level

software engineering methods can be applied without any adaptation. However, this

worked example will include some implementation details to show how the recommen-

dations of the Design model were implemented.

For the course selector system, the code was divided up into various files, with one

file for each major inference step in the instantiated inference structure; there were also

separate files for the interface functions and the overall control (loading, passing control

between phases, etc.). For example, there is a file that implements the comparison of

timetables between selected courses and currently eligible courses; this implements the

inference step compare-2, and, by pattern matching, implements specify-1 and specify-2

as well. This file contains seven rules; the first one is shown below.

13.6.1 Example rule: identify timetable clashes

(defrule reject_clashing_whole_courses
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Figure 13.10: Design model: inference steps: expansion of refine-1

(declare (salience 10000)) ;; must be higher than the menu rules

(phase check_for_rejects)

(check_timetable_clashes ?course)

(status ?course 1) ;; it is a whole course

(lecture ?course $? ?day ?time&:(integerp ?time) $?) ;; if any lecture (described

(lecture ?course2&~?course $? ?day ?time&:(integerp ?time) $?)

=>

(assert (timetable_clash ?course2 ?course ?day ?time))

)
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Figure 13.11: Design model: knowledge roles: top level

A typical set of facts that could match this rule would be:

(phase check_for_rejects)

(check_timetable_clashes Accounting1)

(status Accounting1 1)

(lecture Accounting1 M 10 Tu 12 Th 2)

(lecture Geography1 M 12 Tu 9 Th 2)

In CLIPS, almost everything preceding the arrow (=>) represents a pattern that must

be matched; every pattern must be matched, and variables instantiated appropriately,

if the whole rule is to be matched. The actions of the rule appear after the arrow; if
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Figure 13.12: Design model: knowledge roles: expansion of refine-1

the conditions are matched and the rule is “fired”, these actions are carried out.

In this rule, the salience is a control feature that awards this rule high priority; i.e. it

is more likely to be ”fired” if several rules have their conditions matched simultane-

ously. The second line is also a control feature; it will only match if the fact (phase

check for rejects) exists in the working memory. The creation and deletion of (phase

...) facts is used to impose a general sequencing on the system as a whole.

The second pattern is (check timetable clashes ?course), which serves a dual purpose;

it provides even more control by saying “it’s now time to check for timetable clashes

against this course”, and it identifies the selected course (thereby implementing the

select inference step). This fact will be matched by any fact in the working memory

which has two terms in it, where the first term is check timetable clashes; however,

if the rest of the system is operating correctly, there should at most one fact in the
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Figure 13.13: Design model: communication

working memory of that format at any one time.

The third pattern is (status ?course 1), which is intended to state that the selected
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course is a whole course; there are separate rules for checking timetable clashes between

half courses and other courses.

The fourth and fifth patterns do the real work of the rule; in terms of the inference

structure, these two conditions implement specify-1, specify-2 and compare-2. Express-

ing these patterns in pseudo-English, they read:

IF there is a lecture on the selected course on day DAY at time TIME

AND there is another course, which is not the selected course, with a lecture

on the same DAY at the same TIME

THEN there is a clash

The implementation of “the same” day and time is achieved by using the same variables

for the day and the time in the two patterns; they must be instantiated to the same

values for the whole rule to be matched. The integerp test and the $? symbols are

used to make one rule match on all elements of an association list: the $? symbol

will match on zero or more items, so no matter how many lectures a course has, every

pairing will be tested by the rule. The integerp test on the lecture time is a simple way

of ensuring that the rule doesn’t consider “12 Th” to be an associated lecture pairing,

but only “Th 2”.

If all these facts are matched (as they would be by the facts given above), then the

rule is eligible to be “fired”. If it is “fired”, the fact (timetable clash Geography1

Accounting1 Th 2) is added to the working memory. This fact is then used by the rules

that implement the refine-2 inference step to make Geography1 ineligible for selection.

13.7 Discussion

What can we learn from our example of Pragmatic KADS?

• Major benefits can be obtained from developing an inference structure. Generic

inference structures were found to be very useful as a basis for structuring the

knowledge, and also for providing a structure for the final implemented system.
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• The “abbreviated” models suggested by Pragmatic KADS – the model of inter-

action and the ’all-in-one’ functional decomposition – are more compact than

those recommended by CommonKADS. This is both a strength and a weakness;

it is a strength because they represent more perspectives on knowledge in a sin-

gle diagram and can therefore represent more interactions, but it is a weakness

because these models quickly become too cluttered and complex for use. Given

that most of the well-known modeling techniques covered in chapter 2 seem to

represent only one or two perspectives on knowledge, it seems that Pragmatic

KADS’ “abbreviated” models are likely to be of use only for small KBS projects.

• The “hints and tips” of the Strategy level were a useful addendum to the model of

Expertise, and could usefully be included in the full CommonKADS methodology.

• The use of probing questions often offers fewer recommendations than might be

expected; however, it’s useful to rule our some considerations explicitly since this

reduces the risk that the project might encounter an unexpected technical issue.

• As for implementation, it can be seen that the CommonKADS Design Model

is a guide but not a template for implementation; good software engineering

practice (modularity, commenting, etc.) needs to be followed as well. In rule

based systems, the biggest consideration is usually flow of control in the system;

making sure that each piece of code not only works in turn, but is not accidentally

triggered out of turn. The use of “phase” facts is a common way of reducing this

problem to manageable levels.

Pragmatic KADS has been applied and used successfully on a number of student

projects within the University of Edinburgh. See e.g. [48] and [136].
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Chapter 14

Critical Review

The purpose of this review is to consider issues raised by each chapter of the thesis,

with the overall remit of testing the two propositions laid out in the introduction

to this thesis: whether CommonKADS’ models are adequate to represent real-world

knowledge; and whether multi-perspective modeling is indeed a necessary and sufficient

foundation for knowledge engineering and knowledge management. The issues to be

discussed are identified below, according to the order of the chapters.

14.1 Issues raised by chapter 2

Chapter 2 looks at the principles of multi-perspective modeling – at the benefits of

representing a single artifact from different perspectives, at the content of these per-

spectives at different levels of detail, and at the techniques that can be derived from

meta-modeling of the Zachman framework for multi-perspective modeling. Its con-

clusion is that a full set of multi-perspective models (i.e. modeling every perspective

at every level of detail) should represent all the knowledge that might be needed for

both knowledge management and knowledge engineering, and should alleviate some of

the problems that arise from the elimination of (apparently) irrelevant knowledge that

is inherent in the act of modeling. The biggest disadvantage is the effort required in

preparing so many models.

In the course of its discussion, this chapter raises a number of issues that are worthy

of further discussion, and are considered in the remaining chapters of this thesis. The

283
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issues that will be considered in this review are:

• Given that the Zachman framework was originally intended for supporting infor-

mation systems, what are the differences between data, information and knowl-

edge? (See chapter 15).

• Can the Zachman framework really capture and represent all the knowledge

needed for knowledge management? (See chapter 16).

• Are there parts of the Zachman framework that don’t really need to be filled

in order to ‘accomplish’ knowledge management? Conversely, is there anything

required by knowledge management that can’t be represented by the Zachman

framework? (See chapter 16).

• What is different about the WHY perspective, that allows it a dual interpreta-

tion? Does this apply to any higher perspectives? (See chapter 15).

14.2 Issues raised by chapter 3

This chapter reviews a number of common problems that arise with ontologies, and

shows how the development of multi-perspective ontologies can resolve some of them.

There are therefore clearly advantages to developing multi-perspective ontologies. How-

ever, the chapter specifically highlights two issues that are not obviously solved by

multi-perspective ontologies: defining agreed ”levels of detail” for ontologies, and de-

termining the most appropriate set of definitional properties for ontological concepts.

These will be discussed further in chapter 17.

14.3 Issues raised by chapter 4

This chapter discusses the ACM classification scheme, and its extension for Artificial

Intelligence topics. It then considers whether multi-perspective modeling is necessary

for a full and accurate indexing scheme – and also, where knowledge management,

knowledge engineering, and knowledge acquisition fit into the scheme. The paper is



Review: Introduction 285

mostly discursive rather than empirical, and so there aren’t too many issues for discus-

sion that aren’t covered in the paper. However, one question that does arise concerns

the primacy of the WHAT and HOW perspectives over the other four perspectives; is

this a common feature, and if so, why? (See chapter 16 for a discussion of this issue).

14.4 Issues raised by chapter 5

Chapter 5 outlines how CommonKADS instantiates the multi-perspective modeling

approach recommended in earlier chapters, and describes two of CommonKADS’ six

models. It raises the following issues:

• Does CommonKADS propose models that fill all the cells in the Zachman frame-

work?

• If not, which perspectives does it address at which levels of abstraction?

• Are there other knowledge modeling methods which are “better” than Com-

monKADS for one or more perspectives or levels of abstraction?

See chapter 16 for a discussion of these issues.

14.5 Issues raised by chapter 6

As with chapter 5, this chapter is largely descriptive and therefore does not raise too

many issues. However, the concluding discussion prompts the following questions:

• How useful is it to apply CommonKADS models – or other knowledge models,

for that matter – prescriptively rather than descriptively?

• What features in a system level Communication model suggest that certain sub-

tasks should or should not be carried out by a user?

These issues are considered in chapter 18.
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14.6 Issues raised by chapter 7

This chapter describes one of my earliest attempts to apply KADS (the forerunner of

CommonKADS) to development of a real-world knowledge based system. The task

was to diagnose faults causing contamination (unwanted marks) on commercial plastic

mouldings, such as computer casings, or panels for video recorders. The aim of the

project was to develop a system that could be used by non-expert machine operators

to diagnose faults; and since the company were looking for a solution to a specific

business problem, most of the effort of the project was expended on developing an Ex-

pertise model, and implementing the system, rather than on the preliminary stages of

organisational modeling or agent modeling. The objective of the project was therefore

to acquire knowledge and build an Expertise model that was sufficiently accurate and

detailed to be used as a basis for a usable and useful knowledge based system. Since it

was one of my earliest applications of KADS, there was also a secondary research ob-

jective: to test the adequacy and benefits of using KADS to build an Expertise model,

and of using that model as a basis for design and implementation of a knowledge based

system.

Since the project was completed successfully, it can be assumed that the Expertise

model that was developed was sufficient to support development of a commercial KBS.

However, during the process of developing the models, a couple of issues were discovered

that affected the model development process, and that were not obviously solved by

the CommonKADS models or documentation. These issues were:

• Is knowledge engineering using CommonKADS a purely sequential process, or

are there feedback loops to earlier models?

• Is there any guidance on ”correct” instantiation of generic inference structures?

• What does a ‘bad’ Expertise model look like?

See chapter 18 for consideration of these issues.
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14.7 Issues raised by chapter 8

The chapter describes and examines the CommonKADS Expertise Model (as opposed

to the KADS Expertise model) by re-modeling two existing knowledge based systems,

both of which were originally modeled using KADS. The purpose of this re-modeling

exercise was to provide a realistic test of the adequacy and applicability of the Com-

monKADS Expertise Model, by determining how well it represented two collections of

real-life knowledge. Particular attention was paid to the utility of features in Com-

monKADS that were not defined or proposed by the KADS Expertise model; could

CommonKADS provide a clear representation of fine distinctions, viewpoints, or knowl-

edge items that were represented obliquely or not at all in the KADS Expertise Model?

To summarise the answers to the above questions: CommonKADS did indeed prove

able to represent knowledge, to represent modeling decisions, and to support modeling

in ways that were not obvious or possible in KADS. However, there is still a need for

further guidance on how to develop models. Issues identified include:

• how to select the ”right” inference step;

• how to decide if a domain item is a concept or a property;

• deciding whether to develop knowledge models bottom-up (i.e. finding all re-

lationships in acquired knowledge) or top-down (finding all acquired knowledge

that can be instantiated to the generic inference structure).

These are discussed in chapter 18.

14.8 Issues raised by chapters 9 and 10

These papers are included in the thesis because the library of expertise models is often

considered the single most useful contribution of the CommonKADS methodology to

knowledge engineering, and any extensions to it – particularly extensions that have

been developed in accordance with the original principles of the library, and have

been shown to work in real-world applications – are likely to be seen as valuable by

the knowledge engineering community. Both inference structures promise real-world
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validity because they are based on real-world systems or studies; the inference structure

for planning described in chapter 9 was derived from the O-Plan system [170], while the

inference structure for design proposed in chapter 10 was based on studies of designers’

behaviour.

Developing these models was essentially an empirical exercise, so there aren’t many

technical and technological issues to discuss. It might be argued that drawing out a

generic inference model based on a few example systems (or one system, in the case of

O-Plan) is not a wise approach, but this argument really comes down to the distinction

between domain and inference knowledge; if it is possible to strip domain knowledge

out of a system and leave only the inference knowledge, and this inference knowledge is

re-usable across domains (as CommonKADS claims), then an inference model derived

from any well-designed AI system should be usable in several other systems.

14.9 Issues raised by chapter 11

This chapter demonstrates how the output of various tried and tested knowledge acqui-

sition techniques can be mapped into the CommonKADS domain ontology. Such guid-

ance is almost wholly lacking in the knowledge engineering community; this is probably

due to a combination of factors, including the limited range of knowledge acquisition

techniques available; the lack of agreement on a standardised modeling method (or, to

be more accurate, a standardised ontology or ontology framework) among knowledge

acquisition researchers; and the focusing of research on domain-specific or task-specific

knowledge elicitation tools with the aim of allowing direct knowledge inputting by ex-

perts, thus (apparently) bypassing knowledge engineering decisions. The subject of

this section of the review will be research or discussion that seeks to address each these

three factors.

The specific questions that will be addressed are:

• Where have domain-specific and task-specific knowledge acquisition tools been

successful? Why? (See chapter 17).

• Are there knowledge acquisition techniques to cover all six perspectives proposed
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by the Zachman framework? If not, why not, and could techniques be devised?

Is there a need for different techniques at different levels of abstraction? (See

chapter 16).

• Why are different knowledge acquisition techniques appropriate for certain types

of task? (See chapter 15).

• Could ontologies and knowledge acquisition techniques support each other? (See

chapter 17).

14.10 Issues raised by chapter 12

Chapter 12 puts the Design model into practice by discusses the three stages of building

the Design Model – Application Design, Architectural Design and Platform Design –

and then providing examples. The issues raised by this chapter are:

Stage 1: Application Design At this stage, it is necessary to decide whether the

design will be primarily based on functional decomposition, object-oriented de-

composition, or a known AI paradigm. The issue is in determining which ap-

proach is best for a particular problem.

Stage 2: Architecture Design There are two issues here: firstly, assessing the pros

and cons of a “probing questions” approach to making architectural decisions;

and secondly, considering the adequacy of the languages proposed by Com-

monKADS for representing detailed application design and detailed architectural

design.

Stage 3: Platform Design The issue here is determining how to match correctly

the capabilities and strengths of a programming tool to the design, and adapting

the design to the strengths of the tool.

See chapter 19 for a discussion of these issues.
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14.11 Comments on chapter 13

Chapter 13 is presented as a possible solution/workaround to some of the issues raised

by the earlier chapters, and so it is considered that a review of issues raised by this

chapter is not appropriate. Instead, a “manual for pragmatic KADS” is presented as

an appendix to this thesis.



Chapter 15

Epistemological issues: The
Nature of Knowledge

A number of the issues highlighted by the earlier chapters in this thesis are concerned,

directly or indirectly, with the nature of knowledge. These include the over-arching

question of whether knowledge can indeed be represented using models; the need to

distinguish data, information and knowledge; the need to determine why certain knowl-

edge acquisition techniques are better for certain types of task; and the question of why

the WHY perspective appears to be different to the other perspectives in the Zachman

framework.

15.1 Epistemology

The nature of knowledge is such a vast subject that an entire sub-branch of philosophy,

known as epistemology, is devoted to it. A number of theories have arisen that relate to

the mutability of knowledge, ranging from those that stress the “absolute, permanent”

character of knowledge to those that put the emphasis on its relativity or situation-

dependence. Two of these theories are of particular interest to us: the pragmatic or

cognitive theory and the constructivist theory. These are described in the following

quotation:

“[...] The next stage of development of epistemology may be called prag-

matic. Parts of it can be found in early twentieth century approaches, such

as logical positivism, conventionalism, and the ”Copenhagen interpreta-

291
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tion” of quantum mechanics. This philosophy still dominates most present

work in cognitive science and artificial intelligence. According to pragmatic

epistemology, knowledge consists of models that attempt to represent the

environment in such a way as to maximally simplify problem-solving. It is

assumed that no model can ever hope to capture all relevant information,

and even if such a complete model would exist, it would be too complicated

to use in any practical way. Therefore we must accept the parallel existence

of different models, even though they may seem contradictory. The model

which is to be chosen depends on the problems that are to be solved. The

basic criterion is that the model should produce correct (or approximate)

predictions (which may be tested) or problem-solutions, and be as simple

as possible. Further questions about the ”Ding an Sich” or ultimate reality

behind the model are meaningless.

The pragmatic epistemology does not give a clear answer to the question

where knowledge or models come from. There is an implicit assumption

that models are built from parts of other models and empirical data on the

basis of trial-and-error complemented with some heuristics or intuition. A

more radical point of departure is offered by constructivism. It assumes

that all knowledge is built up from scratch by the subject of knowledge.

There are no ‘givens’, neither objective empirical data or facts, nor inborn

categories or cognitive structures. The idea of a correspondence or reflection

of external reality is rejected. Because of this lacking connection between

models and the things they represent, the danger with constructivism is

that it may lead to relativism, to the idea that any model constructed by

a subject is as good as any other and that there is no way to distinguish

adequate or ’‘rue’ knowledge from inadequate or ‘false’ knowledge.

We can distinguish two approaches trying to avoid such an ‘absolute rel-

ativism’. The first may be called individual constructivism. It assumes

that an individual attempts to reach coherence among the different pieces

of knowledge. Constructions that are inconsistent with the bulk of other

knowledge that the individual has will tend to be rejected. Constructions

that succeed in integrating previously incoherent pieces of knowledge will be
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maintained. The second, to be called social constructivism, sees consen-

sus between different subjects as the ultimate criterion to judge knowledge.

‘Truth’ or ‘reality’ will be accorded only to those constructions on which

most people of a social group agree.[58]

This analysis cuts to the heart of many of the debates over the definition of knowl-

edge management. To a pragmatic epistemologist, modeling knowledge (whether in

diagrams or in an automated system) is the obvious approach to making knowledge

more widely available; to a constructivist, anything that claims to be or to contain

‘knowledge’, but is apparently independent of an individual’s body of coherent knowl-

edge or a group’s consensus, is highly suspect. Furthermore, the famous “knowledge

creating cycle” of Nonaka & Takeuchi [132] is revealed to be heavily based on a con-

structivist viewpoint; in its essence, the cycle combines individual constructivism and

social constructivism into a continuous process of knowledge creation & refinement.

The above analysis also reveals some of the strengths and weaknesses of each approach

to knowledge management, which should map well to the goals of an organisation’s

knowledge management activities. Is it important to simplify knowledge in order to

make it more widely available, or is it more important to have decision-makers under-

stand all the implications and ramifications of their decisions? Is it important that

the knowledge should have a “trace log” by which it can be justified? Does it matter

whether the knowledge can be written down in some form so that it can be externally

verified? One of the biggest determining factors can be identified from Binney’s KM

spectrum (discussed in chapter 2); is the knowledge old and stable and merely needs to

be analysed, or new and uncertain and needs to be synthesised? For current purposes,

it will be assumed that knowledge management is, in fact, a collection of different

approaches from which a good knowledge manager will select the one(s) that fit his

organisation’s goals, and that Binney’s KM spectrum provides a full list of options to

choose from.
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15.2 A meta view: applying Zachman perspectives to the
nature of knowledge

The analysis above has shed some light on one of the issues identified at the start of this

chapter: determining the best approach to knowledge management. However, taking

a ‘meta’ view, the above debate can be considered to be the WHY perspective on the

nature of knowledge (i.e both the cognitive and constructivist viewpoints provide an

explanation of why knowledge is what it is). Are there other Zachman perspectives on

the nature of knowledge that may help answer some of the other identified issues? The

remainder of this chapter will consider other perspectives on the nature of knowledge,

starting with the perspective of ontology.

15.3 Ontology: the WHAT perspective on knowledge

When discussing the nature of knowledge, it is perhaps easiest to think of ontology

as the WHAT perspective on the nature of knowledge – that is, it describes (or at

least labels) the nature of each “chunk” of knowledge, and of the relationships between

“chunks”. Ontology-related issues are discussed in more detail in chapter 17.

15.4 Data, information and knowledge: the HOW per-

spective

The next perspective to consider is the HOW perspective: what can we say about

the manner in which knowledge is generated? Some insights can be drawn from a

discussion of the relationship between data, information and knowledge.

A simple definition of the difference between data, information and knowledge is that

information is “data that makes a difference”; knowledge is “information that makes a

difference”. This definition of data, information and knowledge is based on that given

by Davenport and Prusak [41]. They see data as

“a set of discrete, objective facts about events – for example, when a cus-

tomer goes to a gas station and fills the tank of his car, the transaction
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can be partly described by data: when he made the purchase; how many

gallons he bought; how much he paid. But in and of themselves, such facts

say nothing about whether the service station is well or badly run, whether

it is failing or thriving. Peter Drucker once said that information is ‘’data

endowed with relevance or purpose”, which of course suggests that data

itself has little relevance or purpose. But it is essential raw material for the

creation of information.”

Davenport & Prusak’s definition of information is that it is a message, usually in the

form of a document or an audible or visible communication, intended to ‘shape’ the

outlook or insight of the person who gets it. But they consider that not only does it

potentially shape the receiver, it has a shape; it is organized to some purpose. Organ-

isation may occur by placing the data in context; by categorisation; by calculation;

by correction; or by condensing the data into a summarised form. But, in essence,

information is data with a structure and a purpose.

Davenport & Prusak consider that knowledge derives from information as information

derives from data, but that “humans must do virtually all the work” in giving knowl-

edge its structure and purpose. They argue that knowledge “originates and is applied

in the minds of knowers. In organizations, it often becomes embedded not only in doc-

uments or repositories, but also in organizational routines, processes, practices, and

norms.” The processes that assign this structure and purpose to knowledge include

comparison between information; consequences (i.e. considering cause and effect); con-

nections between information; and conversation with others.

It’s worth noting that the processes that Davenport & Prusak assign to the data-

information transformation are largely analytic processes, while the processes for information-

knowledge transformation are generally synthetic. If Davenport & Prusak’s definition

is wholly correct, therefore, perhaps CommonKADS’ analytic tasks do little more than

generate information from data, while “knowledge” is limited to the synthetic tasks.

Alternatively, Davenport & Prusak may in fact be distinguishing new, uncertain, con-

structed knowledge from old, stable, structured knowledge. Whichever is true, it seems

that we can summarise the HOW perspective on knowledge by saying that knowledge

must be generated from information by one or more (knowledge-based) processes, just
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as information is generated from data by other knowledge-based processes; whether

these processes reside only in humans, or are only capable of residing in humans, is yet

another aspect of the cognitive/constructivist debate.

15.4.1 The WHEN of knowledge: Boisot’s I-Space

The most important feature of knowledge in terms of time is whether it is new or old

... or more specifically, whether it is narrowly known (new) or widely known (old).

This concept is discussed by Boisot [12], where he describes a progression of knowledge

from being ‘emergent’ through ‘key’ to being ‘widespread’. He judges this by placing

the knowledge on three dimensions; whether it is codified or uncodified, abstract or

concrete, and diffuse or scarce. Emergent knowledge is typically abstract, uncodified,

and scarce; key knowledge is concrete, codified, and scarce; and widespread knowledge

is concrete, codified and diffused. Boisot illustrates how this applies to various theories

of economic markets as well as to knowledge.

Boisot’s observation is that key knowledge (which has the highest value to an organ-

isation) differs only from widespread knowledge in its degree of diffusion. Yet, for an

organisation to make use of its key knowledge, it must make it available to its members

in some form ... which will eventually lead to it being widely diffused, as people leave

the organisation and take their knowledge with them, or if an external agency obtains

and publishes some of the organisation’s knowledge.

This observation has important implications for an organisation’s choice of knowledge

management approach ... or, indeed, whether a knowledge management approach is

to be used at all. If the knowledge concerned is ‘emergent’ knowledge that stands a

good chance of becoming ‘key’ knowledge, then a codification process is required (for

which knowledge acquisition and knowledge modeling may be valuable), but it may

be desirable to limit access to the knowledge to a very few people in the organisation.

In this case, a ‘personal development’ (i.e. staff training) knowledge management

approach may be approp13riate. If the knowledge is ‘key’, however, and it is desirable

to spread it widely within the organisation, then a technology-based approach might

be more appropriate.
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15.4.2 The WHO and WHERE of knowledge

It’s easy to confuse the WHO and WHERE perspectives on knowledge. The WHERE

perspective tells us where knowledge resides, or is generated, or is communicated (so

saying “John has the knowledge” is part of the WHERE perspective); the WHO per-

spective tells us who is responsible for creation, maintenance, updating, and general

management of knowledge.

The answer to the question, “Where does knowledge reside?” will be different depend-

ing on the respondent’s opinion on cognitive vs. constructivist views of knowledge.

Both groups agree that knowledge often resides within an individual’s head. But a

number of other questions – whether knowledge also resides in the shared consensus of

a group, or in knowledge ‘models’, or in a knowledge based system – remain unresolved.

There has also been remarkably little work within the knowledge management com-

munity on the communication of knowledge to or from individuals and groups (apart

from Nonaka & Takeuchi’s “knowledge creating cycle”, and even this only describes the

process in general terms), and on effective communication methods in general. Some

general arguments are made for the pros and cons of apprenticeships, simulations,

and lecture-based training courses, but translating these ideas into effective knowledge

communication techniques seems to be a fruitful area for future research.

The question of who is responsible for knowledge is highly dependent on the answer to

the question of where the knowledge resides. It’s also, perhaps, the area of knowledge

management that an organisation has the least direct control over; the organisation can

encourage individuals to keep their knowledge up to date, and can even pay them to do

research and development, but it cannot force them to do so, nor can it guarantee that

their work will result in ‘key’ knowledge for the organisation. Perhaps the subject of

effective research incentives is another area of research that the knowledge management

community would benefit from becoming involved in.

In summary, looking at the nature of knowledge using the Zachman perspectives has

provided some useful insights, and raised possibilities for future work. It has also

illustrated once again the value of the Zachman framework as a structure for analysis

of knowledge of almost any kind.
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This chapter has also shown how the cognitive/constructivist debate permeates many

discussions within knowledge management, and it is essential to tease out these two

perspectives (and any others that may exist!) before any debate can be meaningful.



Chapter 16

Multi-Perspective Modeling
issues

The issues raised by this thesis that are concerned with the multi-perspective modeling

are:

• Can the Zachman framework really capture and represent all the knowledge

needed for knowledge management and knowledge engineering? Are there parts

of the Zachman framework that don’t need to be filled in order to accomplish

knowledge management? Conversely, is there anything required by knowledge

management that can’t be represented by the Zachman framework?

• Does CommonKADS propose models that fill all the cells in the Zachman frame-

work? If not, which perspectives does it address at which levels of abstraction?

• Are there knowledge acquisition techniques to cover all six perspectives proposed

by the Zachman framework? If not, why not, and could techniques be devised?

Is there a need for different techniques at different levels of abstraction?

• Is it common for the WHAT and HOW perspectives to dominate the other per-

spectives? If so, why?

299
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16.1 Multi-perspectives, the Zachman framework and Knowl-
edge Management

Determining whether the Zachman framework is adequate to support knowledge man-

agement requires revisiting the question of what knowledge management actually is.

For the purposes of this discussion, the seven approaches to knowledge management

identified in [78] will be considered in three categories:

1. Approaches that result in a computerised decision support system of some kind

(‘transactional’, ‘analytical’ and ‘asset improvement’);

2. Approaches that result in some kind of (indexed) library of knowledge (‘asset

management’ and ‘process management’);

3. Approaches that result in more knowledgeable people (‘developmental’ and ‘in-

novation’).

16.1.1 The Zachman framework and ‘decision support system’ knowl-
edge management

The Zachman framework is most obviously representative of this type of knowledge

management, not least because the discussion in section 2.6 shows how the rows of the

Zachman framework correspond to the various steps in a typical software engineering

project at multiple levels of abstraction: at an abstract level it corresponds to a spiral

project management lifecycle, at a ‘normal’ level it corresponds to a waterfall (i.e.

sequential) model of software development, and at a more detailed level it illustrates

that sub-tasks of software development have their own sequential series of activities.

The question of whether all the cells in the Zachman framework are needed for this type

of knowledge management is difficult to answer outside the context of a specific project.

If an organisation commissions a system to address a specific problem, for example,

as described in chapter 7, then there is little need to develop nmodels to represent

the Scoping and Enterprise levels of the framework. However, if the purpose of the

exercise is to carry out an organisational SWOT (strengths, weaknesses, opportunities

and threats) analysis, issues may arise anywhere in the Zachman framework ... for
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example, the weakness “our system designs are based on old assumptions” belongs

to the Technology row and the Why column); “our corporate structure has too many

levels” belongs to Scoping and What); and “we have world class experts in our research

department” can be assigned to the System level and the Who perspective.

It seems, however, that the parts of the Zachman framework that are most relevant

to knowledge management are the top two rows – the scoping and enterprise levels.

This is because the goals of knowledge management – ”the identification and analysis of

available and required knowledge assets and knowledge asset related processes, and the

subsequent planning and control of actions to develop both the assets and the processes

so as to fulfill organisational objectives.” [118] – are focused more on knowing what

knowledge exists in the organisation, and deciding what to do with it, rather than

on knowing the knowledge itself. Knowledge management should therefore be more

of a strategic task in organisations that an operational one, and hence the “scoping”

and “enterprise” levels, which focus on business processes at a high level, are most

appropriate to it.

The answer to the opposite question – whether there are any aspects of ‘decision

support system’ knowledge management that aren’t covered by the perspectives and

rows in the Zachman framework – seems to be ‘no’. To say otherwise would be to

contradict the main point of chapter 2. This may not be equally true for the other

categories of knowledge management, though.

16.1.2 The Zachman framework and ‘indexed library’ knowledge man-
agement

For the asset management and process management approaches to knowledge manage-

ment, the Zachman framework’s primary support lies in its columns – the perspectives

– rather than its rows. The perspectives inherent in the Zachman framework provide a

wide-ranging indexing approach that makes it easier for users to find the information

that they are looking for, as described in chapter 3. The actual guidance on what

these multi-perspective indices should contain is limited to a few suggestions such as

“networks” or “events” (see table 2.1), but as the discussion of chapter 3 argues, the

mere inclusion of a multi-perspective index should be an advance over current ontology
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indexing techniques.

16.1.3 The Zachman framework and ‘knowledgeable people’ knowl-
edge management

Many researchers who favour the ‘knowledgeable people’ approach favour a construc-

tivist view of knowledge, which rejects “the idea of a correspondence or reflection of

external reality [with knowledge].” Instead, constructivism assumes that an individual

attempts to reach coherence among the different pieces of knowledge, maintaining only

‘constructions’ that succeed in integrating previously incoherent pieces of knowledge.

The emphasis is therefore on knowledge relationships and structures rather than indi-

vidual ‘items’ of knowledge. Furthermore, constructivism rejects the idea of ‘givens’:

“neither objective empirical data or facts, nor inborn categories or cognitive struc-

tures”. To these researchers, the Zachman framework seems to be an encouragement

to engage in unhelpful separation and classification of knowledge items.

Yet even to a constructivist, the concept of multi-perspective modeling has value.

If there is a complex knowledge structure in someone’s head, and it is desirable to

bring it into the open (’acquire’ it in knowledge engineering jargon; ‘externalise’ it in

the words of Nonaka & Takeuchi), then looking at it from multiple perspectives can

help determine the structure itself as well as the components of the structure, just as

crystallography examines a crystal from different angles to obtain an understanding of

the structure of the crystal.

Let’s take an example of ‘constructed’ knowledge – a situation in which a machine has

an unknown fault, and a visiting technician, after failing to fix the machine, sits down

for a drink with the local maintenance operator. As each shares with the other their

experience of the machine, they begin to develop a joint ‘story’, consistent with the

past experiences of both of them, about how the machine might be operating. This

‘constructed’ view of the machine’s (faulty) operation then allows them to diagnose

the fault.

The thesis being presented here is that there would be some benefit to this conversation

if it were structured around Zachman’s six perspectives. Would it help the technician

if the operator stuck to describing WHAT had happened, rather than speculating on
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HOW? If the fault is intermittent, is that enough information or would it help to

construct an approximate schedule of WHEN the fault had occurred? Does it make

any difference WHO the operator was when the fault occurred? (In one anecdote from

computer technical support, a computer made repeated beeping noises only when used

by a particular secretary. The problem turned out to be a low chair, so that her large

breasts were resting on the keyboard!). No research is known in this area, but it seems

a good opening for future work.

The constructivist view does highlight what is possibly the biggest weakness of the

Zachman framework, though, and indeed of knowledge modeling in general ... the

very act of separating knowledge risks losing some of the information about the links

between items of knowledge. However, as chapter 3 makes clear, the complementarity

of models recommended by multi-perspective modeling helps to reduce this problem.

Still, it can be argued that representing complex knowledge structure is indeed an area

where the Zachman framework may be insufficient to support knowledge management.

16.2 Multi-perspectives, the Zachman Framework and Com-
monKADS

The development of knowledge based systems has grown from the development of re-

search prototypes into a industry that is able to produce robust, reliable, commercial

software. The concept of ‘knowledge engineering’ – a term coined by Ed Feigenbaum,

defined as “the systematic application of engineering techniques and methods to the

development of expert systems” – arose from a desire by the customers for these sys-

tems to have such reliability and robustness, and the response by researchers to seek for

an equivalent approach to the software engineering approaches used for more conven-

tional software systems. The process of developing a suitable “knowledge engineering”

approach produced several false starts and (arguably) one new software engineering

method – the whole area of object oriented analysis and design has its roots in the

knowledge representation technique of ‘frames’, first publicised by Marvin Minsky –

but once the KADS methodology appeared, it became clear that nearly all other knowl-

edge engineering methods that were subsequently proposed (or revised) were drawing

on KADS’ library of interpretation models (used as templated for part of the Expertise
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model). KADS, and later CommonKADS, therefore became a de facto standard for

knowledge engineering.

It’s the System level of the Zachman framework that maps best to CommonKADS’

Expertise model. Since the lowest level of the Zachman framework is an implemented

system, which is also the end result of a knowledge engineering process, it can be

assumed that four lower rows of the Zachman framework are all relevant to knowledge

engineering; but since CommonKADS’ Expertise model is by far the most detailed of

its models, the discussion below will concentrate on the System level.

16.3 Multi-perspective modeling and the Expertise model:
perspectives

What perspectives on knowledge are represented at the System level? It’s possible to

provide a short answer to this question: the Expertise model covers the what, how and

(arguably) when perspectives through its domain models, inference structures and task

structures respectively. The discussion below therefore centres on the remaining three

perspectives.

16.3.1 Representing who, where and why at the System level

The main argument of chapter 6 is that the CommonKADS Agent and Communication

Models, which CommonKADS considers to belong to the Enterprise level and the

System level respectively, can both be usefully applied at both levels of abstraction. If

these ‘system level’ Agent and Communication models are developed, this will provide

both ”who” and ”where” perspectives at the System level.

As for ”why” knowledge, chapter 2 has noted that ”why” knowledge is often considered

to be supplied by the context of knowledge (i.e. the role it plays in a higher level of

abstraction). If this is true then no separate modeling of ”why” knowledge is needed

at the System level. However, section 2.3.6 has demonstrated that there are some

domains or tasks for which ”why ” knowledge ought to be modeled, because justifica-

tions and rationales need to be explicitly identified. Knowledge engineers who need to

model ”why” knowledge are encouraged to use the variant QOC technique presented
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in section 2.3.6, the simplified ‘Strategy’ knowledge suggested in section D.5.2, or some

adaptation of these that suits their needs.

It’s also arguable that “when” knowledge experiences – or suffers from – the same

dual representation as “why” knowledge. “When” knowledge can be considered to be

either knowledge about time, or knowledge associated with ordering and sequencing –

i.e. control over the “how” perspective. From this viewpoint, it might be considered

that “when” knowledge is also under-represented in CommonKADS models .... control

knowledge is expressed in more than one model, but temporal knowledge only addressed

explicitly within the Organisation model.

16.4 Multi-perspectives and knowledge acquisition

16.4.1 What types of knowledge need to be acquired for different
task types?

KADS and CommonKADS both provide a library of task types (actually “problem

solving methods”), with associated interpretation models or inference structures. The

library is categorised at the top level into analytic tasks, synthetic tasks and modifica-

tion tasks. Analytic tasks (classification, diagnosis, assessment, monitoring, prediction)

are those that analyse an existing situation or artifact; synthetic tasks (design, config-

uration, planning, scheduling) are those that create some new artifact or situation; and

modification tasks (control, repair) are those that alter an existing artifact or situation,

which normally requires elements of both analysis and synthesis.

This classification has major implications for the design of knowledge based systems to

support these tasks (see chapter 12), and it also affects the types of knowledge required

for tasks: synthetic tasks all require knowledge of constraints on the parameters of the

created artifact, while analytic tasks rarely require this type of knowledge.

Below this level of detail, however, the major influence on the type of knowledge needed

by various tasks seems to be not the source of the knowledge, nor the way in which

its component information is combined, nor the form of the knowledge; instead, it is

the perspective that they address (i.e. WHO, WHAT, HOW, WHEN, WHERE or

WHY). Classification and assessment tasks address WHAT knowledge (i.e. categorisa-
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tion according to features) whereas diagnosis and monitoring are more concerned with

HOW a system works (or should work). Planning and scheduling focus on WHEN

tasks are carried out while configuration and design look at WHERE items should be

placed, with design also considering WHICH items will play a particular role – which

is analogous to the WHO perspective. The correlation of the WHEN and WHERE

perspectives with synthetic tasks, and the absence of tasks that use WHY knowledge

(and minimal consideration of the WHO perspective), are indicators worthy of further

attention.

Before speculating on these correlations, however, a word must be said about the

‘primitiveness’ of problem solving tasks. The list of task types used by KADS and

CommonKADS was originally proposed by Joost Breuker in the very first KADS report

[20]. But Breuker himself has proposed more recently that CommonKADS’ tasks are

actually composed from a smaller set of more primitive tasks [18]. He suggests that the

minimal set consists of just six tasks from which all other task types can be composed:

modeling, design, assignment, prediction, monitoring and diagnosis. Breuker defines

these as follows:

• Modeling is concerned with the identification of what is a system and what

is its environment, or more precise: what is its behavioural interface with the

environment.

• Design has as its conclusion a structure of components and their connections.

The components may be objects or processes, physical or symbolic.

• Assignment distributes (additional) elements (components, actions) over a struc-

ture. If the structure is a plan, the assignment problem is generally called schedul-

ing. If the structure is a design the problem is often called configuration.

• Prediction delivers the resulting states of a system over time, starting with an

initial state. When one derives an initial state from some output states one may

speak of postdiction.

• Monitoring yields a discrepancy between a predicted state and an observed state.
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• Diagnosis finds components or structures which conflict with their behavioural

model or design.

Furthermore, Breuker sees these six tasks as being sequential: so modeling is a pre-

requisite for all the others, a design can be transformed into an assignment, and so

on.

There is a good correlation between Breuker’s six basic task types and the six perspec-

tives recommended by the Zachman framework:

• Modeling is concerned with the WHAT the current system is;

• Design is concerned with WHICH components will play particular roles in the

new system, which is analogous to WHO knowledge;

• Assignment is concerned with WHERE the components will fit;

• Prediction is concerned with state of the system at a particular time (WHEN);

• Monitoring is concerned with comparisons (information –¿ knowledge conversion,

according to Davenport & Prusak);

• Diagnosis tells us WHY any discrepancies observed by monitoring exist, based

on knowledge of HOW the system functions.

So each task will require different types of knowledge, and will thus require different

knowledge elicitation techniques. Modeling will be concerned with categories, prop-

erties, taxonomies and ontologies; design with capabilities and roles; assignment with

connections and constraints; prediction with time and states; and diagnosis with proce-

dures, processes, rationales and justifications. Monitoring may require detailed knowl-

edge of monitoring procedures or of methods of interpreting monitoring data, but it

does seem to be more of an information-processing task than a knowledge-based task

in many cases.

In short, it seems that the Zachman framework’s perspectives should cover all the types

of knowledge that need to be acquired in order to support any knowledge based task
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(or at least, any knowledge-based task that has an associated ‘interpretation model’ in

CommonKADS).

16.4.2 Knowledge acquisition techniques

We have determined that the perspectives in the Zachman model are sufficient to rep-

resent all the knowledge that might be needed for any task for which a CommonKADS

interpretation model exists. But are there knowledge acquisition techniques capable of

capturing all these types of knowledge?

Chapter 11 argues that there are existing knowledge acquisition techniques for ac-

quiring declarative and procedural (WHAT and HOW knowledge). A mapping of the

knowledge acquisition techniques presented in that chaopter to perspectives might look

like this:

Technique Knowledge acquired

Laddering Concepts, is-a relations, taxonomy

Card sorting
Properties, values, concepts,
possibly is-a or part-of relations

Repertory grid
Properties, values, conceptual

clustering (might be taxonomic)

Laddering with alternate questions
Tasks/actions/activities,

processes, states, sequencing

Protocol analysis
Tasks/activities/actions, sequencing,
durations, (some) communication links,
communication content

20 questions Tasks/activities/actions, sequencing
Rapid prototyping All types

Conflict Agents, constraints

Contradiction
and complication

Constraints, concepts, properties

Similarity Constraints, concepts1

Chance Concepts

In addition, the repertory grid can be applied to acquiring features of tasks by pre-

populating the grid with task-related attributes, or to acquire ”goodness” values for

constraints, using the ”possibility grid” approach [16] referred to in Chapter 10.

From this, it can be seen that acquisition of ”what” and ”how” knowledge is well

provided for by current knowledge acquisition techniques, but very few techniques are

specifically intended for acquiring other types of knowledge. Constraints (primarily
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WHEN knowledge), roles and responsibilities (WHO knowledge), networks and struc-

tures (WHERE) and rationales and justifications (WHY) are all poorly catered for by

existing knowledge acquisition techniques. The lack of a good technique for acquiring

networks and structures (unless they are taxonomies) is perhaps the biggest need.

There may be deeper reasons why it is difficult to design knowledge acquisition tech-

niques for perspectives that are associated with synthetic tasks - WHEN, WHERE

and WHY knowledge. The next two sections look at knowledge associated with these

perspectives in more detail, and will also look at the question of why HAT and HOW

knowledge seem to dominate the other perspectives

16.4.3 The link between WHEN and WHERE and determinable con-
cepts

The answer to the question regarding the association of WHEN and WHERE with

synthetic tasks is probably tied to the difference between determinate and determinable

concepts highlighted in chapter 3. Both time and spatial location are determinable

concepts – while one or two commonly used time intervals have real world correlates

(‘day’, ‘year’, and ‘lunar month’), most time intervals are arbitarily determined (why

should a day be divided into twenty four hours, for example?); and spatial location

is perhaps the ultimate determinable concept, requiring at least three and maybe as

many as six points on arbitrarily determined scales (distance measurements – one or

two points on each of three dimensions) to identify it accurately. So we see that

where a task requires dealing with determinable concepts, a solution typically has to

be synthesised rather than analysing an existing situation.

This link probably arises because determinable concepts can overlap much more easily

than determinate ones, and this increases the complexity of constraints and the size of

the search space. It’s much easier to envisage time intervals or spatial locations that

overlap with each other than people or objects that overlap; even processes rarely have

sub-activities that help to fulfil more than one higher level activity. In other words, it

is the size of the search space induced by determinable concepts such as time or spatial

location that require a synthetic task; if the search space is small, synthetic tasks can

usually be boiled down to analytic tasks, such as selection from a set of pre-defined
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options, or assignment of components to vacant slots.

What can we derive from this analysis? We can postulate that knowledge engineering

tasks that are heavily based on determinable concepts are likely to produce a large

search space, and therefore to require synthetic approaches. Perhaps this is the reason

for the popularity of neural networks and data mining in stock market trading and

other financial applications – not only is there a vast amount of data that needs to be

categorised, but financial value is a determinable concept (it’s a function of two other

determinable dimensions, supply and demand), and there are therefore no “natural”

value categories to use as a framework for analysis. The combination of large amounts

of data and the need for a synthetic approach leads naturally towards “machine learn-

ing” approaches such as neural nets or data mining.

Other determinable concepts include colour (based on three determinable dimensions:

level of red, green and blue light); temperature (with the exception of absolute zero);

physical parameters such as age, weight or velocity; and status. In fact, all measure-

ments based on the three spatial dimensions or on the fourth dimension of time are

ultimately determinable rather than determinate; so are all measures based on energy

levels – luminance, radiation, mass, and so on. Colour is fundamentally an energy-

based concept. It is perhaps worth distinguishing these “physically determinable”

concepts from “societally determinable” concepts such as value, status, and perhaps

even codes of laws. I do not intend to continue this line of argument to the conclusion

that the social constructivist epistemologists have reached – that because so much of

the ‘world’ is fundamentally determinable rather than determinate, ‘truth’ or ‘reality’

will be accorded only to those constructions on which most people of a social group

agree – for the task of knowledge engineers is normally to work within societal codes

(and in addition, within the knowledge-owning company’s codes of practice) and to

achieve better knowledge management within an existing agreed framework; but it is

worth considering that the problem faced by ontologists of boiling everything down

to “primitive” levels of detail (see chapter 3) may be insoluble in practice, because so

many apparently “primitive” concepts are determinable rather that determinate. For

practical purposes, knowledge engineers should be aware that they are likely to run

into difficulties and disagreements if they try to produce a classification of obviously
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determinable concepts, and they may find benefit in choosing a synthetic approach

instead.

It is perhaps this determinable/deterministic distinction that explains the popularity

of the WHAT and HOW perspectives, certainly for classification tasks such as the one

described in chapter 4. The answer is simply that WHAT and HOW concepts are de-

terministic, and therefore more widely accepted, than concepts from other perspectives

(roles from the WHO perspective are largely determinable, being defined by the list of

responsibilities associated with them). However, there are further questions that could

be solved by future research, though ... is all knowledge associated with these two

perspectives deterministic? How should non-taxonomic knowledge, and HOW knowl-

edge in particular, be best used for indexing? Is there a deterministic link between

deterministic WHAT knowledge and deterministic HOW knowledge?

16.4.4 Where is the WHY perspective?

The observation above also helps us understand the frequent absence of a WHY per-

spective that has been observed at all levels of knowledge modeling. Chapter 2 observed

that the answer to the question “why are you doing this?” or “why is this so?” can

be on two levels; it can be goal-based e.g. “I am doing it to achieve this higher level

goal” or it can be based on rationale and justification (e.g. “I am doing this because

it is industry best practice”). In that discussion, it was assumed that the reason the

WHY perspective was frequently not mentioned in knowledge modeling was that most

answers were goal-based, and since the goals had already been described at a higher

level of knowledge modeling, there was no need to repeat this.

But now we see that the rationale-based answer to “why” also has difficulties, because

knowledge engineers work within (often unstated) societal codes or organisational prac-

tices. So a rationale that states “I am doing this because it is industry best practice”

or “I am doing this because it fits the ethos of this organisation” inevitably leads on to

further questions: “Why is this believed to be industry best practice?” or “why does

the organisation have this ethos?”. In essence, the questions are asking “What are

the primitive absolutes on which this justification is based?”, and there often are no

primitive absolutes; instead, the justification is based on agreed societally determinable
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concepts such as ethics or laws (normally indicated by the answer “that’s just the way

things are”).

In a few cases, there is empiricial evidence that a particular approach is the best one

(see for example [122] who argue strongly for taking an evidence-based approach to

clinical practice in medicine); but equally often, the rationale for a procedure is not

even a societally agreed concept, but simply based on the opinion of one or two senior

individuals in the organisation, or on one or to past experiences of “experts” in the

organisation. Furthermore, it’s a well known psychological feature of human decision

making that generalisations are often based on only two or three examples (see [60].

The “why” perspective is therefore often not developed for two reasons: because it is

unprofitable to record “that’s the way it is” justifications, and because it’s sometimes

to the organisation’s or individual’s advantage to cover up the lack of an empirical or

otherwise well-justified basis for their actions.

There are some circumstances where the WHY perspective is explicitly recorded, and

is very beneficial. The consideration of empirical studies which make conflicting rec-

ommendations is one such area, as illustrated in chapter 2. Another area where the

WHY perspective is very useful is in representing the knowledge required to agree on

societal norms; see for example the PLINTH system [26], used to represent supporting

arguments and related statutes when developing building regulations. And then there

is the task of diagnosis, whose goal is to answer the question “Why is this system

not working?”. Diagnostic reasoning must be ultimately based on a cause-and-effect

model of how the system works, and it may be that the principles of cause-and-effect

are closer to being primitive absolute concepts than any other concepts that knowledge

engineers work with.



Chapter 17

Ontological issues

The issues that will be discussed in this chapter are as follows:

• How is it possible to determine if a domain item is a concept or a property?

• Is it possible to build a library of reusable domain models, akin to the library of

generic inference structures?

• Could ontologies and knowledge acquisition techniques support each other?

• Would a domain-specific ontology provide more support to knowledge acquisition

than the CommonKADS domain ontology? Conversely, would a domain-specific

ontology overly restrict knowledge acquisition?

• Where have domain-specific and task-specific knowledge acquisition tools been

successful? Why?

The definition of ‘ontology’ being used in this thesis is that it is an explicit specifi-

cation of a conceptualisation; in knowledge engineering practice, it defines what can

be represented in a computer system. From the pragmatic viewpoint of a knowledge

engineer, ontologies are a way of organising and standardising the terminology used to

describe the knowledge that is captured and presented in knowledge models. The Com-

monKADS domain knowledge classification scheme (concepts/properties/relations/expressions)

can be considered to be a simple, domain-neutral ontology.

313
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17.1 Ontological classification of domain knowledge: con-
cepts or properties?

The first issue that appears above is how to decide whether domain items should

be classified as concepts or properties. It may seem obvious that “objects” should

be classified as concepts while “attributes” of those objects should be classified as

properties. In Chapter 11, a simple “linguistic test” was suggested for distinguishing

concepts and properties, based on the part of speech (nouns and adjectives).

But it turns out that this “linguistic test” only works in the context of a particular

application. The truth is that “one mans concept is another man’s property” – in other

words, ontological classification is task-specific. Data, information or knowledge that

functions as a concept in one task might be a property in another. To give an example,

”colour” is likely to be a concept when the task is digitally editing a photograph (with

properties such as “density” and “hue”), but a property when the task is choosing a

car. Even a car – which is clearly an object – may not always be considered to be a

concept; if the task is to solve the “travelling salesman” problem, then the car itself

may be considered to be a property (of the salesman) rather than a concept.

This variety of function seems to strike at the heart of the assumption that a single

“ontology” of the entire world can be developed, in which every item is uniquely defined,

and has a unique ontological type (i.e. concept/property/whatever). If this assumption

is false, projects such as the development of Cyc [114] seem unlikely to succeed. But is

it possible to develop a single ontology of the world where items have unique definitions

but do not have unique ontological types? If so, then there is hope once again for grand

ontology projects.

Let’s consider this question by examining the ontological classification of “colour” in

more detail. First, let us try to define ‘colour’ according to “first principles”. ‘Colour’

is defined in the Shorter Oxford English Dictionary as

1. The quality in virtue of which objects present different appearances

to the eye, in respect of the kind of light reflected from their surfaces.

2. A particular hue or tint; often specifying one distinct from the pre-
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vailing tone.

3. Complexion, hue; freshness of hue

4. Colouring (especially in Art)

In the Cambridge Encyclopedia, “colour vision” is defined as

The ability to detect differences between light of various wavelengths by

converting them into colours. It is dependent on the presence of light-

sensitive pigments in the cones, each being sensitive to light of a particular

wavelength. The cones send coded information to the brain (via certain

retinal neurones and the optic nerve) for processing and colour appreciation.

In humans, the cones contain pigments most sensitive to red, green or blue

light.

From these definitions, it is clear that:

• Any coloured object has a colour hue, and (by extension) other properties such

as colour density;

• The “thing” that causes colour is light of a particular wavelength;

• The appearance of colours is dependent on the ambient light, and different people

may perceive colours differently.

So there is (in theory) a fundamental “ontology” of colour that can be universally

accepted. But very few ontologies define colour in terms of wavelengths of light because

such detail isn’t necessary for the task being tackled. It seems that ontologies define

concepts at different levels of abstraction from the fundamental definitions, where

the chosen level of abstraction is task-dependent. For example, digital manipulation

of photographs requires matching of colour hues and colour densities; if these are

properties that need to be considered, then colour must be a concept. So while it may

be possible to identify ‘primitive’ properties from the dictionary or “first principles”

definitions, an ontology that was based on such ”primitive” properties would rarely

be directly usable for problem solving, because it would not match the properties that

were important to the tasks.
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Is it possible to characterise the various levels of abstraction that can be used? If it is,

it may be possible to specify how any given ontological definition is derived from first

principles, and therefore to provide a link between any given ontology and a universal

(“first principles”, and therefore task-neutral) ontology of that domain. This is still a

topic for research, but the field has been opened up for debate by Nicola Guarino, in

his paper, “Some Ontological Principles for Designing Upper Level Lexical Resources”

[128], Guarino proposes that there are no less than nine levels of detail that might be

considered relevant, ranging from the “atomic level” through the “topological level”

and the ”biological level” up to the “social level”. It can be seen how each level can

be derived from the next higher level of detail.

If Guarino’s “nine levels” argument is correct, then it should be possible to develop a

‘grand ontology’ with unique definitions for each concept, at the “first principles” level,

and to link conceptual definitions in other ontologies to these universal definitions by

identifying the level of abstraction being used. So even if a suitable level of detail

cannot be agreed, differnet levels of detail can be identified. Guarino’s definitions of

the different levels also go some way towards establishing definitional properties for

ontologies.

17.2 Ontologies and re-usable domain models

A re-usable domain model consists of a set of concepts that describe a domain and

can be incorporated into any knowledge based system that deals with that domain,

whatever the task is. In theory, an ontology of the domain should provide all the

functionality that is expected from a re-usable domain model. In practice, however,

ontologies do not necessarily generalise well if the task they are being used for is

not similar to the task they were designed for. For example, an ontology of diseases

designed to support diagnosis might be re-usable for deciding on treatments for the

patient, but less useful for public health officials trying to prevent disease transmission.

There seem to be two reasons for this lack of re-usability. One reason is the concept-

vs-property issue discussed above; the level of abstraction selected for concepts in an

ontology varies according the type of task being tackled (e.g. digital manipulation of a
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photograph vs. identifying a car by its colour). The second reason is that the required

viewpoint on information – that is, the properties of concepts that are considered

relevant – also changes according to the task.

Here’s an example of viewpoints from the ESPRIT-funded KACTUS project [134]:

If one wants to re-use a notion like “heat exchanger”, it quickly becomes

clear that this term can have different meanings in different contexts. For

example, from an oil-platform design perspective the physical properties

will be the main emphasis: physical dimensions, types of connections, etc.

In a diagnostic setting functional properties such as the difference in tem-

perature between the different inputs and outputs are likely to be the prime

focus of attention. For dynamic simulation applications, behavioural prop-

erties such as mathematical properties of the heat exchange process would

need to be modeled in association with “heat exchanger”.

In other words, the requirements placed on an ontology vary according to the level of

detail required, and on whether the emphasis is on WHAT, HOW, WHY or some other

perspective on knowledge.

So is this argument leading to the conclusion that a separate ontology is required for

each of the thirty-six cells in the Zachman framework? Perhaps this is what might

be required in theory, but in practice this is unworkable. It is better to make some

compromises on the reusability of a single ontology than to try to develop thirty-six

ontologies for every domain.

So how many ontologies are needed? On the subject of levels of detail, the KACTUS

project proposed developing ontologies at four different levels:

Application ontology : An application ontology is simply an ontology used by an

application. It contains the information structures we use for building a software

system. It can be very specific for this application, or also have general features.

In KACTUS we are interested in the question how one can flesh out the meaning

of parts of an application ontology for future reuse, and how we can construct

(part of) an application ontology from existing ontologies.
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Domain ontology : Domain ontologies are ontologies that are specific for a particular

type of artefact. Example domain ontologies could be ontologies for ships, oil

platforms, and electrical networks. A domain ontology generalises over particular

application tasks in that domain. Thus, a domain ontology for ship design would

need to be independent of both a design assessment application, and of a design

construction application.

Basic technical ontology : Basic technical ontologies generalise over particular arte-

facts, and describe general features of artefacts. Basic technical ontologies usu-

ally define a viewpoint related to some physical process type: flow, heat, energy,

power, electricity. Such processes re-appear in many different technical domains.

For example, flow processes occur in both oil platforms and in electrical networks.

Generic ontology : A generic ontology describes a “top-level category”. One can

see a generic ontology as a basic mechanism for “carving up the world”. It is

related to the Aristotelian notion of categories. The main difference is that in

KACTUS we are not aiming at a complete set of generic ontologies, but are only

interested in those categories that frequently occur. Example top-level categories

that were identified are notions like physical, functional, and behavioural entities,

connectedness, part-whole, and topology.

No work is known on the number of perspectives that are needed as a pragmatic

minimum, although given that 80% of all successful KBS applications perform either

diagnosis or assessment tasks, it seems that the WHAT and HOW perspectives are

probably the most widely used.

The KACTUS project, whose purpose is to “develop methods and tools to enable reuse

and sharing of technical knowledge”, also considers issues relating to the primitives of

ontology specification languages, and the relationship of ontology definitions to software

engineering approaches, such as the ANSI/SPARC definition of databases. All of these

are described briefly in [134].

In summary, ontologies are theoretically re-usable for multiple tasks, but only if the

tasks tackle the same domain and the desired viewpoints/perspectives are the same

and the required level of abstraction is the same. This is rarely true unless the task
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being tackled is very similar to the task that the original ontology was designed for.

17.3 Ontologies and domain/task-specific knowledge ac-
quisition tools

The idea of using ontologies to support knowledge acquisition is an obvious one; for if an

immensely detailed (and relevant) ontology was used, acquisition of domain knowledge

would be reduced to determining which items from the ontology were present and

which were absent in the relevant expert knowledge. Yet this approach is unrealistic,

not only because of the sheer size of the ontology that would be needed to represent all

possible knowledge in even a narrow domain, but also because it does not take account

of the practicalities of knowledge acquisition. Knowledge acquisition is not only about

identifying items of knowledge but also choosing the appropriate level of abstraction

for each item of knowledge; it’s not only about determining what domain knowledge

is present in the expert’s knowledge but also about what is relevant; and it’s not only

about defining knowledge ontologically, it’s also about considering how that knowledge

will be applied.

There are, broadly speaking, three approaches that aim to make use of ontologies to

support knowledge acquisition:

• The first approach is to supply a tool that makes it easy for an domain expert to

define an ontology; this ontology can then be used to support knowledge acqui-

sition. A well known tool in this category is Protege [126]. Protege is intended

to be a tool which allows the user to construct a domain ontology, customize

knowledge-acquisition forms or enter domain knowledge; it is also a platform

which can be extended with graphical widgets for tables, diagrams, animation

components to access other knowledge-based systems embedded applications,

and a library which other applications can use to access and display knowledge

bases. Tools such as Protege may speed the process of ontology editing, but their

support for the conceptual task of defining an appropriate ontology is limited to

general techniques such as encouraging hierarchical classification of concepts.

• The second approach is to provide pre-defined ontologies at an abstracted level,
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so that each node in an abstract ontology represents a class, instances or possibly

a whole taxonomy in the domain knowledge. In other words, provide an ontology

at the level of the “basic technical ontology” suggested by the KACTUS project,

and use it as a guide to the creation or instantiation of a domain ontology. The

system that has tried this approach most thoroughly is CUE [182]. This approach

seems promising because of its similarity to the CommonKADS generic inference

models, but no empirical work on its usefulness (or potential restrictiveness) is

known.

A variation on ths approach has been to provide pre-defined ontologies for tasks

rather than domains. The most common task tackled in this way has been di-

agnosis (OPAL [117]; Emerald Intelligence’s Mahogany Help Desk; MOLE [57];

MORE [91]; and Carnegie Group’s Testbench) although other tasks addressed

include propose-and-revise design/configuration (SALT [123]) and design evalu-

ation (KNACK [106]).

It might even be argued that the task of classification is supported by tools such

as Protege, or by tools that support particular knowledge acquisition techniques

such as the repertory grid (e.g. NEXTRA, a front end to the Nexpert Object

expert system shell, or AQUINAS [14], a knowledge acquisition workbench),

although this argument does require stretching the definition of a “classified

ontology” to include “those distinctions that a repertory grid is able to make”.

• The third approach is a combination of the previous two approaches: a pre-

defined ontology is provided, but with appropriate training, experts are able to

edit the ontology.

A well-known tool that supports this approach is EXPECT [165], which is a task-

specific knowledge acquisition tool focused on propose-and-revise design/configuration

tasks.

A major experiment on this approach was carried out within the DARPA-sponsored

Rapid Knowledge Formation (RKF) project, in the domain of molecular biology

[173], using two different generic ontologies but the same domain. The results

(in terms of fast, accurate ontology development) were impressive, though the

required level of training for the experts in ontological concept definition proved
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to be higher than first thought.

Which of these approaches works the best? For experts with little or no understanding

of ontological terms, tools that support pre-defined ontologies would appear to be

recommended. But this requires careful tool selection by the knowledge engineer,

because the pre-defined ontology must fit the domain or task to be tackled. If the

task is non-standard in any way (e.g. a configuration task requires prioritisation of

components), then the “ontology editing” tools would seem preferable. Alternatively,

the knowledge engineer could use tools such as Protege to develop his own pre-defined

ontology-based knowledge acquisition tool.
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Chapter 18

CommonKADS and the
Knowledge Engineering process:
The Expertise Model

The next two chapters of the review consists of a detailed overview of the process of

developing a set of CommonKADS models for domain-specific knowledge. This chapter

focuses on the Expertise model, the next on the Communication and Design models.

The issues that are covered in this chapter are:

• How useful is it to apply CommonKADS models – or other knowledge models,

for that matter – prescriptively rather than descriptively? In other words, is it

better to start with a generic knowledge model and use it as a guide to what

knowledge should be needed to solve the task (a top-down approach) or to start

by analysing knowledge acquired through interviews or other methods and to

determine which knowledge model(s) it fits into? (a bottom-up approach)?

• Is knowledge engineering using CommonKADS a purely sequential process, or

are there feedback loops to earlier models?

• Is there any guidance on

– “correct” instantiation of generic inference structures?

– how to select the “right” inference step?

• What does a ‘bad’ Expertise model look like?

323
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18.1 Top-down or bottom-up knowledge modeling?

As with many issues that have been widely debated in computer science, both top-down

and bottom-up knowledge modeling have some advantages. Top-down modeling max-

imises re-use of previous knowledge and avoids the need to analyse acquired knowledge

that has little relevance to the actual problem solving task. On the other hand, it risks

missing out on knowledge that is relevant just because it is not expected; the issues

are similar to those debated in earlier chapters regarding the value of modeling as a

knowledge management technique. If a poor choice of generic model is made, top-down

modeling also risks forcing acquired knowledge into a ‘box’ that is not suitable for it.

Bottom-up modeling, by contrast, risks spending much time on acquisition and anal-

ysis of knowledge that is not ultimately useful, and may also become unfocused or

undirected, with knowledge acquisition sessions following the expert’s whims.

The supporters of both the top-down approach and the bottom-up approach have

recognised the strengths and weaknesses of their own approaches, and have suggested

modifications. Much of the discussion in this section is focused on using CommonKADS

top-down, and on guidance that is available on selecting the best generic inference

structure and on configuring inference structures that do not quite match the task

being addressed (or are not specific enough). A short section on “Assembling an

inference structure from components” considers the opposite viewpoint, showing how

bottom-up modelers may identify small components of inference structures that may

then be assembled into bigger structures.

The recognition of these weaknesses in each approach largely answers the question of

whether CommonKADS’ models should be developed sequentially or with loopback.

If the chosen approach fits perfectly first time – the top-down approach completely

instantiates a model with the expert declaring that all relevant knowledge has now

been acquired, or the bottom-up approach acquires all available knowledge and then

builds a suitable knowledge model from it – then no loopback should be required.

However, it wll be rare for either of these situations to apply. More frequently, the top-

down modeler will discover some knowledge that cannot be fitted into the generic model

and must return to the generic model and configure it; or the bottom-up modeler will
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identify a component knowledge model, only to realise that he does not have sufficient

knowledge to instantiate that model and must return to the expert. So looping back

should be considered the norm.

18.2 Top-down approach: Selecting and configuring in-

ference structures

This section will discuss the three stages involved in using a generic inference structure

to develop an instantiated inference structure within an Expertise model:

• selection of generic inference structures from CommonKADS’ library of inference

structures;

• configuration of inference structures to match specific knowledge-based tasks;

• instantiation of an inference structure to domain-specific knowledge

18.2.1 Selecting a generic inference structure

CommonKADS (and KADS before it) offers a library of generic inference structures.

This library has probably been CommonKADS’ single biggest contribution to the over-

all science of knowledge engineering. The library is indexed by task type; that is, the

library can be organised according to a taxonomy of generic task types. See Figure

18.1 for the first proposed version of this taxonomy [20].

Simple selection of a generic inference structure

Simple selection of a generic inference structure requires a knowledge engineer to iden-

tify the type of the knowledge based task that needs to be modeled, and then to

obtain a model from the library that corresponds to that task type. This requires an

understanding of the taxonomy of task types.

At the top level of the taxonomy is a distinction between System Analysis tasks that

require analysis of an existing state or artifact; System Synthesis tasks that require

creation of an artifact that did not previously exist; and System Modification tasks, a
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Figure 18.1: Taxonomy of task types

small number of tasks that are considered to combine analysis and synthesis. The first

two categories are decomposed further:

• Analytic tasks are classified as Identification tasks or Prediction tasks, depending

on whether a current or future state or artifact is being analysed. The Identi-

fication category contains inference structures for assessment tasks, for simple

classification tasks, and for a range of diagnostic tasks ranging from heuristic

classification to multiple fault diagnosis; the Prediction category includes a cou-

ple of inference structures for different varieties of predictive task.

• The System Synthesis category is broken down into categories of Planning and

Design. Inference structures for design cover several different approaches to de-

sign (transformational design, refinement design, etc.) as well as configuration

tasks; configuration is a subset of design, since the solution must still be synthe-

sised, but the design parameters are firmly fixed. Similarly, inference structures

for planning tasks include various approaches to AI planning and to scheduling.

Indexing according to task type can be very useful. At the higher levels of the taxonomy

of inference structures, the distinctions made were very powerful: for example, System
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Analysis tasks such as classification, diagnosis and assessment can be addressed using

backward chaining rules if desired, whereas System Synthesis tasks cannot use back-

ward reasoning as their sole programming paradigm, because to do so would require

representing a (possibly infinite) space of solutions. The distinction between planning

and design also tells the knowledge engineer immediately about the likely requirements

for temporal and spatial reasoning.

One way of helping knowledge engineers select the “correct” inference structure is by

treating the taxonomy of inference structures as a decision tree, and devising questions

about the problem being tackled that guide the knowledge engineer on which branch of

the “decision tree” to follow, eventually arriving at a recommended inference structure.

This approach was investigated by [108], and a prototype system was developed. If

a knowledge engineer asked the system for more detail, explanations were provided

based on the descriptions given in [20].

Refining selection of inference structures by type of result

While simple selection of a generic inference structure is often sufficient, there are

occasions where it’s difficult to identify precisely the best generic inference structure.

Choosing the “wrong” one rarely causes the project to fail, but it does mean that

a lot of extra work is done in configuring the inference structure to the problem.

Experience has shown that researchers usually agree on the task type of a knowledge

based task, but have difficulty in agreeing on the optimal inference structure for any

given application; a good example of this can be seen in the Sisyphus elevator design

project [68]. Four research groups tried to model the same set of elevator design

knowledge using CommonKADS, and managed to produce four inference structures

that appeared very different from each other.

One of the difficulties lies in the fact that a small change to an inference structure

may imply a large change to the problem solving approach. An example can be found

in chapter 7 (section 7.4.1), where changing the name of a single inference step (from

decompose to select) implies a change from a model-based approach (i.e. an approach

based on cause and effect reasoning) to a simpler approach based on pre-defining

expected results of tests. The reason for this was pointed out in 1997 by Joost Breuker
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[18], the author of the original taxonomy of task types: once a task has been identified

as a diagnostic task, a further refinement is needed based in the type of result required.

An inference structure that “decomposes” a system model expects to locate a faulty

component as its result, and so the machine is progressively “decomposed” into sub-

assemblies until a single faulty component is located – the tests that are run must

simulate the inputs and outputs to each sub-assembly, and so the overall approach

is model-based. In contrast, an inference structure that “selects” a system model

is using the Sherlock Holmes approach of starting with a set of hypothesised faults,

and progressively narrowing down that set; the faults may or may not be linked to

individual components.

Breuker proposes that there are three possible result types that may be desired. These

are:

1. Case – the state which the system is in;

2. Solution – the solution to the problem;

3. Argument – how the solution was derived from the case.

In a diagnostic task, faults correspond to cases, while components to be replaced (or

other repair actions) constitute solutions. It is sensible for IMPRESS to use the fault-

based Sherlock Holmes approach because there are several possible faults that are not

caused by components in the system (e.g. a dusty environment is considered to be

a “fault” if the dust gets into the plastic moulding machines); it would therefore be

difficult to represent these using a component-focused diagnostic approach. Ideally, a

generic inference structure that used a “select” rather than a “decompose” inference

should have been selected initially; in practice, I was not aware of this distinction

when I carried out the IMPRESS project, and so I merely changed the “decompose”

to a “select” when I configured the generic inference structure to the problem. It

seems likely that many other users of KADS and CommonKADS may have made

similar “modeling hacks”, which could account for the divergence in models seen in

the Sisyphus project.

For the record, an “argument” solution for a diagnostic task corresponds to the rela-
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tionship between the component and the faulty state. Argument solutions are perhaps

of most use in devising expedient solutions to problems; consider the following (true)

example of a diagnosis and recommended workaround:

Your computer crashes when you use the floppy drive. This is due to a

fault in the bus. This limits the number of system devices that can be

handled simultaneously; using the floppy drive adds another device, so the

system crashes. However, replacing the bus is uneconomic. If the machine

is rebooted into 16 colour video before using the floppy drive, that will

reduce the number of video devices being used, and so the floppy drive can

be used without crashing the computer.1

Here, the first sentence expresses the faulty state, the second sentence identifies the

component and the third expresses the argument. The fourth sentence expresses the

need for an expedient solution, and the last sentence uses the argument to devise a

workaround solution rather than a fix for the fault.

Breuker’s typology of results – case, argument and solution – is probably applicable to

other tasks apart from diagnosis; it is almost certainly applicable to all analytic tasks,

and may be applicable to synthetic tasks as well. It is therefore recommended that,

where simple selection is not sufficient for identifying the optimal generic inference

structure, the type of result desired should also be considered.

18.2.2 Configuring a generic inference structure

If an inference structure, once selected, could be used merely by instantiating its knowl-

edge roles to problem-specific domain knowledge, then the issue of configuration would

not arise. But in practice, few real-world tasks conform exactly to the inference struc-

tures contained in the CommonKADS library of inference structures; as suggested in

chapter 8, selection of an inference structure from the library is usually followed by

configuration of that inference structure (adding or removing a few inference steps or

knowledge roles) before finally instantiating it to the domain. If configuration only

1 My thanks to Richard Wheeler, formerly of AIAI and Starlab, for spending the hours necessary to
arrive at this diagnosis, and to allow me to read floppy disks again.
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involves removing components from a generic inference structure, then it may be that

some of the inference steps have been “pre-compiled” into static knowledge roles i.e.

all possible inputs to an inference step are processed through an inference step, the

set of all possible results is stored, and then the inference step no longer needs to be

performed during problem solving; a simple look-up of the set of all possible results

(the “static knowledge role”) is sufficient. This is actually quite a common feature of

knowledge based programming, and it can be seen in the description of the configu-

ration of the X-MATE inference structure in chapter 8. But if configuration requires

adding any inference steps or knowledge roles, as in the generic inference structure for

IMPRESS in chapter 8 where the “state of the machine” is added as a knowledge role,

then it becomes clear that the generic inference structure has failed to characterise the

problem completely.

A top-down approach to this problem is the “configurable inference structures” ap-

proach discussed in chapter 8. This approach uses principled (and recordable) trans-

formations, and seems promising for further development and refinement of the Com-

monKADS library of generic inference structures. It is also supported by the very good

definitions of inference steps given by Manfred Aben in his Ph.D. thesis [2]; he gives

a very good description of the expected inputs, outputs and function of each type of

inference step.

However, this approach has currently only been developed for assessment tasks [177]

(although a tree-based analysis of assumptions in diagnosis tasks [59] might also sup-

port ths approach), and it may not be able to cover all configurations that are needed

by a particular domain.

18.3 Bottom up modeling: Assembling an inference struc-
ture from components

Some researchers have tackled the problem of customisation by reducing the “grain

size” of generic inference structures; in other words, they propose that the library of

inference structures should be made up of inference components, each containing a

few inference steps, and the knowledge engineer should assemble a problem-specific



Review: CommonKADS Expertise Model 331

inference structure from these components. This approach is seen most clearly in the

“Components of Expertise” work of Luc Steels [161], but it is also a major theme

in the VITAL approach to knowledge modeling that originated from the ESPRIT

ACKnowledge project [51], and it is a feature of the “Generic Tasks” approach of

Chandrasekaran [27]. This idea even arises in post-project work on CommonKADS;

Joost Breuker [18] has proposed that the twenty or so task types that characterise the

CommonKADS library of generic inference structures should be cut down to six task

types from which other tasks can be assembled. For example, inference structures for

Repair tasks can be assembled from an inference structure for Diagnosis (which is itself

a specialisation of Assignment, in Breuker’s scheme of things) followed by an inference

structure for Planning (a specialisation of Design, according to Breuker).

It can be argued that this “assembly approach” to building inference structures tends to

support a bottom-up approach – acquiring some knowledge, determining which “com-

ponents of expertise” are present, and then assembling these into a larger inference

structure. So which method is better; top-down or bottom-up modeling? Unfortu-

nately, it is difficult to give an answer that applies to every case. Top-down modeling

does appear to have the advantage of providing some guidance from re-use of pre-

vious knowledge engineering approaches. However, it is advisable to do some initial

knowledge acquisition before making the decision whether to proceed top-down or

bottom-up. As a rule of thumb, if there is a lot of knowledge available about the

task (e.g. a textbook), then a top-down approach may be advisable to restrict the

knowledge acquisition to just the relevant factors; if the task type is unclear from the

initial knowledge acquisition, or appears to be a combination of task types, bottom-up

modeling may be advisable.

18.4 Instantiation of generic inference structures

Instantiating an inference structure requires the replacement of the generic names of

knowledge roles with domain-specific labels. For example, “universum of observables”

might be replaced with “set of automatic tests” in an application involving computer

diagnosis from a remote site. If the generic inference structure has been configured

correctly, then it should resemble the domain model schema (see section 8.3.1) in
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structure. If this is the case, then t may be possible to transfer the labels in the domain

model schema almost verbatim to the knowledge roles in the inference structure. But

even if this is the case, it’s worth double-checking that the knowledge roles match the

input and output types expected by inference steps. For example, a “select” inference

step must have at least one set as an input, and should produce a single element from

that set as an output. Such checking is usually done informally, though more formal

checks could be done using the definitions from [2].

18.5 Problem solving methods: the CommonKADS task
structure

It s easy to think that, having selected, configured and instantiated a generic inference

structure, the HOW component of the Expertise Model has been completed. However,

this is not the case, because a single generic inference structure may support more

than one problem-solving approach – which helps to explain the observation above,

that a small change in an inference structure may imply a large change in the problem

solving approach. The main purpose of the task structure of the Expertise Model is to

describe the problem solving method that has been chosen.

Researchers such as Richard Benjamins [9] have designed, described, and collected

problem solving methods (PSMs). A survey can be found in [33], which describes how

diagnosis problems can be solved by methods ranging from consistency-based diagnosis

through hierarchical diagnosis to abduction. As with generic inference structures,

methods can be selected from a library and configured, or constructed bottom-up. At

the University of Amsterdam, the construction of problem solving methods has been

treated as a knowledge-based task that can be modeled using CommonKADS; they

represent the construction of problem solving methods as a parametric design task

[174]. Parametric design is actually a simplified form of configuration, which is in turn

a simplified design task. In configuration, both the set of possible components that

must appear in the design and the set of possible connections between components

are fixed, thus simplifying the design task by reducing the range of possible solutions;

in parametric design, the actual connections between components are already fixed

in a given structure. Since the connections within CommonKADS’ problem solving
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methods are defined by the related inference structure, constructing a problem solving

method is indeed a parametric design task.

The generic inference structure for parametric design is therefore selected from the

library. The problem-solving method chosen was propose-and-revise. Some may con-

sider that selecting this method from a library, rather than constructing or configuring

it, undermines the argument that a system to support construction and configuration

of PSMs is needed; but in fact this argument is similar to the argument about top-down

vs bottom-up creation of domain-specific inference structures – sometimes bottom-up

construction will be needed, sometimes not.

A good worked example of the use of this system appears in [174].

The problem of configuring PSMs to a particular domain has been tackled by various

researchers by using a method-decomposition tree approach to describing a method,

which allows configuration of a method by re-constructing a method from different

components; using this approach, the configuration problem is therefore a specialisation

of the construction problem. See [9] or [163] for examples of this approach.

A scheme for describing problem solving methods

Research on selection of problem solving methods from libraries is still fairly sparse.

One piece of research that could potentially support the selection of problem solving

methods was carried out as part of the DARPA-sponsored High Performance Knowl-

edge Bases program. A set of attributes for describing the contents of a PSM library in

order to aid selection was developed [3]. These attributes were generated after survey-

ing a range of methods: SPAR [171], the CommonKADS library of generic inference

structures[147], CommonKADS’ competence theory [5], the Components of Expertise

approach (Steels [161]), the results of the EuroKnowledge ESPRIT project [61, 129],

the Cokace PSM library tool [36], and the “design patterns” approach to object oriented

programming [69]. In addition, discussions with other HPKB participants concerning

systems such as MAITA [52] and EXPECT [165] produced several useful suggestions

relating to executable PSMs. The attributes are divided into those that are useful for

selecting methods from the library, those that are useful for configuring methods, and
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those that are important when executing methods. The attributes are listed below,

with brief descriptions of each:

-----------------------------------------------------------------

PSM Capability Statement

Competence (to support the selection process)

Goal

Problem Type

Generic Solution

Solution Component

Solution Properties

Context

Rationale

Configuration (to support configuration and selection processes)

Domain Theory Requirements

Type

Field

Ontology

Representation

Submethods

Environmental Requirements

PSM Process Description (i.e. a description of the process

to support system design)

Input (input to PSM)

Output (output of PSM)

Resource (available KBS shells/toolkits/languages)

Precondition

Constraints (user requirements)

Agent

PSM Efficiency description (i.e. a description of an implemented PSM to

support system execution)

Search efficiency

Solution optimality

Coverage (how much of the potential/actual domain knowledge can be handled?)

Constraints on inputs

Representational power

Tool support

Method (pseudo code description)

-----------------------------------------------------------------

Figure 18.2: An indexing scheme for PSMs

Competence:

Goal The goal of a PSM. Specifying the goal requires a standard terminology. Goal

is a task feature in CommonKADS.

Problem Type The generic type of problem a method applies to. A set of six prob-

lem types has been identified (Breuker [18]) they are: { modeling, design, assign-
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ment, prediction, monitoring, diagnosis }. Problem Type is a component of task

knowledge in CommonKADS.

Generic Solution Types of solution that can be generated for problems. For exam-

ple, there are three generic solutions for diagnosis: { set of faulty components,

fault classification, causal explanation of fault }. An example of a fault clas-

sification in a medical domain is an infection, following Bredeweg [17]. Other

problems will add to this set - generic solutions will be problem specific. Generic

Solution is a component of task knowledge in CommonKADS.

Solution Component Three solution components have been identified (Breuker [19])

{ conclusion, argument structure, case model } The argument structure justifies

the conclusion (as in a proof), while the case model explains the data. These

components are not problem specific.

Solution Properties Solution properties are properties that hold between knowledge

roles in the conceptual model of a PSM (some knowledge roles are also inputs and

outputs of the method as a whole). Example properties of diagnosis methods are:

consistency between complaints and diagnosis, consistency between complaints,

observations and diagnosis, minimality of the explanation, and more generally,

optimality of the solution. These Solution Properties were identified by Akker-

mans [5] for CommonKADS models (but were not used as task features).

Rationale Rationale includes a textual description of why and when the method

might be used. The conceptual model of the method (the inference structure

in KADS) could be used to explain the problem-solving process. Rationale is a

feature of indexing schemes for reusable software components.

Configuration:

Domain Theory - Type The type of the domain theory e.g. a causal theory. Knowl-

edge types are a similar task feature in CommonKADS.

Domain Theory - Field The field of knowledge of a domain theory, e.g. medicine.

Application field is a feature in the Cokace library tool.
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Domain Theory - Ontology The ontology of the domain theory. Ontology is a

feature in the Cokace library tool.

Domain Theory - Representation The language in which the domain theory is

represented.

Submethods A specification of submethods required in the configuration of this

method. Submethods can be specified using the same categories that describe the

main method – submethod descriptions are embedded in method descriptions.

Environmental Requirements A characterisation of the operating environment of

the KBS. Environmental conditions are a task feature in CommonKADS.

PSM Process Descriptions: The following categories can be found in process mod-

eling.

PSM - Input Data input to PSM. Form, content and time pattern of input are task

features in CommonKADS.

PSM - Output Data output by PSM. Form, content and time pattern of input are

task features in CommonKADS.

PSM - Resource Resources used during execution of PSM. Costs are a similar task

feature in CommonKADS.

PSM - Precondition Conditions that have to hold before a PSM can be executed.

PSM - Agent Agents involved in the execution of the method.

Search efficiency : does this method use informed or uninformed search? In some

cases, the problem space is sufficiently small that the difference is not noticeable;

in other cases, good search techniques can have a significant effect on the efficiency

of the system

Solution optimality : if there is more than one possible solution, does this method

find the best solution? If not, how close to the best solution does it typically

get? Does it even find more than one solution?
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Coverage : how comprehensive is the system’s knowledge? For example, in constraint-

based search, does it take account of all possible constraints? Does it know which

constraints can be relaxed if there are too many constraints to find any solution?

Note that this refers to the capability of the method; so if the problem was to

choose between alternatives (let’s say insurance schemes), and the system only

had domain knowledge of a few insurance schemes, this is not a problem with the

coverage of the PSM. However, if there were three different types of insurance

scheme, and the PSM only had enough procedural knowledge to analyse two

types correctly, then this is a coverage problem.

Constraints among inputs : These will be most important where the system is

taking a stream of inputs (e.g. in a process monitoring task). Constraints may

include timing conditions, distributions, accuracy, reliability, and interruptibility.

For example, a PSM for monitoring and predicting the health of a cardiac pa-

tient might have constraints on the maximum time between inputs; inputs from

several different physiological sensors, with more frequent inputs from sensors

near the heart; a minimum accuracy of 95% from each sensor; an expected reli-

ability of 99% from each sensor; and some inputs might require invasive surgical

procedures, implying very low interruptibility.

Representational power : Can the method represent temporal or spatial informa-

tion, and what ontology does it use to do so? Can it represent events, actions or

states? Can meta-level information be represented?

Tool support : Is there a software tool available that eases, or fully automates,

instantiation of a PSM with a new set of domain knowledge?

Method A description of the approach taken by the implementation, in pseudo-code,

logic, or whatever.

An example of the application of these attributes to one PSM is given in [3] and is

reproduced in Figure 18.3.

These attributes appear to provide a classification scheme for problem solving methods

that should prove very useful in helping knowledge engineers describe which method

to select.
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-----------------------------------------------------------------

Cover and Differentiate for diagnosis

Competence

Goal :diagnosis

Problem Type :{diagnosis}

Generic Solution :fault-cause

Solution Component :{case-model}

Solution Properties :consistency(Complaint,

Diagnosis)=True

Rationale :’’This method should be used when a

causal theory of the behaviour of

the system is available. The ‘cover’

inference has input knowledge role

‘Complaint’ and output knowledge role

‘Hypothesis.

[Complaint]->cover->[Hypothesis] ...’’

Configuration

Method-Ontology :causal-theory-of-behaviour

Domain Theory

Field :{motor-vehicles}

Ontology/Mapping :{{engineering-Cyc, equality)}

Representation :CycL

Submethods :{}

PSM Process Description

Environmental :software-installed(Cyc)=True

Resource Constraints :cpu-cycles-free (99,%)=True

Actor Constraints :currently-executing(Cyc)=True

World Constraints

Data Input :(Complaint, <set-of-concepts>)

Data Output :(Diagnosis, <concept>)

Sub-activities :{}

-----------------------------------------------------------------

Figure 18.3: An example capability description

18.6 A ‘bad’ expertise model

What constitutes a ‘bad’ expertise model? This question can best be answered by

giving an example of a ‘bad’ model. The example comes from one of the publications

of the KADS-II project – the original CommonKADS report on applying the Design

Model [55]. The application was air crew flight scheduling. Normally, one would expect

to see a domain model that identified tasks (in this case, flight segments) and their

properties (time, duration, skills needed, etc.), and an expertise model, perhaps based
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on a generic inference structure for configuration or scheduling, that included inference

steps that demonstrated how to match the constraints of tasks against an existing

schedule and detect any conflicts that arose. However, in this example, one of the

domain models in the Expertise Model included a concept of “the best return flight

for each outward flight”. In other words, much of the reasoning about flight matching

was “pre-compiled” into this concept. This is bad modeling practice for the following

reasons:

• It would be normal to deduce this concept from constraints such as turn-around

time, obligatory crew rest periods, etc. rather than to hard-wire it, in case there

are unusual circumstances which affect the best matches;

• Creating this concept means there is no need to represent knowledge about how

the matches are made, and so key inference knowledge is not recorded.

In the language of CommonKADS, the concept of “the best return flight for an outward

flight” acts as a static knowledge role in the inference structure. It’s not unusual for

some inputs to the task to be pre-compiled into static knowledge roles, but this is

not normally done with concepts that form key outputs of the task. By creating a

static knowledge role from an output concept, most of the inference structure has been

rendered superfluous.

It turned out that there were ‘political’ reasons for this knowledge structure: the knowl-

edge engineers wanted to avoid disclosing, in a publicly available document, unofficial

and sensitive knowledge about the actual allocation process used [personal communica-

tion]. However, it resulted in a good example of bad knowledge modeling practice. The

models should be perspicacious, so that the reasoning that is carried out is reflected in

the models and can be examined and linked to other models easily.

18.7 Issues affecting inference knowledge: summary

Overall, it appears that the process of using a model from CommonKADS’ library of

generic inference structures has more intricacies and more pitfalls than might be ex-
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pected at first sight. Having said that, many knowledge engineers have managed to use

these inference structures and associated problem solving methods to model knowledge

and build systems successfully; it seems that although these inference structures may

be difficult to use perfectly, they can bring benefits even to novice knowledge engineers.



Chapter 19

CommonKADS and the
knowledge engineering process:
Design and Implementation

The issues that are covered in this section are:

• What features in a system level Communication model suggest that certain sub-

tasks should or should not be carried out by a user?

• How should good design decisions be made when creating the Design Model?

The chapter also looks briefly at the stages of knowledge engineering that follow design

modeling.

19.1 Communication Modeling

The Communication Model is used to model the communication that takes place within

a problem solving task, and to assign subtasks to agents. At the System level, the

agents may be the user, the system, or the two working together.

CommonKADS does not give a lot of guidance on human factors issues. However,

deciding whom to allocate a particular task to depends largely on the “interface func-

tion” being performed. It would be very helpful to define a standard set of ”interface

functions” that would be specified in the final stage of communication modeling and

341
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could be directly used in design modeling (see chapter 12). As a guideline, I will sug-

gest that all interface functions should specify at least three aspects of the information

being communicated:

• Whether the information is being communicated with a user, a database, or any

other type of IT system. If no information is being communicated to or from

a user, the task should (obviously) be allocated to the system; conversely, any

communication to or from the user requires user involvement.

• What the type of the information is (text, integers, real numbers, Web addresses,

or whatever). If the system requires input of unrestricted text, this will probably

be considered a task for the user alone. If the system requires input of multiple-

choice values or other restricted inputs, this should probably be assigned to the

user and the system working together, especially if the system also performs some

kind of error checking on the input.

• Whether the communication will be of a single value, a list, an array, or a set

of values. This information is of more use in system design than in subtask

assignment, but it may have some implications for the latter; for example, if the

input consists of a very long list, or a highly structured array, a good designer

will search for ways to obtain such information from an online source rather than

forcing the user to spend a long time inputting the relevant data.

19.2 Design Modeling: From Knowledge analysis to a
KBS Design Specification

What constitutes a good design for a knowledge based system? Schrooten & Duursma

[151] identify a number of principles drawn from the AI literature:

• Represent all knowledge explicitly;

• Keep elements of the knowledge base as independent and modular as possible;

• Separate the knowledge base from the programs that interpret it;

• Use as uniform a representation as possible;
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• An object-oriented paradigm offers the most flexibility;

• Exploit redundancy.

The CommonKADS Design Model allows explicit consideration of design decisions,

and representation of decisions made. The Design Model resembles the other mod-

els in CommonKADS because it recommends step-by-step transformation of concepts

into more concepts. If the knowledge engineer chooses to use the Expertise Model as a

basis for the Design Model (which is encouraged because doing so will re-use existing

knowledge structure, will typically fulfil the principle of independence and modular-

ity, and may fulfil other principles of good design too) then it will also take different

perspectives on the design; there will be separate components of the Design model

for inference steps (“how” knowledge), knowledge roles (“what” knowledge) and com-

munication (“where” knowledge). However, it is important to consider how decisions

made in one perspective will affect another perspective.

Chapter 12 puts the Design model into practice by discussing the three stages of

building the Design Model – Application Design, Architectural Design and Platform

Design – and then providing examples. The issues raised by this chapter are:

Stage 1: Application Design At this stage, it is necessary to decide whether the

design will be primarily based on functional decomposition, object-oriented de-

composition, or a known AI paradigm. The issue is in determining which ap-

proach is best for a particular problem.

Stage 2: Architecture Design There are two issues here: firstly, assessing the pros

and cons of a “probing questions” approach to making architectural decisions;

and secondly, considering the adequacy of the languages proposed by Com-

monKADS for representing detailed application design and detailed architectural

design.

Stage 3: Platform Design The issue here is determining how to match correctly

the capabilities and strengths of a programming tool to the design, and adapting

the design to the strengths of the tool.
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The first two issues are discussed below; the remaining two issues are covered well by

other authors, and a brief review of their work is provided.

19.2.1 Application Design: Functional, Object-Oriented, or AI Paradigm?

The discussion in section 12.2.1 suggests that the main criterion for determining

whether to use functional decomposition, object-oriented decomposition, or a recog-

nised AI paradigm is the degree of effort that has been put into the various components

of the Expertise model. If the Expertise model contains many domain concepts and

relations but only a few inference steps, then object-oriented decomposition is the pre-

ferred approach to application design; if the richest knowledge in the Expertise model is

in the inference structure, then functional decomposition is recommended; and in some

circumstances, the Expertise model is effectively discarded in favour of a recognised

AI paradigm.

Assuming this advice is sound, the question of AI paradigms should be discussed

further. Why should any knowledge engineer choose to discard a (presumably) good

set of knowledge models? To answer this question, I will look at one AI paradigm –

model-based reasoning – in the context of three well known expert systems: MYCIN,

CASNET and INTERNIST [90].

MYCIN, CASNET and INTERNIST are all knowledge based systems that tackle di-

agnostic tasks (indeed, all tackle diagnosis in the same domain - medicine), but they

are implemented very differently. MYCIN is a backward chaining rule based system

that uses certainty factors for diagnosing bacterial infections; CASNET uses a multi-

layer “findings influence hypotheses” approach to diagnose glaucoma, an eye disease;

and INTERNIST uses a large object-based model to represent “the whole of internal

medicine”. It could be argued that the three systems used different problem solving

methods for diagnosis, and should therefore have drawn on different inference and

task structures from the CommonKADS library; however, this explanation is not only

unproven, but also nowhere near powerful enough to explain the magnitude of the

differences between these systems.

What has occurred is that major differences have arisen at the design stage; MYCIN
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has effectively followed a functional decomposition approach, while both CASNET

and INTERNIST claim to use the AI paradigm of model-based reasoning. MYCIN’s

knowledge is “shallow” knowledge linking combinations of symptoms with diseases; all

its knowledge has been represented in (backward chaining) production rules. CAS-

NET chose to encode explicit relationships between findings and hypotheses (i.e. the

acquired knowledge also linked symptoms to diseases but in a “deeper” way); when

evidence is found for a “finding”, a weight is attached to (or occasionally subtracted

from) a linked “hypothesis”, in much the same way that simple neural networks oper-

ate.1 The end result is a system that drives its reasoning based on relationships from

the domain knowledge, either by propagating knowledge about new findings (symp-

toms) to hypotheses (diseases or disease states), or by determining what symptoms

must be checked for to confirm or rule out a particular hypothesis; in other words,

CASNET’s “deep” representation of knowledge supports both forward and backward

reasoning, which seems to reflect the way that doctors operate. As for INTERNIST,

its developers decided that, to represent the processes of internal diseases and medicine

accurately, it was necessary to simulate the cause-and-effect processes of diseases and

medicines, and then to perform reasoning based on that simulation. In other words,

INTERNIST’s knowledge is about as “deep” as knowledge can get, because it aims

to performs explicit simulation of physiological processes. This knowledge is (strictly

speaking) neither domain nor inference knowledge for the diagnosis of diseases; instead,

it belongs to a more detailed level of knowledge2 that doctors typically fall back on

when their standard practices prove inadequate. As a result, while INTERNIST can

support different types of reasoning, different types of task, and can represent many

different diseases (INTERNIST claims to handle about 80% of “internal medicine”),

it required an enormous effort to construct it, and powerful computers to run it.

It can be seen that while ease of modeling knowledge is probably the most important

factor in determining a suitable application design, it is by no means the only factor.

CASNET chose to represent relationships between symptoms and diseases explicitly

in order to represent doctors’ reasoning better, while INTERNIST chose a simulation-

based approach because in a complex system such as the biological processes within a

1 CASNET also has some hypothesis-to-hypothesis links.

2 See section 2.6 for a discussion of levels of detail in knowledge.
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human, it is difficult to predict all the outcomes of a single event without simulating

the processes. In other words, model-based reasoning, to a greater of lesser level of

detail, should be used when the complexity of the system or the depth of reasoning

required is so great that its benefits outweigh the extra efforts required to build the

system.

A similar argument could be made for other AI paradigms: for example, it could

be argued that constraint-based reasoning should be used where there are so many

constraints on a process that it is difficult to represent the effects of all constraints

without reasoning about them explicitly, and qualitative reasoning should be used

where there is so much uncertainty about quantities that no meaningful conclusion

can be drawn without using qualitative reasoning.

19.2.2 Architectural Design: Probing questions

The “probing questions” approach does seem to be a promising one, especially if par-

ticular questions can be tied to particular stages of decomposition; in other words,

it’s necessary to categorise the probing questions in order to determine which ones

are most applicable to each stage of development. The probing questions approach

has been developed further, and implemented, by Colin Macnee ([120]; see also [98]).

Macnee developed his own categorisation of probing questions:

Knowledge Structure – (a) domain objects and relationships

Knowledge Structure – (b) inferences and generic tasks

Validity of conclusions

Solutions

Data

Dialogue & explanation

Computational efficiency

Development, maintenance & expansion

It can be seen that parts of his classification correlate with the three main components

of the Design model (domain objects and relationships; inferences and generic tasks;

dialogue & explanation) but other parts concern topics that the experts he talked to

deemed worthy of detailed investigation. It may be that these are the areas that trigger

design differences such as those found between MYCIN, CASNET and INTERNIST;

for example, the ratio of data to solutions acts as a simple heuristic for deciding whether
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to consider forward chaining (few data, many solutions), backward chaining (many

data, few solutions) or a model-based/constraint-based approach (many data, many

solutions).

Macnee’s collection of probing questions has both strengths and weaknesses, which

reflect the strengths and weaknesses of many an AI system. The strengths lie in the

ease of use and ease of understanding of the questions; a rule based format can be

understood readily, and phrasing the questions in this way ensures that any terms not

understood by a knowledge engineer can be identified within the rule-based format

and looked up quickly. The weaknesses derive mostly from the “shallowness” of the

knowledge; like MYCIN, there is almost no explanation of the recommendations; and

if an unexpected set of circumstances arises, rule based systems can offer only a little

advice whereas a simulation-based system might be able to work out the answer from

first principles. On the whole, though, this set of questions represent a significant

advance in available guidance for knowledge engineers.

19.2.3 Adequacy of CommonKADS’ representation languages for the
Design Model

It is difficult for me to comment authoritatively on the adequacy of the languages rec-

ommended for detailed application design and detailed architectural design in Com-

monKADS, since I have never found a need to represent a design in that level of

detail; the graphical models have always proved sufficient for me. Furthermore, the

main worked example published during the KADS-II project is based on the flight

scheduling knowledge base that was used as an example of a ‘bad’ expertise model in

the previous chapter [150]. However, the language does appear to have the benefit of

clearly identifying design decisions that have been made, which promises some benefits

for development and future maintenance of the system.

19.2.4 Platform design: Matching design model characteristics to
particular tools

Robertson [141] [98] makes use of the results of probing questions to make recom-

mendations about suitable tools for KBS implementation. His aim was to select the
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simplest (and, usually, cheapest) tool that was capable of handling all the knowledge

representations and reasoning techniques required. He found that the choices made

at the stage of application design had the biggest effect on tool selection; functional

decomposition tended to favour a rule-based implementation, object-oriented decom-

position favoured an object-oriented implementation, and AI paradigms favoured tools

that are specialised for those paradigms. He also found that certain probing questions

had a major effect on selection; for example, the question about the ratio between data

and solutions is often a strong indicator of the need for forward or backward reason-

ing. Some tools are simply not capable of supporting one or other of these reasoning

strategies.

The main features by which tools were differentiated were, according to Robertson:

Knowledge representation – rules, objects, both, other

Inference types – data-driven and/or goal-driven reasoning

Inference control – breadth-first search, depth-first search, other

Uncertainty – numerical methods, truth maintenance systems

Interfaces – to the developer, to other systems and the user

Knowledge acquisition support

Numerical functionality

Extendability

Runtime options

Security

Physical environment – development hardware, delivery hardware, operating system

A detailed analysis of each of the above features could require an entire textbook, and

so will not be attempted here. Readers who are interested in this topic should note

that the current “state of the art” largely focuses on tools written in Java or other

Web-based languages, such as the Java Expert System Shell [67].

19.3 Implementation and beyond

CommonKADS’ models end with the Design model; the task of implementing a KBS

is not directly supported by any recommendations from CommonKADS, apart from

the project management lifecycle models. In this section, a brief review will be given

of the tasks that remain to be performed between completion of the Design Model and

completion of a knowledge based system.
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19.3.1 Implementing a knowledge based system

The skills required for good implementation of KBS are much the same as the skills

required for good implementation of any software project: planning, milestones, docu-

mentation, modularity, etc. Knowledge engineers who have used CommonKADS would

be advised to use the models they have developed to assist them in these tasks. My

own practice is to divide up the reasoning component of an implementation into a

number of files, where each file represents a single inference step from the Expertise

Model. This ensures modularity (since each inference step is independent of others),

completeness, and ease of verification (because the inputs and expected outputs of each

step are defined). It has also been suggested in [103] that some models can act as user

interfaces for systems.

19.3.2 Verification and validation of knowledge based systems

After the implementation is completed (and preferably also at stages during the im-

plementation), the question of verification and validation arises. Verification of

knowledge based systems is checking that the knowledge is correct, (“doing the right

thing”); validation ensures that the system’s design reflects its design requirements

(“doing the thing right”). Verification of knowledge based systems requires checking

that the system’s performance matches the acquired knowledge, which is greatly sim-

plified by the existence of a set of models such as those produced by CommonKADS.

It should also require checking the accuracy of acquired knowledge (i.e. the contents of

the models), but in practice, informal approaches are often used, such as peer review

or having the expert sign off the models as correct. Validation, however, can partly be

automated within knowledge based systems; [131] and [62] show how the conditions

of rules can be encoded in a matrix which is then analysed to determine if there are

any useless rules (their conclusion is not used in any rule conditions), inaccessible rules

(their condition is not concluded by any other rules, either directly or via user inter-

action), or circular rules (where one rule states “if A then B” and another states “if B

then A”).
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19.3.3 Delivery and installation

As with implementation, the techniques required for this are similar to any software

project. It’s worth noting that KBS are often designed to run locally on desktop ma-

chines rather than running on servers and being accessed by many users simultaneously;

if a client-server architecture is desired, care must be taken to select a programming

tool that supports this. Examples of such tools include Nexpert Object, the Aion

Development System, and the Java Expert System Shell [67].

19.3.4 Maintenance and decommissioning

The delivery of the system does not end the development of a knowledge based sys-

tem. The knowledge has to be kept up to date, which is effectively a full knowledge

engineering process of acquiring new knowledge, analysing it, and implementing the

resulting changes. It is here that the use of CommonKADS really shows its benefits,

for if maintenance simply involves some small changes to a few existing models, it’s

easy to see what parts of the implementation should be changed and what should not,

and it’s easy to create a new set of consistent and accurate documentation. It’s wise

to allocate 5-10% of a knowledge engineer’s time to maintain each system that the

company has in use.

Decommissioning is the process of phasing a system out of service. Here again, the

principles to follow are the same as for other software engineering projects. The golden

rule is, don’t turn off the old service until the replacement service is known to be

working. This often involves parallel running of the old and new services for a few

weeks or months.

19.4 Summary

We have seen that the CommonKADS Design Model is a useful way to record design

decisions, but that the decisions that must be made are wider-ranging than the three

steps in the model might suggest. Application design – deciding whether to use an

AI paradigm or to decompose the Expertise model – is dependent on an assessment
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of the level of complexity required of the knowledge and of the reasoning, which is in

turn dependent on user requirements and organisational goals that are more likely to

appear in the Communication or Organisation models than in the Expertise model.

Architectural design is dependent on so many factors that the “probing questions”

practically form a knowledge base in their own right. And platform design is far from

being the end of the knowledge engineering process; implementation, verification and

validation, installation and maintenance must all be considered.

And yet the Design model has the advantage that, simply by ensuring that design

decisions are recorded, it prompts the knowledge engineer to carry out many of these

steps; it is also relatively lightweight, for it does not require the production of a large

number of complex diagrams. On balance, therefore, the Design model is a worthwhile

addition to a knowledge engineer’s toolbox.
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Chapter 20

Summary and future work

This thesis has demonstrated how a framework for representing information knowledge

can be applied, and has been applied, to assist in both knowledge management and

knowledge engineering. A number of suggestions have been made for future work on

developing these methods further. These are summarised below.

20.1 Suggestions for future work: knowledge manage-

ment

This thesis has suggested that field of knowledge management is, in fact, a collection

of diverse methods grouped under a single heading. The biggest difference is between

“cognitive” methods (typically computer-based decision support systems) and “con-

structivist” methods (typically facilitation of personal development or group knowledge

sharing).

Research in this area is sparse, and so a number of suggestions are made for future

work. These are:

• How is knowledge communicated within groups, and between groups and indi-

viduals? Can this communication be enhanced by any method? This thesis has

suggested using the perspectives of the Zachman framework as a basis for a struc-

tured dialogue, but it is not known how effective that would be. Some general

arguments are made for the pros and cons of apprenticeships, simulations, and

lecture-based training courses, but translating these ideas into effective knowl-
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edge communication techniques seems to be a fruitful area for future research.

• What incentives are effective to persuade individuals to update their own knowl-

edge?

• What are the goals of a knowledge management project that would match well

with either a cognitive or a constructivist approach?

20.2 Suggestions for future work: knowledge engineering

The suggestions for future work in knowledge engineering focus on the knowledge itself

in more detail.

• Can structured interviews for knowledge acquisition be structured using the per-

spectives from the Zachman framework?

• How can WHY knowledge be used more effectively? Are there good modeling

techniques for representing WHY knowledge? Can decision trees be used as a

representation for WHY knowledge?

• Is knowledge associated with the WHAT and HOW perspectives always deter-

ministic? Is there a deterministic link between deterministic WHAT knowledge

and deterministic HOW knowledge (which might appear in a generic inference

structure), or are such links determinable?

• Can non-taxonomic knowledge, and HOW knowledge in particular, be used for

indexing? If so, how?

20.3 Suggestions for future work: ontology

It is hard to distinguish questions that affect knowledge engineering from questions

that affect ontology, but some suggestions for future work are clearly more related to

ontology.

• Could the knowledge acquisition technique of cluster analysis be used to generate



Summary 355

a “natural” ontology? (This develops the argument put forward in chapter 17,

that repertory grid tools can be used to generate a classified ontology).

20.4 Suggestions for future work: knowledge acquisition

The suggestions below focus on better linking of common knowledge acquisition tech-

niques with CommonKADS’ models.

• For the card sort, the classification of properties into relational roles, qualities,

part relations and natural concepts could be extended by using the mereology

(classification scheme for part relations) suggested in [70].

• For the card sort and the repertory grid, Woods’ linguistic test could be used

when dimensions are created. While this might restrict the breadth of the ac-

quired knowledge, it should produce a more coherent set of dimensions, which

is particularly important in the repertory grid where dimensions are compared

against one another. The effort of finding a correct name would also be trans-

ferred from the knowledge engineer to the expert by this technique, which may

lead to further knowledge acquisition as the expert reconsiders the conceptual

structure of his knowledge.

• For transcript analysis, there are many possible improvements:

– Use a chart parser to obtain linguistic information, permitting extensive

automatic identification of properties, and perhaps of relations;

– Feed back linguistic information obtained from a knowledge engineer to the

parser or lexical tagger, to improve accuracy;

– Define and apply a “coding schema” [189] – a set of phrases that are known

to indicate the presence of certain ontological types;

– Use questionnaires or structured interviews to obtain highly structured tran-

scripts that are written in simple declarative sentences. It should be possible

to parse these transcripts and classify the knowledge contained therein with-

out human intervention (see [86]).
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• For knowledge in the inference and task levels of CommonKADS, define a map-

ping between knowledge acquisition techniques which acquire procedural knowl-

edge (such as protocol analysis, or the “20 Questions” technique [152]) and Com-

monKADS inference steps and primitive tasks. TOPKAT already supports a

simple decision tree editor.

The list of questions above shows how knowledge management, knowledge engineering

and ontology engineering are disciplines that touch subject areas far beyond com-

puting. Research in many branches of psychology, cognitive science, business studies

and librarianship is all relevant. It seems that wherever there is knowledge, knowledge

management may be of benefit; and this thesis postulates that wherever there is knowl-

edge management, the Zachman framework, with the assistance of perspectives such

as Binney’s knowledge management spectrum and Boisot’s I-Space model, supplies a

structure for carrying out the task(s) effectively.

20.5 Partial re-use of ontologies

This thesis has answered many questions concerning the use of multi-perspective mod-

els to support knowledge management and knowledge engineering. However, two big

questions remains unanswered. The first is: are these methods necessary in their en-

tirety, or can they be used in part? The discussion surrounding Pragmatic KADS was

intended to show that CommonKADS can indeed be used in full or in part, as dictated

by the demands of the project. It has also been proposed that ontologies could be sub-

ject to the same process; either the ontology could be modularised by the developer, or

the ontology could be “winnowed” [6] when it is used in order to restrict its size. The

motivation for this is that inclusion of multiple ontologies, which may exist at more

than one of Guarino’s nine levels of ontology (e.g. using an engineering ontology may

require inclusion of an ontology of mathematical principles), can create unmanageably

large ontologies within an application. Whether such an approach would benefit from

identifying ontologies as belonging to one or more of Guarino’s nine levels, and choos-

ing only to include those terms that exist at a particular level, is another question for

future research.
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20.6 Methodology or anarchic development?

The second big question that has not been answered is: are these methods necessary

at all? Can knowledge management solutions or knowledge engineering systems be

developed by other means – and if so, are there benefits to the other approaches?

An alternative model for developing knowledge systems is the “knowledge services”

model. This approach is analogous to the “blackboard systems” that were developed

in the early days of artificial intelligence. In blackboard systems, a central data store

records a problem to be solved and its current state, and sends out a request to dis-

tributed knowledge-based problem solvers to ask if they can contribute anything to

change the current state of the problem. If the state can be changed, one problem

solver may be selected to change the state; the new state is recorded centrally; and the

process repeats until the desired goal state is reached.

The knowledge services approach is similar, but with one key difference; the individual

problem-solvers are not written or even chosen by a single developer. Instead they

are developed according to perceived need by anyone who wishes to contribute, with

or without reward. Marty Tenenbaum in his article AI Meets Web 2.0: Building the

Web of Tomorrow, Today calls this “anarchic” development resulting in “collective

intelligence”, and compares it to the development of other Web Services. Examples of

such knowledge-based services include installable services such as Book Burro [164],

which is triggered by a search for a book on Amazon.com, and searches for prices for

the same book at other web sites; shared knowledge sources such as Java libraries; and

knowledge bases built by multiple (voluntary) users, such as the Open Mind project

[162]. Tenenbaum argues that each of these is simply a knowledge-based extension of

an existing common Web activity or service: looking up multiple e-commerce websites

(for the same edition of the same book); writing code to develop Web applications; or

developing Wikipedia.

If Tenenbaum’s arguments about the development of intelligent services on Web 2.0 are

sound, does this mean that knowledge based systems developed using methods such as

CommonKADS are obsolete? The answer is probably ’No’; but users would be wise to

consider which approach might suit them better. For applications requiring specialised
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or rare knowledge, a methodological approach seems essential, because the knowledge is

highly unlikely to arise from anarchic development, and because there may be an under-

standable reluctance to share such rare knowledge with the whole world.. Conversely,

Tenenbaum points out that the insurance industry, one of the early application areas for

many ’monolithic’ knowledge based systems, no longer uses such systems but is moving

towards a knowledge based web services model (see e.g. webifysolutions.com, described

as a “simple agent-based knowledge system” by Tenenbaum.) Tenenbaum attributes

this to the insurance industry being a “complex distributed ecosystem [including] the

primary carriers, their agents, underwriters, and claims adjusters, re-insurers, fraud

investigators, and many other service providers” where “integration and automation

are best approached incrementally, one organization and one task at a time.”

In short, the decision on whether to use a methodological approach or to encourage

an anarchic approach to knowledge based system development should be a knowledge

management decision, made on the basis of various factors including the structure of

the industry, the rarity and confidentiality of the knowledge, and the organisation’s

policies ... factors that are all considered in either Binney’s knowledge management

spectrum or Boisot’s I-Space model. It is therefore essential for those who wish to

introduce knowledge-based support into their organisations to apply knowledge man-

agement principles before embarking on decisions about methods or approaches.



Bibliography

[1] Artale A., Franconi E., Guarino N., and L Pazzi. Part-Whole Relations in Object-
Centered Systems: an Overview. Data and Knowledge Engineering, 20(3):347–
383, 1996.

[2] M. Aben. Formal methods in Knowledge Engineering. PhD thesis, SWI, Univer-
sity of Amsterdam, 1994. The relevant chapter is also available as CommonKADS
report KADS-II/T1.2/WP/UvA/040/1.0.

[3] S. Aitken, I. Filby, J. Kingston, and A. Tate. Capability descriptions for problem-
solving methods, 1998.

[4] H. Akkermans, B. Wielinga, and G. Schreiber. Steps in constructing problem
solving methods. In Proceedings of the European Knowledge Acquisition Work-
shop (EKAW’93). Springer Verlag, 1993. Also available as chapter 5 of the
CommonKADS Expertise Model Definition Document, ed. Wielinga et al, June
1993.

[5] H. Akkermans, B.J. Wielinga, and G. Schreiber. Refinement: Competence di-
rected. In B.J. Wielinga, editor, Expertise model definition document, pages
117–135. University of Amsterdam, 1994. Technical Report ESPRIT Project
P5248, KADS-II/M2/UvA/026.5.0.

[6] H. Alani, S. Harris, and B. O’Neil. Ontology Winnowing: A Case Study on the
AKT Reference Ontology. In Proceedings of IEEE International Conference on
Intelligent Agents, Web Technology and Internet Commerce, 2005.

[7] M. Asimow. Introduction to Design. Prentice Hall, 1962.

[8] L. Barros, A. Valente, and R. Benjamins. Modeling planning tasks. In B. Drabble,
editor, Proceedings of 3rd International Conference on AI Planning Systems,
AIPS-96, Edinburgh, Scotland, 29-31 May 1996. AAAI Press.

[9] V.R. Benjamins. Problem Solving Methods for Diagnosis. PhD thesis, University
of Amsterdam, Amsterdam, The Netherlands, 1993.

[10] J. Bicard-Mandel and X. Tong. ICT: Integrity Checking Task - A Generic Task
for Design under Constraints. In Proceedings of the 2nd KADS User Meeting,
Siemens AG, Munich, 17-18 Feb 1992. European KADS User Group.

[11] B. Boehm. A Spiral Model of Software Development and Enhancement. Software
Engineering Project Management, 1987.

359



Bibliography 360

[12] M.H. Boisot. Knowledge Assets: Securing Competitive Advantage in the Infor-
mation Economy. Oxford University Press, 1998.

[13] J. Boose and B. Gaines. Knowledge Based Systems. Academic Press, 1988. Vol
1: Knowledge Acquisition for Knowledge-based Systems
Vol 2: Knowledge Acquisition Tools for Expert Systems.

[14] J. H. Boose and J. M. Bradshaw. Expertise transfer and complex problems: Using
aquinas as a knowledge-acquisition workbench for knowledge-based systems. Int.
Journal of Man-Machine Studies, 26:3–28, 1987.

[15] J.H. Boose. A survey of knowledge acquisition techniques and tools. Knowledge
Acquisition, 1(1), 1989.

[16] J.M. Bradshaw, J.H. Boose, S.P. Covington, and P.J. Russo. How To Do With
Grids What People Say You Can’t. In Proceedings of Knowledge Acquisition
Workshop, 1989.

[17] B. Bredeweg. Model-based diagnosis and prediction of behaviour. In J.A. Breuker
and W. Van de Velde, editors, Expertise model document part II: The Com-
monKADS library, pages 113–148. KADS-II consortium, 1994.

[18] J. Breuker. Problems in indexing problem-solving methods. In R. Benjamins,
editor, Proceedings of the Workshop on Problem Solving Methods, Nagoya, Japan,
23 August 1997. IJCAI-97.

[19] J. Breuker and W. van de Velde. The CommonKADS Library: reusable compo-
nents for artificial problem solving. IOS Press, Amsterdam, Tokyo, 1994.

[20] J. A. Breuker. Model-driven Knowledge Acquisition. University of Amsterdam
and STL, 1987. ESPRIT project 1098, Deliverable A1.

[21] D.C. Brown and B. Chandrasekaran. Design Problem Solving: Knowledge Struc-
tures and Control Strategies. Research Notes in Artificial Intelligence. Morgan
Kaufman, 1989.

[22] D.C. Brown and B. Chandrasekaran. Investigating routine design problem solv-
ing. In C. Tong and D. Sriram, editors, AI in Engineering Design, Vol. 1.
Addison-Wesley, 1992.

[23] A.M. Burton, N.R. Shadbolt, A.P. Hedgecock, and G. Rugg. A Formal Evalu-
ation of Knowledge Elicitation Techniques for Expert Systems: Domain 1. In
S. Moralee, editor, Research and Development in Expert Systems IV. Cambridge
University Press, 1987.

[24] A.M. Burton, N.R. Shadbolt, G. Rugg, and A.P. Hedgecock. Knowledge Elicita-
tion Techniques in Classification Domains. In Proceedings of ECAI-88: The 8th
European Conference on Artificial Intelligence, 1988.

[25] A. N. Campbell, V. F. Hollister, R. O. Duda, and P. E. Hart. Recognition
of a Hidden Mineral Deposit by an Artificial Intelligence Program. Science,
217(4563):927–929, 3 September 1982.



Bibliography 361

[26] A. Casson. PLINTH: Integrating Hypertext, Semantic Nets and Rule-Based
Systems in an Expertext Shell for Authors and Readers of Regulatory Informa-
tion. In Proceedings of CIKM’93 Workshop on Intelligent Hypertext, Arlington,
Virginia, 1993. Also available as AIAI-TR-142, http://www.aiai.ed.ac.uk/.

[27] B. Chandrasekaran. Generic tasks as building blocks for knowledge based sys-
tems: The diagnosis and routine design examples. The Knowledge Engineering
Review, 3(3):183–210, 1988.

[28] B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine,
11:59–71, 1990.

[29] Y.H. Chen-Burger. Knowledge sharing and inconsistency checking on multiple
enterprise models. In Proceedings of the IJCAI’01 Workshop on Knowledge Man-
agement and Organizational Memories, Seattle, WA, USA, August 2001.

[30] S.H. Chu and C.L. Tai. Animating Chinese Landscape Paintings and Panorama
Using Multi-Perspective Modelling. In Proceedings of the CGI 2001 Conference,
City University of Hong Kong, Hong Kong, July 3-6 2001.

[31] W. Clancey. Heuristic Classification. Artificial Intelligence, 27, 1985.

[32] P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

[33] L. Console, J. de Kleer, and W. Hamscher. Readings in Model-based Diagnosis.
Morgan Kaufmann, 1992.

[34] M.A. Cook. Building Enterprise Information Architectures: Reengineering In-
formation Systems. Prentice Hall PTR, New Jersey, 1996.

[35] R. Corazzon. Descriptive and Formal Ontology, 2000. Available at
http://www.formalontology.it.

[36] Olivier Corby and Rose Dieng. Cokace: A Centaur-based environment for Com-
monKADS Conceptual Modelling Language. In ECAI, pages 418–422, 1996.

[37] H. Cottam, N. Shadbolt, J. Kingston, H. Beck, and A. Tate. Knowledge Level
Planning in the Search and Rescue Domain. In M.A. Bramer, J.L. Nealon, and
R. Milne, editors, Research and Development in Expert Systems XII, pages 309–
326. SGES Publications, 11-13 December 1995.

[38] K.W. Currie and A Tate. O-Plan: the Open Planning Architecture. Artificial
Intelligence, 51(1), Autumn 1991. Also available as aiai-tr-67.

[39] Binney D. The knowledge management spectrum - understanding the KM land-
scape. Journal of Knowledge Management, 5(1):33–42, 2001.

[40] Waltz D. Scientific Datalink’s Artificial Intelligence Classification Scheme. AI
Magazine, pages 58–63, Spring 1985.

[41] T.H. Davenport and L. Prusak. Working Knowledge: How Organizations Manage
What They Know. Harvard Business School Press, 1998.



Bibliography 362

[42] H.P. de Greef and J. Breuker. Analysing system-user cooperation in KADS.
Knowledge Acquisition, 4(1):89–108, March 1992.

[43] R. de Hoog, B. Benus, C. Metselaar, et al. Applying the CommonKADS organisa-
tional model. Restricted circulation KADS-II/T1.1/UvA/RR/004/4.1, ESPRIT
project P5248 KADS-II, Jan 1993.

[44] R. de Hoog, B. Benus, C. Metselaar, and M. Vogler. The Common KADS Or-
ganisational Model. ESPRIT Project P5248 KADS-II CK-UvA-41b, University
of Amsterdam, 1993.

[45] R. de Hoog, B. Benus, C. Metselaar, M. Vogler, and W. Menezes. Applying
the CommonKADS Organizational Model. Technical Report KADS-II project
technical report KADS-II/T1.1/UvA/RR/004/4.1, 1994.

[46] R. de Hoog, R. Martil, B. Wielinga, R. Taylor, C. Bright, and W. van de
Velde. The Common KADS model set. ESPRIT Project P5248 KADS-II
KADS-II/M1/DM1.1b/UvA/018/ 6.0, University of Amsterdam and others,
1993. http://swi.psy.uva.nl/ projects/CommonKADS/Reports.html.

[47] D. Diaper, editor. Knowledge Elicitation: Principles, Techniques and Applica-
tions. Ellis Horwood, 1989.

[48] S. Dirks. Development of a knowledge-based system for personal financial plan-
ning. Master’s thesis, Dept of Artificial Intelligence, University of Edinburgh,
Sept 1993.

[49] J. Dobson and R. Strens. Organisational Requirements Definition for Informa-
tion Technology Systems. In ACM International Conference on Requirements
Engineering, Denver, USA, 1994. ACM, 1994.

[50] J.E. Dobson, A.J.C. Blyth, J. Chudge, et al. The ORDIT Approach to Require-
ments Identification. Technical Report 394, Computing Laboratory, University
of Newcastle upon Tyne, 1992.

[51] J. Domingue, E. Motta, and S. Watt. The Emerging VITAL Workbench. In
Knowledge Acquisition for Knowledge-based Systems: 7th European Workshop
EKAW ’93, pages 320–339, Toulouse and Caylus, France, September 1993.
Springer-Verlag.

[52] Jon Doyle, Isaac Kohane, William Long, and Peter Szolovits. The Architecture
of MAITA A Tool For Monitoring, Analysis, and Interpretation.

[53] B. Drabble, R.B. Kirby, and A. Tate. O-Plan2: the Open Planning Ar-
chitecture. In Working Notes of the AAAI Spring Symposium on Prac-
tical Approaches to Scheduling and Planning, Stanford University, Califor-
nia, 25 - 27 March 1992. American Association for Artificial Intelligence.
http://www.aiai.ed.ac.uk/ oplan/oplan/oplan-doc.html.

[54] K. Dudman. Jackson Structured Programming for Practical Program Design.
Springer Verlag, November 1996.



Bibliography 363

[55] C. Duursma. Task Model definition and Task Analysis process. ESPRIT Project
P5248 KADS-II CK-VUB-04, Vrije Universiteit Brussel, 1993.

[56] Finkelstein A. (ed). Proceedings of Viewpoints 96: An International Work-
shop on Multiple Perspectives in Software Development. In ACM Sympo-
sium on Foundations of Software Engineering, San Francisco, Oct 14-15 1996.
http://www.soi.city.ac.uk/ gespan/vptoc.html.

[57] L. Eshelman, D. Ehret, J. McDermott, and M. Tan. Mole: A tenacious
knowledge-aquisition tool. Int. Journal of Man-Machine Studies, 26:41–54, 1987.

[58] F. Heylighen. Epistemological Constructivism.
http://pespmc1.vub.ac.be/EPISTEMI.html.

[59] D. Fensel and R. Benjamins. Assumptions in Model-Based Diagnosis. In L. Steels,
G. Schreiber, and W. van de Velde, editors, Proceedings of KAW-96, 1996.
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/fensel/ambd.html.

[60] N. Fenton. Representativeness. http://www.dcs.qmul.ac.uk/ nor-
man/BBNs/Representativeness.htm.

[61] I. Filby. Recommendations on standardisation of conceptual-level knowledge
modelling formalisms. Technical Report EuroK/T/010496-1/AIAI, ESPRIT
Project 9806 (EuroKnowledge), November 1996.

[62] I. Filby and E. Rodriguez-Camarena. A Rule Based Consistency Checker, CON-
COR. In M. Ali P. Chun and G. Lovegrove, editors, Proceedings of the 6th In-
ternational Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, 1993.

[63] K.M. Ford and J.M. Bradshaw. Knowledge Acquisition as Modelling, chapter 1.
John Wiley, 1993.

[64] J. Fox, N. Johns, and A. Rahmanzadeh. Disseminating medical knowledge: the
ProFORMA approach. Artificial Intelligence in Medicine, 14(1-2):157–182, 1998.

[65] J. Fox, C.D. Myers, M.F. Greaves, and S. Pegram. A systematic study of knowl-
edge base refinement in the diagnosis of leukemia. In A.L. Kidd, editor, Knowl-
edge Acquisition for Expert Systems: A Practical Handbook, chapter 4, pages
73–90. Plenum Press, 1987.

[66] U. Frank. Multi-Perspective Enterprise Models as a Conceptual Foundation for
Knowledge Management. In Proceedings of Hawaii International Conference on
System Science, Honolulu, 2000.

[67] E. Friedman-Hill. JESS: The Java Expert System Shell. Technical report, 2001.
http://herzberg.ca.sandia.gov/jess/.

[68] B. Gaines, editor. International Journal of Human Computer Studies Special
Issue: Sisyphus: Models of Problem Solving, volume 40, 2. Elsevier, 1994.

[69] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Abstraction and Reuse of Object-Oriented Design. Lecture Notes in Com-
puter Science, 707:406–431, 1993.



Bibliography 364

[70] P. Gerstl and S. Pribbenow. Midwinters, End Games, and Bodyparts. In N. Guar-
ino and R. Poli, editors, Formal Ontology in Conceptual Analysis and Knowledge
Representation, Dordrecht, 1994. Kluwer.

[71] A. K. Goel, K. S. Ali, M. W. Donellan, A. G. de Silva Garza, and T. J. Callantine.
Multistrategy Adaptive Path Planning. IEEE Expert, pages 57–65, Dec 1994.

[72] J. D. Gould, S. Boies, S. Levy, J. T. Richards, and J. Schoonard. The 1984
Olympic message system: A test of behavioural principles of system design.
Communications of the ACM, 30:758–769, 1987.

[73] J. D. Gould and C. Lewis. Designing for usability: key principles and what
designers think. Communications of the ACM, 28:300–311, 1985.

[74] I. Graham. Object Oriented Methods. Addison Wesley, 1991.

[75] T. Gruber. A translation approach to portable ontologies. Knowledge Acquisition,
5(2):199–220, 1993.

[76] N. Guarino. Concepts, attributes and arbitrary relations. Data & Knowledge
Engineering, 8:249–261, 1992. North-Holland.

[77] N. Guarino and P. Giaretta. Ontologies and Knowledge Bases: Towards a Ter-
minological Clarification. In N. Mars, editor, Towards Very Large Knowledge
Bases: Knowledge Building and Knowledge Sharing, pages 25–32, Amsterdam,
1995. IOS Press.

[78] K.H. Haggie and J.K.C. Kingston. Choosing your Knowledge Management Strat-
egy. Journal of Knowledge Management Practice, 2003.

[79] U. Hahn and M.J.A. Ramscar. Similarity and Categorization. Oxford University
Press, Oxford, 2001.

[80] A. Hart. Expert Systems: An Introduction for Managers. Kogan Page, 1988.

[81] T. Heycke. Historical projects. HTML document http://www-
camis.stanford.edu/research/history.html, Center for Advanced Medical
Informatics at Stanford, January 1995.

[82] F. Hickman, J. Killin, L. Land, et al. Analysis for knowledge-based systems:
A practical introduction to the KADS methodology. Ellis Horwood, Chichester,
1989.

[83] V. Hubka. Principles of Engineering Design. Butterworth Scientific, Guildford,
1982. trans. W. E. Eder.

[84] R. Inder. Experience of constructing a fault localisation expert system using an
AI toolkit. In Proceedings of the 1st International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems - Volume
1, pages 229–239, 1988.

[85] R. Inder and I.M. Filby. A Survey of Knowledge Engineering Methods and
Supporting Tools. In KBS Methodologies Workshop. BCS Specialist Group on
Expert Systems, December 1992.



Bibliography 365

[86] R. Inder, E. Goodfellow, and M. Uschold. Knowledge Engineering without
Knowledge Elicitation. In P. Chung, G. Lovegrove and M. Ali, editor, Proceedings
of the Sixth International Conference on Industrial and Engineering Applications
of AI and Expert Systems, City Chambers, Edinburgh, June 1-4 1993. Gordon
and Breach. Also available as AIAI-TR-126.

[87] J. Kingston. ”merging top level ontologies for scientific knowledge management”.
In Proceedings of the AAAI workshop on Ontologies and the Semantic Web,
AAAI-02 conference, Edmonton, Canada, 29 July 2002.

[88] W. Jansweijer. Recommendations to EuroKnowledge. KACTUS Deliverable
KACTUS-DO1f.1-UvA-V0.2, University of Amsterdam, September 23 1996.

[89] L. Johnson and N.E. Johnson. Knowledge elicitation involving teachback inter-
viewing. In A.L. Kidd, editor, Knowledge Acquisition for Expert Systems: A
Practical Handbook, chapter 5, pages 91–108. Plenum Press, 1987.

[90] L. Johnson and E. Keravnou. Expert Systems Technology: A Guide. Abacus
Press, Cambridge, Mass. 02139, 1985.

[91] G. S. Kahn, E. H. Breaux, P. DeKlerk, and R. L. Joseph. A mixed-initiative
workbench for knowledge acquisition. Int. Journal of Man-Machine Studies,
27:167–179, 1987.

[92] KBSI. IDEF3 Process Flow and Object State Description Capture Method
Overview. http://www.idef.com/idef3.html.

[93] A. Kidd, editor. Knowledge Acquisition for Expert Systems: A Practical Hand-
book. Plenum Press, 1987.

[94] J. K. C. Kingston. KBS Methodology as a framework for Co-operative Working.
In Research and Development in Expert Systems IX. British Computer Society,
Cambridge University Press, 16-17 Dec 1992. Also available from AIAI as AIAI-
TR-130.

[95] J.K.C. Kingston. X-MATE: Creating an interpretation model for credit risk as-
sessment. In Expert Systems 91. British Computer Society, Cambridge University
Press, 17-18 Sep 1991. Also available from AIAI as AIAI-TR-98.

[96] J.K.C. Kingston. Pragmatic KADS 1.0. Technical Report AIAI-IR-13, AIAI,
University of Edinburgh, 1993.

[97] J.K.C. Kingston. Re-engineering IMPRESS and X-MATE using CommonKADS.
In Research and Development in Expert Systems X, pages 17–42. Cambridge
University Press, 1993. http://www.aiai.ed.ac.uk/ jkk/publications.html.

[98] J.K.C. Kingston. Design by Exploration: A Proposed CommonKADS Inference
Structure. Submitted to ‘Knowledge Acquisition’, 1994.

[99] J.K.C. Kingston. Developing a reference ontology for scientific knowledge man-
agement. In Proceedings of AAAI-02 Workshop on Ontologies and the Semantic
Web, AAAI-02, Edmonton, Canada, 29 July 2002.



Bibliography 366

[100] J.K.C. Kingston. Modelling Agents and Communication using CommonKADS.
In Research and Development in Expert Systems XVII Proceedings of the BCS
SGES ES’00 conference, Churchill College, Cambridge, December 2000.

[101] J.K.C. Kingston, J. Doheny, and I. Filby. Evaluation of workbenches which
support the CommonKADS methodology. Knowledge Engineering Review,
10(3):269–300, 1995.

[102] J.K.C. Kingston, T.J. Lydiard, and A. Griffith. Multi-Perspective Modelling of
Air Campaign Planning. In Proceedings of AAAI-96, Portland, Oregon, 1996.
AAAI Press.

[103] J.K.C. Kingston and A.L. Macintosh. Knowledge Management through Multi-
Perspective Modelling: Representing and Distributing Organizational Memory.
Knowledge Based Systems Journal, 13(2-3):121–131, 2000.

[104] P. J. Kline and S. B. Dolins. Designing expert systems : a guide to selecting
implementation techniques. Wiley, 1989.

[105] P.J. Kline and S.B. Dolins. Choosing Architectures for Expert Systems. Rome
Air Development Centre, Griffiss AFB, New York 13441-5700. RADC-TR-85-
192, 1985. Contains ”forty-seven probing questions” to help select the correct
knowledge representation(s) and inference strategy(ies) for building a knowledge-
based system.

[106] G. Klinker, J. Bentolila, S. Genetet, M. Grimes, and J. McDermott. Knack:
Report-driven knowledge acquisition. Int. Journal of Man-Machine Studies,
26:65–79, 1987.

[107] M. Kolp. Tropos - Requirement-Driven Software Development for Agents, 2002.
http://www.cs.toronto.edu/km/tropos/.

[108] A Krueger. Classification of Expert Tasks: the SEXTANT system. Master’s
thesis, Dept of Artificial Intelligence, University of Edinburgh, Sept 1992.

[109] C. Kruger and B. Wielinga. A KADS model for the industrial design task.
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[187] A. Waern, K. Höök, R. Gustavsson, and P. Holm. The CommonKADS Com-
munication Model. ESPRIT Project P5248 KADS-II KADS-II/M3/TR/SICS,
Swedish Institute of Computer Science, 1994.

[188] S. Wells. Data-Driven Modelling. In CommonKADS Library for Expertise Mod-
elling. IOS Press, 1994.

[189] S.A. Wells. Configuration Control. KADS-II Project Report KADS-
II/M2.2/TN/LR/0099/0.2, Lloyds Register, 1993.

[190] J. Wielemaker and J-P. Billault. A KADS analysis for configuration. University
of Amsterdam, 1988. ESPRIT project 1098, Deliverable F5, UvA-F5-PR-001.

[191] B. Wielinga, W. Van de Velde, G. Schreiber, and H. Akkermans. The KADS
Knowledge Modelling Approach. In Proceedings of the Japanese Knowledge Ac-
quisition Workshop (JKAW’92), 1992.

[192] B. Wielinga, W. van de Velde, G. Schreiber, and H. Akkermans. Expertise Model
Definition Document. CommonKADS Project Report, University of Amsterdam,
Jun 1993.

[193] Wielinga B.J., A.Th. Schreiber, J. Wieleimaker and J.C. Sandberg. From The-
saurus to Ontology. GRASP project publication, University of Amsterdam.
http://www.swi.psy.uva.nl/usr/Schreiber/papers/Wielinga01a.pdf.

[194] J. Wilkins. Natural and artificial classification. Technical report, 1997.
http://www.users.bigpond.com/thewilkins/papers/artifnat.html.

[195] W.A. Woods. What’s in a link: Foundations for semantic networks. In D.G.
Bobrow and A.M. Collins, editors, Representation and Understanding: Studies
in Cognitive Science, New York, 1975. Academic Press. Also in R. Brachman and
H. Levesque, eds., Readings in Knowledge Representation (Morgan Kaufmann,
Los Altos, CA, 1985).

[196] R.M. Young and G.D. Abowd. Multi-perspective Modelling of Interface Design
Issues: Undo in a Collaborative Editor. In G. Cockton, S.W. Draper, and G.R S.
Weir, editors, People and Computers IX: Proceedings of HCI 94, pages 249–260.
Cambridge University Press, 1994.

[197] J. Zachman. A Framework for Information Systems Architecture. IBM Sys-
tems Journal, 26(3):276–292, 1987. Also published in the same journal, volume
38(2/3), 1999.



Appendix A

Generic inference structures

A.1 System Analysis

A.1.1 Assessment

Source: Adapted from [82]

In assessment, a case is interpreted in terms of a system model in order to classify
it as belonging to one of the classes which are specified in advance as the decision
classes. Cases vary widely, while the number of decision classes is small, so it is often
necessary to perform inference to produce a higher level, abstract case description,
and/or to specify the system model, in order to arrive at an optimal mapping between
the two. Assessment differs from simple classification because the correct classification
is not ‘given’; instead, it requires interpretation of the various attributes of an abstract
case description against the system model. The resulting decision classes may lie on
a continuum rather than being discrete. An example of an assessment task would be
deciding whether a the skills of a job applicant fulfil the requirements of the job.

Figure A.1: Generic inference structure for Assessment
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A.1.2 Heuristic Classification

Source: Adapted from Clancey, ‘Heuristic Classification’ [31]

Heuristic classification was claimed by Clancey to be the method of diagnosis in knowl-
edge based systems [31]. It involves abstracting the problem and matching it against
one or more solutions at a similar level of abstraction. The model can be followed from
beginning to end, or from end to beginning (i.e. it is possible to abstract a solution,
and then to see which problem(s) it solves); the choice of strategy will depend on the
cost of obtaining data, and the need for a fully refined solution.

Figure A.2: Generic inference structure for Heuristic Classification
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A.1.3 Monitoring

Source: [20] or [82]

Monitoring presupposes an existing system model and an actual running system. In
monitoring, discrepancies (if any) are detected and decisions are made as to what kind
of action(s) should be taken.

Figure A.3: Generic inference structure for Monitoring
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A.1.4 Multiple fault diagnosis

Source: [82]

Figure A.4: Generic inference structure for Multiple fault diagnosis
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A.1.5 Prediction

Source: [20]

A prediction task can intuitively best be described as “determining what will happen
next in a given situation”. In a prediction task, there is always a description of a
particular situation that specifies the objects and the processes that are involved; this
description may need to be augmented with relevant common-sense knowledge before
a prediction can be made. Solutions consist of (new) description(s) of processes and
objects, although ideally prediction solutions should be limited to new descriptions
which are relevant to the user’s interests.

Figure A.5: Generic inference structure for Prediction
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A.1.6 Prediction of behaviour

Source: Simplified from [20]

Prediction of behaviour should not be taken literally. It may in fact involve postdiction,
and may be used as part of causal tracing. It is accomplished by analysing the state
description of a system and determining what behaviour the system will carry out next
(or, for postdiction, what behaviour must have preceded the current state description).
The state description describes what the system at the moment is like, which can be
done at various levels of abstraction.

Figure A.6: Generic inference structure for Prediction of behaviour
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A.1.7 Prediction of values

Source: [20]

The task is the prediction or identification of value(s) of variable(s) of a system at a
certain point in time. The values are in general quantitative ones which are derived
from some formal or mathematical model of the system.

Figure A.7: Generic inference structure for Prediction of values
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A.1.8 Simple Classification

Source: [82]

Figure A.8: Generic inference structure for Simple Classification
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A.1.9 Systematic Diagnosis

Source: Adapted from [82]

This model can be used for both causal tracing and diagnosis by localisation. The
former requires a description of the system in terms of causal relations; the latter
requires a description of the system in terms of PART-OF relations.

Figure A.9: Generic inference structure for Systematic Diagnosis
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A.2 System Synthesis

A.2.1 Configuration

Source: [82]

Configuration is a simple form of design. The general structure of the artifact is given
beforehand, only the specific components have to be filled in.

Figure A.10: Generic inference structure for Configuration
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A.2.2 Exploration-based design

Exploration-based design occurs in tasks where a design is prepared, presented to the
client for criticism, and then any criticisms are used as further constraints on a re-
design. Exploration-based design will often start from a model of a previous design; on
occasions, this model may produce no acceptable solutions, and so a new model may
have to be selected.

Source: Chapter 10

Figure A.11: Generic inference structure for Exploration-based design
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A.2.3 Hierarchical design

Source: [82]

The basic characteristic of hierarchical design is that at some stage in the design pro-
cess, a model is created of the artefact to be designed, and that model is subsequently
refined to yield the final result.

Figure A.12: Generic inference structure for Hierarchical design
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A.2.4 Single stream refinement design

Source: [20]

In refinement design (or “incremental design”), there is no straightforward transfor-
mation of the conceptual model to the detailed design model, but rather elements of
the conceptual model are transformed individually, while the structure of the design is
constructed from constraints and/or skeletal models.

Figure A.13: Generic inference structure for Single stream refinement design
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Appendix B

Semantics of Inference steps

The following definitions are taken from Breuker et al, ‘Model Driven Knowledge Ac-
quisition: Interpretation Models’, KADS deliverable A1, 1987.

Abstract: Abstraction produces an output concept with fewer attributes than the
input concept; ‘irrelevant’ attributes are abstracted. What is relevant and what is
irrelevant depends on a point of view. Many structures of static relations (e.g. is-a,
consists-of) have fixed points of view, and enable abstract inferences.

Assemble: All assemble inferences take as their input a number of elements and
produce a part-of structure. Essentially, there are two ways to construct an assembly
(e.g. plan, configuration, design). First, bottom up by combining elements in such
a way that they satisfy constraints. A second way is top down and consists of the
selection of appropriate, constraint satisfying structures, in which the elements can be
inserted.

Assign Value: Knowledge sources of this type derive values for attributes of concepts
and assign them to those attributes. An example is the use of default values.

Classify: See Identify.

Compare: The values of (the attributes of) concepts are compared. In general, this
refers to simple concepts which have few attributes. The output is a class (equal, not
equal) or a difference value. The output of ‘compare’ may not be used as the input for
some other knowledge source, but rather for control purposes.

Compute: On the basis of some structure of concepts and their instances, the value
of some dependent factor is calculated. Note that computation may involve any form of
value assignment on the basis of interdependencies of concepts: for example, computing
whether a bathtub is ‘overflowing’ or ‘not overflowing’ ... COMPUTE is not strictly
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a primitive knowledge source, since it typically includes either a value assignment, or
the instantiation of a new concept.

Generalise: In generalisation, one focuses on common features in the set of instances
and tries either to map these onto an existing concept or to develop a new concept.
The former resembles ‘identify’; the latter is generally known as induction.

Decompose: ‘Decompose’ is the inverse of ‘assemble’. The input is some composite
structure and the output is a set of components.

Instantiate: This type of knowledge source creates an instance of a generic concept,
or structure. It often involves assignment of values.

Identify: ‘Identify’ (also called ‘classify’) is the inverse of ‘instantiate’. ‘Identify’
associates instances with descriptions, by matching the attributes of an instance (and
the structure of these attributes) with a concept.

Match: ‘Match’ compares two structures; the output is a description of the respects
in which the two structures are different. The description of the difference can be used
to focus a task on particular issues. For instance, the description of the difference can
be used to restrict or provide goals for further inferencing.

Parse: ‘Parse’ is a subtype of ‘transform’. It transforms a linear structure of elements
into a hierarchical structure.

Refine: see Specify.

Select: see Specify.

Specify: Specification is the inverse of abstraction. It produces a concept with at
least one more specific attribute than the input concept. A good example of specifica-
tion is descending a taxonomy of concepts ... Specification is the same as ‘refinement’,
although the latter is often used to denote some complex trajectory of inferences that
involve specifications ... A degraded form of specify is ‘select’, in which a specific
concept is singled out.

Sort: ‘Sort’ can be viewed as a subtype of ‘assemble’ (sequencing elements according
to some principle), or as a subtype of ‘transform’ (changing one structure into another).
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Transform: Transform converts an input structure into another structure, either by
reordering elements within a structure, or by assigning new structural descriptions
to the elements. The latter often appears as translations from one description or
formalism into another description or formalism. This may require abstraction steps
as well, because the elements in the input description may not be sufficiently abstract
to allow the transformation procedures to apply.

In addition, Pragmatic KADS suggests the following “activities” which are activities
that are not knowledge based but are an integral part of many problem solving pro-
cesses.

Add: Add an item to a set or a list.

Compute: The definition of this inference step is extended to permit basic arithmetic
computations which are not based on “some structure of concepts and their instances”.

Execute: Carry out any task which is not part of the inference process. This typically
refers to tasks carried out by a user, such as performing a diagnostic test.

Identify: Identify is used not only to refer to linking an object with its correct
category, but also to represent obtaining data, by table look-up or through some other
external interface function.

Perform: see Execute.

Remove: Remove items from a set or a list.

Update: Add items to or remove items from a set or a list.
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Appendix C

Probing Questions

C.1 Questions concerning AI Architectural Paradigms

C.1.1 Knowledge Structure – (A): Domain Objects and Relationships

• if you want the KBS to reason on the basis of an explicit model of processes, in
the world (as distinct from representing an expert’s problem-solving behaviour
in relation to them)
then use model-based reasoning weighting: 3

• if the system can be adequately described by a procedural representation of
the problem-solving behaviour of an expert: i.e. by representing the expert’s
inference steps
then use shallow reasoning weighting: 3

• if the knowledge domain consists of objects which can be thought of as separate
entities
and domain objects have well-defined interactive behaviours not sensitive to
global influences
then use model-based reasoning weighting: 1

and use object-oriented programming weighting: 4

and don’t use shallow reasoning weighting: -3

because Objects are autonomous and communicate with each other; control is
within the KR structures, i.e. local control; behaviour is emergent

• if the knowledge domain consists of objects which can be thought of as separate
entities
and control of the processes which significantly affect the objects in the knowl-
edge domain is global rather than local
then use model-based reasoning weighting: 4

and use frames1 weighting: 5

OR rules weighting: 2

1 Frames are similar to objects. For current purposes, ‘frames’ are taken to describe a knowledge
representation structure and ‘objects’ to refer to similar structures with local control over processing
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and don’t use object-oriented programming weighting: -2

and don’t use shallow reasoning weighting: -3

• if you use model-based reasoning
and attribute values in the domain can be adequately expressed by selection
from a small set of standard ‘qualitative’ values (e.g. hi/med/lo, -ve/steady-
state/+ve)
and qualitative values can be combined by operators in a well-described
and semantically valid way
then use qualitative simulation weighting: 3

C.1.2 Knowledge Structure – (B): Inferences and Generic Tasks

• if the problem space is shallow: i.e. if most of the items of data/evidence can
be converted into a solution in a single inference step
then use shallow reasoning weighting: 4

and use a spreadsheet weighting: 2

and don’t use model-based reasoning weighting: -4

• if the problem to be solved is very large – say, more than 10 modules (where a
module performs a distinct operation and most of them require more than one
inference step)
and problem-solving modules are independent of each other
and problem-solving modules interact (as opposed to being sequential)
and the interaction of problem-solving modules can be scheduled successfully
then use a blackboard architecture weighting: 4

• if few/some/many previous examples of problem solving are available
then use case-based reasoning (if few examples then weighting: 2; if some
examples then weighting: 2; if many examples then weighting: 3)

• OR a neural network (if few examples then weighting: 1; if some examples
then weighting: 3; if many examples then weighting: 3)

• if key factors affecting problem solving in previous cases can be identified
then use rule induction for rule acquisition weighting: 1

• if previous examples of problem solving are described in text
then use case-based reasoning weighting: 1

and don’t use a neural network weighting: -1

• if previous examples of problem solving are numerical
then use a neural network weighting: 1

and don’t use case-based reasoning weighting: -1

C.1.3 Dialogue & Explanation

• if the generation of explanations of the KBS’s reasoning in terms of cause and ef-
fect is important (as distinct from merely presenting explanations, e.g. as ‘canned
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text’)
then use model-based reasoning weighting: 5

C.2 Questions concerning AI Programming Techniques

C.2.1 Knowledge Structure – (A): Domain Objects and Relationships

• if domain knowledge is structured in a taxonomic hierarchy (i.e. where objects
can be grouped into classes and the classes recursively divided into subclasses,
and where membership is a transitive relationship from subclasses to classes)
then use an inheritance technique weighting: 5

• if default values are to be used for unknown values of properties of domain
objects
then use an inheritance technique weighting: 4

• if simple, binary, transitive relationships (e.g. connected-to, close-to) between
domain objects can be defined, other than those which give rise to a hierarchy
(e.g. subclass-of, contains)
then use a semantic network weighting: 4

use and use user-defined relations weighting: 5

• if domain knowledge is structured in a taxonomic hierarchy (i.e. where objects
can be grouped into classes and the classes recursively divided into subclasses,
and where membership is a transitive relationship from subclasses to classes)
and you want to represent, with rules, the interactive behaviour of the objects
in the hierarchy
and you want to give priority to representing the interactive behaviours rather
than the objects
then use order-sorted logic weighting: 3

• if an inference structure for the analysed knowledge has been modeled in terms
of inference actions and knowledge roles (types of domain object)
and a ‘match’ inference action is to be implemented which matches 3 or more
variables
or a ‘match’ inference action is to be implemented for which a complete set of
mappings is not available then use rule-based programming weighting: 3

• if knowledge can be naturally described in terms of ‘if certain conditions
are true then certain conclusions follow’ then use rule-based programming weighting:
5

C.2.2 Knowledge Structure – (B): Inferences and Generic Tasks

• if not KBS task is diagnosis
then don’t use confirmation by exclusion weighting: -5
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• if there is a possibility of infinitely long paths in the search space
then don’t use depth-first search weighting: -1

and don’t use data-driven reasoning weighting: -1

• if not search can be constrained so that it recognizes irrelevant intermediate
conclusions and does not pursue lines of reasoning therefrom
then don’t use data-driven reasoning weighting: -2

• if a decision made at one stage of problem solving may violate a constraint which
will be necessary at a later stage
then use constraint propagation weighting: 3

• if KBS task is single-fault diagnosis
and it is easier to confirm that something is working than that it is faulty
then use confirmation by exclusion weighting: 4

• if problem solving requires choosing between alternative courses of action
and choices between alternative courses of action have to be dynamically deter-
mined from domain knowledge during problem solving
then use meta-reasoning weighting: 5

• if you want to represent time explicitly
then use temporal logic weighting: 3

C.2.3 Uncertainty in Knowledge

These rules encompass two possible approaches to explicit representation of uncer-
tainty: (a) attach uncertainty to particular axioms in system (rules and facts in a
rule-based system) (b) cope with uncertainty in the way one performs the inference’ –
nonmonotonic reasoning, e.g. TMSs

• if there is significant uncertainty in the knowledge that the system will use –
the data/evidence that it will acquire or the inferences it will make
and it is possible to estimate uncertainty in knowledge, either by calculation or
by ad-hoc assignment of values
then attach uncertainty measures to axioms (e.g. rules and facts in a rule-based
system) weighting: 4

• if the problem-solving task which the system has to perform entails the formu-
lation of hypotheses which may later be falsified by the acquisition of further
data/evidence or by further inference making
then use a truth maintenance system weighting: 5

• if you use numerical representation of uncertainty
and statistical measures are available from which the validity of inferences can
be calculated in terms of the probabilities of conclusions given conditions
and the domain objects/relationships about which uncertainty is to be repre-
sented meet strong conditions of independence
then use Bayesian probability for numerical representation of uncertainty weighting:
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5

and don’t use ad-hoc subjective certainty factors for representation of uncer-
tainty weighting: -5

• if you use numerical representation of uncertainty
and uncertainty is to be represented in terms of confidence in belief, rather than
in terms of probabilities
and the domain objects/relationships about which uncertainty is to be repre-
sented meet strong conditions of independence
then use Dempster-Shafer theory weighting: 5

and don’t use ad-hoc subjective certainty factors for representation of uncer-
tainty weighting: -5

• if you use numerical representation of uncertainty
and membership of classes by objects is important but classification on a
true-or-false basis is difficult or impossible
then use fuzzy logic for representation of uncertainty weighting: 4

and don’t use ad-hoc subjective certainty factors for representation of uncer-
tainty weighting: -5

• if you use uncertainty measures attached to axioms
and not Bayesian probability for representation of uncertainty
and not Dempster-Shafer theory for representation of uncertainty
and not fuzzy logic for representation of uncertainty
then use ad-hoc subjective certainty factors for representation of uncertainty
weighting: 5

• if you use uncertainty measures attached to axioms
and it is important that explicit information about how uncertainty measures for
solution(s) were calculated be output with the solutions (as distinct from being
implicitly derivable from an explanation system)
then use symbolic representation of uncertainty weighting: 4

else use numerical representation of uncertainty weighting: 3

• if you use a TMS
and hypotheses can be falsified on multiple grounds (e.g. a timetabling prob-
lem – multiple clashes)
then use a TMS which records grounds for rejecting rather than accepting hy-
potheses weighting: 4

C.2.4 Solutions

• if the problem-solving task is such that a pre-enumerated set of solutions2 can be
established (as distinct from the type of task in which solutions are constructed
as a result of the satisfaction of constraints)
then use goal-driven reasoning weighting: 1

ELSE use data-driven reasoning weighting: 5

and don’t use goal-driven reasoning weighting: -5

2 See section C.4 for the definitions of ‘goal’, ‘solution’, ‘solution path’ and ‘outcome’.
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• if ratio of number of items of potentially relevant data to number of solutions is
high (e.g. where data will be obtained from large files, only some items of which
will be relevant, and a fairly small pre-enumerated set of solutions is known)
then use goal-driven reasoning weighting: 3

• if ratio of number of items of potentially relevant data to number of solutions is
low
then use data-driven reasoning weighting: 3

• if NOT solutions are mutually exclusive (Examples of tasks where solutions
are mutually exclusive are: constructive tasks, scheduling, single-fault diagnosis.
Examples where solutions are not mutually exclusive are: monitoring, multiple-
fault diagnosis)
then use data-driven reasoning weighting: 3

• if solutions are mutually exclusive (Examples of tasks where solutions are mutu-
ally exclusive are: constructive tasks, scheduling, single-fault diagnosis. Exam-
ples where solutions are not mutually exclusive are: monitoring, multiple-fault
diagnosis)
and the user will seek all possible solutions (as distinct from a single solution)
then use data-driven reasoning weighting: 3

• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the user will seek the best solution (as distinct from the first available
solution)
and the best solution can be represented as that with the lowest-cost solution
path through a search space (which may, or may not, be the shortest path)
and the best solution can be represented as that with the shortest solution path
through a search space
and not the problem space is deep
then use breadth-first search weighting: 4

OR heuristically informed search weighting: 4

• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the user will seek the best solution (as distinct from the first available
solution)
and the best solution can be represented as that with the lowest-cost solution
path through a search space (which may, or may not, be the shortest path)
and the best solution can be represented as that with the shortest solution path
through a search space
and the problem space is deep
then use heuristically informed search weighting: 4

OR use breadth-first search weighting: 2

• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the user will seek the best solution (as distinct from the first available
solution)
and the best solution can be represented as that with the lowest-cost solution
path through a search space (which may, or may not, be the shortest path)
then use heuristically informed search weighting: 4

OR breadth-first search weighting: 2
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• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the user will seek the best solution (as distinct from the first available solu-
tion)
and the best solution can be represented as that with the lowest-cost path
through a search space to a goal (which may, or may not, be the shortest path)
and not the best solution can be represented as that with the shortest solution
path through a search space
then use heuristically informed search weighting: 4

OR use breadth-first search weighting: 1

• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the first solution is likely to be found at great depth in the search space
then use depth-first search weighting: 2

OR heuristically informed search weighting: 2

• if solutions can obviously be decomposed into subsolutions
then use goal-driven reasoning weighting: 3

• if NOT the user will seek all possible solutions (as distinct from a single solution)
and the first solution is likely to be found at shallow depth in the search space
and the search space is deep – say, more than 3 levels
then use breadth-first search for a single-fault diagnostic task. weighting: 4

C.2.5 Data

• if NOT time of arrival of data is exclusively under the control of the user (e.g.
a plant monitoring system)
then use opportunistic data-driven reasoning weighting: 3

and don’t use goal-driven reasoning weighting: 5

because if you don’t know when input is arriving then goal-driven reasoning
is problematic: e.g. you might get halfway through proving that something is
false, when data arrive to prove it true

• if data have to be gathered by eliciting questions from the user THEN use goal-
driven reasoning weighting: 2

and don’t use data-driven reasoning weighting: -1

• if data have to be gathered by eliciting questions from the user
and you use data-driven reasoning
then use a multiple-selection menu to elicit data weighting: 1

• if data are already available (e.g. on file)
then use data-driven reasoning user (as distinct from, e.g., a plant-monitoring
system, where it is not) weighting: 4

C.2.6 Dialogue & Explanation

• if the presentation of explanations of the KBS’s reasoning is important
and not the generation of explanations of the KBS’s reasoning in terms of cause
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and effect is important (as distinct from merely presenting explanations, e.g. as
‘canned text’)
then use goal-driven reasoning weighting: 2

OR canned text weighting: 4

OR rules weighting: 2

• if data are to be obtained from the user
and the natural dialogue is to ask detailed questions about one subject before
general questions about another subject
then use depth-first search weighting: 4

because it is the best way to get coherent conversation

• if data are to be obtained from the user
and not the natural dialogue is to ask detailed questions about one subject
before general questions about another subject
then use breadth-first search weighting: 3

C.3 Questions concerning Knowledge Representation &
Inference Techniques

C.3.1 Knowledge Structure – (A): Domain Objects and Relationships

• if you use an inheritance technique
then use frames weighting: 5

OR rules weighting: 1

• if the ratio of number of attributes to be represented per knowledge role (type of
domain object) to number of relationships to be represented per knowledge role
is high
then use frames (ratio up to 4 then weighting: 2; ratio between 5 and 7 then
weighting: 3; ratio 8 or more then weighting: 4)

• if the domain knowledge includes knowledge in tabular form
and these tables need to be updated frequently
then use a spreadsheet weighting: 4

OR use a programming language representation weighting: 2

• if the domain knowledge includes knowledge in tabular form
and efficiency of the KBS is important
and the tables are large – say, more than 100 cells
then use a spreadsheet weighting: 3

OR use a programming language representation weighting: 2

• if the domain knowledge includes knowledge in tabular form
and the tables are large – say, more than 100 cells
and not efficiency of the KBS is important
then use a spreadsheet weighting: 1
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• if the domain knowledge includes knowledge in tabular form
and the tables are 2-dimensional
and not the tables are large
and not the tables are updated frequently
then use facts weighting: 2

OR use frames weighting: 2

• if the domain knowledge includes knowledge in tabular form
and not the tables are 2-dimensional
then use facts weighting: 5

OR use frames weighting: 4

• if many lists are to be implemented
then use facts weighting: 3

OR frames weighting: 2

C.3.2 Knowledge Structure – (B): Inferences and Generic Tasks

• if the problem to be solved is very large – say, more than 10 modules (where a
module performs a distinct operation and most of them require more than one
inference step)
then partition knowledge base into components that are loaded separately weighting:

3

• if regulations are to be represented
then use rules weighting: 3

• if knowledge is heuristic in nature (i.e. ‘rules of thumb’)
then use rules weighting: 3

• if you use rules
and problem to be solved is very large – say, more than 10 modules (where a
module performs a distinct operation and most of them require more than one
inference step)
then use a declarative agenda weighting: 1

and represent variable-free rules using facts weighting: 1

C.3.3 Uncertainty in Knowledge

• if you use a TMS
and you design your own TMS
then use facts weighting: 3

OR use frames which permit nested lists as slot values weighting: 3

C.3.4 Computational Efficiency

• if NOT you use rules
and you use meta-reasoning
then use meta-functions for control weighting: 3



Appendices 400

C.4 Definitions of terminology related to solutions

Goal: (1) An acceptable configuration – i.e. one that meets all constraints (e.g. all
components fit on the PCB) (2) A correct diagnosis of a complaint.

Solution: an instantiation of the goal (‘a way of achieving the goal’) for a particular
data set. The number of solutions for a goal varies from few to many. The number of
solutions for a given data set can vary from none to many:

1. There may be zero or more acceptable configurations for a given set of compo-
nents

2. There may be one solution for any given complete data set, but no solution for
an incomplete data set.

Solution path: ‘a way of achieving the solution’ for any given solution – e.g. a
sequence of operations which must be performed. This sequence may carry a measure
of cost of achieving the solution. The cost may be in terms of (a) number of operations
or (b) cost of operations. There may be more than one solution path to any solution
(strictly speaking, the number may be infinite if looping is not eliminated). Note
that while the solution path may carry a measure of cost, the measure of benefit is
presumably implicit in constraints that have to be satisfied.

Outcome: solution-end leaf node of problem space. If an outcome is not a solution
then there is a need to backtrack (i.e. search has hit a dead end). The number of
outcomes is equal to or greater than the number of solutions.
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A User’s Guide to Pragmatic
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1 Not published. Originally available as: AIAI Internal Report IR-6, August 1993. Section D.9
originally appeared in the first edition of the newsletter of the BCS SGES Methodologies Interest
Group in the spring of 1992.
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This chapter outlines the “Pragmatic KADS” methodology. Pragmatic KADS was developed
for two reasons. The first was to identify a reduced version of the KADS/CommonKADS
methodology that does not add too great an overhead to small KBS projects. The second was
to supply some guidance to knowledge engineers on making decisions during the development
of KADS/CommonKADS models.

D.1 Pragmatic KADS: Introduction

“Pragmatic KADS” is an attempt to provide an introductory version of CommonKADS
for novice knowledge engineers. It has two main goals: one is to provide guidance on
developing models and making decisions, and the other is to reduce the number of
models that need to be developed. It is particularly recommended for small KBS
projects where the overhead of using the whole of CommonKADS would overwhelm
the project.

Pragmatic KADS was developed in response to my own experience of learning KADS
and CommonKADS; initially I learned only a few models and their specific application,
and only later did I understand the underlying context of these models. CommonKADS
has also been criticised for being beyond the comprehension of mere mortals (or at least,
those without a training in ontology or logic), though this is less common now that
the CommonKADS book [147] has been published. Pragmatic KADS is intended to
remedy this criticism by providing a “simplified” version of CommonKADS.

Pragmatic KADS assumes that a knowledge engineer knows what KBS he is going
to produce; in other words, all the knowledge management and project feasibility ac-
tivities have been completed, but little of the knowledge acquisition and none of the
knowledge representation or other knowledge engineering activities have been com-
pleted. In the language of the Zachman framework, the Scope and Enterprise levels
have been completed but the System and lower levels remain to be developed. This is
a fairly common state of affairs for commercially active knowledge engineers.

D.2 Pragmatic KADS step by step

This chapter takes the reader through the main steps in the analysis and design of a
KBS using Pragmatic KADS. These steps are:

1. Setting the context;

2. Initial knowledge acquisition;

3. Knowledge analysis:

• Building an inference structure;

• Modeling interaction;

• Identifying procedural ordering using the task structure and the “strategy
level“.
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4. KBS design:

• Selecting knowledge representation & KBS implementation techniques using
Probing Questions;

• Design the KBS as a number of ‘modules’;

• Produce a ‘physical design’ for each module.

D.3 Setting the context

Because Pragmatic KADS assumes that the top two levels of the Zachman framework
have been completed, there is little need for development of the Organisational, Task,
Agent and (high level) Communication Models. However, there are some benefits to
be obtained from developing fragments of these models in order to set the context
of the KBS development. It’s often helpful, for example, to consider how the KBS
will fit with the organisation’s wider business goals. It’s also instructive to consider
how responsibilities and roles might change due to the introduction of the system;
more than one KBS project has succeeded technically but failed to be used because it
required too great an organisational change.

If context-setting is important, therefore, Pragmatic KADS recommends that two di-
agrams should be drawn:

• At the Scoping level (i.e. the high level goals of the business), a process diagram
should be drawn. This will provide a high level overview of the KBS’ contribution
to business goals.

• At the Enterprise level (i.e. the details of a single business process in which
the KBS will play a part), a Role Activity Diagram (or Dialogue Diagram) is
recommended (cf. Figure 6.5). This captures a large part of the information
from the Task, Agent and Communication Models in a single diagram. It might
also be advisable to develop a second RAD in which the KBS is introduced as
an agent to show how responsibilities will change when the KBS is introduced.

D.4 Initial knowledge acquisition

Knowledge acquisition and analysis are closely intertwined in Pragmatic KADS. It is
suggested that the first step should be to perform some initial knowledge acquisition
– either by interviews, telephone conversations, or literature reviews – in order to
obtain an overview of the problem which the KBS is trying to solve. It is particularly
important to obtain an overview of the problem solving process at this stage. Once this
knowledge has been acquired, knowledge analysis can begin, which will both require
and direct further knowledge acquisition.
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D.5 Knowledge Analysis

The knowledge analysis process in Pragmatic KADS focuses on the development of the
inference structure component of the Expertise model. This is carried out much as it
is in full-blown CommonKADS (see chapter 8); the task type is identified, a generic
inference structure is selected from the library, it may be adapted or configured, and
then its knowledge roles are instantiated to the problem at hand.

It is possible to use the partially instantiated inference structure as an aid to knowledge
acquisition, by showing the model to the expert, asking for constructive criticism, and
then revising the model based on the expert’s comments. This approach was used
successfully by AIAI in the X-MATE project (see chapter 8).

It may be that the entities in the domain will have numerous inter-relationships. In
this case, it is wise to document those relationships, in a CommonKADS domain model
(see section 8.3) or in a report.

D.5.1 Modeling agents and communication

Once an inference structure has been developed, Pragmatic KADS recommends the
development of a system-level communication model – or to be precise, a dialogue
diagram (see chapter 6) that summarises the tasks being carried out, the agents who
perform it, and the communication that is needed to achieve this.

The dialogue diagram is a clear and concise way of representing agents and commu-
nication. However, it does not provide a great deal of support in making decisions
about assignment of agents and communication to tasks. To remedy this, Pragmatic
KADS recommends the development of a “model of interaction” that leads knowledge
engineers through the process of making these decisions in three steps. Based on the
original KADS “model of co-operation”, this model can identify input-output, task
dependencies and system & user roles. This model can even replace the dialogue dia-
gram and become a “Pragmatic KADS communication model”; however, for reasons
that will be explained in chapter 13, this is only viable for small KBS projects.

The model of interaction is explained further in section D.9.

D.5.2 Identifying procedural ordering using the task structure and
the “strategy level“

The last stage of the analysis of knowledge is to identify procedural ordering on the
inferences. This requires determining the order in which inferences will be performed
(if this has not already been done in the model of interaction), and identifying any
iteration, recursion, or conditional ordering. It’s worth inserting a reminder here that
an inference structure can be implemented using several different procedural orderings
of tasks.

The chosen ordering should normally be represented using the task structure, which acts
as a summary of the knowledge acquired in the analysis phase: it shows each inference
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step that the KBS will perform, identifying required inputs and outputs, iteration and
conditional statements, and points at which external interaction is required. The task
structure may be represented in a semi-formal language or in another written format,
such as pseudocode. A diagrammatic format is not recommended, unless the task
structure is fairly simple; in this case, the model of interaction is probably sufficient to
represent the task structure as well as the communication model.

The ordering selected for the task structure may be influenced by the “strategy level“.
This is a fourth component of the Expertise model that was proposed in KADS but
was removed by CommonKADS and replaced with the concept of problem solving
methods. In Pragmatic KADS, however, “strategic” knowledge is less likely to consist
of an overall strategy for approaching the problem (i.e. a problem solving method) and
more likely to consist of a collection of factors and features that have specific influ-
ences on procedural ordering. Examples might include user requirements on particular
knowledge roles, efficiency gains from doing one step before another, or multiple in-
puts and outputs from a single knowledge role. Since this knowledge is often useful to
record, if only in text, and since it actually fulfils one of the ’missing’ perspectives of
the Zachman framework (’why’ knowledge), it is included in Pragmatic KADS.

Once the following models have been completed:

• inference structure (possibly including low-level inference structures);

• domain model (optional);

• model of interaction;

• dialogue diagram (optional for small projects);

• task structure (optional for small projects);

• strategy level

the analysis phase of Pragmatic KADS is complete.

D.6 Knowledge-based system design

Pragmatic KADS strongly encourages structure-preserving design. This means that
the structure of the knowledge, as represented in the models produced in the analysis
phase, is reflected in the final design of the KBS. Since the inference structure and
task structure have probably been developed in much more detail than the domain
model(s), functional decomposition is the recommended decomposition paradigm.

A three-stage selection process should be carried out. This should be recorded, and the
diagram format of the CommonKADS Design Model (see chapter 12) is recommended.
A more compact format, based on the original KADS Design model, is available but
is only suitable for the smallest projects; see chapter 13 for an example of this.

The recommended approach is as follows:
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1. Select appropriate KBS programming techniques for each of the inference steps
which are to be performed by the KBS (as identified in the model of interaction
and the task structure). The selection process is guided using “probing ques-
tions”, which constitute the largest single piece of guidance provided by Prag-
matic KADS. Probing questions are also used to select appropriate knowledge
representations for knowledge roles. The probing questions technique is described
further in section D.10.

2. Design the KBS as a number of ‘modules’, where each module represents a par-
ticular inference step. The inputs and outputs between modules are specified by
the inference structure. The inputs and outputs to the user, or to other software,
are specified in the dialogue diagram.

3. Select a “platform design” for each module – i.e. specify where rules, objects,
functions, methods, demons, algorithms etc. will be used. The physical design
will also need to specify techniques for I/O with the user and other software –
menus, pre-defined text, input boxes, SQL interfaces etc. The selection of plat-
form design techniques will be based on the recommendations from the probing
questions, and on the facilities available from the chosen KBS tool. If a choice of
tools is available (which is rare), then the probing questions can be used as the
major determinant of the platform design.

Once the platform design has been prepared, the Pragmatic KADS design phase is
complete. Like CommonKADS, Pragmatic KADS currently offers no further assistance
with implementation or validation & verification, although its models may be used as
a guide for making later changes to the KBS. However, chapter 13 supplies a worked
example of Pragmatic KADS, and does give some details of how it was implemented.

D.7 Guidance: Choosing a generic inference structure

This guidance is based on the hierarchy of tasks shown below, drawn from an early
KADS report [20]2. Most of the leaf nodes in this task hierarchy have an associated
generic inference structure; few generic inference structures for other task types are
known.

As a rule of thumb, task types that are classified as “System Analysis” are easier to
solve using a KBS than tasks classified as “System Synthesis“. Tasks that are classified
as “System Modification” are the hardest of all, and few KBS have been successfully
built which tackle these task types.

Diagrams of generic inference structures can be found in appendix A. Sources for this
information include [20], [82], and [96].

A small set of questions has been devised to assist in identification of the most appro-
priate generic inference structure [108]. These questions are given below: in each case,

2 A couple of refinements have been made, notably the addition of “exploration-based design”, an
explanation of which can be found in chapter 10.
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the words in bold type are the conclusion to be drawn from a positive answer to that
question.

• Does the task involve

1. Establishing unknown properties or behaviour of an object within the domain? :
System Analysis

2. Composing a new structural description of a possible object within the domain? :
System Synthesis

3. A combination of the above? : System Modification

• Can all possible solutions to the problem be enumerated?

1. Yes : System Analysis

2. No : System Synthesis or System Modification

• If the task is a System Analysis task
then does the task involve

1. Identifying a current property of a domain object : Identification

2. Predicting a future state of a domain object : Prediction

• If the task is a Prediction task
then does the task involve:

1. Predicting behaviour? : Prediction of behaviour

2. Predicting values? Prediction of values

3. Predicting something else? : Prediction

• If the task is an Identification task
then does the task involve

1. Identifying a property of a domain object using various classification techniques? :
Classification

2. Comparing domain object properties against expectations and looking for anoma-
lies, typically in a process? : Monitoring

• If the task is a Classification task
then does the task involve:

1. Classifying an object description into an object class? : Simple-classification

2. Classifying a case description according to the terms of some system model? :
Assessment

3. Finding fault(s) in a system? : Diagnosis

• If the task is a Diagnosis task
then does the task involve:

1. Finding one fault in a system? : Single-fault-diagnosis

2. Finding multiple faults in a system? (Same techniques as finding a single fault,
only repeated application) : Multiple-fault-diagnosis

• If the task is a Single Fault Diagnosis task
then does the task involve:

1. Using heuristics to map from a problem space to a solution space? : Heuristic
Classification
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2. Using systematic methods (e.g. eliminating impossible options) to diagnose a fault?
: Systematic Diagnosis

• If the task is a Systematic Diagnosis task
then does the task involve:

1. Using a “part-of” model to represent the system model to be diagnosed? : Local-
isation

2. Using a causal model to represent a system model to be diagnosed? : Causal
Tracing

The next question has been added to the original set of questions, following Joost
Breuker’s more recent work [18]:

• If the task is a Systematic Diagnosis task
then what type of solution is required?

1. A faulty component – the solution of the original problem? : Localisation

2. A single fault that is occurring – the cause of the original problem? : Causal
Tracing

3. The argument that links the cause and solution of the original problem? In
this case, the reasoning process itself constitutes the desired solution.
Choose the best inference structure according to other features and, if
possible, choose an implementation tool that supports meta-reasoning

• If the task is a System Synthesis task
then does the task involve:

1. Fitting one or more components into a constrained, pre-defined framework? :
Configuration

2. Designing an artifact which meets certain constraints, but without a pre-defined
framework? : Design

3. Determining a good step-by-step technique for solving a problem? : Planning

4. Producing a good representation of a real world artifact or concept? : Modeling

• If the task is a Design task
then does the task involve:

1. Breaking down the design into subcomponents, and designing each subcomponent
independently? : Hierarchical design

2. Gradually transforming the design from one representation to another? : Trans-
formational Design

3. Suggesting a design, and using criticisms of that design to determine further con-
straints on the next design? : Exploration-based design

4. Selecting a skeleton model, and fitting design elements into that model? : Refine-
ment design

D.8 Guidance: Instantiating a generic inference structure

Instantiating an inference structure is a knowledge-based classification/design task. It
involves deciding which domain entities (if any) match the knowledge roles suggested
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in the generic inference structure; this is a classification task.3 If the model needs to
be extended in order to accommodate important domain entities and concepts which
are not represented in the generic inference structure, then an element of design (not
configuration, since there is no restriction on the size of the target model) is involved.

A good understanding of the generic inference structure is a requirement for the in-
stantiation to be done well. This requires understanding the semantics of the inference
steps. Pragmatic KADS uses the 22 “primitive” inference steps, which were proposed
at the start of the KADS project [20]; if these definitions are insufficient for a partic-
ular knowledge engineering problem, a more formal and more detailed description of
CommonKADS’ inference steps can be found in [2].

As for adapting inference structures, the following rules must be adhered to:

1. Each primitive inference step must have only one output. If the inference step is
not primitive (i.e. it is decomposed into a lower level inference structure), this
rule can be waived.

2. The definitions of the primitive inference steps must be followed. For example,
the definition of specify is that it changes a structure into a similar structure
with extra information added. The inputs and output of specify must therefore
be structures of the same type.

In practice, Pragmatic KADS allows these rules to be ’bent’ in the following ways:

• Pragmatic KADS includes definitions of “activities” that form part of the infer-
ence process but aren’t strictly knowledge-based functions. These include arith-
metic functions and functions that simply add or take away from a set or a list.
It also includes “execute” (i.e. carry out some action), which broadly correlates
with CommonKADS’ concept of a “transfer function”.

• Pragmatic KADS permits inference steps to have multiple outputs. This is used
in situations such as in IMPRESS to allow the inference step that decomposes
the set of hypotheses to have two alternative outputs – a hypothesis to test or a
conclusion. Technically, this detail belongs in the task structure, but it makes the
inference structure much more comprehensible to an expert if this is included.

transfer functions” in CommonKADS (see

D.9 Guidance: Building the model of interaction

The purpose of the model of interaction is to specify input & output, and to make
decisions about the respective roles of KBS and user explicit. The model is constructed
by first creating a task hierarchy that represents every inference step from the inference

3 It’s classification as opposed to assessment because assessment requires choices between competing
alternatives, and there are few such alternatives in a typical knowledge based project.
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structure. If some steps belong to a low level inference structure, then they appear at
a lower level in this task hierarchy. This model is then annotated with dependencies,
input/output requirements, and finally with role assignments. In more detail:

• Step 1 is to draw up an ordered list of the different subtasks which a KBS must
perform in order to fulfil its problem-solving task. This list is derived from the
inference structure, and may be partially or fully ordered; the knowledge engineer
may choose to make decisions about ordering of inferences at this stage, or may
delay the decision until the preparation of the task structure. Using IMPRESS
(see chapters 7 and 8) as an example, the results of stage 1 would look like the
diagram shown in D.9.

• Step 2 is to identify the dependencies between subtasks i.e. the inputs and
outputs of each subtask. The process of adding dependencies to the diagram
often identifies requirements for I/O with external databases, files, the user, or
other sources of information. All external I/O should be explicitly represented
in the model – see figure D.3.

• Step 3 is to make design decisions about which subtasks will be performed by
the KBS, which by the user, and which by the KBS and user together. In the
IMPRESS system, the main design decision was whether the selection of a test
to perform should be done by the KBS and user in conjunction, or by the KBS
alone; in other words, whether the user should be permitted to reject the system’s
recommendation of a test. It was decided that the user would indeed be allowed
to reject the recommended test, and to ask for another test to be recommended.
The inference step select test to perform was therefore assigned to KBS & user.

The assignments made are represented by shading the inference steps in figure
D.4.

The model of interaction can be based on the task structure instead of the inference
structure. Here is an example, drawn from a KBS which helps civil engineers to check
the design of a building against British standards: (see chapter 6 for details):

task assessing-building-against-British-standards

goal check that a building design conforms to British standards

task structure

assessing-building-against-British-standards(results of checks)

obtain(numerical description of building)

transform(numerical description → model of the building)

select(a check to perform)

obtain(any further information required for that check)

match(model of building + standards relevant to the chosen check → result of check)

report(results of check)

The resulting model of interaction is shown in Figure D.5.
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Figure D.2: IMPRESS Model of interaction: Step 1
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Figure D.3: IMPRESS Model of interaction: Step 2
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Figure D.4: IMPRESS Model of interaction: Step 3
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Figure D.5: Model of interaction for the KBS which checks the design of a building
against British standards

D.9.1 Benefits of the model of interaction

What are the benefits of the model of interaction? At the very least, it serves as a
useful aide memoire for the designer of the I/O components of the KBS, both for the
inputs & outputs of the KBS as a whole, and for any I/O which occurs within the
KBS. The model of interaction is at its most useful when it is used to identify that
one or more subtasks should be carried out by the user of the KBS; if this is so, the
design of the KBS may be radically affected. An excellent example of this comes from
a project carried out for an insurance company. The task of the KBS was to identify
errors on forms; the task structure is shown below.

task identify-errors-on-forms

goal check each field on a form against its predicted value to identify errors made when filling
in the form

control-terms

fields = set of all fields on the form

task structure

identify-errors-on-forms(classified-errors)

decompose(form → fields)

do for each field ∈ fields

specify(expected value)

read(actual value)

match(actual value + expected value → mismatches)

classify(errors → classified-errors)
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Figure D.6: Model of interaction for the form processing KBS

Each of the five tasks identified must be carried out by either the KBS or the user. Since
knowledge based systems are typically good at performing matching tasks, it would be
normal for the “match expected value against actual value” task to be allocated to the
system. However, this would have required the user to type in many values from many
different forms, and it also required the KBS to have considerable knowledge about
the nature of the data, near-matches, etc.

It was decided that the forms would not actually be input into the KBS; instead, the
KBS would advise the user on fields to check, and the user would perform the actual
matching. The effects of assigning the matching task to the user were immense. KBS
designers often use production rules to implement matching tasks; but, with the match-
ing task being performed by the user, it was decided that the forms processing KBS
could be developed entirely using object-oriented programming. In the terminology of
the model of interaction, the match subtask would be carried out by the user, as shown
in Figure D.6.

The biggest drawback of the model of interaction is its complexity. This is discussed
further in chapter 13.

D.10 Guidance: Selecting knowledge representation &

KBS implementation techniques using Probing Ques-
tions

Probing questions are used to guide knowledge engineers in the selection of appropriate
knowledge representation and KBS implementation techniques. This is accomplished
by the knowledge engineer asking himself questions about the analysed knowledge.
The questions are of the general form

if a certain feature exists in the analysed knowledge

then consider using a particular knowledge representation, or implementation tech-
nique.
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The probing questions are intended to be heuristics to guide the design process.

In Pragmatic KADS, probing questions are divided into three categories:

1. “Application design” questions that suggest AI paradigms – ways of approach-
ing the design as a whole. Examples of AI paradigms might be

• blackboard reasoning;

• constraint-based reasoning;

• case-based reasoning;

• model-based reasoning.

The use of an architectural paradigm will greatly restrict other design choices,
and so the possibility of using paradigms is investigated first.

2. “Architectural design” questions which suggest AI programming techniques.
Examples of AI programming techniques are:

• depth-first search;

• truth maintenance;

• fuzzy reasoning;

• data-driven reasoning.

Some of the suggestions at this level are based on the implementation of particular
inference steps in particular task types; for example

if the task type is localisation then recommend using Generate and Test to
implement the select-1 inference step

3. “Detailed architectural design” questions that suggest AI representation &
inference techniques. Representation techniques include:

• rules;

• objects;

• user-defined relations;

• sorted logic.

Inference techniques include:

• forward chaining;

• slot daemons;

• meta-rules;

• using recency for conflict resolution.

The current list of probing questions, which is based on knowledge acquired from three
members of AIAI staff by Colin MacNee [120] [98], can be found in Appendix C. They
are divided into the three categories, and are secondarily subdivided according to the
following scheme:
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• Knowledge Structure – (A): Domain Objects and Relationships;

• Knowledge Structure – (B): Inferences and Generic Task;

• Uncertainty in Knowledge;

• Solutions;

• Data;

• Dialogue & Explanation;

• Computational Efficiency.

Probing questions are intended for use as knowledge engineer’s heuristics. The advice
that they give is applicable in most situations, but it is expected that it any real life
problem, there may be exceptional circumstances which override the recommendations
of the probing questions. An obvious example of such a circumstance would be if the
KBS is to be implemented in a shell which does not support frames or any kind of
object-oriented programming; then all recommendations regarding the use of objects
would have to be ignored.

D.11 Summary

Pragmatic KADS is intended to support knowledge engineers on small KBS projects.
It provides some guidance, much of which is in the form of heuristic rules; it seems
sensible to practice what I preach. The model of interaction, although similar in
form to the original KADS model of co-operation, is intended to support knowledge
engineers in making agent and communication-related decisions, and the three-stage
development of it supports that.
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List of John Kingston’s
publications

Listed below are all John Kingston’s publications on knowledge management, knowl-
edge engineering, or knowledge modeling:

John Kingston, Multi-perspective Ontologies: Resolving Common Ontology Problems.
Expert Systems with Applications, 34(1), Jan 2008: 541-550. This paper looks at
how a multi-perspective approach can help to resolve ontology problems such as IS-A
overloading, inaccurate expert responses, dependence relations and particulars.

John Kingston, Multi-Perspective Modeling: A Framework for Knowledge Represen-
tation and Knowledge Management, Proceedings of AI-METH 2005, Gliwice, Poland,
Nov 2005. The paper discusses in detail an approach to multi-perspective modeling
based on the Zachman framework; applies this approach to key knowledge manage-
ment approaches and modeling methods; and validates the approach by showing how
meta-analysis of the framework can be used to derive well-known software development
techniques.

John Tickner, Jeff Friar, Karen S. Creely, John W. Cherrie, D. Eric Pryde and John
Kingston, The Development of the EASE Model, Annals of Occupational Hygiene
49(2), 2005:103-110, The creation and development of the EASE model from 1992 to
2002 is described.

John Kingston, Conducting Feasibility Studies for Knowledge Based Systems, Proceed-
ings of BCS SGAI AI’03 conference, Peterhouse College, Cambridge, 15-17 December
2003. Also in the Knowledge Based Systems Journal, 17, Elsevier Science, 2004. This
paper describes how to carry out a feasibility study for a potential knowledge based
system application under three headings: the business case, the technical feasibility,
and stakeholder issues. It concludes with a case study of a feasibility study for a KBS
to guide surgeons in diagnosis and treatment of thyroid conditions.

Knox Haggie and John Kingston, Choosing your Knowledge Management Strategy,
Journal of Knowledge Management Practice, Volume 4, 2003. Applies and extends
Binney’s KM Spectrum to provide a guide to selecting a KM approach that matches

419
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organisational strategy.

John Kingston, Ontology, Knowledge Management, Knowledge Engineering and the
ACM Classification Scheme. Proceedings of ES ’02, the 22nd annual International Con-
ference of the British Computer Society’s Specialist Group on Artificial Intelligence,
Peterhouse College, Cambridge, 10-12 December 2002. This paper tests the theory of
multiple perspectives being necessary for completeness in ontologies by applying it to
the task of placing “knowledge management” and “knowledge engineering” within the
ACM classification scheme.

John Kingston, Merging Top Level Ontologies for Scientific Knowledge Management.
Proceedings of the AAAI workshop on Ontologies and the Semantic Web, AAAI-02
conference, Edmonton, Canada, 29 July 2002. Describes the merging of four inde-
pendently developed ontologies describing academics, their publications and research
areas, etc.

John K.C. Kingston, High Performance Knowledge Bases: Four approaches to Knowl-
edge Acquisition, Representation and Reasoning for Workaround Planning. Expert Sys-
tems with Applications, Volume 21, 4, November 2001. Describes and compares four
solutions to the same ”challenge problem” in knowledge acquisition and knowledge-
based planning.

John K.C. Kingston, Ontologies, Multi-Perspective Modelling and Knowledge Audit-
ing, In Proceedings of the Ontologies Workshop, German and Austrian Joint Con-
ference on Artificial Intelligence (KI-2001), Vienna, 18 September 2001. A position
paper on the use of ontologies in knowledge auditing, and the use of multi-perspective
modeling principles in building adequate ontologies.

K. Nammuni, J. Levine and John K.C. Kingston, Skill-based Resource Allocation using
Genetic Algorithms and an Ontology. In Proceedings of the International Workshop
on Intelligent Knowledge Management Techniques (I-KOMAT 2002) held at the 6th
International Conference on Knowledge-Based Intelligent Information and Engineering
Systems (KES 2002), September 2002, IOS Press, Amsterdam. Uses genetic algorithms
and an ontology to make optimal allocations of resources (tutors with various skills)
to tasks (tutorials requiring certain skills).

John K.C. Kingston, Modelling Agents and Communication using CommonKADS. In
Research and Development in Expert Systems XVII, Proceedings of the ES’00 confer-
ence, Churchill College, Cambridge, December 2000. Details, worked examples, and
proposals for extension of the CommonKADS Agent and Communication models

John K.C. Kingston, Knowledge based system development tools. In the Encyclopedia
of Life Support Systems, pub. UNESCO, 2002. Describes categories and capabilities
of KBS development tools

J. Kingston and A. Macintosh, Knowledge Management through Multi-Perspective
Modelling: Representing and Distributing Organizational Memory. In Research and
Development in Expert Systems XVI, proceedings of BCS SGES Expert Systems ’99
conference, Churchill College, Cambridge, December 1999. Also in the Knowledge
Based Systems Journal, 13 (2-3), Elsevier Science, 2000, pp. 121-131. The who, what,
how, when, where and why of a medical procedure, expressed using complementary
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knowledge modeling techniques, also including a discussion of how a knowledge model
can be used as a user interface.

A. Macintosh, I. Filby and J. Kingston, Knowledge Management Techniques: Teaching
& Dissemination Concepts. International Journal of Human Computer Studies (Special
Issue on Organizational Memories: Knowledge Management), vol. 51, no. 3, Academic
Press, September 1999. Brief description of a knowledge management methodology.

Jon Simpson, John K.C. Kingston and Neil R. Molony, Internet-Based Decision Sup-
port for Best Practice in Medicine. In Applications and Innovations in Expert Systems
VI, proceedings of the 15th Annual Conference of the British Computer Society’s
Specialist Group on Expert Systems, Cambridge, 14-16 December 1998. Also in the
Knowledge Based Systems Journal, 12 (5-6), Elsevier Science, 1999, pp. 247-255.
Design and development of an prototype Internet-based decision support/ knowledge-
based system for following clinical protocols, using knowledge models as part of the
user interface.

M. Sideris, N. Kyrtatos, N. Parthenios and J. Kingston, A Computer based Application
for Ship-Survey Reporting. New Review of Applied Expert Systems, volume 5, 1999,
pp. 113-128. Design and development of VESSELL, a KBS for determining techniques
and cost for repainting ship cargo holds.

R. Power, S. Reynolds, J. Kingston, I. Harrison, A. Macintosh and J. Tonberg, In
Applications and Innovations in Expert Systems V, proceedings of BCS SGES Expert
Systems ’97 conference, Churchill College, Cambridge, 15-17 December 1997. Also in
the Knowledge Based Systems Journal, 11 (5-6), Elsevier Science, 1998, pp. 339-344.
Motivation, design and development of a knowledge-based decision support system
which supports the reprovisioning of spare parts within the RAF.

John K.C. Kingston, Designing Knowledge-Based Systems: The CommonKADS De-
sign Model, In Research and Development in Expert Systems XIV, Proceedings of BCS
SGES Expert Systems’97, Cambridge, 15-17 December 1997. Also in the Knowledge
Based Systems Journal, 11 (5-6), Elsevier Science, 1998, pp. 311-319. Worked exam-
ples of the CommonKADS Design Model, using IMPRESS and X-MATE as examples.

John K.C. Kingston, Anna Griffith and Terri J. Lydiard, Multi-perspective modelling of
Air Campaign Planning. Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI ’97), Nagoya, Japan, 23-29 August 1997. Using the CommonKADS
Organisational and Task models to represent the process of air campaign planning by
the USAF.

Stefan Robertson and John K.C. Kingston, Selecting a KBS Tool using a knowledge
based system. Proceedings of PACES/SPICIS ’97, Singapore, 24-27 February 1997.
Design and development of a prototype KBS for deciding on the best programming
package for a KBS project.

J.K.C. Kingston, Building a KBS for Health and Safety Assessment. Applications and
Innovations in Expert Systems IV, Proceedings of BCS Expert Systems’96, Cambridge,
16-18 December 1996. SGES Publications. Design, development and roll-out of EASE,
which is used by occupational hygienists from the Health and Safety Executive when
assessing the safety of a new manufacturing process
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J.K.C. Kingston, N. Shadbolt and A. Tate, CommonKADS Models for Knowledge
Based Planning. Proceedings of AAAI-96, Portland, Oregon, 5-8 August 1996. De-
scribes how a new “CommonKADS” model was developed based on the O-Plan system,
and how the model was used in the Search and Rescue project.

H. Cottam, N. Shadbolt, J. Kingston, H. Beck and A. Tate, Knowledge Level Plan-
ning in the Search and Rescue Domain. In Proceedings of BCS Expert Systems’95,
Cambridge, 11-13 December 1995. Motivation, design and development of a prototype
system for planning the deployment of Search and Rescue helicopters.

J.K.C. Kingston, J.G. Doheny and I.M. Filby, Evaluation of workbenches which sup-
port the CommonKADS methodology. Knowledge Engineering Review, 10, 3, 1995.
Comparison of KADSTool, Open KADS Tool and the CommonKADS Workbench.

S. Dirks, M. Haggith and J. Kingston, Development of a KBS for Personal Financial
Planning Guided by Pragmatic KADS. Expert Systems with Applications, 9,2, 1995,
pp. 91-101. Design and development of a prototype system for designing a personal
financial portfolio (28 pages).

J.K.C. Kingston, Applying KADS to KADS: knowledge-based guidance for knowledge
engineering. Expert Systems: The International Journal of Knowledge Engineering, 12,
1, Feb 1995. An overview of three KBS prototypes which advise on selecting models
from the CommonKADS library, good KBS design, and good selection of a KBS tool

J.K.C. Kingston, Linking Knowledge Acquisition to CommonKADS Knowledge Rep-
resentation. Proceedings of BCS SGES Expert Systems’94, Cambridge, 12-14 Decem-
ber 1994. Techniques for mapping the output of knowledge acquisition into Com-
monKADS, based on the TOPKAT system.

J. Kingston, Re-engineering IMPRESS and X-MATE into CommonKADS. BCS SGES
Expert Systems ’93, St. John’s College, Cambridge, 13-15 December 1993. A de-
tailed description of key components of the new CommonKADS methodology, using
IMPRESS and X-MATE as examples.

S.J. Price and J. Kingston, The KADESS Knowledge-Based System: employing the
KADS methodology in an engineering application. In Proceedings of the Sixth Interna-
tional Conference on Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Edinburgh, June 1-4 1993. Design and development of a proto-
type KBS for assessing whether portal frame buildings conform to regulations.

J. Kingston, KBS Methodology as a framework for Co-operative Working. Proceed-
ings of Expert Systems 92, the 12th annual technical conference of the BCS Specialist
Group on Expert Systems, Churchill College, Cambridge, 15-17 December 1992. De-
sign and development of the IMPRESS system for diagnosing faults in plastic moulding
machinery.

J. Kingston, Pragmatic KADS: A methodological approach to a small knowledge based
systems project. In Expert Systems: The International Journal of Knowledge Engi-
neering, 4, 4, November 1992. Design and development of the Course Selector system.

J. Kingston, Modelling interaction between a KBS and its users. Newsletter of the
BCS SGES Methodologies Interest Group, volume 1, Spring 1992.
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J. Kingston, How to build a knowledge-based system for credit risk assessment. Pre-
sented to the annual conference of the Institute of Mathematics and its Applications,
Edinburgh, 25-27 September 1991. This paper is a revised version of the paper on
X-MATE below.

J. Kingston, X-MATE: Creating an interpretation model for credit risk assessment.
Proceedings of BCS SGES Expert Systems 91, London, 17-18 September 1991. Devel-
opment of a knowledge based system for mortgage application underwriting.


