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Abstract

It seems almost self-evident that “knowledge management” and “knowledge engineer-
ing” should be related disciplines that may share techniques and methods between
them. However, attempts by knowledge engineers to apply their techniques to knowl-
edge management have been praised by some and derided by others, who claim that
knowledge engineers have a fundamentally wrong concept of what “knowledge man-
agement” is. The critics also point to specific weaknesses of knowledge engineering,
notably the lack of a broad context for the knowledge.

Knowledge engineering has suffered some criticism from within its own ranks, too,
particularly of the “rapid prototyping” approach, in which acquired knowledge was
encoded directly into an iteratively developed computer system. This approach was
indeed rapid, but when used to deliver a final system, it became nearly impossible to
verify and validate the system or to maintain it. A solution to this has come in the
form of knowledge engineering methodology, and particularly in the CommonKADS
methodology, which proposes developing a number of models of the knowledge from
different viewpoints at different levels of detail. CommonKADS also offers a library
of generic models for the “inference structures” — the steps by which certain types
of knowledge-based task are tackled. CommonKADS is now the most widely used
non-proprietary knowledge engineering methodology.

The purpose of this thesis is to show how an analytical framework originally intended
for information systems architecture can be used to support knowledge management,
knowledge engineering and the closely related discipline of ontology engineering. The
framework suggests analysing information or knowledge from six perspectives (Who,
What, How, When, Where and Why) at up to six levels of detail (ranging from “scop-
ing” the problem to an implemented solution). The application of this framework to
each of CommonKADS’ models is discussed, in the context of several practical appli-
cations of the CommonKADS methodology. Strengths and weaknesses in the models
that are highlighted by the practical applications are analysed using the framework,
with the overall goal of showing where CommonKADS is currently useful and where
it could be usefully extended. The same framework is also applied to knowledge man-
agement; it is established that “knowledge management” is in fact a wide collection of
different approaches and techniques, and the framework can support and extend every
approach to some extent, as well as the decision which approach is best for a particular
case. Specific applications of using the framework to model medical knowledge and to
resolve common problems in ontology development are presented.

The thesis also includes research on mapping knowledge acquisition techniques to
CommonKADS’ models (and to the framework); proposing some extensions to Com-
monKADS’ library of generic inference structures; and it concludes with a suggestion
for a “pragmatic” KADS for use on small projects. The aim is to show that this frame-
work both characterises the knowledge required for both knowledge management and
knowledge engineering, and can provide a guide to good selection of knowledge man-
agement techniques. If the chosen technique should involve knowledge engineering, the
wealth of practical advice on CommonKADS in this thesis should also be beneficial.
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Chapter 1

Introduction

The subjects of this thesis are knowledge management, knowledge engineering, and
ontological engineering. It has become increasingly clear that these subjects are in-
terrelated. The goals of this thesis are to propose an underlying framework for all
three of these subjects; to discuss the application of this framework and its potential

advantages; and to illustrate this with detailed worked examples.

1.1 Thesis overview

The work in this thesis spans several years’ worth of applied research. The research
began by applying the CommonKADS methodology to a number of knowledge engi-
neering projects, identifying strengths and weaknesses of the method, and proposing
improvements to it. The projects required knowledge acquisition and/or knowledge
based system development to a commercially acceptable standard. Typically, each
project involved doing some knowledge acquisition, deciding which CommonKADS
model(s) to develop, and then working with the “official” definition of the model and
the acquired knowledge to produce an instantiated version of that model that repre-
sented the acquired knowledge. Depending on the results of these efforts, the next
stage might include further knowledge acquisition and model instantiation; identifying
weaknesses in the model definition that made it difficult or impossible to represent
features of the task, and adapting the model accordingly; or even partially discarding
the models recommended by CommonKADS in favour of another modeling technique.

Fach task therefore constituted an empirical test of the adequacy and applicability of
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CommonKADS models to real-world knowledge modeling.

After a while, the various projects described above spawned broader research into a
consideration of the principles underlying CommonKADS. Experience has suggested
that applying CommonKADS is not as straightforward as it seems (see for example the
results of the Sisyphus project [68], in which four research groups using CommonKADS
to solve the same problem produced four very different knowledge models), and the
goal of the research was to consider the basis on which CommonKADS was built in
order to understand how to use it most effectively. Why were some knowledge models
recommended and others not? How did the models relate to each other? This was
coupled with an ongoing interest in which models were most useful in practice and

which might not be needed in typical knowledge engineering projects.

The primary observation from this research was that CommonKADS is based on mod-
eling knowledge and information using multiple perspectives at multiple levels of detail,
and that as detail is added, an organisational goal is gradually refined into domain-
specific or task-specific knowledge, which is then transformed into a design specification
for a knowledge based system. Given that CommonKADS begins by modeling organi-
sational knowledge, it can be seen that the research described in this thesis will touch

on principles of knowledge management as well as knowledge engineering.

Chapters 2 to 5 of this thesis focus on knowledge management and on ontology engi-
neering. Chapter 2 describes the multi-perspective modeling approach used through-
out this thesis, and considers its implications and benefits for the selection and use
of the various approaches and techniques that are collectively referred to as “knowl-
edge management”. Chapters 3 and 4 look at the implications of the multi-perspective
framework for ontology development. Chapter 5 then begins the examination of the
CommonKADS methodology by considering an application of CommonKADS’ “knowl-

edge management level” models, using a range of modeling formats.

The remaining chapters (chapter 6 onwards) discuss applications of CommonKADS
models within various projects, including discussion of knowledge acquisition, generic
knowledge models, ontology, and other issues. The chapters are ordered according

to the recommended order of model development within CommonKADS: so chapter
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5 comes first, followed by chapter 6 which deals with the Agent and Communication
Models (which are seen as representing part of the organisational context within which
a knowledge based system can be developed, though the chapter argues that revised
versions of these models are also useful to model the knowledge for the knowledge
based system itself); chapters 7 through to 11 discuss the Expertise Model; chapter
12 discusses the Design Model; and chapter 13 serves as a summary by proposing
“Pragmatic KADS” i.e. identifying a minimal set of CommonKADS models for use on

small KBS development projects.

1.2 Definitions

1.2.1 Knowledge Management

The exact definition of knowledge management has been, and is, a matter of consider-
able debate. Definitions range from “a method for gathering information and making
it available to others”!' through “capturing, organizing, and storing knowledge and
experiences of individual workers and groups within an organization and making this
information available to others in the organization”? to “the strategic use of infor-
mation and knowledge resources to an organizations best advantage”3. Perhaps the
most widely known definition (though arguably one that only describes some aspects
of knowledge management) is that of Nonaka and Takeuchi [132], who argue that a
successful KM program needs to “convert internalised tacit knowledge into explicit
codified knowledge in order to share it, but also on the other hand for individuals and
groups to internalise and make personally meaningful codified knowledge once it is

retrieved from the KM system.”

It’s clear that the common theme is the application of knowledge throughout an or-
ganisation. The disagreements that arise are often connected with the focus of the
definition ... is it on the knowledge itself, the process of distributing that knowledge,
or the people who give/receive the knowledge? These disagreements are partly based

on fundamentally different views on the nature of knowledge; those holding construc-

! www.qualishealth.org/qi/collaboratives/glossary.cfm

2 library.ahima.org/xpedio/groups/public/documents/ahima/pub_bok1_025042.html

3 www.gov.bc.ca/prem/popt /service_plans/srv_pln /pssg/appen_a.htm
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tivist views of knowledge tend to favour approaches that focus on people, while those
with a more cognitive view of knowledge are more inclined to focus on the knowledge
itself. These views are discussed further in the review chapters of this thesis (chap-
ters 16 to 15), but for now, it will simply be noted that a ‘spectrum’ of definitions
exists, ranging from knowledge engineering solutions (‘transactional’ knowledge man-
agement) to community-based approaches (‘innovation’ knowledge management). This
‘KM spectrum’ was first proposed in [39] and was further discussed and developed in

78).

1.2.2 Knowledge engineering

Knowledge engineering is the science/practice of developing knowledge based systems.
It is directly analogous to software engineering of more conventional computer pro-

grams. It requires:

e identifying a human expert or another source of valuable knowledge;
e acquiring that knowledge in a systematic form;

e encoding that knowledge in a knowledge based computer program.

Typically, the resulting “knowledge based system” will ask users of the system for
information and then process that information according to the knowledge that it
possesses, in order to produce a reasoned conclusion. Many systems can also provide

explanations of their reasoning.

1.2.3 CommonKADS: A Knowledge Engineering methodology

CommonKADS (and its predecessor, KADS — the acronym stood for either “Knowl-
edge Acquisition and Design System” or “Knowledge Analysis and Design System”)
views knowledge engineering as a modeling activity, where each model is “a purposeful
abstraction of some part of reality” (i.e. an “intermediate representation” between
reality and some application of that model e.g. implementation in a knowledge based

system). Each model focuses on certain aspects of the knowledge and ignores others. A
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knowledge engineering project entails the construction of a set of models that together
constitute the knowledge that is being engineered. Knowledge models typically consist
of one or more diagrams containing nodes (boxes, ellipses, or other icons) represent-
ing knowledge items, and arcs (arrows) between nodes representing input/output, flow
of control, or other relationships. CommonKADS proposes a suite of six knowledge
models that could be developed; if all are developed, they should gradually transform
knowledge from a set of organisational needs & requirements to a high level design

specification for a knowledge based system. The six models are:

e An Organisational model that represents the processes, structure and resources
within an organisation, with the aim of identifying fruitful areas for better ap-

plication of knowledge;

e A Task model to show the activities carried out in the course of a particular

organisational process;

e An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

e A Communication model to show the communication required between agents

during a process;

e An Expertise? model, which is a model of the expertise required to perform a

particular task;

e A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

1.2.4 Ontology

Like “knowledge management”, the term “ontology” has been defined in various ways.
Guarino & Giaretta [77] have identified no less than eight different meanings of it in

the relevant literature:

* The “CommonKADS book” [147] refers to this model as the “Knowledge Model”. While the original
label of “Expertise Model” was sometimes inaccurate, because the knowledge needed to carry out
tasks is not always expert knowledge, “knowledge model” is a very general term that could encompass
any or all of the CommonKADS models. I have chosen to use the original name to avoid confusion
with multiple other uses of the terms ‘knowledge’ and “knowledge model” within this thesis.
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1. Ontology as a philosophical discipline

2. Ontology as an informal conceptual system

3. Ontology as a formal semantic account

4. Ontology as a specification of a “conceptualization”

5. Ontology as a representation of a conceptual system via a logical theory

e characterized by specific formal properties

e characterized only by its specific purposes
6. Ontology as the vocabulary used by a logical theory

7. Ontology as a (meta-level) specification of a logical theory

There are three main themes in the above list. Definition 1 is quite different from all
the others, and reflects the original meaning of the word ‘ontology’, before it became a
widely used term in the knowledge management community ... ontology is a philosoph-
ical discipline is “the study of the nature of being, reality and substance”. Definitions
2 and 3 conceive an ontology as a conceptual “semantic” entity, either formal or in-
formal, while according to the interpretations 5-7 an ontology is a specific “syntactic”
object ... or rather, a syntactic descriptive scheme that can be used to label other

objects and to describe their interrelationships.

For the purposes of this thesis, a pragmatic definition will be used, that follows the
latter theme. The definition is based on that of Gruber [75], who stated (inter alia)
that “an ontology is an explicit specification of a conceptualisation.” To this, I will
add the following: “In knowledge engineering practice, an ’ontology’ often equates to

the definition of what can be represented within a computer program.”

1.2.5 Knowledge Engineering Methods: A Brief History

Early approaches and reusability

When expert systems initially emerged from the research laboratory into the commer-

cial world with systems such as MYCIN [154] and PROSPECTOR [25], they were
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typically developed by “rapid prototyping”. This was a recognised technique in soft-
ware engineering, where a “quick and dirty” version of the final system was developed
in order to test out certain programming approaches, and to show to the end users as
an aid to requirements capture. Since the acquisition of expert knowledge has many
similarities to requirements capture, knowledge engineers seized on this method as a
way of quickly developing an impressive-looking system. The method employed was
typically to obtain some knowledge from the expert, to program this into an “expert
system shell” usually in the form of IF-THEN rules, and then to show the resulting
program to the expert both to verify that the system correctly reflected the expert’s

knowledge to date and also as an aide memoire to the acquisition of further knowledge.

The method was very effective in triggering expert’s memories and in developing small
systems with impressive speed. However, in software engineering, rapidly prototyped
systems are normally considered to be “throwaway prototypes”, whereas early expert
system developers often developed the prototype to the point where it included suffi-
cient expert knowledge to be considered an adequate expert system, and then delivered
it to the users. This led to considerable problems when the knowledge needed updat-
ing or the system needed future maintenance, because there was often little or no
documentation describing the system’s structure, nor was there any “intermediate rep-
resentation” of the expert’s knowledge. In one case (reported in [80]), even the original
designer and programmer of an expert system was unable to understand its code six

months after the system was initially delivered.

Rapid prototyping led to some other problems, too. In some cases, the expert’s knowl-
edge was not necessarily suitable for encoding as IF-THEN rules, but the constraints
of the programming environment led to knowledge engineers trying to squeeze the
knowledge into that format®. Another problem was that knowledge engineers who
developed several systems, particularly in the same domain, began to notice certain
patterns emerging but had no way of recording thos patterns for re-use in future sys-
tems. KEventually, it was realised that the patterns recurred across domains as long

as the same type of task was being tackled (see e.g. [95]). It was this observation,

5 For an illustration of a task where the same system was programmed using three different “expert
system shells” offering different programming environments, and the advantages of having object-
oriented programming available to complement IF-THEN rules, see [84].



Introduction 3

coupled with a desire to introduce some good practice from software engineering into

the development of expert systems, that led to the development of KADS.

Software engineering and the development of CommonKADS

Software engineering methods were largely ignored by early expert system developers.
The reasons are not clear; it may be that most of these developers came from research
laboratories where such methods were not part of the culture, or that the methods
themselves were considered inadequate for a system that encoded expert knowledge. If
the latter is true, it may be that expert system developers were actually criticising the
wrong target — the “waterfall model”, first identified by Royce [143]. In the waterfall
model, the various phases of software engineering (requirements, design, implementa-
tion, verification and maintenance) proceed in a purely sequential manner; once a stage
has been completed, and its outputs handed on to the next stage, it is never revisited.
This model has certain advantages; getting the early stages 100% right saves consid-
erable time in later stages, and also facilitates the distribution of a project between
departments. But it has been heavily criticised for its lack of iteration; in fact, Royce
himself only identified it in order to make this criticism and to recommend a more
iterative model. Since rapid prototyping of expert systems is perhaps the ultimate
iterative system development technique, it is hardly surprising that a “culture gap”
existed between expert system developers and software engineering methods that were

perceived to be based on the waterfall model.

Yet software engineering methods offer far more than just a lifecycle process. They also
offer recommended documents that are needed for describing the outputs of each stage;
notations for modeling the flow of information and other processes within the planned
software system; and design and testing techniques. The original KADS methodology
was largely focused on its library of “interpretation models” (i.e. attempts to capture
some of the patterns that recurred across different knowledge-based tasks), but Com-
monKADS was explicitly designed to incorporate aspects of other software engineering
methods. Its notation drew on methods such as PRINCE [133], Rumbaugh’s and Your-
don’s object-oriented state diagrams [144] [32], and Jackson’s structured programming

methods [54], especially in the notation for its diagrams. It also extended its libraries
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(it started to build a library of “problem solving methods” — more detailed process
control descriptions for knowledge based tasks) and created a conceptual modeling
language (CML) into which instantiated knowledge models could be translated. There
was even a formal modeling language (FML, later (ML)?) into which CML could be
transformed for logical verification purposes; this language was highly regarded in the
knowledge engineering community [181]. When the CommonKADS book was pub-
lished in 1999 [147], a number of documents were recommended to accompany (or, in

some cases, embody) some of the knowledge models.

Today, most software engineering methods prefer a “spiral lifecycle” model (see [11])
in which (in general terms) several iterations of the entire ‘waterfall’ are carried out,
with risk assessments performed before each new iteration is begun; and many of the
software engineering notations that CommonKADS drew on have been superseded by,
or incorporated into, the Unified Modeling Language (UML) [137]. CommonKADS’
notation, as defined in the CommonKADS book, has many similarities with UML

notation.

Other knowledge engineering methods and knowledge engineering work-
benches

KADS and CommonKADS were not the only knowledge engineering methods devel-
oped in late 1980s and early 1990s, but they were easily the most influential. At least
one project funded under the ESPRIT programme, VITAL (see e.g. [51]), aimed to
provide a competing methodology and an associated workbench®; however, while the
resulting method was considerably stronger than CommonKADS on the development
and inclusion of knowledge acquisition tools, its library of generic tasks was largely
copied from KADS. A number of management consultancies also developed their own
proprietary methods, but significantly, Touche Ross chose to use KADS and Com-

monKADS, and used them with considerable commercial success.

Following a different thread, Chandrasekaran’s Generic Tasks approach [27] and Steels’

6 A ‘workbench’ is a software system supporting the use of a method. In software engineering they
are often known as CASE (Computer-Aided Software Engineering) tools. The obvious correlate
for knowledge engineers would be CAKE tools; however, this acronym struggled to find widespread
acceptance, and ‘workbench’ is the preferred term in this thesis.
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Components of Expertise [161] provided patterns that represented generic knowledge
based tasks, but in smaller components than KADS did. One of the goals of developing
CommonKADS was to incorporate these approaches into KADS, or at least to make

them usable in parallel. This is discussed in more detail in chapter 8.

Three different workbenches were developed to support KADS: ILOG’s KADSTool, a
well-designed commercial product; Bull’s OpenKADSTool, which attempted to sup-
port a methodology derived from the original KADS and developed in parallel with
CommonKADS; and the CommonKADS workbench, developed as part of the KADS-
IT project, which had the most functionality (it allowed output into CommonKADS’
Conceptual Modeling Language, for example, and even promised a CML to FML con-
verter), but was based on software that was perceived not to be commercially robust

(SICStus Prolog). For a comparison of these three workbenches, see [101].

Today, the three KADS workbenches are no longer available. The knowledge acqui-
sition tools from the VITAL workbench survive in the PC Pack tool from Epistemics
Ltd.

1.2.6 Overview of the thesis

The key contributions of this thesis to the field of knowledge engineering are:

e The smooth integration of knowledge management with knowledge engineering.
Knowledge based systems (or other outputs of the knowledge engineering process)
are seen as one possible method of implementing knowledge management for a
particular organisational task; further, it is argued that the analyses carried out
to determine what knowledge management technique is appropriate for a task

can or should be based on knowledge engineering methods;

e A step-by-step guide is given to using the CommonKADS methodology, from
organisational analysis through to knowledge based system design and imple-

mentation;

e Some proposals are made for additions to CommonKADS’ library of inference

structures (see Chapters 9 and 10) and problem solving methods (see Chapter
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8);
e Each aspect of CommonKADS is analysed for its contribution to a typical knowl-

edge engineering task, and a list of the models that are absolutely necessary is

proposed for knowledge engineers carrying out small KBS projects.
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Chapter 2

Multi-Perspective Modeling: A
Framework for Knowledge
Representation and Knowledge
Management!

2.1 Introduction

The subject of this chapter is the modeling of organisational knowledge for the purpose
of knowledge management. Modeling expresses concepts that allow each part of an
organisation to understand and contribute to its own development. A good model can
communicate much of a company’s purpose to stakeholders in the business, whether
they are employees, shareholders, or customers. Modeling can be applied to all stages of
business and systems development, whether at the higher levels of considering business
structure and business processes, or looking at particular tasks or knowledge assets in

more detail.

Many readers will be familiar with modeling of information and of information systems.
The basic approach to modeling knowledge is similar; models typically consist of an-
notated box-and-arrow diagrams, representing processes, taxonomic classification, or
other relationships. This is possible because the relationship between knowledge and

information is similar to the relationship between information and data; information

! This chapter is an extended version of a paper published in the proceedings of AI-METH 05, Gliwice,
Poland, November 2005.
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consists of data that are linked or applied in some way to provide relevance or purpose,
while knowledge consists of pieces of information that are linked or applied, usually in
order to make decisions. To give an example, a car driver may possess the following
data: the price of petrol, the fuel level in his car, the fuel consumption rate of his car,
the distance to his destination, and the amount of cash in his wallet. Information can
be obtained from these data by calculation (how much it would cost to fill the tank;
how much petrol the driver can afford; whether either of these amounts of petrol will
be sufficient to get to the destination). Decisions can then be made based on this infor-
mation; e.g. that it’s necessary for the driver to drive home to collect his credit card,
or that he must drive slowly in order to reduce the fuel consumption rate of the car.
There is some debate whether the knowledge resides in the set of possible decisions,
in the justification for those decisions, or in the deductive process itself; this chapter

considers that any of these may constitute knowledge.

The key to the use of knowledge models within knowledge management is that models
only become meaningful to an enterprise when they cause action and provoke thought.
Since knowledge management typically focuses on knowledge already within the or-
ganisation that is at present being under-used, then understanding the organisation,
provoking thought and supporting action are all crucial aspects of knowledge man-
agement. Models also promote understanding across different business groups in an
organisation. However, some knowledge management researchers have suggested that
modeling’s greatest strength - the elimination of irrelevant information - is also its
greatest weakness, especially in cases where there are many interacting patterns of in-
formation and knowledge, which must all be taken into account in order to understand
the real world fully. While this criticism is primarily based on fundamentally differ-
ing views of the nature of knowledge and hence of knowledge management (a claim
which is discussed more fully in [78]), limitations caused by such elimination do exist,
and those who wish to model knowledge must either accept these limitations or try to

overcome them.

A possible solution to this problem can be found in the use of multi-perspective modeling
- the creation of a number of different models of the same artifact, from different

viewpoints. The term “multi-perspective modeling” has been used in multiple ways by
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previous authors (see discussion below); in this paper, multi-perspective modeling refers
to building a number of models of the same knowledge but with different emphases.
For example, one model might focus on processes, another on agents, another on

communication, and another on concepts or resources.

The multi-perspective approach proposed in this chapter is based on the Zachman
framework for Information Systems Architecture, which provides a framework for cate-
gorizing different information perspectives, at different levels of detail. This chapter de-
scribes the Zachman framework and the derived multi-perspective modeling approach
in some detail, then shows how the models from an existing information modeling
method (UML, the Unified Modeling Language) and an existing knowledge modeling
method (CommonKADS) map onto this framework. The chapter then extends the
framework by applying its principles at a meta level, and validates the usefulness of
the framework by showing how a couple of well known software development techniques

can be derived from this meta-analysis.

2.2 The Zachman framework

The Information Systems Architecture framework proposed by Sowa & Zachman [197]
[159] is intended to provide a framework for creating all the models necessary to create
an overall model of an organisation or enterprise. John Zachman describes it as “a sim-
ple, logical structure of descriptive representations for identifying models that are the
basis for designing the enterprise and for building the enterprise’s systems” [197]. It is
also a good framework for characterizing the role, function and purpose of information
systems within an organisation. The framework consists of a 6x6 matrix (see Table
2.1), whose two dimensions represent the perspective being taken on information and
the level of detail at which this information is being represented. It turns out that the
level of detail corresponds closely with progress in a software development project. So,
if the result of knowledge management is to propose a software development project (or
any other project that requires development of some artifact by progressive refinement
of a specification) then the Zachman framework should provide a structure for that

project.
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Table 2.1: The Zachman framework

2.2.1 Perspectives in the Zachman framework

The “perspectives” dimension of the Zachman framework proposes that six perspectives
on information (and, by extension, knowledge) are necessary, characterised by the
phrases who, what, how, when, where and why. A multi perspective approach to
knowledge modeling will create models that represent only the knowledge relevant to

that perspective: for example, the “who” perspective will focus on agents, representing
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their capabilities and responsibilities, while the “how” perspective will focus on tasks
or processes that need to be performed. A full description of the expected contents of

each perspective can be found in Table 2.2, which is taken from [197].

Perspective | Description

What Declarative knowledge about things as opposed to procedural knowle dge
about actions. "What" knowledge encompasses concepts, physical objects,
and states. It also includes knowledge about classifications or categorisations
of those states.

Howe Knowledge about actions or events. It includes knowledge about which
actions are required If certain events occur; which actions will achieve certain
states; and the required or preferred ardering of actions.

YWhen When actions or events happen, or should happen; it is knowledge about the
time at which events happen, and of controls needed an timing and ordering
of events.

YWho The agents (human or automated] who carry out each action, and their

capabilities and authority to carry out particular actions.

Where Where knowledyge is needed and where it comes from -- communication and
inputfout put knowledge.

Why Rationale; reasons, arguments, empirical studies and justifications for things
that are done and the way they are done.

Table 2.2: Description of perspectives

Why is this approach useful? Well, let us assume that a specialised, experienced de-
partment, whose task is to diagnose unusual faults with products and recommend
solutions, has been identified as a “knowledge asset” during a knowledge management
feasibility exercise. The different perspectives can be thought of as different managers’
views on the department. For example, an operations manager might view the depart-
ment as a user of external resources and a solver of specialised problems; a personnel
manager might view the department as a network of interactions between agents (i.e.
people with defined roles); and the CEO might view it as a producer of reports and a
necessary contributor to the company’s overall vision to supply high quality products
to the market. In other words, the operations manager is concerned with “what” the
department consumes , “where” these resources come from and “how” the department
contributes to the overall process; the personnel manager is concerned with “who” is
involved; and the CEQ is concerned with “why” that department exists as well as with
“what” its outputs are. So by modeling each manager’s view separately, while referring

to the same concepts and relationships, it is possible to obtain a more complete view



Multi-Perspective Modeling 18

of the department than any of the managers hold, whilst enabling each of them to see

(and to verify and approve) a specific model representing their perspective.

2.2.2 Levels of detail in the Zachman framework

As mentioned above, the Zachman framework proposes six levels of detail for models.
Starting from the most general, these are labeled as “scope”, “enterprise”, “system”,
“technology”, “detail”, and “functioning enterprise”? . These are described further in

Table 2.3, which is partly drawn from [34].

Level of detail Description

Scoping [Caontextual) Defines high level business needs and
enterprise business functions at a global
enterprize level. ldentifies the key enterprise
functions that run the business.

Enterprize (Conceptual) Defines in more detail the business functions
and needs of the enterprise, concentrating on
one business function at a time.

System (Logical) Defines the steps taken and resources needed
to carry out a single business process
Technaology (Fhysical) A high level design specification for an

implernentation that will represent everything
that appeared at the system level.

Detailed representation (Dut-of-context) A more detailed specification, targeted at a
particular situation

Functioning enterprise (Implementation) An implementation of the design: a software
program, @ building, or another constructed
artifact.

Table 2.3: Description of levels of detail in the Zachman framework

These levels can be seen as the concerns of different professions [159], whereas the
previous section proposed that the perspectives can be considered to be the views of
different managers. So if the overall task is the design and construction of a building,
then the architect is concerned with the broad view of gross sizing, shape and spatial
relationships, as well as the overall structure of the building; the owner is concerned
with floor plans and facilities; the designer must consider strength, support and sta-
bility of each floor; the builder is concerned with beams, junctions, and concrete; the
subcontractor is concerned with a single aspect of the builder’s job (delivering beams,

welding junctions, etc); and the bricklayer and the carpenter are the ones who do most

2 Strictly speaking, the Zachman framework proposes five levels of models, plus the implementation
of those models. As a result, the functioning enterprise level, also called the “implementation” level,
does not appear in some versions of the Zachman framework.



Multi-Perspective Modeling 19

of the actual building. So each profession must look at the same building at a differ-
ent level of detail in order to understand the design fully enough to carry out their

particular job.

It’s worth noting that the six levels of detail require two rather different types of
model. The first three levels - scope, enterprise and system - are increasingly detailed
models of existing processes and related information/knowledge, while the remain-
ing levels - technology, detailed representation and implementation - are increasingly
detailed representations of a design that meets the requirements of representing a par-
ticular business process. In the language of the CommonKADS methodology (which
is discussed further below), the transformation from one level to the next is usually
a refinement task - describing something in greater detail — but in the case of the
transformation from the system level to the technology level, it is more of a selection
task - choosing design techniques that are suitable for the modeled knowledge. This
implies that this transformation is likely to be knowledge-intensive compared with the

other transformations.

2.2.3 The multi-perspective matrix: the Zachman framework

Having established the need for representing different perspectives, and different levels
of detail, the most important remaining question for practical purposes is whether
all six perspectives need to be modeled at all six levels of detail. To answer this,
let’s return to the example above where an entire department was considered to be a
knowledge asset. Now let’s consider a collection of help desk reports compiled by this
department to be a knowledge asset at a lower level of detail (the “system level”, in
Zachman’s terms). Note that a similar pattern emerges: the departmental librarian
treats the reports as a resource to be managed (“what”), newly recruited technicians
may treat them as a step by step guide to problem solving (“how”), the designer of
the company intranet might link them together as interdependent knowledge sources
(“where” and, if they are linked to their authors for the purposes of establishing trust,
also “who”), while the quality manager may be mostly concerned that the reports
provide sufficient evidence of good practice (“why”) to show that the departmental

quality system is working. For good measure, let’s extend the example to the design
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of a help desk decision support system (i.e. the “technology level”); the designer needs
to consider the static objects (“what”), the process flows and inferences (“how), the
user interface and other interfaces (“who” and “where”), and flow of control (“when”).
In other words, most of the perspectives do seem to be needed at each level of detail.
The Zachman framework is therefore taken to be a reasonably complete specification

of the models needed to represent an organisation or enterprise fully.

2.2.4 Different approaches to multi-perspective modeling

Before continuing with discussion of perspectives and levels of detail in the context
of the Zachman framework, a diversion is necessary to discuss the use of the term
“multi-perspective modeling” in software engineering literature. The reason for this is
that two or three distinct uses of the term have emerged, but have not been clearly
distinguished. These uses are characterised below as the negotiation approach, the

crystallography approach and the stereoscopy approach.

Negotiation approach: This approach uses the term “multi-perspective modeling”
to refer to the representation of conflicting views of different agents about the same ar-
tifact or concept. Each agent involved in a development process has its own view on the
artifact or system it is trying to describe or model, and these views may contain con-
flicting information. The goal of multi-perspective modeling is therefore a negotiated
settlement of conflicting views, and the two critical issues are the choice of viewpoints
to represent an artifact fully, and the management of inconsistencies between views
[160]. At least one workshop has been held that brought together researchers in this
area [56]; other publications in this area include [66] and [29].

Crystallography approach: Researchers on the Tropos project [107] consider a
software development project from different angles (e.g. in terms of actors and their
capabilities; in terms of goals and intentions; or in terms of processes or in terms of
constituent objects). To them, the purpose of “multi-perspective modeling” is for an
individual to understand the structure of a project by assembling several partial views

of the structure into a single conception. Similarly, another project which used mul-
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tiple modeling techniques for an interface design problem was “not looking at widely
different techniques to see which one of them is best, but ... argue[d] that the impact
from a collection of techniques is greater than the sum of their individual contribu-
tions” [196] - in other words, these researchers also considered that multiple consistent
perspectives may be held by a single individual, but extended the idea to claim that
the interaction of the multiple perspectives provides additional information. This view
of multi-perspective modeling as being “examination of a single artifact from many

angles by an individual” is the approach taken in this chapter.

Stereoscopy approach: A project on image rendering of Chinese landscape paint-
ings [30] is concerned with perspectives in the literal sense - visual angles on a physical
object (in this case, a Chinese painting). This approach is akin to stereoscopy, which
gives an impression of three dimensions by using multiple two-dimensional images of
the same objects, taken from slightly different angles. This use of the term “multi-
perspective modeling” is rare in the software engineering literature, but is noted for

completeness.

The reason why this analysis is needed is that without it, very different understand-
ings of the Zachman framework can arise. For the “crystallography” approach, the
perspectives are represented by the columns of the Zachman framework, while the
rows represent levels of detail. But for the “negotiation” approach, the perspectives
could be represented by the columns or the rows, depending on whether the conflicting
opinions were held by different managers or different professions (or both!). And for
the stereoscopy approach, the Zachman framework has little relevance. It’s also worth
noting that the term “viewpoints” is highly ambiguous; while the term has been used
extensively by researchers following the “negotiation” approach to represent conflicting
opinions, it could equally be used in its more literal sense by the other two approaches.

For simplicity, therefore, the term “viewpoints” is avoided in this thesis.
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2.3 Worked example: Diagnosis and treatment of parotid
tumours

At this point, a worked example of multi-perspective modeling would be helpful. The
example below is taken from [100], and consists of a number of models of a medical
process: the diagnosis and treatment of tumours on the parotid gland (which is in the

neck). The models are considered to be at the second (enterprise) level of detail.

2.3.1 The “How” perspective: Clinical protocol

Figure 2.1 shows a portion of a clinical protocol (i.e. recommended procedure) for
diagnosis and treatment of parotid tumours. This portion of the protocol is concerned
with diagnosis and treatment selection for a progressive lump (i.e. a lump on or
near the parotid gland that is growing progressively larger). The model of the full
clinical protocol consists of about 10 diagrams of similar size; see [155] for details.
This diagram, which is drawn using a diagramming technique known as ProFORMA
[64], shows that the first stage of investigating a progressive lump is to carry out fine
needle aspiration cytology (FNAC), which draws some fluid out from the lump and
then to send it away for analysis. Once the results of this enquiry have been returned,
two decisions are needed; what type of scan is required (CT scan, ultrasound and MRI
are the usual options) and what treatment is required. The remaining boxes represent

links to other process diagrams.

2.3.2 The “Where” Perspective: Inter-Department Communication

The “where” perspective shows communication that is needed during a procedure.
At the enterprise level of abstraction, communication is generally concerned with the
transfer of information or artifacts between individuals or departments. In this exam-
ple, the clinician must communicate with the laboratory that performs the FNAC tests,
with the radiology department that performs scans, and with the surgical unit that
arranges operations. This information can be represented in a Role Activity Diagram
(RAD) [135], which shows which departments (or, more generally, which roles) perform

which activities; by including the sequence of activities, the needs for communication
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Figure 2.1: Protocol for diagnosing a progressive lump

become obvious. An example of a RAD can be seen in Figure 2.2.
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Figure 2.2: The “where” perspective — Role Activity Diagram
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2.3.3 The Who Perspective: Agent Modeling

In addition to the information captured in a Role Activity diagram, there is a need
for the “who” perspective to represent the capability of agents, departments, or other
role-players to perform certain actions and the authority that certain agents have to
perform those actions or to use, consume or modify resources (Figure 2.3). At an
enterprise level of abstraction, capability and authority may be expressed by defining
the rights and responsibilities of an agent. For example, a doctor may have rights
to add to a patient’s medical record, implying both authority to change an artifact
and the capability to do so, as well as responsibilities such as making sure a patient’s

medical record is kept up to date.
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Figure 2.3: Capabilities, authorities, rights and responsibilities of agents

The modeling technique used here is loosely based on the ORDIT method for require-
ments definition [50] and the CommonKADS Agent Model [186]. Capability, authority,
rights and responsibilities are represented by four different types of arc: these arcs are

labeled “can”, “may”, “has rights to” and “must” respectively.
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2.3.4 The What Perspective: Data, Information and Resources

The “what” perspective considers the data and information that are referred to and
the resources that are used, consumed, modified, manipulated or otherwise involved in
the overall process. Cook (op.cit.) argues that "the data architecture is more critical
than the process architecture because most business processes exist to manage the as-
sets, not the other way around”. She proposes that the enterprise level of the “what”
perspective should contain data classes, which are subclasses of global data classes;
the relationships between classes can be defined using entity relationship diagrams. In
practice, these data classes often subsume information such as summations or categori-
sations as well as data. In this example, data classes might include clinical tests and
patients; information represented in data classes might include results of tests; and
resources include the machines required for scanning, the chemical solutions required
as “markers” for scanning, and the needles required for extracting fluid for an FNAC.
The resources may have associated constraints; for example, that use of a scanning
machine requires several weeks notice, or that patients might be allergic to the iodine-
based “contrast” that is injected as a marker for CT scans. At the system level of
abstraction, where resources, constraints, and information artifacts are identified indi-
vidually, there are several ways in which resources might need to be modeled. If the
resources can be grouped into classes, then a taxonomic hierarchy might be advanta-
geous; for example, it might be helpful to know if scanning machines belong to a class of
machines that uses X-rays, and if so, whether they belong to the sub-class of machines
that includes automatic cut-outs to prevent overdoses. If a detailed representation of
relationships between resources was needed, then a semantic network could be drawn.
However, at the enterprise level of abstraction, a more general representation is more
appropriate; an entity-relationship diagram could be used, but we have chosen to use a
UML class diagram, to represent constraints more clearly. Figure 2.4 therefore shows a
UML class diagram representing a simple hierarchy of resources and a simple hierarchy

of test results.
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Figure 2.4: UML class diagram: resources and test results

2.3.5 The When Perspective: Schedules

Information about timing of activities and actions is very important in a planning
problem; for other tasks, such as this diagnostic task, there is less need for such infor-
mation. It is, nevertheless, advisable to draw a PERT chart, GANTT chart, or simple
timeline of activities and any necessary inter-activity delay (such as the waiting list for
scanning appointments) in order to highlight any time-related issues (such as the fact

that the chemicals used for marker solutions have a limited shelf life) or bottlenecks.

Figure 2.5 shows a PERT chart of activities and inter-activity delays; the durations
(which appear at the bottom of the activity nodes) are in hours. It shows the two
bottlenecks in the process (waiting lists for scanning and for operations) clearly. N.B.
For illustrative purposes, it has been assumed that the “select scan type” activity can

be carried out in parallel with awaiting the results of the FNAC.

2.3.6 The Why Perspective: Published Clinical Evidence

The “why” knowledge for a clinical protocol consists of clinical evidence - published

results of clinical trials, meta-studies, and expert opinions. The relative importance
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of different types of clinical evidence has been discussed in [122]. For the small part
of the clinical process that we are considering, the “why” knowledge consists of all
known articles published to date; at the time when this protocol was prepared, there
were eight relevant published articles. Five of them argue for or against particular
types of scan, the others argue for or (primarily) against formal parotidectomy. These
justifications can be represented in a rationale diagram; Figure 2.6 uses and extends
the QOC (Questions, Options & Criteria) notation [119] to represent rationale for the

“Select Scan Type” decision.
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Figure 2.5: A timeline of activities in diagnosing progressive lumps

2.4 Multi-perspective modeling and Knowledge Manage-
ment

In this section, we look at two approaches to characterizing knowledge management
activities: Derek Binney’s KM spectrum and Boisot’s knowledge asset description
characteristics. Both are considered from the viewpoint of multi-perspective modeling

to show the advantages this brings.
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Figure 2.6: Extended QOC diagram showing the rationale for a decision

2.4.1 Binney’s KM spectrum

The KM spectrum proposed by Derek Binney [39] identifies six® ways in which knowl-

edge management is typically carried out within organisations:

Transactional knowledge management

Analytic knowledge management

Asset management

Process management

Development & training

Innovation & creation

The spectrum can be seen in Table 2.4. Note that the spectrum focuses on highly
codified knowledge at the top and highly tacit knowledge at the bottom. Binney also

3 A seventh category, Asset Improvement, is needed for completeness, to deal with applications that
optimize existing assets; this should appear between Analytic KM and Asset management. See [78]
for a more detailed discussion of this point.
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identifies technologies or methods that are associated with each of these approaches to

knowledge management, and typical applications that address these.

From a multi-perspective viewpoint, Binney has classified knowledge management ac-
tivities according to a why dimension (i.e. according to the organisational goal), and
has proposed that this is correlated with a what dimension (applications) and therefore
also a howdimension (technologies/methods appropriate for each application). A brief
consideration of the remaining three perspectives suggests that correlations may also
exist on the who perspective with professions (ranging from software/knowledge en-
gineers to ethnographers/psychologists via librarians and operations researchers), and
on the when perspective with organisational maturity (older, larger organisations will
focus on best practice and standardisation while newer organisations may focus on
innovation and creativity). Correlations with the where perspective may occur, but
there’s no hard and fast rule; indeed, it may be profitable for an organisation to in-
vestigate why a branch in one country is focusing heavily on innovation and creation

while another focuses on best practice.

2.4.2 Boisot’s knowledge asset description characteristics

The concept of an I-Space, which measures knowledge assets on three dimensions,
is proposed in [12]. Codification represents the degree to which knowledge has been
encoded, ranging from zero (it resides in an expert’s head and is so intuitive that he
cannot explain it even to himself) to maximum (it is written down in a concise logical
format). Abstraction represents the level to which the knowledge has been generalized,
ranging from zero (individual and independent specific cases are recorded) through
to very high (a set of generally applicable principles). And Diffusion is similar to
scarcity, in that it reflects the number of people who have access to the knowledge.
These dimensions make it possible to establish how far a particular group of knowledge
assets are structured and shared within a given population. They also make it possible

to draw up a value map for the analysis of knowledge assets.
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Table 2.4: Binney’s KM Spectrum with associated applications and technologies

It is clear that the value of knowledge is increased by abstraction (for abstract knowl-
edge has wider utility) and decreased by diffusion (because diffusion is inversely pro-
portional to scarcity). Codification can be a two-edged sword, for increased codifica-
tion increases the utility of knowledge by making it more comprehensible, but only
for those who do not possess it in the first place (thus implying increasing diffusion).
The swiftness of diffusion with modern technology sharpens both edges of the sword;
knowledge can be made widely available to those who need it more quickly, but by

definition also becomes diffused more quickly. The maximum value of an information
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good in the space is therefore achieved when its degree of codification and abstraction
are at a maximum; but at this point, entropy level is high because of swift diffusion.
Conversely the minimum value of such good is reached either when diffusion is at a
maximum or when codification and abstraction are at a minimum. Boisot uses this

analysis to suggest a tripartite classification of knowledge assets:

e Base technologies are well codified and have a large diffusion across industries;

e Key technologies are codified and usually abstracted, but not yet diffused and
can be a source of competitive advantage. These technologies are the highest
value technologies. However, the paradox of value is that the more competitive
value is derived from a key technology, the more precarious is its status as a key
technology on account of the diffusion of know how that using the technology

sets in motion.

e FEmergent technologies are not yet codified, abstracted or diffused. It’s neces-
sary to develop these technologies for them to become a source of competitive

advantage.

From the viewpoint of multi-perspective modeling, Boisot’s characteristics can be
viewed as follows:

e Abstraction is concerned with where the knowledge is applicable;

e Diffusion is concerned with who possesses the knowledge;

e Codification is concerned with how the knowledge is stored or presented.
A brief analysis of the remaining three perspectives suggests that knowledge assets
have no value at all unless they are available when needed, their content (what) is

actually useful, and they contribute to the goals of the process or the organisation

(why). So we can conclude that:

e a knowledge asset has virtually no value unless it meets criteria of content, avail-

ability at the point of need, and purpose (what, when and why);

e its value is modified by applicability, form and uniqueness (where, how and who).
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2.5 Multi-perspective modeling and software/knowledge
engineering: UML and CommonKADS

In this section, the relationship between an information modeling method (UML), a
knowledge modeling method (CommonKADS) and the Zachman framework will be

discussed.

2.5.1 UML and the Zachman framework

UML (the Unified Modeling Language) prescribes a standard set of diagrams and
notations for modeling object-oriented systems, and describes the underlying semantics
of what these diagrams and symbols mean. It’s a consolidation of many of the most used
object-oriented notations and concepts, especially the work of Grady Booch, James
Rumbaugh, and Ivar Jacobson. It has become widely accepted as a de facto standard
for modeling information related to software systems, hardware systems, and real-world

organisations.

UML offers nine diagrams with which to model systems:

Use Case diagram for modeling the business processes;

e Sequence diagram for modeling message passing between objects;

e Collaboration diagram for modeling object interactions;

e State diagram for modeling the behaviour of objects in the system;

e Activity diagram for modeling the behaviour of Use Cases, objects, or operations;
e (Class diagram for modeling the static structure of classes in the system;

e Object diagram for modeling the static structure of objects in the system;

e Component diagram for modeling components;

e Deployment diagram for modeling distribution of the system.
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These diagrams represent different perspectives. The Activity diagram represents
“how” (processes); the Sequence diagram represents “when” (ordering); the Collabora-
tion diagram represents “where” (interactions); the State, Class and Object diagrams
represent “what” (concepts and states, static or dynamic); and the Use Case diagram,
despite claiming to model business processes, actually models the links between busi-
ness processes and their agents, and therefore represents “who” rather than “how”. As
for the Component and Deployment diagrams, these represent the same perspective
(“what”, in the sense of “what parts are required”) but at different levels of detail; it
can also be seen that the Class and Object diagrams represent two different levels of

detail of the “what” perspective.

The Zachman framework therefore implies that UML is a reasonable complete model-
ing method in terms of the perspectives that it covers, except that there is no specific
facility for modeling rationale and justifications (“why”). However, UML only ex-
plicitly covers two or three different levels of detail, and so it is likely that a full
set of UML diagrams to support organisational analysis and software development
would require extensive decomposition, or repeated use of the same UML diagrams
to capture information at each level of detail. It’s also worth noting that UML sep-
arates static taxonomic information (classes/objects), dynamic information (states),
and parts (components) under the “what” perspective, a distinction that is not made

clearly by the Zachman framework.

2.5.2 CommonKADS and the Zachman Framework

CommonKADS [147] is a collection of structured methods for building knowledge based
systems, analogous to structured methods for software engineering; as such, it provides
an enabling technology for the analysis of acquired knowledge and the design of knowl-
edge based systems. It was developed between 1983 and 1994 on two projects funded
by the European Community’s ESPRIT program. CommonKADS proposes that up to
six models (some with several subcomponents) should be developed in order to repre-
sent the knowledge management and knowledge engineering process from application
selection through to developing a design specification for a knowledge-based system.

These models are:
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e An Organisation model which represent the processes, structure and resources
within an organisation, with the aim of identifying fruitful areas for better ap-
plication of knowledge. The organisation model has various suggested subcom-
ponents: these include a diagram of the organisation’s structure, a diagram of
its important business functions, a “power and authority” diagram (recognizing
that such relationships are not always defined by the organisation structure), and

diagrams of various resources [45].

e A Task model to show the activities carried out in the course of a particular

organisational process;

e An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

e A Communication model to show the communication required between agents

during a process;

e An Expertise model, which is a model of the expertise required to perform a
particular task. This has three major subcomponents: domain models which
represent concepts and their relationships; an inference structure which records
the inference processes required during problem solving; and a task structure
which accompanies the inference structure to describe ordering of the inference

processes and other control features.

e A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

The way the models relate to each other as shown in Figure 2.7%. It can be seen
that the models are considered to represent four different stages in the knowledge

management /knowledge engineering process:

1. The Organisation model is used for identifying organisational strengths, weak-

ness, opportunities and threats;

4 N.B. The distinction between “within a task” and “between tasks” for the Agent and Communication
models is an extension to CommonKADS proposed in [100]
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2. The Task and Agent models are used to analyse a key business process and to
select a task within that process that would benefit from being supported by a
knowledge based system or another knowledge based artifact (e.g. a good manual

or an interactive training program);

3. The Expertise model captures, records and structures the knowledge that is used
to carry out that knowledge based task, while the Communication model records

the interactions that take place during the task;

4. The Design model records decisions made about how each function and concept
in the Expertise model can be implemented, and draws on the Communication
model as well for interface design. It then brings these recommendations together

into a structured design specification.
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Figure 2.7: Relationship between the various CommonKADS models

These models can therefore be seen to cover the top four levels of the Zachman frame-
work. The Organisational model represents the Scoping level, and its various sub-
diagrams cover the “who”, “how”, and “what” perspectives. The Task, Agent and
Communication models represent individual perspectives (how, who and where) at
the Enterprise level. The three components of the Expertise model represent the
“what”, “how” and “when” perspectives at the System level; these can be coupled
with “within task” versions of the Agent and Communication models to model the
“who” and “where” perspectives as well. Finally, the Design model represents the
transformation of the Expertise and Communication models into a high level design

specification at the Technology level.
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Comparing this analysis against the Zachman framework, it can be seen that Com-
monKADS provides more comprehensive coverage of the cells of the Zachman frame-
work than UML does. However, neither UML nor CommonKADS provide an explicit
representation of the “why” perspective; and neither method represents the lowest two
levels of the Zachman framework. With these exceptions, however, CommonKADS
seems to be capable of representing almost everything that the Zachman framework
recommends. It’s also worth noting that the Expertise model carries the responsibil-
ity of representing the transformation from the System level to the Technology level,
which was identified above as a knowledge-intensive selection operation rather than a
refinement operation, and that the Expertise model is usually the model that is devel-
oped in most detail by CommonKADS users, with its three subcomponents (domain,

inference and task) each represented by a number of diagrams.

2.6 Deriving software/knowledge engineering principles
from meta-analysis of the Zachman framework

2.6.1 Meta-analysis of the Zachman framework: Perspectives

It’s obvious that the Zachman framework is a 2-dimensional categorisation of informa-
tion and knowledge. If it is assumed that each of the six “who, what, how, when, where
and why” perspectives can be represented on an ordinal or categorical scale, then the
2-dimensional nature of the Zachman framework implies that it only represents two out
of six perspectives. Since the columns of the Zachman framework describe different
categories of knowledge while the rows bear a strong resemblance to a design pro-
cess, the Zachman framework seems to represent the “what” and “how” of knowledge

representation.

If the Zachman framework was extended to six dimensions, what should appear on the
four new axes? Here are some suggestions, with specific reference to the representation

of knowledge assets:

e Where: Knowledge sources, such as: experts, protocols, text, machine learn-
ing/data mining. In this case, the “where” perspective would be a nominal

dimension (like the perspectives) rather than an ordinal dimension (like the lev-
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els of detail). It might be beneficial to introduce some ordering criterion, such as
“perspicacity of knowledge” (high for experts, low for machine learning) or “can

be automated” (low for experts, high for data mining).

e Who: Involved agents - expert users, lay users, funding sources, project man-
agers, experts, programmers, senior management. Zachman’s examples of the
framework assume that these professions are correlated with the columns of the
framework, but this is not always going to be entirely accurate, and so provisions
should be made for modeling the interests and involvement of various professions.
Again, this is a nominal categorisation rather than an ordinal or cardinal dimen-
sion. An obvious ordering criterion is the level of detail they are likely to be
concerned with, so senior managers and strategists would appear at one end of
the scale while programmers or bricklayers appear at the other end. Other order-
ing criteria might include “importance to the project” or “degree of involvement

with the project”, which could be used to assess project risks.

e When: The “when” perspective represents both time constraints (schedule, tim-
ing description) and also other constraints that control processing of the steps de-
scribed in the “how” perspective (processing structure, control structure). Since
the meta-how dimension is represented by the rows of the Zachman framework,
the meta-when perspective must represent constraints and criteria for moving
from one level to the next. These might include achieving agreed criteria in de-
scribing a level, completing enough to achieve the required functionality at the
next level, or simply reaching the point in a schedule where the handover must

take place.

e Why: reasons that knowledge must be represented. These might include knowl-
edge archiving (a key expert is leaving the company), standardisation of practice,
knowledge discovery (e.g. identifying connections between two knowledge sources
that had never been noticed before), knowledge distribution (getting knowledge
gained from many years’ experience to practitioners who lack that experience),
or simply knowledge organisation (e.g. a taxonomy or ontology is required to
facilitate future operations). A possible ordering criterion would be a financial

one, based on the opportunity cost of not gathering the knowledge; this would be
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company-specific to some extent, but knowledge archiving is likely to score highly

in many cases, while knowledge organisation will be more difficult to quantify.

This six-dimensional framework is capable of representing multiple views of the same
artifact (meta-what), at multiple levels of details (meta-how), according to different
agents’ possibly conflicting perceptions (meta-who), drawing on various knowledge
sources (meta-where), under various constraints (meta~-when), and for various purposes
(meta-why). It is, of course, unlikely that all six dimensions will be represented fully
in any single project because of the effort involved in representing a framework with
6% cells, but this is often not necessary. Assuming that the two dimensions of the
“normal” Zachman framework are always required, a problem requiring negotiation of
conflicting opinions (as discussed in section 2.2.4), for example, will require the meta-
who dimension to represent the different views of the different agents alongside one (or
both?) of the original two dimensions. A problem concerning organisational priorities,
on the other hand, might require a meta-why dimension, to describe the effect on the
knowledge, resources and processes of the company of various organisational emphases.
And a problem concerning resource allocation might use the meta-when dimension to
consider different views of the workloads that can be allocated to particular tasks. Only
the most intractable problems - for example, differences of opinion that are actually
based on different views of organisational priorities - are likely to require four or more

dimensions.

Applying this analysis to knowledge management (as illustrated in Figure 2.8), it is
possible to derive a large part of the information that is needed for initiating a successful

knowledge management project:

e The need for knowledge management in a particular area is usually determined
by the desires or requirements of various agents - senior managers or funding
agencies who want to see certain knowledge made more widely available, or users

and programmers who need knowledge that is not available to them.

e The best way of implementing knowledge management can be derived from the
meta-where perspective (i.e. where the knowledge resides at present) and the

meta-why perspective (what is this exercise trying to achieve?). If the purpose
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of the knowledge management exercise is to standardize on best practice or to
archive knowledge, then a knowledge engineering approach is a good idea; if the
main purpose is knowledge discovery or innovation, then there are strong argu-
ments for an approach that uses data mining rather than knowledge engineering,
or even for an approach that does not “capture” knowledge at all, but merely
facilitates communication (possibly via an intranet) in order to allow new knowl-
edge to emerge from interactions among key individuals. See [78] for further

discussion of the mapping of knowledge management approaches to goals.

Feasibility and risk assessment can be derived by comparison with past projects
with similar features. Also, available skills within the organisation and activities
that need to be carried out for successful knowledge management can be mapped

to identify organisational strengths and weaknesses.
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Figure 2.8: A meta-perspective view of the Zachman framework (with an emphasis on
knowledge management issues)
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2.6.2 Meta-Analysis of the Zachman framework: Levels of detail

There is one more meta-level of knowledge modeling to consider. We have considered
whether the Zachman framework itself represents a full range of perspectives - the
columns of the original Zachman framework — and suggested that a six-dimensional
framework might be required rather than a mere two-dimensional framework. So we
now need to consider whether the Zachman framework itself should be subject to
multiple levels of detail. In other words, is this Zachman framework only one framework

in a set of six, each of which is a specialisation, refinement or realisation of another?

In principle, the answer is “yes”, but the sheer number of cells in meta-frameworks
(up to 67, allowing for meta-perspectives) makes this concept overwhelming both to
analyse and to use. To make this discussion tractable, we will focus on only one of the

six perspectives - the “how” perspective.

Meta-analysis of levels of abstraction: the “how” perspective

This chapter has claimed that the levels of detail in the original Zachman framework
actually represent a design process; when considering knowledge assets, this might
begin with a “knowledge management” task (is the development of this knowledge
asset feasible?) through a “system” level (exactly what will be developed?) and a
“technological” level (design specification) to a “functioning enterprise” (i.e. some
kind of implementation). Yet the output of each of these stages is itself a knowledge
asset of some description: a feasibility study, a set of knowledge models, a design
specification, or an efficient and robust implementation. It therefore seems that each
of the key stages (feasibility, analysis, design, implementation) can be decomposed into

a series of sub-tasks.

Let’s assume that the knowledge asset to be represented is diagnostic expertise for
personal computers, in the context of a help desk. This knowledge asset will probably
appear at the System level in a “normal” Zachman framework, with the following

instantiations of the different System level perspectives:

e “Who”: the technicians, the help desk operators, the knowledge engineers and
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the management in the help centre;
e “Where”: technicians’ experience, previous call logs, and system manuals;
e “What”: PC components, common faults, and known solutions;

e “How”: probably a combination of gathering routine information and asking

questions to narrow down the fault - a technique known as “cover-and-differentiate”;

e “When”: determined by the organisation’s requirements on the help desk - an
example requirement might be “If you can’t solve it in 5 minutes, refer it up-

wards”;

e “Why”: to make the technicians’ expertise available to help desk operators.

The tasks that must be carried out to turn this knowledge asset into a working knowl-
edge based system include knowledge acquisition, knowledge representation & analysis,
KBS design, and KBS implementation. Each of these requires three or four subtasks
to be carried out by knowledge engineers. Knowledge acquisition requires determin-
ing the feasibility of acquiring knowledge from various sources; determining which KA
technique(s) to use; designing a knowledge acquisition schedule; and carrying it out.
Knowledge representation & analysis requires determining the feasibility and utility of
using various knowledge modeling techniques; deciding how particular items of knowl-
edge should be represented; and producing knowledge models. KBS design starts
by determining whether it’s advisable to use a recognized AI paradigm (e.g. model-
based reasoning) throughout the design; continues by choosing a design approach (e.g.
object-oriented design); and produces a design specification. And implementation of
the system is essentially a software engineering task, and implementers must consider
the feasibility of using different programming approaches to implement the design
specification; do some prototyping to determine if these programming approaches are
efficient (or even possible) in the chosen programming language; produce a detailed
design specification (or at least, add comments to their code); and generate usable

code (by compiling, testing, or whatever).

If the form of the knowledge asset was something quite different - case histories stored

in a database, perhaps - then the stages followed would be different, but would still
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decompose in the same way, In this case, KBS development might be replaced by data
mining. Knowledge acquisition, representation, analysis and design would be replaced
by selection of a suitable data mining algorithm, pre-processing of the data, selecting
algorithm parameters, and applying the algorithm, plus additional steps needed for
creating and applying a test suite to the results. All of these tasks decompose into
subtasks; for example, any selection task breaks down into at least three stages (col-
lecting data about the target and the selection set, matching that data against each
member of the selection set, and choosing the one with the optimal match results),
while pre-processing of data requires one or more of data cleaning (removing or reduc-
ing noise, inconsistencies, and incompleteness), data integration (merging data from a
number of sources), data transformation (into forms more suitable for the algorithm

in question) and data reduction (to manageable volumes).

So it can be seen that each stage of development of the “how” perspective in a normal
Zachman framework can be decomposed into a sub-process. Further, we can see that
each series of subtasks follows a pattern that more or less corresponds to feasibility-
analysis-design-implementation, which (roughly) corresponds with the six levels of de-
tail in a Zachman framework. So we can claim that the Zachman framework can always
be decomposed into lower levels of abstraction. This concept is illustrated in Figure

2.9.

Supertasks of the “how” perspective

Having seen that the Zachman framework decomposes downwards, does it also ’com-
pose’ upwards? It has been claimed that the supertask of the “how” perspective of a
typical Zachman framework could be “knowledge engineering” or “data mining”. In
practice, however, it’s rare for any software system to be developed once and to be de-
clared complete; instead, systems are developed in increments of functional capability
(progressing from a “proof of concept” system to a “prototype”, “alpha test”, “beta

test”, and eventually to “version 1.0”).

It can therefore be considered that the development of each incremental version of the
system is a supertask of the “typical” Zachman framework. That is, for each version

of the system, the entire feasibility-analysis-design-implementation process must be
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Figure 2.9: Decomposing different stages of the “how” perspective in a Zachman frame-
work

followed. Moreover, the “proof of concept” can be viewed as a way of determining the
feasibility of the system, while the prototype can be seen as an aid to analysis, and so
on; so the task of “developing a functioning software system” can be seen as a further

level up the meta-Zachman framework.

Deriving project lifecycle models

So it has been demonstrated (for the “how” perspective) that the Zachman framework
itself can be usefully considered to have at least four levels of abstraction. Since we
derived a number of knowledge management considerations from our meta-analysis of

perspectives, can we derive anything useful from this analysis?

I will claim that at least two different approaches to managing project lifecycles can
be derived from this. The first is the “waterfall” project lifecycle. The “waterfall”
(Figure 2.10) assumes a sequence of activities with defined inputs and outputs and
no iteration; i.e. feasibility, analysis, design and implementation are performed once,
in sequence. This can be considered to correspond to the “how” perspective of the

“typical” Zachman framework. However, this approach has been criticized for its



Multi-Perspective Modeling 44

inflexibility, and other approaches have been suggested.

| Imtialization ‘

i
L. '{ Implemeutdlmn |
Feedback nat f

wanted Teunng |

| Installation |

-

| Maintenance |

Figure 2.10: The waterfall lifecycle model

One of these other approaches is Boehm'’s spiral lifecycle model [11] (Figure 2.11), in
which a series of activities (under the four general categories of review, risk, plan and
monitor) are carried out, and the end result is a new incremental development of the
system; the stages in the lifecycle are then repeated for the next incremental stage.
This approach can be derived from the meta-analyses of the Zachman framework; the
concept of incremental development and the four overall stages can be derived from
the multiple levels of abstraction of the “how” perspective of the Zachman framework,
whilst the specific activities that are carried out on each iteration can be derived from

the meta-analysis of the perspectives.

So it can be shown that recognized project management lifecycles can be derived from
this meta-analysis of the levels of detail in the Zachman framework. This supports the
contention that the Zachman framework is indeed a good structure for representing

both knowledge in general, and knowledge about software development in particular.

2.7 Discussion

The thesis of this chapter was that the perspectives and levels of the Zachman frame-
work can represent any knowledge asset. We have seen that the framework (when

understood from a “crystallography” viewpoint) can represent all the knowledge (and
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Figure 2.11: Boehm’s spiral lifecycle model

more) required by a major software engineering method (UML) and a major knowledge
engineering method (CommonKADS). This implies that, for practical purposes (i.e.
representing a knowledge asset in order to develop or distribute it), multi-perspective
modeling based on the Zachman framework is indeed capable of representing all the

knowledge required about a knowledge asset.

In terms of guidance provided to developers of knowledge systems, the development
of several knowledge models covering different perspectives provides an excellent basis
both for analysis (has all the relevant knowledge been acquired?) and for design (by
preserving the structure of the models, which in turn should reflect the experts’ way
of thinking). While modeling clearly eliminates some information that is considered
irrelevant, multi-perspective models run far less risk of eliminating information that
might be important. KM researchers who claim that any elimination of information is
potentially fatal to obtaining a holistic understanding of shared knowledge should note
that Binney’s KM spectrum demonstrates that the term “knowledge management” ac-

tually covers a range of applications, and probably of different types of knowledge, and
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that “holistic views of shared knowledge” are probably only necessary for applications

that fall into the Innovation & Creation category in the spectrum.

The Zachman framework is also shown to be a robust framework for software de-
velopment because meta-analysis of it is able to derive common software engineering
approaches. Further work on meta-analysis of perspectives other than “what” and

“how” also shows how key considerations can be modeled as needed.

One issue that was raised by the analysis of UML and CommonKADS was the absence
of any facilities to model “why” knowledge. The main reason seems to be that there
are always at least two answers to the question “why are you doing this?” - one
that justifies the process being used and the other that describes the goal that is being
sought. In the former case, modeling the ‘why’ perspective is beneficial, though is often
only conducted in situations when the validity of rules or laws are under discussion. In
the latter case, the answer to most 'why’ questions within the context of the Zachman
framework is “in order to achieve the next level up in the framework”. For example, the
goal of a house designer is to provide the owner with the desired floorspace at sufficient
strength. In such cases, there is no need for explicit models of 'why’ knowledge; all that
is needed is some pointers to levels above. Further work on methods and applications

of 'why’ knowledge is suggested.

This chapter has shown how the Zachman framework can be used as an overall structure
to support knowledge management and knowledge engineering. The next chapter will
look at whether this structure can be used in conjunction with an ontology to provide

a rich description of knowledge.



Chapter 3

Multi-perspective Ontologies:
Resolving Common Ontology
Problems!

3.1 Introduction

Ontology - the theory of objects and their relationships - has become a hot topic
in recent years. One reason is that organisations that have entered into knowledge
management have discovered the need to classify their knowledge in a manner that is
both accessible to users and robust enough to represent different types of knowledge
in a coherent manner and have developed taxonomies (ontologies that use only the
IS-A relation) to address this need. Another reason is that object-oriented software
development, which is a widely used approach to producing software, requires an un-
derstanding of ontological principles: authors in the field have claimed that “a clear
understanding of ontology helps to avoid the introduction of accidental, as opposed to
essential, objects”, and “the exploding interest, both theoretical and practical, in the
development of object-oriented languages ... has led computer science squarely into
the business of doing research in ontology. This is an unavoidable conclusion of taking

a serious look at practice” [74] [157].

However, attempts to develop taxonomies for classification purposes have run into var-

ious difficulties, and it has been recognised that taxonomies, and ontologies in general,

! Originally published in Expert Systems with Applications, 34, 1, 541-550, Jan 2008
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suffer from a number of problems in practical situations. These problems do not pre-
vent usable ontologies from being developed, but they do make it difficult to develop
ontologies in a standardised manner; this reduces the extensibility and reusability of
ontologies, and makes it particularly difficult to merge ontologies created separately,
even if they address the same areas. This chapter outlines an approach to ontology
development based on multi-perspective modeling that is able to resolve some of the

common problems that arise in ontology development.

3.2 Multi-level Ontologies

The working definition of an ontology being used in this thesis is that defined by
Gruber [75]: an ontology is an explicit specification of a conceptualisation which, in
knowledge engineering practice, equates to the definition of what can be represented

within a computer program.
However, there is considerable debate about the exact definition of ontology and on-
tologies. Guarino and Giaretta [77] present 8 definitions that are in use in the literature
today:

1. Ontology as a philosophical discipline;

2. Ontology as an informal conceptual system;

3. Ontology as a formal semantic account;

4. Ontology as a specification of a conceptualisation;

5. Ontology as a representation of a conceptual system via a logical theory

(a) characterized by specific formal properties;

(b) characterized only by its specific purposes;
6. Ontology as the vocabulary used by a logical theory;

7. Ontology as a (meta-level) specification of a logical theory.
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Guarino and Giaretta favour interpretation 5a - an ontology is a logical theory, char-
acterized by specific formal properties. This is because this definition fits with three
common technical uses of the term “ontology”: meaning an ontological theory; a spec-
ification of an ontological commitment; or a conceptualisation. However, they also
give some credence to the other interpretations, because ontologies typically exist at
different levels. For example, definition 1 tries to answer the question “What are the
features common to all beings?” and results in a generic ontology that is common to

all domains but describes very little that is specific to any domain.

The practical implications of this (heavily abbreviated) discussion are that ontologies
can be separated into core ontologies (meta-descriptions of ontological terms), general
ontologies (definitions of common sense concepts) and domain-specific or company-
specific ontologies. The remainder of this chapter is concerned with domain or company-
specific ontologies, unless stated otherwise, for these are the ontologies that are most

obviously useful for knowledge management.

3.3 Problems with Ontologies

So what are the main problems that arise with such ontologies? A selection of problems

is outlined below, drawn from [35] and other sources.

3.3.1 IS-A overloading

“IS-A overloading” [128] is the use of the IS-A relation to carry multiple meanings
in a single taxonomy. Guarino identifies five such misuses from a survey of popular
ontologies: confusion of senses (for example, in Mikrokosmos, a window is both an
artifact and a place); reduction of sense (e.g. in Pangloss, a person is both a physical
object and a living thing); overgeneralisation (a place is a physical object in both
Mikrokosmos and WordNet); suspect type-to-role links (in WordNet, a person is both
a living thing and a causal agent); and confusion of taxonomic roles (both Pangloss and
Penman offer a taxonomy of qualities, but qualities are better represented as properties
only rather than as concepts). While these misuses may reflect accepted practice in

natural language (for example, the term 'window’ can refer either to a single window
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pane, a connected set of multiple panes, or the space that pane occupies), they can
cause great difficulties in accurate ontological classification, and they make logical

inference across multiple ontologies very difficult.

3.3.2 Inaccurate expert responses

Another problem that arises from loose use of natural language is that ontological
questions supplied to knowledge experts may be answered incorrectly, either through
the experts misunderstanding the question or misunderstanding the ontological impli-
cations of their answer. For example, experts who are asked, “Please give a subclass
of X i.e. tell me something that is a X” may answer with a superclass of X; they may
provide a member of the class X rather than a subclass; or they may supply a concept
that is related to X by some relation apart from IS-A, such as naming subparts of an
object (e.g. giving “engine” as a subclass of “car”). These faults are multiplied when
developing ontologies other than taxonomies; for example, asking experts “what causes
A” sometimes elicits a response of the form “A causes B”, while asking experts “how
do I do C” (aiming to elicit subtasks of C) may bring the response “Well, first you do
D and then E, and then you can do C”. So the difficulty for the ontology engineer lies
in transforming the answers provided by experts into a valid taxonomy or other type

of ontology.

3.3.3 Levels of detail and inferencing bias

Inferencing bias occurs because it’s not practical to define all ontologies at a universally
accepted “primitive” level - which, most people would agree, corresponds to an atomic
or molecular level. However, the level of detail that is appropriate is usually determined
by the problem being tackled rather than the domain. So different ontologies of the
same domain may be incompatible because they were developed to solve different
problems. As an example, let’s consider ontological definitions of colour. In this
case, there is probably general agreement that a ’primitive’ definition of colour should
consist of the intensity of light of different wavelengths that is reflected or emitted
by the ’coloured’ objects. However, while an ontology for physicists may require this

level of detail, photographers and artists only need an ontology that specifies colour
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as a concept with properties such as hue, brightness and intensity, and a car salesman

probably views colour merely as a property of the cars he sells.

These varying levels of detail would be less of a problem if there was agreement on how
to combine ’primitive’ definitions into higher level concepts. This is definitely not the
case for colour, however; in a project to build an ontology of art objects for Interpol
[193] [172], the researchers discovered that colour terms used to describe paintings
are entirely different to the colour terms used to describe ceramics [Wielinga, personal
communication|. In practice, colour is an exceptionally hard concept to define, because
its ’categories’ are actually composed of arbitrarily defined points on three continuous
dimensions (red, green and blue light); the philosophical term for this is that colours
are determinable concepts as opposed to determinate concepts. So perhaps the problem
of inferencing bias is more acute for colour and other determinable concepts (such as
geographical location or price) than for determinate concepts such as physical objects.
For ontological engineers, inferencing bias is an inescapable fact that should, at least,

be identified when building an ontology.

3.3.4 Dependence relations

As stated above, experts who are asked to give subclasses of concept X will often answer
with concept Y, which is related to X in some other way. Typically, the reason is that
concept Y depends on X in some fashion. Corazzon [35] identifies many kinds of depen-
dence relations, including dependencies between levels of reality, between wholes and
their parts, between parts, between wholes and their environments, between wholes,
and between particulars and determinations. However, it is difficult to model these

relationships clearly in any ontology, and well-nigh impossible in a taxonomy.

3.3.5 Particulars

Taxonomies often represent particulars (i.e. individuals, or individual objects) well, but
struggle with other types of concept, such as Processes, Groups, or Stuff (substances
described as “an amount of” rather than “a collection of” - water is a good example).
But the need to represent these concepts in ontologies has been clearly identified (see

e.g. [113]). So what is to be done about these issues? In the next section I will describe



Multi-Perspective Ontologies 52

an approach to ontology development that can address at least some of these problems.

3.4 Multi perspective ontologies

Imagine that you have been asked to rent a DVD to watch that will be appropriate for
yourself and five friends. When asked for their preferences, the first friend wants to see
action, horror or science fiction; the second wants innovative special effects; the third
wants something that wasn’t filmed in the USA; the fourth asks for a film made fairly
recently - “not a classic oldie”; and the fifth wants a film that features her favourite
actor, who turns out to be Keanu Reeves. You may not realise it, but you have been
given a multi-perspective classification problem. Each of your friends classifies films in
a different way (or at least, prioritises their classification of films in a different way);
one cares what genre of film it is, another how the film was made, another where it
was made, the fourth when it was made, and the fifth who is in it. As you stroll
away from the shop with a copy of The Matrix in your hand, it occurs to you that
these different classifications map neatly to the different perspectives on information
and knowledge proposed in another matrix - the Zachman framework for Information

Systems Architecture.

The Zachman framework suggests that multiple perspectives and multiple levels of de-
tail are needed for full-scale knowledge representation. Since organisational ontologies
already exist at multiple levels of detail (domain, general, and core ontologies), the
main message of the Zachman framework for developers of organisational ontologies is
the need to develop ontologies from different perspectives. Continuing the cinematic
example, ontologies of film genres can be obtained from Yahoo (www.yahoo.com) and
from the Internet Movie Database (www.imdb.com). It can be seen that these ontolo-
gies attempt to address the multi-perspective problem by providing a range of ways
of searching for films; the Internet Movie Database (see Table 3.1) allows searching
for films by genre, co-stars, location, or release date, thus covering the ’what’, 'who’,
'where’ and ’when’ perspectives proposed by the Zachman framework, while Yahoo
(Table 3.2) offers a broad range of categories that cover not just films themselves but
also related information (reviews, spoilers, fan fiction, cinemas, etc.). In fact, a de-

tailed examination shows that both ontologies provide indexing on all six perspectives
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Top Titles On qur Top Mavies page you can find links to all sorts of "tops”
lists. Whether it's top grossers at the box-office, top renters at
video stores, or top flins in genres & decades based on user
votes, you can find it there

Search by Our User Ratings Browser duplicates sorme of the tops/battams

Ratings lists fram the Top Mavies page plus it allows you to search for
rrigvies that fall within a certain user ratings range. You can also
specify a genre and year or range of years... or not.

Titles by Find titles and other information categorized by year from 1892

Year to the present and beyond

Titles by Find titles based on the country of origin for a title. This is nat

Country based on the filming loc ations but the country that produced it

Titles by Find titles based on the language in which they wers filmed.

Language

Titles by Find titles based on their genres

Genre

Titles by Using the Search and Browse By Level features in our Filming

Location Locations Browser allows you to ind firms bas ed on their filming
locations.

Titles by Find titles based on release dates, copyright holder, etc.

Business

Information

Titles by Use our database of over 300 awards ceremonies and film

Awaris festivals to find the tithes that have been nominated, selected
andlor hopored by each event.

Titles by A keeyword can describe a plot theme [ie. beach) ora more

Keywords esoteric notation (e, sexuel). Our keywards browser will allow
you to peruse a list of keywards in use as well as searching for
titles whose keywords match one of more that you select

Titles by Our complex name search allows you to enter the names of twa

Co-Stars or more peaple and finds all the tiles where they're bath listed.

Table 3.1: Classification of films, as provided by the Internet Movie Database

suggested by the Zachman framework; the Internet Movie Database offers a keyword
search facility that can be used to browse the ’how’ or 'why’ perspectives, while Yahoo
offers a particularly rich indexing of the 'why’ perspective, by offering categories such
as 'Made-for-TV movies’ "Theory and Criticism’, "History’” and ’Cultures and Groups’.
Both ontologies also offer an additional domain-specific perspective of identifying the
'best’ films, according to box office ratings, critics’ choices, or votes by users of the

website.

What this discussion highlights is that, in practical ontology building, there will almost
always be a need - or at least, a demand from users — to represent non-taxonomic meth-
ods of classification. This chapter proposes that the best way to clarify these various
classification methods is to build separate ontologies based on separate relationships.
The need for separate ontologies can be identified according to the relations that need
to be represented. Relations that are typically associated with each of Zachman’s six

perspectives are suggested below:

e WHAT perspective: is-a (taxonomy), part-of (mereonomy)

e HOW perspective: achieves (goal), transforms, creates/destroys, any term re-
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By Eegion

Actors & Actresses
Lrards

Box Office Eeports
Cultures and Groups
Jenres

Independent
Made-for- TV mowvies
Crganisations

People

Eatings

Eeviews

Screenplays

Studics and Production Companies
Theory and Criticism
Titles

Table 3.2: Classifications of films (as opposed to film-related topics) provided by Yahoo

flecting a specific action (selects, matches, etc);

WHO perspective: plays-the-role-of, responsible-for, has-rights-to;

WHEN perspective: precedes/follows (possibly with time intervals specified);

WHERE perspective: location, connected-to, or terms reflecting geographical

relationships (close-to, south-of, etc);

WHY perspective: causes, justifies.

Note that the suggestions above are intentionally limited to those that relate two
items of the same type? — for while there are many relationships between items of
different types (e.g. relationships between agents and the tasks they are responsible
for), it is usually unproductive to use these as a basis for classification, since these
relationships are typically temporary assignments rather than inherent characteristics.
Further examples of existing ontologies are given in the next section, showing how

multiple perspectives can enrich the representation of each of them:.

2 with the possible exception of the HOW perspective - for example, matches relates 3 items, 2 of the
same type and one Boolean value
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3.5 Multi-perspective ontologies - Examples

3.5.1 Example 1: Scientific Knowledge Management

A worked example of multi-perspective ontologies is drawn from a top level ontology of
“Scientific Knowledge Management” (i.e. academics, their projects and publications),
whose development was discussed in [87]. The ontology in its current form is shown in
Figure 3.1. This ontology was designed based on several principles, but the main ones
were to fit in with two existing upper level ontologies: one from the Open University,
whose top level categories were Tangible Thing, Intangible Thing, and Temporal Thing,
and one from the Ontoclean ontology, the top level of which consisted of six categories:
Abstraction, Quality, Aggregate, Feature, Object, and Fvent. It was decided that the
OU’s three categories should represent the top level of the ontology and the Ontoclean
categories should represent the second level. The concepts that had to be classified,

and their classifications in the above scheme, are as follows:

e Documents, publications, etc. - Objects (Tangible Thing);

Conferences, workshops, seminars - Events (Temporal Thing);

Research groups, universities, funding bodies - Organisations (Tangible Thing);

Students, professors, supervisors - People (Tangible Thing);

Research areas (Generic Areas of Interest) - Abstractions (Intangible Thing);

Projects, grants - Tasks (Temporal Thing).

These top level categories are reasonably well separated from a multi-perspective view-
point. Objects address the WHAT perspective, People and Organisations address the
WHO perspective, and Tasks (which are a subcategory of Event, not shown in Figure
3.1 for reasons of space) address the HOW perspective. The WHEN and WHERE per-
spectives are also addressed to some extent, by the categories of “Temporal Things”

and “Aggregates”, respectively.

However, this ontology is not perfect, because it attempts to use taxonomic links

to represent relationships that are not truly taxonomic. For example, Kingston [99]
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® (C) Intangible_Thing
® (C) Ahstraction
@ '@ Generic_area_of_interest
(C) Method
(C) Quality
@ (C) Time_Entity
® (C)Tangible_Thing
(C) Aggregate
@ (C) Object
Q@ l:C:J LifeForms
@ (C)Person™
@ (T) OrdinaryOhject
Q Ii@] Infarm ation_Bearing_Ohbject
@~ (C) Document
@ (C) Publication
(C) Recorded_Audio
(C)Recorded_Video
(C) Technology
@ (C) SocialGroup
®- (C) Organization ™
(C) PhysicalB ody
@ (C) Temporal_Thing
@ (C) Event
® (C) Generic_Agent
@ (C) Legal_Agent
@- () Organization™
@ (C) Person™

Figure 3.1: Current ontology of Scientific Knowledge Management

pointed out that Publications are not really a subclass (i.e. in a taxonomic WHAT
relationship) to Documents but are dependent on (the existence of) a document. This
can be resolved using multi-perspective ontologies by stating that publications express
WHERE a document can be found in the public domain. This allows the dependence
to be expressed, as well as correctly allowing more than one publication of a single
document. Similarly, Methods are taxonomically classified as Abstractions but are
more commonly thought of in terms of the goal that they can achieve, and this can

be captured in an ontology for the HOW perspective. And People and Organisations
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may be classified taxonomically as Legal Agents, but as Guarino highlighted in his
discussion on IS-A overloading, they actually play the role of agents (a WHO link)
rather than being a kind of agent (a WHAT link).

3.5.2 Example 2: the ACM classification scheme

The top level of the ACM classification scheme for computer-related topics is shown in
Table 3.3. An extension to the Artificial Intelligence classification has been designed
by Scientific Datalink [40], and part of this extended classification is shown in Tables
3.4 and 3.5.

The ACM classification covers several of the multiple perspectives. The perspectives
covered include WHAT is needed for a computer system (hardware and software),
HOW to build a computer system (techniques), and WHY systems are built (computing
milieux). The categories also cover different levels of abstraction: some categories
consider the contents of the computer itself (hardware, software, computer systems
organisation, data, information systems) while other categories consider the computer
as a single concept in the context of applications (computing methodologies, computer
applications, computing milieux). There’s also a third level of detail to be found in the
two theoretical categories (Theory of Computation and Mathematics of Computing),
which provide the foundational techniques for computer systems organisation, data

and information systems.

The Scientific Datalink extension also uses a formula where formalisms /resources (WHAT
knowledge) are mixed with methods/techniques (“how” knowledge) to generate subcat-
egories. For example, most of the subcategories of Knowledge Representation are con-
cerned with different knowledge representation formalisms - the WHAT of knowledge
representation — but two (Representation of the Physical World and Representation of
Natural Language Semantics) are primarily concerned with knowledge representation

as a task rather than a formalism — i.e. with HOW rather than WHAT.? Similarly,

3 Some may argue that knowledge representation formalisms such as predicate logic or semantic
networks are methods and therefore belong under the HOW perspective, while “representation of
the physical world” describes WHAT is to be represented, thus reversing the perspectives proposed in
this chapter. Strictly speaking, most of the subcategories of Knowledge Representation are methods
while the categories 4.11 and 4.12 are goals to be achieved. From a knowledge engineer’s viewpoint,
methods constitute the resources available (WHAT) while goals represent a problem to be solved
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Jeneral hterature
Hardware

Computer systems orgams ation
moftware

Data

Theory of computation
Mlathematics of computing
Infortnation systems

Computing methodologes
Computer applications
Computer miheux (philosophy, legislation, adminstration)

el el al Ee s Pl e s e A L A Kl =R

Table 3.3: Top level of the 1998 ACM classification scheme

most of the subcategories of Applications and Expert Systems are concerned with
different domains in which expert systems have been applied (similar to the ACM’s
taxonomic breakdown of Computer Systems Applications into different disciplines),
but 1.2.1.15 (“Expert Systems”) and 1.2.1.5 (“Natural Language Interfaces”) are more
concerned with techniques for expert system construction, and 1.2.1.14 (“System Trou-
bleshooting”) focuses on a particular task rather than on a domain. And one of the
subcategories of “Problem Solving, Control Methods and Search” - the category of
“Plan Execution, Formation & Generation” - is arguably concerned primarily with

WHEN knowledge.

In short, the ACM classification scheme and the Scientific Datalink extension would
be better structured if they were split into at least two ontologies, one reflecting the
“what” perspective (i.e. a taxonomy) and the other representing the “how” perspective
(i.e. methods and techniques). This would allow more complete representation of
(e.g.) goals for knowledge representation, techniques for expert system construction,

and task-focused categories. Further perspectives might also prove beneficial.

This example is discussed in more detail in chapter 4.

(HOW).
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1.2.1. Applications and Expert
Systems

Subcategories

1.0 Cartography

1.1 Garnes

Chess, Checkers, Backgarmon, Bidding, Wagering, War, Other

1.2 Industrial Applications

Autormatic Sssermbly, Parts Handling, Inspection, Welding, Planning
for Production, Isentory

1.3 Law

1.4 hledicine and Science

Iledical Applications, Cherdeal & pplications, Biological
Applications, Geological &pphications

1.5 Matural Langmage Interfaces

1 6 Office bLutomation

1.7 Tlilitary Applications

Sutonorons Yehicles, Inte gration of Information, Decisions &ids,
Target Tracking, Corrnnication

1 & Business and Financial

Tay, Irevestrent, Financial Plarming, Info Storage & Retrigval

1.9 Matural Langmage Processing Applics

1.10 Mlatheratical &ids

111 Ednzation

Tutoring systerns, Irtelligent Coraputer-aided Instroction, &ids to
leatming Prograrmening, Curriculun Design

1.12 Library &pphications

1.13 Engineering Autoraation

Computer Systerm Design, VL3I Design &ids, CADICATV,
Programuning Lids

1.14 Syatem Troubleshooting

1.15 Expert Systems

Expert Systern Languages and &ids for Building Expert Systerns,
Acepuisition of Expert Knowledze, Plansible Feasoning,
Representation of Expert Knowledge, Generation of Explanations,
Expert Systerns based on Siranlation and Deep Models, User
Interfaces for Expert Systers, Validation of Expert Systerns

116 Prosthetics

1.17 Awiation Spplications

1.18 Applications, Other

124 Enowledge Representation

4.0 Fraraes and Scripts

Defanlts, Sterectypes and Prototypes, Generation of Expectations,
Frame Langnages, Frame-Ditven Systers, Inheritance Hierarchy

4.1 Predicate Logic

First Order Predicate Caloulus, Skolem Functions, Second Order
Logic, Wodal Logics, Fuzzy Logic

4.2 Relational Systems Felational Data Bases, Associative Demory
4.3 RBepresentation Languages

4.4 Bepresentations (ProceduralFule- Production Fule Systems, Knowledge Bases
Based)

4.5 Semantic Networks

4.6 Connectionist Systems

4.7 Mlultiple &gentibctor Systems

4.8 Constraints

4.9 Discrimination Trees and MNetworks

4.10 Belief Iodels

4.11 Bepresentation of the Phersical World

4.12 Bep. of Hatural Language Semantics

Table 3.4: Part of the Scientific Datalink AI classification scheme

99



Multi-Perspective Ontologies 60

I1.2.8 Prohlem Solving, Conirol
methods and Search

8.0 Backiracking

2.1 Dynamic Programming

8.2 Graph and Tree Search Strategies Dlepth first, Breadth fivst, Best first, Branch & Bound, Hill Clirabing,
Ilirarnace, &lpha-Beta, &%, Beawy, Dependency-Directed Backtracking,
Constraint Propagation, Relazation Methods, Tlarker Passing,
Bidirectional, Data-DimveniTop-Dowr

2.3 Heuristic Ivethods Hature of Heuristics, Heuristic Control of Search, Strategies, Default
Reasoning, Closed World Heuristics, Induction and Evaluation of
Heuristies, Qualitatree Beasoning and Ervisionment

2.4 Plan Execution, Formation, Generation | Ivleans-End Analysis, Forward Chaiming, Backward Chaiming, Weak
methods, Generate & Test, Hierarchical Plarming, IWeta-planning and
Ilulttiple Goals, Plan Verification, Plan Iodification

2.5 IWlatching

Table 3.5: Another part of the Scientific Datalink Al classification scheme

3.5.3 Example 3: Struts example

Swartout et al [165] highlight a problem with ontological classification in which the
concept “strut” can be linked to the top level concept “Thing” in two different ways.
In one way, “strut” is a subclass of “support”, which is a subclass of “decomposable
object”, which is a subclass of “Thing”; in the other, “strut” is a subclass of both
“durable good” and “load bearing member”, which are both subclasses of “physical

object”, which is a subclass of “Thing”.

From a multi-perspective viewpoint, there are several difficulties with this apparently
simple ontology. Webster’s dictionary defines ’strut’ as “a structural piece designed to
resist pressure in the direction of its length”, while a ’support’ is simply “something
that carries out the act of supporting”. So ’strut’ is indeed a subclass of ’support’,
since they are both playing a similar role, but the latter subsumes the former - and,
in fact, 'load bearing member’ is a superclass of ’strut’ (since buildings include not
only struts but also rafters, purlins and other load bearing members) but a subclass of
'support’ (since something can be a ’support’ without necessarily being a 'member’ of

a building - indeed, it need not be a physical object at all, for gravity or magnetism
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Figure 3.2: Two alternative ontologies for ’strut’

can act as supports). Yet we can also see that a strut will in fact be a beam (of
wood or metal, usually) that plays the role of a structural component in a building.
Furthermore, the link between beams and durable goods is another plays the role of
link, for beams are only goods (Webster: “something that has economic utility or
satisfies an economic want” or “something manufactured and produced for sale”) as
long as they are in demand, or as long as they are offered for sale. And finally, the
concept of “decomposable object” is one that is criticised by Guarino & Giaretta under
the heading of confusion of senses; they believe that this should only ever be a property

rather than a concept in a taxonomy.

In short, these two apparently contradictory taxonomies can be sorted out by rewriting
them using both taxonomic links and a “who” ontology based on the relation “plays

the role of”:
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playe the PLaye =he Plage The  glays she

wels wf gale of cela o

Y ima wale of

Figure 3.3: Representing “strut” with a set of multi-perspective ontologies

3.6 Multi perspective ontologies: Dealing with ontology
problems

In this section, the ontology problems listed above will be considered in turn, with

indications on how or whether multi-perspective ontologies can resolve the problem.

3.6.1 IS-A overloading

Five types of ontology problem due to IS-A overloading were identified by Guarino et
al. Multi-perspective ontologies can deal with two of these directly: suspect type-to-
role links should be eliminated if an ontology based on the relation plays the role of is
developed; and confusion of taxonomic roles should also be eliminated (since qualities
and decomposable objects don’t appear as one of the recommended perspectives, it
is unlikely that a taxonomy of them will be developed). The remaining problems are
due to weak consideration by knowledge engineers of the ontological links that can be
introduced into an ontology; multi-perspective ontologies don’t deal with this directly,
but by breaking down ontologies into a number of single-perspective ontologies, they

should make it easier to identify the implications of making certain links.
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3.6.2 Inaccurate expert responses

Multi-perspective ontologies can be of great help in dealing with inaccurate expert
responses, particularly if they are combined with a software tool that allows swift rep-
resentation and display of acquired knowledge. If, for example, a knowledge engineer
asks “what causes A?” and the expert inaccurately replies “B” when in fact A causes
B, an ontology based on the ‘causes’ relation can be created or opened, the relationship
can be entered, and the results displayed to the expert. The expert can then immedi-
ately see their statement in the context of other knowledge, and should recognise their

mistake.

3.6.3 Levels of detail and inferencing bias

The Zachman framework clearly suggests that knowledge or information assets need
to be represented not only from different perspectives but also at different levels of
detail, as discussed in chapter 2. It’s clear that the concept of agreed levels of detail of
ontologies is needed, but it’s far from clear that the levels proposed by the Zachman
framework map well to levels for ontology representations - not least because the six
levels of the Zachman framework do not in fact represent six increasing levels of detail,
but rather three levels of detail of models of the world (scoping, enterprise, system)
followed by three levels of detail of models of a system (technology, details representa-
tion, functioning enterprise). The subject of appropriate levels of detail for an ontology
is therefore a subject for future work. Interested readers might want to look at the

nine ontology levels proposed by Guarino [128].

Another suggestion, made by Corazzon [35], is that a Standard Template Library or
a Pattern for ontological categories and constructs should be developed, akin to the
templates used by the software patterns movement. These templates would be used
to classify “fragments of reality”, and would implicitly allocate those fragments to an
appropriate level of detail. However, as Corazzon points out, there is no general con-
sensus on the general features of an ontology, never mind an appropriate standardised

format for them.
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3.6.4 Dependence relations

The problem of representing dependence relations is greatly simplified by using multi-
perspective ontologies. The reason is that the most common dependence relationships
can actually be expressed as other relations that fit into the multi-perspective frame-
work. One example appears in the worked example of scientific knowledge manage-
ment: the existence of a Publication depends on the existence of a Document, but can
be re-expressed by saying that a Publication gives a (public) location of a document - a
relation that can be found in an ontology based on the WHERE perspective. Similarly,
the existence of a car can be said to depend on the continued existence of (most of) its
parts, which can be modeled using part-of relationships; and the continued existence
of a procedure depends (or ought to depend) on there being continued justification for

it being performed, which can be modeled in a WHY ontology.

3.6.5 Particulars

The representation of processes and groups also fits very well with the philosophy
of multi-perspective modeling. It is to be expected that the majority of concepts in
a HOW ontology will be processes or events rather than individuals. And a WHO
ontology, showing capability, authority, rights and responsibilities as well as organisa-
tional structures, can represent links between individuals and groups. The distinction
between “stuff” and discrete objects is a high level concept better represented using def-
initional properties in general ontologies rather than with relations in domain-specific

ontologies.

3.7 Discussion

It seems that the ability to search for a concept or category by more than one route is
highly prized by users, and multi-perspective ontologies are ideal for supporting this.
We have seen that the creation of multi-perspective ontologies is capable of resolving
several of the most common problems that arise in ontology development. Some is-
sues remain to be resolved, such as defining agreed “levels of detail” for ontologies,

and determining the most appropriate set of definitional properties for ontological con-
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cepts. Readers interested in these concepts are directed to discussions in [99] and [128]

respectively.

Some may argue that multi-perspective ontologies introduce multiple inheritance onto
ontologies and that this is unacceptable. While multiple inheritance clearly is intro-
duced, this is not so much unacceptable as inevitable for real world ontologies. Indeed,
multiple inheritance already appears in existing ontologies such as the ontology of Sci-
entific Knowledge Management shown in Figure 3.1 (where Person and Organisation
have multiple superclasses). If the argument against multiple inheritance is based on
the (common) inability of certain knowledge management software tools to support
multiple inheritance, the message of this chapter is that it’s time for a new version of

that software tool to be developed.

This chapter has shown how the perspectives of the Zachman framework can be used
to tackle common ontology problems. The next chapter looks at a detailed example of
this: the framework is applied to the ACM classification scheme to see if it has any of
the common ontology problems, and to determine if a multi-perspective analysis could

help to solve them.
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Chapter 4

Ontology, Knowledge
Management, Knowledge

Engineering and the ACM
Classification Scheme!

4.1 Introduction

Much work is being carried out these days on the classification of objects or concepts in
a standardised manner; such a classification is often referred to as an ontology. Various
researchers are promoting different ontologies, approaches to building ontologies, stan-
dards for ontologies, and so on. Such work is valuable and worthy of respect, but often
a single ontology cannot describe an object or concept fully. It is proposed in chapter 2
(with a case study in [103]) that representing an object or concept completely may re-
quire up to six ontologies, covering who, what, how, where, when and why perspectives,
and furthermore that these perspectives may recur at different levels of abstraction,
from an “organisational” level right down to a “system implementation” level. This
is referred to as a multi-perspective modeling approach. The contents of the “what”
perspective on knowledge are typically resources of some kind; the “how” perspective
contains methods or techniques; the “who” perspective will typically contain agents;
the “where” perspective will demonstrate external connections; the “when” perspective

will include control and constraints; and the “why” perspective will include justifica-

! Published in proceedings of ES ’02, the annual conference of the British Computer Society’s Spe-
cialist Group on Artificial Intelligence, Peterhouse College, Cambridge, 10-12 December 2002
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tions and goals.

The purpose of this paper is to test the theory of multiple perspectives being necessary
for completeness in ontologies by applying it to the task of placing “knowledge manage-
ment” and “knowledge engineering” within the ACM classification scheme. This task
arose from a request by the librarian of the Artificial Intelligence library at the Univer-
sity of Edinburgh. For several years, the Al library has been classifying its collection
according to the ACM classification scheme, along with an extension to the Artificial
Intelligence section of the scheme that was published in the AI magazine in 1985 [40].
However, recent interest in knowledge management from commercial and research or-
ganisations, along with a grant from EPSRC to develop a Master’s Training Package
in Knowledge Management and Knowledge Engineering, has led to an influx of books
and other materials on these topics. There is no entry in the current ACM scheme for
knowledge management, and although there is an existing category for knowledge engi-
neering in the extended version of the scheme (as a subclass of Learning), the librarian
had noticed that books on knowledge engineering were being classified in four differ-
ent places, which suggests that there may be a problem with the current classification

scheme.

The thesis of this paper is that a multi-perspective analysis of the ACM classification
scheme and the Al extension should demonstrate some of the principles on which the
classification is based, and therefore help in deciding where knowledge management

and knowledge engineering should appear in the classification.

4.2 The ACM Classification Scheme and the Scientific
Datalink extension

The ACM classification scheme [127] was first published in 1964, with seven top level

topics. In its third revision, produced in 1998, the number of top level categories had

increased to 11 (see Table 4.1), along with major extensions of lower level categories.?

2 The report accompanying the 1998 classification suggests that another major revision is needed,
but because deletion of categories would render historical indexes inaccurate, it was decided that a
major revision would be delayed; and in addition, categories that were considered redundant would
be “retired” rather than being deleted from the hierarchy.
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General literature

Hardware

Computer systems organisation
Software

Data

Theory of computation

Mathematics of computing

Information systems

Computing methodologies

Computer applications

Computer milieux (philosophy, legislation,
administration)

Table 4.1: Top level of the 1998 ACM classification scheme
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Artificial Intelligence appears in the ACM classification scheme as a subcategory of
one of the newer top level categories, “Computing Methodologies”, alongside “sym-
bolic and algebraic manipulation”, “computer graphics”, “simulation and modeling”,
“document and text processing”, and others. The subcategories of Al (apart from
General and Miscellaneous, which appear in every list of subcategories) are Applica-
tions and Expert Systems; Automatic Programming; Deduction and Theorem Proving;
Knowledge Representation Formalisms and Methods; Programming Languages and
Software; Learning; Natural Language Processing; Problem Solving, Control meth-
ods and Search; Robotics; Vision and Scene Understanding; and Distributed Artificial
Intelligence. Each of these has some suggested interest areas (i.e. a partial list of
possible subcategories); for Applications and Expert Systems, for example, the current
list of interests includes (among others) cartography, games, industrial automation,
law, medicine and science, natural language interfaces, mathematical aids and pros-
thetics. It’s immediately clear to readers familiar with the Artificial Intelligence field
that, however valid this classification was when it was developed, it does not reflect
the current levels of interest in the field very well: an obvious example is cartography;,
which is listed as a fourth level classification here, but nowadays would probably not
even make it to the fifth level — it might be regarded as a subclass of “Geographical
applications” which in turn would be a subclass of “Medicine and Science”. Similarly,
it’s hard to believe that a new classification would grant “Distributed Artificial In-

telligence” the same level of prominence as “Applications and Expert Systems”. The
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original classification may have been based on what was known at the time, on the
political preferences of the ACM committee?, or on some other basis. However, this
highlights the need to understand the principles on which ontological decisions are

based to be noted.

In 1985, David Waltz was invited by Scientific Datalink, a division of Comtex Scientific
Corporation to extend the Al classification to account for some of the subdivisions of
Al to aid Comtex in indexing the series of Al memos and reports that they had been
gathering. The resulting classification, which has been published by Waltz in AI Mag-
azine [40], retains all of the above top level categories except for “Distributed Artificial
Intelligence”, which is replaced by “Specialized Al Architectures”. Two new categories
are also added: “Cognitive Modeling and Psychological Studies of Intelligence”, and
“Social and Philosophical issues”. The contents of most categories have been signifi-
cantly expanded: continuing the earlier example, “Applications and Expert Systems”
now has 19 subcategories, including the 7 proposed as “interests” by the ACM, and
these 19 subcategories have up to 11 sub-sub-categories or even sub-sub-sub-categories.
Space prevents the replication of the entire classification here, but four of the nineteen

categories are described in detail in Table 4.2.

1.2.1. Applications Subcategories
and Expert Systems

1.0 Cartography

1.1 Games Chess, Checkers, Backgammon, Bidding Games,
Wagering Games, War Games, Other

1.2 Industrial Applications Automatic Assembly, Parts Handling,
Inspection, Welding, Planning for Production,
Inventory

1.3 Law

1.4 Medicine and Science Medical Applications, Chemical Applications,

Biological Applications, Geological Applications

1.5 Natural Language Interfaces

1.6 Office Automation

3 To illustrate “political preferences”, AIAI helped to carry out a project to merge four ontologies
of “scientific knowledge management” (i.e. academics and their publications) prepared by different
universities into one “reference ontology” [99]. When the four original ontologies were compared,
it was noted that there were many similarities, but if a research group’s own special interest area
appeared in the ontology, it was classified at a higher level in its own ontology than in the others’
ontologies.
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1.7 Military Applications

Autonomous Vehicles, Integration of
Information, Decisions Aids, Target Tracking,

Communication

1.8 Business and Financial

Tax experts, Investment, Financial Planning,

Information Storage and Retrieval

1.9 Natural Language Processing Applications

1.10 Mathematical Aids

1.11 Education

Tutoring systems, Intelligent Computer-aided
Instruction, Aids to learning Programming,

Curriculum Design

1.12 Library Applications

1.13 Engineering Automation

Computer System Design, VLSI Design Aids,
CAD/CAM, Programming Aids

1.14 System Troubleshooting

1.15 Expert Systems

Expert System Languages and Aids for
Building Expert Systems, Acquisition of Expert
Knowledge, Plausible Reasoning,
Representation of Expert Knowledge,
Generation of Explanations, Expert Systems
based on Simulation and Deep Models, User
Interfaces for Expert Systems, Validation of

Expert Systems

1.16 Prosthetics

1.17 Aviation Applications

1.18 Applications, Other

1.2.4 Knowledge Representation

4.0 Frames and Scripts

Defaults, Stereotypes and Prototypes,
Generation of Expectations, Frame Languages,

Frame-Driven Systems, Inheritance Hierarchy

4.1 Predicate Logic

First Order Predicate Calculus, Skolem
Functions, Second Order Logic, Modal Logics,
Fuzzy Logic

4.2 Relational Systems

Relational Data Bases, Associative Memory

4.3 Representation Languages

4.4 Representations (Procedural and
Rule-Based)

Production Rule Systems, Knowledge Bases

4.5 Semantic Networks

4.6 Connectionist Systems

4.7 Multiple Agent/Actor Systems

4.8 Constraints

4.9 Discrimination Trees and Networks

4.10 Belief Models

4.11 Representation of the Physical World

4.12 Representation of Natural Language

Semantics

1.2.6 Learning
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6.0 Analogies

Geometric Analogies, Natural Language
Analogies, Structural Analogies, Functional

Analogies

6.1 Concept learning

Near-Miss Analysis, Version Spaces, Schema
Acquisition and Generalisation, Learning of
Heuristics, Credit and Blame Assignment,

Conceptual Clustering

6.2 Induction

Statistical Methods, Inductive Inference

6.3 Knowledge Acquisition

Advice Taking and Learning by Being Told,
Learning from Examples, Learning by
Observation, Learning from Experience,

Learning by Discovery

6.4 Knowledge Engineering

Dialogues with Experts, Knowledge Base
Stability, Knowledge Base Consistency

6.5 Language Acquisition

Acquisition of Grammar, Learning of Concepts

through Language

6.6 Parameter Learning

6.7 Associative Learning

6.8 Learning of Skills

6.9 Developmental and Incremental Learning

6.10 Evolutionary Models for Learning

1.2.8 Problem Solving, Control
methods and Search

8.0 Backtracking

8.1 Dynamic Programming

8.2 Graph and Tree Search Strategies

Depth first, Breadth first, Best first, Branch &
Bound, Hill Climbing, Minimax, Alpha-Beta,
A*, Beam, Dependency-Directed Backtracking,
Constraint Propagation, Relaxation Methods,
Marker Passing, Bidirectional,

Data-Driven/Top-Down

8.3 Heuristic Methods

Nature of Heuristics, Heuristic Control of
Search, Strategies, Default Reasoning, Closed
World Heuristics, Induction and Evaluation of
Heuristics, Qualitative Reasoning and

Envisionment

8.4 Plan Execution, Formation, Generation

Means-End Analysis, Forward Chaining,
Backward Chaining, Weak methods, Generate
and Test, Hierarchical Planning, Metaplanning
and Multiple Goals, Plan Verification, Plan
Modification

8.5 Matching

Table 4.2: Part of the Scientific Datalink AI classification
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4.3 Dimensions of classification: classes, subclasses and
multi-perspective modeling

The ACM classification scheme is considered to be a four-level, hierarchical taxon-
omy. A “taxonomy” is defined in Merriam-Webster’s dictionary as “a classification,
especially an orderly classification of plants and animals according to their presumed
natural relationships”. Taxonomies are typically used to represent one class of objects
or concepts and its sub-types; that is, objects/concepts that possess all the defining
features* of the higher level object/concept plus a couple of extra features. A ‘true’
taxonomy therefore includes only one relationship between objects or concepts; one

object/concept is a subclass (or “a kind of”) the other.?

However, when ontologies are built to represent the relationships between tasks, activ-
ities, philosophies, or other conceptual entities, it’s often difficult to connect them all
using only subclass relationships; maybe there are no obvious taxonomic groupings, or
maybe there is a more obvious grouping according to function, form, role or relevance.
An example of a “more obvious” grouping can be found in vegetable classification;
while it might possibly be helpful to know that the Linnaean classification of (most)
tomatoes places them alongside aubergines and potatoes in the Nightshade genus of
the Potato family, many gardeners would probably prefer to see tomatoes classified
alongside other vegetables that grow on vines, vegetables that grow in greenhouses, or
even vegetables that are served in salads. An example of “no obvious groupings” can
be found by looking at cars. Possible classifications include “saloon”, “hatchback”,
“sports car”, etc (based largely on form, but also on role) or “petrol engine cars”,
“diesel engine cars” and “alternative fuel engine cars” (based on function), but such
subdivisions seem less “natural” than the higher level classes — and yet taxonomies are

supposed to be based on “presumed natural relationships”.

In fact, the whole issue of “natural” versus “artificial” classification has been a major

subject of academic debate. A good summary is produced by Wilkins [194] who argues

4 There is much debate in psychological circles about what constitutes a “defining feature”. Interested
readers might look at the work of Rosch on “typicality” [142].

5 There is also a variant of ‘subclass’ — ‘instance-of’ — that allows for individual members of classes;
so an object can be an instance of a class. Strictly speaking, therefore, a taxonomy allows two types
of relationship between objects and concepts.
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that “all classifications are artificial, but some have a degree of naturalness about them”
and quotes R.G. Millikan who proposes that a “natural” concept can be determined by
making a historical investigation of how an object and its name came about, and then
determining what the name refers to today in most cases.® The practical result of these
“artificial” distinctions is that taxonomies are sometimes based on relationships other
than ‘subclass’. Common ones are ‘part of’, ‘causes/produces’, and ‘has property’”. In
the next section, an analysis of the ACM classification will be carried out to determine

what relationships are actually used.

4.4 The ACM Classification scheme: analysis

The ACM classification covers several of the multiple perspectives. The perspectives
covered include “what” is needed for a computer system (hardware and software),
“how” to build a computer system (techniques), and “why” systems are built (comput-
ing milieux). The categories also cover different levels of abstraction: some categories
consider the contents of the computer itself (hardware, software, computer systems
organisation, data, information systems) while other categories consider the computer
as a single concept in the context of applications (computing methodologies, computer
applications, computing milieux). There’s also a third level of detail to be found in the
two theoretical categories (Theory of Computation and Mathematics of Computing)
which provide the foundational techniques for computer systems organisation, data

and information systems. See Table 4.3 for a summary.

6 This is a highly simplified summary; there is an entire journal devoted to classification. Wilkins’
complete summary quotation is: “All classifications are artificial, but some have a degree of natu-
ralness about them. Natural classifications are the result of a refinement of the intension of terms
based on a very broad and generally culture-neutral set of observations. Species names, indeed all
taxa names, are terms with a proper function assigned by the history of their use, and which may
change as new evidence is arrived at.”

N

Each of these relationships can be broken down into a number of distinct relationships, but this
level of detail is beyond the scope of this paper. For an example, see [1] on the breakdown of ‘part
of’.
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‘ What | How Why When | Where | Who
Com- Com- Com- Computer
puter puter puting milieux
applic- | Applic- Method-
ations | ations ologies
What Hardware,| Computer
goes Software | Systems
inside Organi-

a sation,
com- Data,
puter Informa-
tion
Systems
Theoret- Theory
ical of
level Compu-
tation,
Mathe-
matics
of Com-
puting

Table 4.3: Top level categories from the ACM scheme, clas-
sified according to multi-perspective modeling

This organisation is broadly mirrored in the organisation of some of the second level
categories in the ACM classification scheme. For example, the subclasses of Computer
Systems Organisation are Processor Architectures and Computer-Communication Net-
works (two disjoint components that are necessary for a functioning hardware system,
aka Hardware and Software at the top level); while Special Purpose and Application
Based Systems and Computer systems implementation look at the “what” and “how”
perspectives on hardware construction “applications”. There’s also a subcategory for

Performance of systems, which probably falls under the “when” perspective.

The subclasses of Information Systems, Data and Software all use a similar multi-
perspective classification scheme. Not all of the second level categories and their
decompositions fit neatly into this multi-perspective framework, however. The sub-
divisions of Computer Applications appear to be closer to a taxonomy, in that their
second level breakdown consists of different areas of study or different disciplines which

reads like a list of university faculties (Administrative data processing, Physical sciences
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and engineering, Life and medical sciences, Social and behavioural sciences, Arts and
Humanities). While disciplines are not strictly speaking subclasses of “computer ap-
plications”, they do (or should) form a single coherent subclass of a (hypothetical)
taxonomy of knowledge.® The two top-level categories with a theoretical leaning also
have sub-categories that reflect different areas of study in the disciplines of (applied)

mathematics and (applied) logic.

A third approach is found in the Hardware category; its subcategories name different
areas of hardware design (Control structures, Arithmetic and logic structures, Memory
structures, Input/Output and Data Communications, Register-transfer-level implemen-
tation, Logic Design and Integrated Circuits), each of which includes the same small set
of sub-sub-categories: Design Styles, Design Aids, and (until it became a separate cat-
egory in the 1998 classification), Performance and reliability. 1t seems, therefore, that
the Hardware category is decomposed into its second level using the ‘part of’ relation
instead of the ‘subclass’ relation (i.e. each subcategory is a “part of” the hardware of
a computer system rather than a subclass) while a multi-perspective approach is used

at the third level, which explains the recurrence of the same subcategories at this level.

4.5 The Scientific Datalink AI extension: analysis

As with the ACM classification, each of the four categories of the Scientific Datalink

AT classification (as reproduced in Table 4.2) can be broken down into subgroups.

e Applications and Expert Systems has nineteen subcategories, seven of which are
drawn from the “interests” in the ACM classification scheme. Most of these are con-
cerned with different domains in which expert systems have been applied (similar to
the ACM’s taxonomic breakdown of Computer Systems Applications into different dis-
ciplines), but 1.2.1.15 (“Expert Systems”) and 1.2.1.5 (“Natural Language Interfaces”)
are more concerned with techniques for expert system construction, and 1.2.1.14 (“Sys-
tem Troubleshooting”) focuses on a particular task rather than on a domain. The
distinction between tasks and domains, which is a key tenet of the CommonKADS

methodology for knowledge engineering [147], corresponds to the distinction between

8 If the subcategories were relabelled “Applications in <Discipline>” rather than just <Discipline>”,
the taxonomic connection would be much clearer.
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“how” and “what” in multi-perspective modeling.

e Most of the subcategories of Knowledge Representation are concerned with differ-
ent knowledge representation formalisms — the “what” of knowledge representation.
Frames and Scripts, Predicate Logic, Procedural & Rule-based Representations, Se-
mantic Networks, Constraints and Connectionist Systems all fall into this category.
The odd ones out are Representation of the Physical World and Representation of
Natural Language Semantics; while these have some correlation with representation
formalisms (e.g. simulation models with Representation of the Physical World), these
two categories are primarily concerned with knowledge representation as a task rather
than a formalism — i.e. with “how” rather than “what”.

e Several subcategories of Learning deal with different methods of learning (by anal-
ogy; induction; associative learning), others deal with subjects to be learned (Concept
learning; Language Acquisition; Learning of Skills). So here there is a multi-perspective
decomposition; some subclasses represent “what” subcategories while others represent
“how”. And then there’s Knowledge Acquisition and Knowledge Engineering. Knowl-
edge Acquisition is apparently categorised under “learning” because its subcategories
include learning from examples (i.e. induction), learning by observation, learning from
experience and learning by discovery. Yet several popular knowledge acquisition tech-
niques are not covered here at all — and while there is a category named “Acquisition
of Expert Knowledge” (1.2.1.15.1) two levels down from “Applications and Expert
Systems”, the popular techniques are classified in various different places rather than
being collected together in 1.2.1.15.1. Protocol analysis, for example, is categorised
under 1.2.11 Cognitive Modeling and Psychological Studies of Intelligence, while the
analysis of interview transcripts is most closely covered under Dialogues with Experts,
which is considered to be one of only three subcategories of Knowledge Engineering.
The reader is left with a strong feeling that Knowledge Acquisition and Knowledge
Engineering are underspecified, incomplete, and (possibly as a result) misclassified.

e The final category considered here, Problem Solving, Control Methods and Search
seems to be something of a catch-all category for methods of controlling inference in Al
programs. It has six subcategories, two of which are (unsurprisingly) Heuristic Meth-
ods and Graph and Tree Search Strategies. It also has categories for Backtracking,

Dynamic Programming, and Matching, which are concerned with the implementation
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of rule-based systems, and finally a category for Plan Ezecution, Formation and Gen-
eration. Control knowledge is slightly difficult to categorise within a multi-perspective
framework. In theory, it should be “meta-how” knowledge (i.e. knowledge about the
process of controlling processes); in practice, it often includes information about the
ordering or processes and the timing of key inputs and outputs to a process, and thus

consists of “when” knowledge. This is particularly true of knowledge about planning.

To summarise: Scientific Datalink’s Al extension to the ACM classification seems
to stick with a formula where formalisms/resources (“what” knowledge) are mixed
with methods/techniques (“how” knowledge) to generate subcategories. A taxonomic

breakdown is also used (for Applications).

4.6 Correct classification of Knowledge Management, Knowl-
edge Engineering and Knowledge Acquisition

Having carried out this detailed analysis, it is time to use the principles identified to
meet the original goal of this paper: to determine where Knowledge Management and
Knowledge Engineering should be classified. Knowledge Acquisition will be considered

too.

Correct classification of Knowledge Engineering

Knowledge Engineering has been variously classified as “the design and develop-ment
of knowledge based systems”; “application of logic and ontology to the task of building
computable models of some domain for some purpose”; “[the study of] the development
of information systems in which knowledge and reasoning play pivotal roles”; and “[a]
scientific methodology to analyze and engineer knowledge”. Using the classifications
identified earlier, it’s clear that knowledge engineering is primarily application-focused
(as opposed to concerned with the internal function of knowledge based systems or
theoretical principles of knowledge); and that it focuses on the task of system devel-
opment (i.e., “how” knowledge). From this analysis, the following classifications of

Knowledge Engineering are possible:
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e Knowledge Engineering could be a subclass of 1.2.1 Applications and Expert Sys-
tems. Unfortunately, Applications and Fxpert Systems uses a largely taxonomic break-
down; but there are two subcategories of Applications and Expert Systems that are
concerned with techniques for expert system construction. These do not fit well with
in the taxonomic breakdown of 1.2.1, but would be appropriate siblings for Knowledge
Engineering.

e Knowledge Engineering could sit alongside Software Engineering as a subcategory
of D. Software in the ACM classification. The primary objections to this are the “po-
litical” ones — there’s much more interest and activity in Software Engineering than in
Knowledge Engineering, which makes it difficult to place them at the same level.

e Knowledge Engineering could be a subcategory of D.2 Software Engineering. This
is probably the most “principled” place to put it, since knowledge engineering is indeed
a subcategory of software engineering — it is software engineering for a specialised type
of software system. However, this conflicts with the current basis of decomposition
of Software Engineering, which is by subtasks rather than a “taxonomy” of types of
software.

e Knowledge Engineering could appear alongside Representation of the Physical
World and Representation of Natural Language Semantics as a “how” category un-
der 1.2./ Knowledge Representation in the Al extension. The difficulty with this is
that the focus of Knowledge Representation is very much on the internals of a knowl-
edge based system, whereas the focus of Knowledge Engineering is on applications, so
there is a clash in levels of abstraction.

e Finally, Knowledge Engineering could be left in its current location as a subcat-
egory of 1.2.6 Learning. This is probably the worst option of all, since knowledge
engineering techniques (with accompanying knowledge models) are only appropriate
for software that doesn’t rely on learning as its primary input method, since it’s hard

to analyse knowledge that has not yet been learned.

In summary, there is no ideal location for Knowledge Engineering in the ACM or
Scientific Datalink hierarchies. Since a proposal is needed, a “tie-breaker” can be found
in the current subcategory 1.2.1.15 Expert Systems of 1.2.1.Applications and Expert
Systems. This subcategory actually has a number of knowledge engineering subtasks

as its subcategories already. For the sake of backward compatibility, therefore, 1.2.1.15
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should be left in its current position in the hierarchy, but be renamed to “Expert

Systems and Knowledge Engineering”.

Correct classification of Knowledge Acquisition

Once the classification of Knowledge Engineering has been decided, the correct classifi-
cation of Knowledge Acquisition is fairly easy to determine, for Knowledge Acquisition
is a subtask of Knowledge Engineering. Indeed, there is already a category 1.2.15.1
named “Acquisition of Expert Knowledge”. The only difficulty lies in determining
where to classify those topics that are currently subclasses of 1.2.6.3 Learning: Knowl-
edge Acquisition. Since the Learning section needs to revised anyway to take account
of (a) the removal of Knowledge Engineering and (b) the presence of Induction but the
absence of two related technologies, Case Based Reasoning and Neural Networks®, it
is proposed that the subcategories of 1.2.6.3 are either transferred to other categories
under Learning (for example, 1.2.6.3.1, Learning from Examples, would be appropriate

for this) or moved to 1.2.1.15.1, Acquisition of Expert Knowledge.

Correct Classification of Knowledge Management

Deciding where to classify knowledge management is difficult because there is con-
siderable disagreement about the best approach to knowledge management. A good
working definition of knowledge management would be “the deliberate design of arti-
facts with the intent to improve the use of knowledge within an organisation”, but a
range of artifacts have been suggested, from knowledge based systems (thus consid-
ering knowledge management as an early stage in knowledge engineering) through to
communication forums (considering knowledge management as a process of community
interaction in which knowledge-based technology has no part to play). A good survey is
given by Binney [39] in which he identifies a “KM spectrum” where knowledge manage-
ment activities are classified according to their overall goal. Applications that embed

knowledge in organisational transactions lie at the “technology-focused” end of the

9 There are existing Scientific Datalink categories for Connectionist systems under Knowledge Rep-
resentation, and Connectionist Architectures under I.2.12 Specialised AI Architectures, but there is
no explicit category for “how” to build neural networks. There is so much work on neural networks
these days that it probably deserves its own separate category.
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spectrum whereas applications that support innovation and creation of new knowledge
lie at the “community-focused” end of the spectrum. Between these two extremes can
be found “analytical KM” (the use of knowledge to interpret vast amounts of material);
“asset management” KM; “process-based” KM (the codification and improvement of
organisational processes); and “developmental” KM (increasing the competencies or

capabilities of an organisation’s knowledge workers).

KM is therefore generally application-focused; it can be focused on “what”, “how”,
“who” or even “why” depending on the KM approach that is taken; and Binney’s

)

decomposition of KM is focused on “how” a particular goal should be achieved. From

this analysis, options for classification of Knowledge Management would be:

e As a subclass of 1.2.1.15 Applications and Expert Systems, alongside Knowledge
Engineering;

e As asubclass of 1.2.4 Knowledge Representation; however, the arguments against
this are the same ones that applied to Knowledge Engineering;

e As asubclass of 1.2.13 Social and Philosophical Issues [in Artificial Intelligence].
This, however, is more of a theoretical perspective while Knowledge Management is
more focused on applications;

e As a subclass of H.4 Information Systems in the ACM classification scheme. This
removes the commitment that a KM system must be knowledge-based in some fashion,
and thus encompasses more of the various KM approaches than would otherwise be
the case, but it’s debatable whether or not Knowledge Management should appear at
the same level as Database Management — for despite the similarity in terminology,
these are really quite different tasks;

e As a subclass of H.4.1 Office Automation underneath H.4 Information Systems.
H.4.1 already contains a category for Workflow management, which is a key enabling
technology for process-based KM, and a category for Groupware;

e Asasubclass of H.4.2 Types of Systems underneath H.4 Information Systems. This
category currently includes “Decision support systems (e.g. MIS)” and “Logistics”,
both of which are reasonably application-focused and also focus on “how” tasks are

done.

It seems that there are advantages in taking “Knowledge Management” outside the
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Artificial Intelligence classification and using the Information Systems classification in-
stead, since some knowledge management approaches are based on software that is not
knowledge based. The final recommendation is that Knowledge Management should
be a subclass of H.4.2 Types of [Information] Systems, since it fits better alongside
other types of systems (decision support systems and logistics) than alongside its own
enabling technologies (workflow systems and groupware). A new category is therefore

proposed, to be labelled H.4.2.3 Knowledge Management.

4.7 Discussion

It has been shown that the ACM classification, and Scientific Datalink’s extension, are
based on two or three different structuring principles: sometimes taxonomic, sometimes
based on “what” knowledge, (which implies that the subcategory is something that is
used for, or produced by the top level category; it is a resource in the most general
sense of the word), and sometimes based on “how” knowledge — i.e. techniques for, or
methods to achieve the top level category. In addition, the Hardware category has a

‘part of” decomposition, and some political considerations come into play as well.

What does this tell us about the ACM classification, about multi-perspective modeling,
and about ontologies in general? It tells us that if an ontology tries to use “natural”
categories, then it will almost certainly be developed using multiple perspectives; so
the original thesis of this paper, that multiple ontologies from different perspectives are
needed for completeness, is borne out. However, the “what” and “how” perspectives
are much more common than the “who”, “when”, “where” and “why”, so it seems
that while six ontologies from different perspectives may be necessary, two — with
appropriate attention to whether the ontology is focused on theoretical principles,

system internals, or applications — will often be sufficient.

It also tells us that “political” considerations — the level of interest in a subject — have
considerable weight when determining the level of various categories in the ontology.
The underlying message of this is that there is no canonical way of determining when
a set of subcategories is complete — or at least, no way that is sufficiently widely ac-

cepted to override political concerns. Some guidance on category completeness may be
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available from other research; to give an example, “System Troubleshooting” has been
identified as the only subcategory of 1.2.1.15 Applications and FExpert Systems that
represents an application-focused task. However, a set of “knowledge based tasks” has
been proposed by the CommonKADS methodology [20], and one of them (diagnosis)
can be instantiated to “troubleshooting”. This implies that all the other knowledge
based tasks should be eligible, or even expected to make an appearance in 1.2.1.15; ex-
amples might be “artifact design”, “system monitoring”, and “selection/ assessment”.
But this set of tasks is not theoretically proven to be complete; in fact, the original
author of this set of tasks has since revised his opinions and proposed that the tasks
above are actually composed from a smaller set of five or six “primitive” tasks [18].
So while published sets of categories such as this can be pragmatically useful to ontol-
ogy developers, they rarely actually solve the problem of canonically determining all

possible members of a category.

The ACM classification scheme itself, along with its Al extension, is detailed, widely
accepted, and reasonably principled, and so should continue to be used. Some revisions
are needed, though (especially under 1.2.6 Learning in the Al extension), and it is worth
questioning why Hardware uses a different decomposition principle from the rest of the
scheme: is this an artifact of political lobbying, or is there a “natural” principle here

that could be extended to other areas of the classification?

Finally, the new classifications proposed by this paper have classified Knowledge En-
gineering and Knowledge Management very differently. This raises the issue of the
purpose of a classification: should it be carried out according to ontological principles
for robustness, or should it be organised to place relevant subjects close to others, to
facilitate serendipitous browsing? The case of knowledge management is a difficult
one because there are different opinions about it — some books on knowledge manage-
ment will draw heavily on techniques from knowledge engineering and will serve as
useful precursors to knowledge engineering projects, while other books will have little
or no relevance to knowledge engineering. An intriguing alternative to the ontological
approach would be to use learning techniques to create an entirely new classification
scheme based on cluster analysis (using references, keywords, or other criteria); an

examination of this approach is suggested for future research.



Ontology: ACM Example 84

Having shown that the perspectives of the Zachman framework have value in both
knowledge management and ontology analysis, the next chapter of this thesis turns to

the topic of the applicability of the Zachman framework to knowledge engineering.



Chapter 5

Multi-Perspective Knowledge
Modeling in Knowledge
Engineering: the CommonKADS
Methodology!

5.1 Introduction

In previous chapters, the value of a multi-perspective modeling approach in knowledge
management and in ontology development has been discussed. The purpose of this
chapter is to show how this concept can be applied to knowledge engineering: the
acquisition and representation of knowledge, and the implementation of that knowl-
edge in a knowledge-based reasoning system. Specifically, the chapter introduces the
CommonKADS approach to knowledge management and knowledge engineering, and

considers how well it supports a multi-perspective approach to knowledge modeling.

In the early days of the development of expert systems, the construction of these sys-
tems was often carried out by “rapid prototyping”; that is, acquiring some knowledge
from the expert, and immediately implementing this knowledge in software. Future
knowledge acquisition sessions were then used to increment the functionality of the
software. While rapid prototyping has some benefits in swiftly proving the usefulness

of the software, it proved to have numerous disadvantages in maintainability of the

! This chapter is an extended version of “Multi-Perspective Modelling of the Air Campaign Planning
Process”, John Kingston, Anna Griffith and Terri Lydiard, presented at IJCAI-97.
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systems, not least because there was no representation of the knowledge independent
of its implementation. It was perhaps a growing desire for such an independent rep-
resentation, backed by Newell’s “knowledge level” principle [130] which proposes that
knowledge should be represented at a conceptual level that is independent from specific
computational constructs, that led to the first proposals for knowledge modeling - that

is, representing knowledge as a set of diagrams and accompanying text.

As knowledge based systems became increasingly of interest to the commercial world,
a desire began to grow for knowledge based systems to be developed in traceable
and reliable manner. Software engineering methodologies such as SSADM, Prince, or
the emerging object oriented analysis and design methods viewed the development of
software as a sequential process, with some loopbacks permitted (since it had been
discovered that a pure “waterfall” approach, with no loopbacks to earlier stages al-
lowed, caused some expensive mistakes due to late detection of early errors). Broadly
speaking, these stages were the gathering of system requirements from users; analysis
of these requirements; design of a system that would meet the requirements; imple-
mentation of the system; and testing the system against requirements. To companies
and industries for whom accuracy, reliability and maintainability were far more impor-
tant that speed of development or trying out new technical approaches, this type of

structured methodology was much more acceptable than rapid prototyping.

It was in this environment that the CommonKADS methodology was developed. Com-
monKADS started life as KADS, a methodology developed by a European Union-
funded collaborative project between 1983 and 1987. The acronym either stood for
Knowledge Acquisition Documentation System or Knowledge Analysis and Design
System; it seems that the project was originally motivated by a desire to represent
acquired knowledge at the “knowledge level”, which is referred to frequently in early
documentation, but was later transformed into something more closely resembling a

software engineering methodology.

KADS focused on the transformation of expert knowledge into a system design for
a knowledge based system. It introduced (or popularised) two key concepts to the
knowledge engineering process: the separation of analysis into different but related

layers, and the use of template models to guide both knowledge acquisition and system
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structuring. The “layer” approach encouraged knowledge engineers to model the static
domain knowledge (concepts, instances, relationships) separately from the inference
knowledge (inference steps, and the role that knowledge played in reasoning), with
further layers for the task knowledge (control of the ordering of inference steps, and
of inputs and outputs) and the problem solving knowledge (deciding what strategy to
take in solving a problem). These layers were clearly interrelated, and the separation
proved to be a useful support to knowledge acquisition, for if knowledge was required
by one layer but did not exist in another layer, there was a clear requirement for further

knowledge acquisition.

The second key innovation of KADS was the provision of generic template models for
problem solving. These models were intended to support the inference layer of rea-
soning (some support for the task layer was also provided) by suggesting the types of
knowledge and of inference steps that were required in various problem solving tasks.
The development of an inference layer then switched from being a model creation
task to a model instantiation task. Inspired by Clancey’s generic model of heuris-
tic classification tasks [31], generic template models were developed for a variety of
analytic tasks (diagnosis, assessment, monitoring, etc.), synthetic tasks (design, plan-
ning, configuration) and modification tasks (repair, control). These templates, known
as “interpretation models”, proved to be KADS’ most popular innovation, since they

provide an easy route to choosing an adequate system design.

KADS was criticised, however, from two main camps: those who criticised its model-
ing for not taking into account other modeling approaches (such as Chandrasekaran’s
Generic Tasks approach [27] and Steels’ Components of Expertise approach [161]), and
those who criticised it for being too narrowly focused on the transformation of expert
knowledge into a system design without consideration of the organisational context in
which a system will operate (i.e. without sufficient attention to the requirements and
system analysis stages of KBS development). The result was CommonKADS, devel-
oped on a second EU-funded project (KADS-II, 1989-1994) which extended KADS to
take in many of these components. Some revisions were made to the model of exper-
tise (principally moving problem solving knowledge from being a layer of the expertise

model to being a separate library of problem solving methods), but the biggest change
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came in the introduction of five new models:> models of the organisation, task, agents
involved, communication, and system design. These embodied an approach that al-
lowed for development of a knowledge based system by progressive transformation of
models from a model of the organisation through increasingly specific models until an
implementable system design is produced. The “CommonKADS book” [147] presents
these models as being at three levels of detail: an organisational level, an expertise
level and a design level. From my own practical experience with CommonKADS, I

have revised this into a four-level model, as shown in Figure 5.1.

By introducing these new models, and encouraging knowledge engineers to work top-
down through them, CommonKADS became a knowledge engineering methodology
that is analogous to software engineering methodologies. This was quite deliberate;
indeed, CommonKADS chose to use (early) UML diagramming conventions for its
models. However, CommonKADS’ use of multiple models at multiple levels of detail
also fits well with the philosophy of the Zachman framework for Information Systems
Architecture [197]. This chapter therefore has two purposes: to describe the upper level
CommonKADS models briefly, and to discuss the mapping between CommonKADS

and the Zachman framework.

5.2 The models proposed by CommonKADS

CommonKADS’ concept of a model includes a range of features: content (elements and
relations), rationale, and possible model states. Model states are considered in some
detail, and are considered to have quality criteria, land mark and transition types, and
internal and external dependencies (see figure 1.1 in [44]). The concept of model states
is considered in some detail throughout the publications of the KADS-II project, and
while it has not been taken up in detail by many knowledge engineers, it fits well into

the concept of CommonKADS as a software engineering methodology.

The six models proposed by CommonKADS are as follows:

e An Organisation model which represent the processes, structure and resources

2 KADS did propose a model of “modality” which formed the foundation of the Agent and Commu-
nication models, so perhaps CommonKADS only introduced three or four ‘new’ models.
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within an organisation, with the aim of identifying fruitful areas for better ap-

plication of knowledge;

e A Task model to show the activities carried out in the course of a particular

organisational process;

e An Agent model to represent the capabilities required of the agents who perform

a process, and constraints on their performance;

e A Communication model to show the communication required between agents

during a process;

e A model of Expertise which is a model of the expertise required to perform a

particular task;

e A Design model, which culminates in a design specification for a knowledge based

system to perform all or part of the process under consideration.

This chapter focuses on two of these models - the Organisation and Task models - and
uses them to illustrate the multi-perspective nature of CommonKADS. The remaining
models are discussed in more detail in later chapters. Note that the descriptions given
draw both on the recently published “CommonKADS book” [147], and also on earlier
reports from the KADS and KADS-II projects, Where there are differences between

earlier and later descriptions, these are noted.
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Scope Model
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coneept Experti (wi t hi Model (wi t hi
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Artifact Desi gn
( Technol ogi cal ) Model

Figure 5.1: Relationship between the various CommonKADS models
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5.3 The CommonKADS Organisation Model

The Organisation model of CommonKADS was designed to represent the different as-
pects of an organisation that might be relevant for decision making in a knowledge
based systems project. Its sub-goals are to support the identification of knowledge
based systems applications within the organisation; to facilitate assessing the impact
that a knowledge based system might have when it is introduced into the organisation;
and to familiarise knowledge engineers with the culture (the ‘feeling’) of the organ-
isation. It can be represented as a number of sub-diagrams. The first (published)
proposal [44] was that the sub-diagrams should consider organisational structure, or-
ganisational functions, organisational processes, organisational resources (knowledge,
computing and other), people (i.e. roles and responsibilities), and power/authority re-
lationships that crossed over organisational structure. A case study was published by
the KADS-II project [43] which demonstrated how these aspects were used to represent
the Dutch social security organisation. The structure, process, and power/authority
diagrams are reproduced in Figures 5.2, 5.3 and 5.4 below (note that the process di-
agram incorporates all the identified organisational functions). It can be seen that
the social security organisation had all its computing functions outsourced to an ex-
ternal computing centre (Figure 3); it can also be seen that a number of unofficial
power /authority relationships did exist, including the tester’s power to demand time
of low level branch staff (to carry out tests) and a relationship between the secretary

of one head of unit and the head of another unit (they were married to each other).

But the real benefits of this approach become obvious in the “cross product” diagram
that is reproduced in Figure 5.5, which maps functions to structure. The initial con-
cept behind developing this model was to support the Decision Making function with
a knowledge-based system; but from Figure 5.5, it is obvious that the Decision Making
function is actually distributed over a number of departments, making the implemen-
tation of a knowledge based system difficult in practice. Furthermore, the appearance
of the “Archiving” function in no less than three locations in the diagram led the
researchers to develop another cross product, of functions against resources; in other
words, they investigated how much time was spent on each function. They found that

Decision Making took up relatively little time of the processing of a social security
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application while Archiving took up around 30% of the total time. So not only would
a KBS be complex to put into practice, but also there was little to be gained from

automating the decision making function!

Central office Comp
Support staff Archive dept. -1 _-|-uter
centre
Regulation control Coding dept.  F---1

Fmancial dept.  |---1

Branch office

Team Support staff
External visiting Training
Archive section Test section

Figure 5.2: Social Security department: organisational structure

The Organisation model has undergone some changes in the CommonKADS book: to
summarise them, the recommended set of perspectives has changed (’functions’ are
no longer recommended since they appear in the process perspective anyway), and

knowledge engineers are encouraged to represent the perspectives using an number of
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Figure 5.3: Social Security department: organisational processes

worksheets rather than as diagrams. However, the general principle of representing the

organisation from a number of different perspectives remains.

5.4 The CommonKADS Task Model

The CommonKADS Task Model examines a single business function in more detail,
focusing on the functions and process(es) that make up that top-level business function.
For example, if the top level function was “Archiving”, the sub-functions might include
“assessing required level of confidentiality”, “indexing”, and “transferring to storage”.
It also includes more detail about the inputs and outputs of the process. Various

aspects of the task may be represented, including:
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Figure 5.4: Social Security department: power & authority links

The goal of the task and the degree to which it generally can be achieved;

The preconditions of a task (either inputs or completion of other tasks);

Control over sub-tasks;

Knowledge or skills required to complete the task;

Whether the task decomposes according to time, sub-goals or ingredients;

How the tasks will differ in the required situation from the current situation.
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Figure 5.5: Social Security department: cross product between structure & process

The end result can be represented as structured text (as recommended by the original
Task model definition report [55]), or as a set of worksheets (as recommended by the
CommonKADS book). However, since all other CommonKADS models have a diagram
format recommended, it is useful to be able to represent the Task model as a diagram
too - perhaps a UML Activity diagram, or using some other process diagramming

format.

The purpose of the Task model is to mitigate certain risks attendant to knowledge

management and knowledge engineering. Duursma [55] identifies the following:
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e A system is constructed that does not benefit the organisation;

A system is constructed that performs tasks that are not part of the problem;

Task actors are not clearly specified;

The organisation model cannot be completed;

No expertise model can be developed;

Tasks appear in the design model that were not previously specified;

Inter-task communication is not understood.

In other words, the Task model is an integral part of the CommonKADS model suite,
and it may be difficult to develop any of the other models without having developed a

task model.

5.5 Worked Example: CommonKADS Models of Air Cam-
paign Planning

This section describes how the CommonKADS Organisation, Task and Agent models
were used to model the top level process of USAF air campaign planning. This example
is based on work carried out to support a consortium of researchers who were developing

knowledge-based software and techniques to support the task of air campaign planning.

5.5.1 Knowledge acquisition

Knowledge acquisition was initially carried out using interviewing techniques. These
interviews provided much useful knowledge, and also highlighted the existence of a
number of relevant documents, from which much further knowledge was acquired.
Two other knowledge acquisition techniques were also used; protocol analysis of a
sample planning scenario provided useful information about the priorities, ordering,
and necessary information for the planning process; and the repertory grid knowledge
elicitation technique was used at a later stage to determine which activities within the
planning process were difficult or had highest impact, to determine which activities

might benefit from knowledge based system support.
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The knowledge that was acquired showed that air campaign planning is hierarchically
organised. When a crisis occurs, the Commander in Chief (CinC) provides planning
guidance to the Joint Forces Commander (JFC). This guidance is communicated to
the component commanders (e.g. the Air Component commander), who will in turn
communicate the guidance to the air campaign planners. Based on the guidance,
the planning staff will take between 3 days and 1 week to build a plan that may be
executed. The acquired knowledge also showed that certain documents (such as the
Master Attack Plan and the Air Tasking Order) form the outputs of key activities, and

constitute a major method of communication within the planning process.

5.5.2 Knowledge modeling

The acquired knowledge was then classified into appropriate CommonKADS models.

Organisation model

A number of organisation model perspectives were developed, including organisational
structure, resources, and process. The representation of power/authority relationships
was considered superfluous by the experts because power/authority maps closely to

structure within a military organisation, and so this perspective was not developed.

The resulting organisation model consisted of diagrams of activities (such as Figure
5.6), agents within an organisational structure, and resources. These were then com-
bined to produce “cross products”. Figure 5.7 shows an early version of the cross
product between activities and resources. In this diagram, solid links between activi-
ties imply that the first activity precedes the second; dashed links show an information

flow.

The Organisation model helps to identify the following information:

e The air campaign planning process is divided into three or four major phases
which each have their own outputs: the Commander in Chief’s Objectives, the

Master Air Attack Plan, the Air Targets Plan, and finally the Air Tasking Order.

e The total time for development of a plan, even under war conditions, is between
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Figure 5.6: Air Campaign Planning: Top Level Activities

1.5 and 3 days;

e The key decisions are made by small hand-picked “planning cells” for reasons of

experience, efficiency and security.

It therefore seems that there is considerable scope for technological support to improve
the air campaign planning process; and furthermore, that this technological support
should identify clearly which of the four main outputs it is using and which it is helping

to produce.
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Task Model

98

For this project, it was decided that the IDEF3 technique for process representation

[92] would be used to represent the Task model.

IDEF3 is a process capture technique which was designed to be tolerant of incomplete

and inconsistent descriptions, and to be flexible enough to deal with the incremental

nature of the information acquisition process. It provides both a process-centred view

of a system, via the Process Flow Network, and an object-centred view of a system via

the Object State Transition Network.

A process flow network displays a sequence of Units of Behaviour (UOB) which rep-
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resent activities, actions, processes or operations. These are linked together by prece-
dence arcs. Where the process flow diverges (fan-out) or converges (fan-in) junction
boxes are used. Junctions are of the AND, OR or Exclusive OR type and can be
synchronous or asynchronous. This notation may impose timing constraints on the
process flow. For example, a synchronous fan-in junction indicates that the incoming

processes must complete simultaneously before the next UOB can begin.

In addition to UOBs and junctions, process flow networks can include referents, elabo-
ration forms and UOB decompositions. Referents are used to indicate context-sensitive
information and may refer to any other type of UOB such as an elaboration form, an-
other process flow network, an object state transition network, an entirely different
scenario, a note, or act as a GO-TO within the network. In some cases referents may
impose timing constraints on the process so there is the option to be synchronous or
asynchronous as needed. An elaboration form holds specific textual information for
each UOB such as the object used by it, constraints acting on it, facts about it and a
description of it. Decompositions enable each step of the process to be broken down
into more detailed process descriptions, allowing descriptions to be held at varying
levels of abstraction. This is indicated on the diagrams by a shadow on the parent

UOB box.

The Task Model consisted of a series of IDEF3 diagrams, representing high level pro-
cesses and their subtasks. An example of one component of the Task model can be
seen in Figure 5.8. From this model we can learn that certain tasks can be carried
out in parallel and others form potential bottlenecks in the process; this helps decide
which tasks need supporting most urgently. It also provides information about other

prerequisites of tasks.

Communication Model

The CommonKADS Agent and Communication models support the Task model by
identifying other information about the sub-processes being modeled. They are dis-
cussed in more detail in the next chapter, so are only briefly covered here. The Agent
model represents the capabilities and skills of the agents (staff, clients, or computer

programs) who perform each activity within a sub-process, while the Communication
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Figure 5.8: An IDEF3 Process Flow Network diagram

model represents all communication that must take place between agents in order for

a process to be completed.

One or the primary uses of the Agent model is to determine which roles can be per-
formed by a human, which by a computer, and which by a human and computer
working together. As this was not a major purpose of this modeling exercise, it was
decided that an Agent model was not required. A Communication model was required,
however, because effective transfer of information from one person or working group
to the next is an important factor in the completion and efficiency of the planning

process.

The diagram format used for the Communication Models was that of Role Activity
Diagrams [135], which actually differs little from the recommended format for the
CommonKADS Communication Model. Part of the Role Activity Diagram that was
developed for Air Campaign Planning can be seen in Figure 5.9; each shaded box

represents a person or group of people.
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Figure 5.9: Role Activity Diagram showing initial communication in the air campaign
planning process

This model tells us which planning cells are actually responsible for which decision
making tasks; for example, it shows us that the “JFACC Guidance letter” is not
actually written by the JFACC (the Joint Forces Air Component Commander) but
by the Air Strategy planning cell, and is then approved and signed by the JFACC.
This therefore provides us with a better idea of which tasks can be supported and,

importantly, of the tasks’ inputs and outputs.
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5.6 Discussion: Multi perspective modeling and Com-
monKADS

Having seen how some of CommonKADS’ top level models are applied, let us return
to the key claim of this chapter: that CommonKADS is based on a multi-perspective
modeling approach. To do this, we must consider whether CommonKADS’ models
map well to the Zachman framework. If each CommonKADS model (or sub-model)
maps to a single cell of the Zachman framework, and most of the cells are covered,
then the claim that CommonKADS supports multi-perspective modeling is supported;

if the models do not map well, then the claim must be rejected.

5.6.1 The Organisation model and multi-perspective modeling

The CommonKADS Organisation model seems to map well to the uppermost (“scop-
ing”) level of the Zachman framework. The brief of the scoping level is to consider “a
number of organisational processes” [34], and this is clearly the role of the Organisation
model. Furthermore, the different sub-models of the Organisation model correspond

to the perspectives of the Zachman framework as follows:

e Function/Process sub-model: HOW perspective;
e Structure sub-model and Power/authority sub-model: WHO perspective;

e Resources sub-model: WHAT perspective (and possibly WHERE resources are

located).

The WHEN perspective can be considered to be covered by the Process sub-model
(showing the order in which functions are carried out) or by a “time per task” analysis
such as that carried out by de Hoog et al. for the Dutch social security department.
The WHY perspective does not map to any sub-model well, but should be covered in

text accompanying the Organisation model discussing the reasons for its development.
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5.6.2 The Task, Agent and Communication models and multi-perspective
modeling

The Task, Agent and Communication models are considered together because they
each constitute different perspectives at the second (“enterprise”) level of the Zachman
framework. According to Cook [op. cit.], the enterprise level is concerned with a single
business process, and since the brief of the Task model is to expand the sub-tasks within
a single business process identified from the Organisation model, this is clearly the most
appropriate level for the Task model. The Task model therefore constitutes the HOW
perspective of the Enterprise level. The WHO and WHERE perspectives are covered
by the Agent and Communication models respectively (N.B. the CommonKADS book
considers the Communication model to belong to the “system” level rather than the
“enterprise” level of abstraction, but the next chapter will argue that both Agent
and Communication models are needed at both these levels of abstraction in order to
provide a more complete multi-perspective modeling approach). Again, the WHEN
perspective may be considered to be inherent in the control of tasks in the task model
- certainly, the use of IDEF3 makes ordering constraints very clear. The WHAT
perspective only appears as a property of individual tasks, however, and perhaps it
may be advisable to develop models of resources using either the modeling techniques
recommended for the Organisation model or another modeling format such as UML
class diagrams - the appropriateness of UML class diagrams for representing the WHAT

perspective is illustrated in [103].

In short, the CommonKADS Organisation model does seem to map well to the up-
permost level of the Zachman framework, and hence to a multi-perspective modeling
approach; three of the perspectives at the second level of the framework are also cov-
ered by the Task, Agent and Communication models. Furthermore, it can be seen
that where CommonKADS does not recommend a model, or where a model exists but
CommonKADS’ diagramming format is less favoured, it is possible to substitute mod-
els from other modeling approaches to “fill in the gaps”. However, two principles are
identified that will recur throughout the discussion of mapping CommonKADS to the
Zachman framework: firstly, there is ambiguity over whether the WHEN perspective

concerns the time taken to carry out activities (as may be represented in a PERT
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chart) or the control over processes (i.e. as an addendum to the HOW perspective);

and secondly, the WHY perspective is not supported as well as the other perspectives.

It seems that the perspectives of the Zachman framework map well to the various mod-
els and sub-models suggested by CommonKADS for organisational analysis. The next
chapter continues examination of CommonKADS, looking at two models that bridge
the gap between organisational and task-specific modeling: the Agent and Communi-

cation Models.



Chapter 6

The Agent and Communication
Models!

6.1 Introduction

Knowledge based systems (KBS) have been a commercially viable technology for over a
decade now. As a result of their growing use, users and managers have demanded that
KBS be verifiable, maintainable and repeatable. This has led to the development of a
number of systematic methods which formalise and direct the knowledge engineering

process. A survey of methods can be found in [85].

One such method is the CommonKADS methodology, which recommends that knowl-
edge engineers develop a suite of models that both represent knowledge from different
perspectives and gradually transform knowledge from the real world, via a conceptual
representation, to a system design. Models are typically represented as one or more
node-and-arc diagrams, but may also include tables or other textual representations
of knowledge. This paper examines two of these six models: the Agent model and the
Communication model, which focus on the capability, role, requirements and outputs

of various agents in a knowledge-based process.

The Agent and Communication models are responsible for modeling “roles” and “co-

operation” within CommonKADS. The Agent model majors on who has the capability

! Originally published as Modelling Agents and Communication using CommonKADS in
Research and Development in Fxpert Systems XVII, Proceedings of Expert Systems 00, the an-
nual conference of the British Computer Society’s Specialist Group on Expert Systems, Peterhouse
College, Cambridge, December 2000.
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to carry out each task and what role they play in the process, while the Communication
model highlights where information is needed within the process and how information
is transmitted between agents during the process. In conjunction with a third model,
the Task model (which specifies how tasks need to be carried out in order to achieve a
particular goal), these models provide a rich process description that can be used for

a range of purposes, from process re-engineering to intranet development.

6.1.1 The Agent Model

The purpose of the CommonKADS Agent Model is to determine the roles and compe-
tences that the various actors in the organisation bring with them to perform a shared
task ([147], p.48). Tasks are carried out by agents, each of whom must have authority
to perform the task, may be responsible for performing that task, ought to be capa-
ble of performing that task, and should have rights to resources needed to perform
that task. The degree of truth of each of these four statements will determine the

competences of the agents, which in turn will help to define the roles of agents.

CommonKADS recommends that the Agent model is represented by a table defining
the key features of agents ([147], p.50). CommonKADS recommends the use-case
diagrams of UML [137] as a graphical representation of Agent models.

6.1.2 The Communication Model

A task that is carried out by one agent may produce results in the form of infor-
mation objects that need to be communicated to other agents. The purpose of the
Communication model is to identify the information exchange procedures that realise
the knowledge transfer between agents [147]. Each knowledge transfer will have in-
formation content, a sender, one or more receivers, and an initiator; it may also have
internal structure, and/or constraints and preconditions. The Communication model
is intended to capture and represent these features of transfers of information or knowl-

edge.

In the Communication model, each information object that is communicated is de-

scribed as a transaction. CommonKADS recommends that a communication model
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should include:

A dialogue diagram: a high level description of which tasks send or receive in-

formation.

e A transaction control plan, showing ordering and dependencies of communica-

tions. This is also usually represented as a diagram.

e Specification of individual transactions: a collection of attributes of each infor-
mation exchange. These attributes include the information object(s), the sending
and receiving agent, and any constraints on the transaction occurring. This is

represented in a table.

e A detailed description of the information exchanged, including the structure of
the transaction, the role of the information object (whether it is the ‘core’ of
the transaction or supporting information), the proposed medium of interaction,
and the “illocutionary force” of the communication (e.g. ‘request’, ‘demand’ or

‘warning’). These details also appear in a table.

6.1.3 Thesis of this paper

KADS, which was the predecessor to CommonKADS, did not separate the Agent and
Communication models; both were incorporated into its “model of co-operation” [42],
which could be used to identify the actors carrying out tasks as well as the inputs
and outputs of those tasks. It therefore seems natural that an Agent model should be
accompanied by a Communication model at the same level of abstraction i.e. containing
the same tasks. Yet CommonKADS proposes that an Agent model represents agents’
roles and capabilities for the various tasks in a particular business process, but the
Communication model should represent communication between subtasks within a
single “business process task”. model. This is probably due to the clear need for
communication features to form an input to the Design model; but it seems that
much useful detail is lost if agents’ roles are only assigned at a between-task level of
abstraction, whilst communication is only detailed at a within-task level. The resulting

proposed model suite is shown in Figure 6.1.
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Figure 6.1: Revised view of levels of abstraction of CommonKADS models

This paper will propose that both the Agent and Communication model can usefully be
developed at both between-task and within-task levels of detail. The rest of this paper
will work through an example in which both models are used to represent knowledge at
both the between-task (“enterprise”) level and the within-task (“system”) level. The

example concerns the design of small scale industrial buildings.?

6.2 Example: design of industrial buildings

Any task which involves designing something is a task that requires knowledge — and
considerable amounts of it. It’s necessary to understand how well the artifact be-
ing designed fulfils its performance requirements; which components of the design are
compatible with other components; whether the final design will be robust enough
to withstand the pressures it must face in normal use and in extreme circumstances;
whether components are easy to manufacture; whether the design is feasible to assem-
ble; and so on. As a result, many design companies employ strategies to reduce the
difficulty of the design task. They may offer a number of “standard” designs which
can be adapted to specific requirements; they may generate several design prototypes
which can be critiqued and improved; or they may subdivide the different aspects of

the design work so that one person or group of people is responsible for high level

2 This example is based on a tutorial exercise originally developed with funding from the SERC
Computing Facilities Committee Support for Engineers programme. A proof-of-concept system for
checking standards in portal frame designs was implemented.
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design, another for low level design, another for checking against requirements and
constraints, and so on. They may also take different approaches to generating the de-
sign (transformational design, propose-and-revise design, etc.) — comparison of these
approaches is beyond the scope of this paper, but interested readers should look at [19]

among other references.

The example that will be used in this paper will be a (fictional) small company, referred
to as ABC Holdings Ltd., whose task is to design small-scale industrial buildings. They
specialise in a particular structural technique known as “portal frame” design, which is
commonly used for buildings such as DIY stores. Their strategy is to subdivide design
work between different groups of people, and it is this subdivision which is captured

and represented in the Agent and Communication models below.

Before building the Agent and Communication models, however, it’s necessary to de-
termine what tasks are actually carried out in portal frame design. This is represented
in the CommonKADS Task model. The Task model for designing of portal frame build-
ings is shown in figure 6.2. The upper layer represents the top level tasks, and the lower

layer shows subtasks of “Design building” and “Check building meets specification”.

Figure 6.2: Task model for designing a portal frame building

The tasks identified in the Task model serve as the starting point for developing the

Agent and Communication models at the enterprise level.

6.2.1 Agent model for portal frame design

When ABC Holdings design a portal frame building, the client’s requirements are gath-
ered by the partners, who then pass the actual design task to one of their engineers.

The engineer creates a design, assisted by technicians (who do the low level design —
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literally, the “nuts and bolts” of the design), a CAD package that generates a numerical
description of the design, and a program (written in FORTRAN) that calculates the
effects of wind and snow forces on the building from that numerical description. The
resulting design is then checked against legislation, company standards, and the client’s
requirements before being passed to the partners for approval. There are therefore at
least six agents involved in the design process: the partners, the engineer, the techni-
cian, the two computer programs, and the client. Some would argue that the legislator
constitutes a seventh agent; other would omit him or her because the legislator does

not have any dynamic input to the design process.

CommonKADS recommends that a set of attributes are identified for each agent and

presented in a table. These attributes are:

e The name of the agent.

e The agent’s position in the organisation. This information should be obtainable
from the Organisational model. This attribute should also define the type of the

agent (typically either ‘human’ or “information system”).
e The tasks that the agent is involved in.
e The agents that this agent communicates with.
e The knowledge items possessed by this agent.
e Other required or present competences of the agent.

e Responsibilities of the agent in task execution, and restrictions in this respect.
This item is also intended to include constraints such as limitations on authority

or responsibility to legal or professional norms.

Many values for these attributes can be derived from other CommonKADS models.
The last two attributes, however, are unique to the Agent model. CommonKADS
doesn’t give much guidance on which “other competences” should be considered, or
what “responsibilities and constraints” might arise. In order to make things a little
clearer, I have drawn on the ORDIT framework for requirements engineering [49],

which defines four roles for an agent with respect to a task: capability (the agent CAN
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do the task), authority (the agent MAY do the task), responsibility (the agent MUST
do the task), and rights (the agent HAS RIGHTS TO use certain resources in order to
perform the task). This definition encompasses three levels of agent-to-task mapping;
CAN is the weakest, MAY is stronger because it (hopefully) implies CAN, and MUST
is stronger still because it implies both CAN and MAY. It also identifies resources that
are needed for a task, providing a useful link to the domain knowledge as well as the

task knowledge.

Table 6.2.1 below represents a CommonKADS Agent Model. It has been extended with

the four attributes derived from ORDIT, plus a catch-all “other constraints” column.

Agent Capability ‘ Al_'liil;or ‘ Rights Responsibility Other Constraints
View clients’ requirements Insufficient time
Obtain client’s View legislation Collate details
Partner . . to do all
requirements View case records of case
. N . tasks properly
View previous designs
Engineer Can perform all Access to site, etc.

necessary tasks

CAD package

technician

FORTRAN
program

Legislator

Client

Table 6.1: A CommonKADS Agent Model

In order to represent the agent model diagramatically, CommonKADS recommends
the use of UML use case diagrams, in which each “use case” represents one task from
the Task Model. An example is given in Figure 6.3. While use case diagrams are well
understood and widely accepted, they are intended to show which agents are involved
in which use cases; there is no mechanism for representing capability, authority, roles
and responsibilities of agents. As a result, an extended diagram format is proposed in

which the use cases are labelled; this can be seen in Figure 6.4.

6.2.2 Communication model: Designing a Portal Frame building

Each time a new agent takes on a task where the previous task was carried out by a
different agent, communication is required. The Communication model represents the
communications that occur between tasks. If a Communication model is to represent
the same level of abstraction as the Agent model, then it must represent the same
tasks that appear in the Agent model. The reader should therefore refer back to the

Task model in Figure 6.2 for the source of the tasks that appear in this model.
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Figure 6.3: Agent model for designing a portal frame building
Dialogue diagram

The first component of a communication model is a dialogue diagram, which shows
which tasks are carried out by which agents, and where communication is needed
between agents. Figure 6.5 shows a dialogue diagram for portal frame design, using the
format recommended by CommonKADS (p.225 of [147]). Columns headed Dialogue
show communication transactions; each other column represents an agent, with the

darker ellipses representing tasks carried out by that agent.

Note that there are links in the dialogue diagram between tasks performed by the
same agent (e.g. from Survey Site to Design Structure of Building). These links do
not represent communication between agents, but rather dependencies between tasks
(usually inputs/outputs); this can be thought of as communication “within” an agent.
These are worth describing because they may be required as input to more detailed

models of individual tasks.
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Figure 6.4: Agent model for designing a portal frame building: extended format

Control of transaction

The second component of the Communication Model is the transaction control di-
agram, which describes the sequence of transactions. The diagram format used for
these is the state diagram notation taken from UML [137]. Transaction control dia-
grams may not always need to be developed, but can be very useful when flow of control
is complex e.g. when external events conditionally trigger tasks or transactions. These
diagrams also represent, and maybe introduce, certain design decisions regarding com-
munication; a common design decision involves determining who takes the initiative in
a transaction. Figure 6.6 shows the transaction control diagram associated with Figure

6.5.
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Figure 6.5: Dialogue diagram for designing a portal frame building
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Figure 6.6: Transaction control diagram for designing a portal frame building

It can be seen that the flow of control is assumed to be largely sequential, unless a
design fails its checks (against legislation and user requirements), in which case looping

occurs.

Transactions

CommonKADS proposes that a number of properties are identified for each transaction

that appears in a Communication Model. These properties are identified below (from
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p.228 of [147]):

e Transaction Identifier/Name: A transaction is to be defined for each infor-
mation object that is output from some leaf task in the Task Model or in the
Knowledge/Expertise Model (i.e. a transfer function), and that must be com-
municated to another agent for use in its own tasks. The name must reflect,
in a user-understandable way, what is done with the information object by the
transaction. In addition to the name, give a brief explanation here of the purpose

of the transaction.

e Information object: Indicate the (core) information object, and between which

two tasks it is to be transmitted.

e Agents involved: Indicate the agent that is sender of the information object,

and the agent that is receiving it

e Communication plan: Indicate the communication plan of which this trans-

action is a component

e Constraints: Specify the requirements and (pre)conditions that must be ful-
filled so the transaction can be carried out. Sometimes, it is also useful to state

postconditions that are assumed to be valid after the transaction.

e Information Exchange Specification: Transactions can have an internal
structure, in that they consist of several messages of different types, and/or
handle additional supporting information objects such as explanation or help

items.

For the transactions in Figure 6.5, the relevant information is given in Table 6.2.2,
omitting the “communication plan” attribute (which is the same for all transactions)

and the “information exchange specification” (see section 6.2.2 for details).

Information Exchange

The information exchange specification constitutes the third layer of the CommonKADS

Communication Model. It refines the description of transactions in two ways: by giving
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Transaction Information Agents . Information
. . Constraints Exchange
Name object involved . A
Specification
. . Features of Client A meeting takes place; . .
Requirements the building Partner Contract agreed/signed Requirements-IE1
Permitted/prohibited Legislation is available
features of At least one agent
Yo the building Legislator knows all legislation s
Legislation Permitted /prohibited Engineer that is relevant Legislation-TE1
working practices Legislation is
and equipment understandable
Site Load bearing Partner Surveying equipment Site-
Requirements potential etc. engineer is adequate Requirements-IE1
. . Features of Partner Specification cn .
Specification the building engineer is understandable Specification-1E1
Results of Success/ ‘fallurcs/ Engineer Checks can be carried out Checks-1E1
checks warnings partner
CAD package is able to
Design Foatures of design Engineer represent desired features Design-
parameters Sign CAD package Engineer is able to parameters-IE1

use CAD package

Design diagrams

CAD package

All info. for calculations

Proposed designs and tables engineer is entered correctly Designs-TE1
Engineer
Structural Structural description technician Structural-
design of design FORTRAN design-IE1
program
Calculations of wind FORTRAN
Forces on
building & snow f.orccs on walls program Forces-IE1
& both sides of roof engineer

Table 6.2: CommonKADS Communication Model

the internal message typing and structure of the transaction, and by giving information

about the syntactic form and medium of the messages.

The information that could appear in an information exchange specification is shown

below (taken from p. 230 of [147]).

A representative example of an information ex-

change specification for one transaction is shown in Table 6.3.

e Transaction Name: Transaction name and identifier of which this information

exchange specification is a part

e Agents involved: The sender (the agent sending the information item/items)

and the receiver (the agent receiving the information item/items)

e Information Items: List all information items that are to be transmitted in

this transaction. This includes the (‘core’) information object, the transfer of

which is the purpose of this transaction. However, it may contain other, sup-

porting information items that provide help or explanation, for example. For

each information item, describe the following:

— Role: whether it is a core object or a support item;

— Form: the syntactic form in which it is transmitted to another agent e.g.

data string, canned text, a certain type of diagram, 2D or 3D plot;
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‘ Attribute ‘ Value
Transaction Name Requirements
Agents involved Client & Partner

Features of the building
Role: Core object

Information Items Form: Requirements
Specification Document

Medium: Negotiation Meetings

Communication type: Request-Propose
Content: Client’s requirements on the design
Message Specifications — as agreed by the designer
Reference: It may be deemed necessary to refer

to specific laws of contracting here

The document is iterated between client and partner

trol M . . . .
Control over Messages until both agree on its contents and sign the final version.

Table 6.3: Transactions

— Medium: the medium through which it is handled in the agent-agent in-
teraction e.g. a pop-up window, navigation and selection within a menu,

command-line interface, human intervention

e Message specifications: Describe all messages that make up the transaction.

For each message, describe:

— Communication type: the communication type of the message, describing
its intention (“illocutionary force”, in speech-act terminology). Some pre-

defined intentions are suggested in [147].
— Content: the statement or proposition contained in the message.

— Reference: in certain cases it may be useful to add a reference, for example
to what domain knowledge model or agent capability is required to be able

to send or process the message.

e Control over messages: Give, if necessary, a control specification over the
messages within the transaction. This can be done in pseudocode format or in
a state-transition diagram, similar to the transaction control diagram described

above. I have chosen to use plain text.
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6.3 Concept/System level Models: Checking Design against
Standards

The Concept or System level (the 3rd level identified in Figure 6.1) deals with the
problem solving steps that comprise one of the tasks that were identified in the Task
Model. This reflects the typical knowledge engineering process of examining tasks
within a business process, and deciding which one(s) would benefit from being sup-
ported with a KBS or other automated system. In this example, the task that has
been chosen for further decomposition is “Check building meets regulated standards”.
The knowledge that is required to perform this particular subtask — the steps involved,
the resources and information required, and the order in which the steps are carried

out — is expanded in detail in the Knowledge/Expertise model.

At this level of abstraction, the tasks that provide the source for the Agent and Com-
munication models are drawn from the “task structure” component of the Knowl-
edge/Expertise model. This component can be represented in a diagram (similar in
format to Figure 6.2) or in a semi-formal language (CommonKADS’ Conceptual Mod-
eling Language, or CML) - see Figure 6.7.

task assessing-building-against-British-standards
goal check that a building design conforms to British standards
task structure
assessing-building-against-British-standards(results of checks)
obtain(numerical description of building)
transform(numerical description — model of the building)
loop until all checks are completed
select(a check to perform)
obtain(any further information required for that check)

match(model of building + standards relevant to the chosen check —
result of check)

report(results of check)

Figure 6.7: Task structure for checking a design against standards in CML
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6.3.1 Agent Model: checking a design against standards

The Agent model for checking a design against standards, in “extended use case”
format, is shown in Figure 6.8. It includes a number of information sources (such as
manufacturer’s tables) which are considered too specific to include in the higher level
model. Drawing on ORDIT again, these information sources are treated as resources.
Since resources are static objects, the notation used in the extended agent model

diagram is the notation used for classes in the UML class diagram format.

Since a particular subtask will often be carried out by one or at the most two agents,
it is understandable that CommonKADS did not consider it necessary to prepare an
Agent model at this level of detail. However, when the ORDIT-based constraints of
CAN, MAY, MUST and HAS RIGHTS TO are introduced, then the value of developing

an Agent model at this level of detail can be seen.

Tables 5 and 6 provide some further information on this Agent model.

Obt ai n desi gn
description

Manual of Qut put of CAD
checks / package
Hasrlghtsto Has rights to

\create view, use

En7/neer\

view, apply
Has rights to MUST

Zbt ai n further
i nformation view use
Manuf acturer’s /

tabl es

eport results
of check

Mat ch desi gn
agai nst rel evant

st andar ds

Figure 6.8: Agent model for checking a design against regulated standards
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6.3.2 Communication model: Checking design against standards

Dialogue diagram

The dialogue diagram derived from this task structure is shown in Figure 6.9. In this
diagram, as in the Agent model, I have chosen to represent information sources. These
join with the links representing information flow between tasks and transactions to
provide a reasonably good data flow diagram for the task of checking a design against

standards. This is useful information when designing a system (either a technology or

a technique) to support this task.

Engi neer

Possi bl e
checks

Sel ect ed
check

Desi gn
description

Resul ts

of check

Figure 6.9: Dialogue diagram for checking a design against regulated standards

Transaction control diagram

Much of the transaction control at the system level is represented in the (CML) task

structure, so there is little need for a transaction control diagram at the system level.

Manual of
checks

Manuf acturer’s
tabl es
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The only remaining feature of control on transactions that needs to be noted is that
the engineer takes the initiative in consulting information sources. This may seem an
obvious statement, but if the reverse was true (such as might occur with an information
source that supplied stock market prices, for example) then there are many important
issues raised for any resulting implementation connected with asynchronous inputs and
real-time processing. This information can be captured in the Information Exchange

Specification tables, however.

Transactions

The transactions for this communication model are represented in Table 7. The most
noteworthy column of this table is the Constraints column, where constraints that
might otherwise be glossed over as being too obvious (e.g. that all relevant checks

must actually be in the manual of checks) are identified.

Information exchange specification

As stated above, the information exchange specification gives details of initiative in
transactions. It also plays a similar role to the Transactions table in that it makes sure
that apparently obvious assumptions, such as that checks are performed one at a time,

are identified.

6.4 Discussion

6.4.1 Benefits

The main benefits of building these models are as follows:

e They serve as an aide memoire; that is, they help raise issues that may have
been overlooked but which are important in understanding the business process
or in system design. For example, the “Transactions” table of the system level
communication model specifies that the CAD package must be in working order.

Being forced to specify this leads to considering alternatives to the process when
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the CAD package is not working, as well as considering the adequacy of backup
procedures for the data stored in the CAD package.

The models are also helpful when they identify key competences that are neces-
sary; for example, highlighting that the engineer must be able to understand the
manual of design checks might suggest that an explanation component should be
included in the final system for the use of more junior engineers who have trouble

understanding the manual.

e When they are used to describe an existing system or process, they organise the
knowledge well, thus both providing clear descriptions of the process and making
it easier to build complete models of all relevant knowledge — for when knowledge
is laid out clearly in separate categories, it becomes easier to identify gaps in that

knowledge.

e These models are arguably most beneficial when they are used to prescribe future
roles and co-operation, rather than describing an existing situation. In this in-
stance, the models can be used to analyse the situation, and to support decisions
about the allocation of roles. Such decisions can have an enormous impact on
the resulting business process (for enterprise level models) or system design (for

system level models).

6.4.2 Drawbacks

The most obvious drawback of developing all these models is the time required to
produce all the tables and diagrams. In some circumstances (e.g. safety critical appli-
cations, or applications where there is a high turnover of staff), the effort of developing
all these models is paid back by reduced risk or higher maintainability of the resulting
system. However, many KBS developers will find the development of a full suite of

agent and communication models to be more effort than it’s worth.

Because of this, a shorthand version of the Agent and Communication models is sug-

gested:

e Agent model: draw the extended use case diagram (i.e. the one with labelled

arcs and “resources”);
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e Communication model: draw the dialogue diagram. This diagram is very similar
to Role Activity Diagrams [135] which have been proposed as a shorthand format
for both the Agent and Communication models in previous publications (e.g.

[102)).

e Communication model: produce a table of communications that combines the

Transactions table and the Information Exchange specification table.

6.4.3 Summary

In summary, the Agent and Communication models represent the roles and capabilities
of agents and the transactions that occur during a particular process. They are a
valuable component of the overall CommonKADS suite of models, and can be used to
support organising acquired knowledge, re-organising a business process, or designing
a knowledge based system. They organise knowledge clearly (if not concisely), and are
particularly useful if used at two different levels of detail, capturing both the agents
and communications at the level of tasks within a particular business process, and at

the level of subtasks within a single (knowledge-based) task.

Having moved from examining the modeling of organisational knowledge to the exami-
nation of task-specific knowledge, the next chapter begins a series of four chapters that
look at the ’heart’ of CommonKADS: the Expertise Model that is designed for mod-
eling the knowledge used in a particular task. The next chapter describes an example

of such modeling, which will be used as an example in later chapters.
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Chapter 7

Knowledge Engineering: the
IMPRESS example!

7.1 Introduction

In January 1992, a small Scottish manufacturing company obtained funding from Scot-
tish Enterprise to help them in the development of a knowledge based system (KBS)
for fault diagnosis. The company manufactured precision plastic mouldings, such as
casings for PCs, or control panels for video recorders. They have a reputation for high
quality, which they want to maintain. However, from time to time, problems with
their injection moulding machines mean that substandard mouldings are produced,
and these have to be scrapped to maintain the reputation for quality. While Plastic
Engineers have technicians who are very competent at solving these problems, these
technicians have a variety of roles to perform. If a technician is working on an urgent
task, or is absent through holidays or illness, it may take some hours before diagnostic
expertise is available. Shift leaders are able to provide some backup to technicians, but
they have even more demands on their time than the technicians do. As a result, there
are times when no-one with diagnostic knowledge is available, particularly during some

night shifts.

After attending a seminar organised by ATAI and the Scottish Office in the summer of

! Originally published as KBS Methodology as a framework for Co-operative Working in
Research and Development in FExpert Systems IX, Proceedings of Expert Systems 92, the annual con-
ference of the British Computer Society’s Specialist Group on Expert Systems, Brighton, December
15-17 1992.
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1991, the idea of building a KBS to help with the diagnostic process was born. The
project was set up in January 1992 with the company releasing one member of staff
to work on the project for two days per week. This member of staff [JM] was a newly
recruited graduate in Polymer Technology with knowledge of the process of injection
moulding, but very little computing experience. ATAI were engaged to provide JM with
initial training in KBS programming, knowledge elicitation and knowledge engineering
(a total of 7 days’ training) and then to provide 15 man days’ consultancy spread over
the 4-month duration of the project. The intention was that by the end of the project,
JM would be fully conversant with the techniques used to develop the KBS, and would

therefore be able to maintain the system if any changes were needed after installation.

ATAI decided to use a methodological approach to this project. The need for a method-
ological approach to KBS development was not widely acknowledged when this system
was developed, but AIAI were sufficiently convinced of the benefits of methods to use
parts of the KADS methodology on this project. However, in this project, the methods
were used not only to formalise and guide the development of the KBS itself, but also
to act as a framework for the division of labour and transfer of KBS expertise. This

paper describes the benefits and drawbacks of using a methodology in this way:.

Before any development could take place, however, a number of factors needed to be
established to ensure that the KBS project stood a good chance of success. These

included:

e Economic considerations. The company do have a genuine problem with quality
control - they scrap around 2% of their production each month. The KBS is likely
to make a significant improvement to the availability of diagnostic expertise, and

to the early detection of faults, thus reducing scrap rates.

e Technical considerations. Diagnosis is known to be a task type which KBS are
well suited for; also, the technicians currently take between several minutes and a
few hours to solve problems, so there are unlikely to be any stringent requirements

for real-time problem solving.

e Personnel considerations. The project was initiated by the company’s General

Manager, so management support was assured. The users - the machine operators
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- are likely to appreciate any help their shift leaders can give them in diagnosing
faults. However, the commitment of the shift leaders and technicians themselves
was unclear, so the ATATI consultant [JK] made a presentation to these people,
which included a demonstration of a very simple KBS which diagnosed three
different faults in the plastic moulding process. While the underlying structure of
this demonstration system was very shallow in its reasoning, and drew knowledge
from just one day of knowledge acquisition, it was sufficient to convey the concept
of a KBS to the shift leaders and technicians, and to excite their curiosity so that
they began to ask questions about the capabilities of the system. This was

deemed to be sufficient commitment for the project to proceed.

The project was named IMPRESS (the Injection Moulding PRocess Expert SyStem

project).

7.2 The framework of the IMPRESS project

The KADS methodology divides the process of KBS development into three phases:
knowledge elicitation and analysis, KBS design and KBS implementation. The IM-
PRESS project was set up with a number of intermediate milestones accompanied by
deliverables; these milestones were based around the phases specified by KADS. The

phases specified in the project plan were:

Knowledge elicitation and analysis - 6 weeks.

KBS design - 4.5 weeks

KBS implementation - 4.5 weeks

Testing and installation - 2 weeks

The workload was divided between JM and JK in a manner which was intended to get
the project completed within the deadline, but also to give JM a sufficient awareness
of KBS development and the contents of the IMPRESS system to enable him to up-
date it. The policy pursued was for both JK and JM to attend knowledge elicitation
sessions; then for JK to perform the knowledge analysis and KBS design while JM
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undertook background reading on KADS so that he understood the deliverables which
JK produced; and finally for JM to undertake the lion’s share of the implementation,
and to carry out user acceptance testing, any consequent alterations, and installation.
The plan was adhered to fairly closely, and JM was indeed able to make alterations to

the KBS himself in response to comments from the users.

7.3 Progress of the project

7.3.1 Knowledge Elicitation

Knowledge elicitation for the IMPRESS system was carried out at Plastic Engineers’
premises in Ayrshire. The first interview was with one of the shift leaders, who was
asked to provide a general overview of the problems which arise in the plastic mould-
ing process. The interview was guided using the “laddered grid” knowledge elicitation
technique [152]. This technique supplies a number of template questions which are de-
signed to prompt experts to supply further information about a taxonomic hierarchy
- for example, the question “Can you give me some examples of Class” will supply
information about instances or subclasses of the class Class. The technique can also
be used to elicit procedural information. In the interview with the shift leader, the
resulting grid comprised both a detailed description of some of the faults which arise
in the plastic moulding process, including descriptions of different symptoms and as-
sociated faults, and also explanations and corrective action for some faults. While it
is not desirable for analysis purposes for the expert to be allowed to mix taxonomic
and procedural information (i.e. descriptions of faults and descriptions of actions) in
his replies, this interview nevertheless provided a concise introduction to the domain

and the diagnostic task.

The next interview was with the Quality Manager, who provided a breakdown of the

five main categories of fault. These categories are

e Contamination - dirty marks of some kind on the final moulding
e Shorts - certain parts of the mould do not fill with plastic

e Burns - discolouration due to plastic being overheated
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e Degate - human error when trimming with a knife

e Others

The Quality Manager keeps detailed statistics of the number of times each fault has
occurred, and how long it takes to solve. From examination of these statistics, it
became obvious that contamination was the most frequently occurring problem, and
that contamination problems took an average of almost 2.5 hours to solve. Based on
this information, it was decided that the KBS would initially be limited to diagnosing

contamination problems only.

All other knowledge elicitation interviews were conducted with technicians, who are
the day to day diagnostic experts. Most of these interviews used a “20 questions”
knowledge elicitation technique [24]. This technique is normally used after several
knowledge elicitation sessions, because it requires the knowledge engineer to be fairly
familiar with the task. The knowledge engineer selects a potential fault, which the
expert is required to diagnose; the expert does this by asking questions, which the
knowledge engineer answers. As JM had some knowledge of the injection moulding
process and of the company’s machinery, it was possible to use this technique from a

very early stage.

A typical “20 Questions” session is shown below. The hypothesised fault was dust
entering the machine via the drier which dries the raw material. The technician was
told that there were “black specks on the moulding”. JM’s answers to the technician’s

questions are shown in brackets.

What’s the tool? [155]

Where are the marks? [Back face, sides - all over]

How long has the job been running? [2 days]

Has the problem been present since start up? [Yes]

Is the problem getting worse? [Yes]

Have you cleaned the shims? [Yes, it caused a little improvement, but
the problem recurred]

Is the temperature unstable, or too high? [No]

Check the thermocouplings [0K]
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Check the condition of the screw, and look for black specks on the screw [OK]

On being told the answer, the technician commented that dust from the drier was al-
most never a problem because of the reliability of the drier’s filtration system. This was
a surprise to both JK and JM, and thus provided some unexpected further knowledge

acquisition.

The technician was then asked to explain his reasons for asking each question. The
information which was extracted from the conversation described above and the sub-

sequent explanation included:
e Possible faults include dirty shims, incorrect temperature settings, loose thermo-
couplings, and dirt on the screw.

e Some faults are more prevalent on certain machine tools - usually tools which

produce large mouldings.

e If the marks had appeared only on the bottom edges of the moulding, this would

have been a very strong indicator of one particular fault.

e Certain faults only occur shortly after the machine has been started up. Many of

these are due to the machine not being cleaned properly before being shut down.

e If the problem only occurs for a short time, then the fault is likely to be contam-

ination in a single batch of raw material.

e If the problem is getting worse, then it is likely to be due to some material which

is trapped in the machine and slowly degrading

e Dust in the drier hardly ever causes a problem because it is filtered out

The “20 Questions” technique proved to be very helpful for eliciting diagnostic infor-
mation, with a lot of useful information obtained in a concise format in a short period

of time.

7.3.2 Knowledge Analysis

The technicians’ knowledge divides into three main categories:
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e Declarative knowledge - the workings of the machine, and knowledge of all faults

which may occur.
e Procedural knowledge - knowing how to test for and how to fix faults.

e Control knowledge - performing tests in a sensible order.

The declarative and procedural knowledge was relatively straightforward to extract
from the results of the “20 Questions” sessions, but the control knowledge required
a little more thought. It was eventually determined that the likelihood of a fault
occurring, and the time required to perform a particular test, were the most important
factors in deciding the order in which tests should be performed. For example, in the
“20 Questions” session quoted above, the technician asked about the condition of the
screw last, because it takes a couple of hours to dismantle the machine sufficiently to
expose the screw, and he did not ask about dust in the drier at all, because it is such

a rare fault.

It turned out that there are quite a number of rare faults. However, as JM spent much
of his time on the shop floor when he was not working on the KBS, it was decided that
JK would press ahead with the analysis phase while JM completed the elicitation of
all possible faults from the experts. The final KBS contains about 40 faults (broken

down into five subclasses) and a similar number of tests.

7.3.3 KBS design, implementation, testing and installation

The analysed knowledge was transformed into a KBS design using techniques based
on the KADS methodology (these techniques are outlined in section 7.4). The KBS
was then implemented in KAPPA-PC version 1.2 on an Apricot 486 PC. The resulting
design suggested that faults, tests, and test results should be represented using individ-
ual objects, while inference should be implemented primarily using a mixture of rules
and functions, with a little use of object-oriented methods and demons. However, it
transpired that some of the desired rule functionality was unavailable in KAPPA-PC;
it also became clear that the time taken to execute a rule which matched on a set of

objects was similar to the time taken for a function to iterate over the same objects.
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As a result, it was decided that rules would not be used at all, and so much of the

inference in the IMPRESS system was implemented using functions.

The KBS was subjected to testing by developers concurrently with the implementation
of the user interface, and was installed in the first week of August 1992. At the time of
writing, few firm results were available, because there have been relatively few occasions
since the installation of the KBS when there has been no technical expert available
to answer questions. However, the fact that the system can be used “off-line” has
been appreciated, and the KBS has been used several times for training purposes by

interested machine operators.

7.4 Using KADS for the IMPRESS project

The KADS methodology for KBS development [82] is intended both to guide and to
formalise KBS development. To this end, it provides guidance on obtaining knowledge,
analysing it, and transforming it into a detailed design for an implemented KBS. The

IMPRESS project focussed on the construction of the Expertise model recommended

by the KADS methodology.?

7.4.1 Knowledge analysis: generic inference structures

Once some knowledge has been acquired, the KADS methodology recommends selec-
tion of a generic inference structure® from a library. Generic inference structures are
task-specific breakdowns of the inferences and items of knowledge required in a typical
task of that type. These models are intended both to formalise acquired knowledge
and to guide further knowledge acquisition. For the IMPRESS system, it was obvious
from the start that the task type was diagnosis; however, KADS offers several different

generic inference structures for different methods of performing diagnosis. Eventually,

2 KADS was the forerunner of CommonKADS. For the sake of consistency, with other papers, I have
altered the terminology used in this paper where it differs between KADS and CommonKADS.
Footnotes are used to describe these instances.

3 KADS used the term “interpretation models” instead of “generic inference structures”. Interpre-
tation models differed slightly from generic inference structures, because they were permitted to
contain some control information (task structure) as well as a generic inference structure. However,
this feature was hardly ever made use of. The successor in CommonKADS to these “generic task
structures” are problem solving methods, which are described in chapter XX.
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it was decided that the generic inference structure for systematic diagnosis was the
most appropriate. This model is shown in Figure 7.1 below; the ellipses are known as

“inference steps”,* and the boxes as “knowledge roles”.

This model represents the inference which is expected to be performed when a task
involving systematic diagnosis is executed. For example, if a user reports a problem
with a machine, it is expected that a particular system model representing the correct
operation of that machine will be selected, and a number of faults will be suggested.
Based on a ’focussed’ subset of these faults, a number of characteristics of the machine

will be measured and compared with their expected values in the system model.

This model was then adapted to the domain of the IMPRESS system, as shown in Fig-
ures 7.2 and 7.4.1 below (Figure 7.4.1 is an expansion of the select-1 inference step in
Figure 7.2), to produce a problem-specific inference structure. This inference structure
indicates that the IMPRESS system will identify a set of possible faults (hypotheses)
based on the reported contamination problem. A test is then recommended, based
on the likelihood of the hypotheses, the time required to perform a test and the time
required to alter the state of the machine so that the test can be performed. Once it
has been decided which test will actually be performed, the test is carried out, and
the actual result is compared against a set of expected results (see below) in order to

update the set of hypotheses.

It can be seen that the adaptation from the generic inference structure to the problem-
specific inference structure involved a number of changes. Most of these changes are
relatively minor, such as the removal of the focussing of the set of hypotheses into a
smaller set; it was felt that the set of hypotheses was sufficiently small that such a
step was not necessary. However, one of the changes implies a fundamental change to
the approach taken to reasoning. This change involved replacing the generic inference
structure’s suggestion of comparing values against a system model, which is a model-
based approach to KBS construction, with a set of faults and expected test results,

which is a classification-based approach.” While a model-based approach would have

4 In KADS, these were referred to as “inference functions”

5 For more on the distinction between these two approaches, see section 18.2.1.
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Figure 7.1: Generic inference structure for systematic diagnosis
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worked adequately for the IMPRESS system, it was felt that explicitly representing
injection moulding processes was not worth the effort, primarily because all the com-
pany’s machines operate in the same manner, and so only one “system model” would
be required. Instead, it was decided that for every known fault, the expected results
of each test would be represented. For example, if the fault was “Contamination of
raw material due to the box of material being left open”, then a check on the material
currently being fed into the machine should produce the result Contamination present,
while a check on a fresh box of material should produce the result Contamination ab-
sent. These values were explicitly represented, and compared against the actual results

of tests, as shown at the bottom of Figure 7.2.

7.4.2 Further guidance provided by KADS

The remaining stages of the KADS analysis and design phases gradually extend and
transform the knowledge which is represented in the inference structure into a detailed

KBS design, with any design decisions being explicitly recorded. These stages are:

Knowledge analysis:

e Flow of control: The task structure, which is a component of the Expertise model,
identifies the flow of control between inference functions, and also identifies any

inputs and outputs of the KBS.

o Task assignment: It’s important to make rational decisions about which agents
carry out which tasks in the final KBS, since this can have a big effect on the re-
quired development time. The tasks include both the inference steps and dealing
with inputs to the system; for example, of data is required from a manual, should
the user be asked to look up that data, or should the system automatically access
a version of that manual stored in a spreadsheet? In CommonKADS, this would
be represented within the Agent and Communication models; for this project,
a model of interaction was developed ¢ which is used to determine which of the

inference steps should be performed by the system, which by the user, and which

6 The model of interaction is a locally-developed variant of KADS’ model of co-operation, the fore-
runner of the Agent and Communication models See chapter ZZZ for details.
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by the two working together. It also explicitly identifies every input and output

within the system.

The main decision made when developing the model of interaction for the IM-
PRESS system was that the selection of a test to perform would be done by the
KBS and user in conjunction, rather than by the KBS alone; in other words, the
KBS would recommend a test to perform, but the user would be free to reject

the recommendation.

KBS design:

o Application design” involves laying out the inference functions, knowledge roles
and inputs/outputs in a single diagram, and identifying the data flow between

them.

o Architectural design® involves the selection of Al “design methods”, such as best-
first search, blackboard reasoning, or truth maintenance, to implement each func-
tion in the application design. AIAI have developed a set of probing questions,
based on the work of Kline & Dolins [104], to recommend design methods; see

chapter D for more details.

e Physical design involves the selection of rules, objects, or other low-level design
techniques to implement the chosen design methods. This proved to be the most
difficult of all the analysis and design stages, partly because the architectural
design stage did not produce many strong recommendations for particular design

methods.

KADS recommends that the selection of a KBS implementation tool should be
based on the results of this stage; however, an implementation tool has often
been chosen by the time this stage of the project is reached, and so it is sensible
if the capabilities of the KBS tool are borne in mind when performing physical

design.

7 In KADS, the only approach recommended for application design was functional decomposition. I
have found it convenient to retain this approach wherever possible. For more on other approaches,
see chapter 12.

8 This was called “behavioural design” in KADS.
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Once the physical design is complete, KADS suggests using conventional software engi-
neering methods. While these methods are likely to work for implementation, they may
not be adequate for verification and validation, which may differ significantly between

a KBS and conventional computer programs [175].

7.4.3 Technology transfer using KADS

During the stages of knowledge analysis and KBS design, technology transfer was
accomplished by introducing JM to KADS. This was achieved during JM’s initial
training. JM was also asked to read sections of the best available book on KADSI[82].
With this background, JM was able to understand the deliverables from the analysis
and design phases at a detailed level, and to use these deliverables as a basis for the

implementation of the IMPRESS system.

The aim of using KADS for technology transfer was that JM would understand the
KADS models sufficiently well that, should the occasion arise, he would be able to
make a change to the inference structure and propagate the change through all the
remaining stages in order to produce a revised physical design. This change would
then be implemented in the KBS, and the revised set of models would serve as up to

date documentation for the system. This purpose appears to have been achieved.

7.5 Benefits and weaknesses of using KADS for the IM-
PRESS project

The use of KADS for the IMPRESS project provided a number of benefits, but also

had some weaknesses. These are outlined below.

Benefits: The major advantage of KADS from the point of view of technology trans-
fer is the large number of models which are produced during the development of the
KBS. These models represent the KBS from a number of different viewpoints, so a
novice stands a much greater chance of understanding the workings of the KBS from
these models than from any single document describing the KBS. The variety of mod-

els also helps greatly when a new piece of knowledge or a new procedure must be
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added to the KBS, and it is difficult to decide where this new information fits into the
previous structure. These models also force the KBS developer to document design
decisions explicitly, which is almost essential for successful long-term maintenance, and
can constitute a set of deliverables from each stage of the project for the management

or project monitoring officer.

KADS itself has some particular advantages. The library of generic inference structures
is widely thought to be the most useful contribution of KADS to knowledge engineering,
and it certainly provided a lot of assistance for the IMPRESS project. There is also
some reasonably comprehensible background reading available on KADS which helps

introduce novices to the methodology.

Weaknesses: Perhaps the biggest disadvantage of using KADS, when compared with
a “rapid prototyping” approach to KBS development, is that implementation does not
begin until relatively late in the project. While the preparation of a design which
has been thought out and documented well provides plenty of justification for KADS’
approach, late implementation carries disadvantages both for technical development

and for technology transfer.

From the viewpoint of technical development, KADS’ approach loses the advantages
of iterative prototyping for knowledge acquisition and investigating possible imple-
mentation techniques. KADS does not rule out the use of prototyping as a knowledge
acquisition technique, but it is time-consuming to build a prototype based on an uncer-
tain system design which will eventually be thrown away, and it was decided that this
approach was not worthwhile for a small-scale project such as the IMPRESS project.
Iterative prototyping is also very useful for identifying omissions or misunderstandings
in knowledge acquisition and analysis, and the fact that most of KADS’ models are
based on the analysed knowledge (directly or indirectly) means that errors in knowl-
edge acquisition and analysis are costly, because they require almost all the models to
be updated. A CAKE (computer aided knowledge engineering) tool which supported
the construction of CommonKADS models would go a long way towards alleviating

this difficulty.

From the viewpoint of technology transfer, KADS’ approach means that a novice KBS
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programmer (JM in this project) is thrown into programming at the deep end, rather
than being gradually introduced to implementation techniques as the prototype is
built. While JM was given some training and programming exercises in KAPPA-PC
while the analysis and design phases were being conducted, it is received wisdom that
the only way to understand a KBS implementation tool fully is to use it to develop a
full-scale KBS, and this project reinforced that belief. This unfamiliarity was a major
contributor to the fact that the implementation phase overran by about 3 weeks, the

only phase to show a significant deviation from the initial plan.

Two other features of KADS were noted which were minor disadvantages in the IM-

PRESS project:

e KADS provides little guidance on user interface design, which is something of a
disadvantage since the development of user interfaces may take up a large propor-
tion of the code and the development time for a KBS. For the sake of simplicity,
the IMPRESS project used KAPPA-PC’s built-in user interface facilities (menus,

message boxes and text windows) to develop its user interface.

e The physical design stage should take into account the features of the chosen KBS
implementation tool. KADS recommends that a tool should be chosen based on
the results of the physical design stage, but in practice a tool has almost always
been chosen before this stage. For example, the physical design for the IMPRESS
system recommended the use of a series of demons on the slots of the State of
the machine object to calculate the total time required for the machine to be
put into a particular state. However, demons in KAPPA-PC do not return a
value, so instead of using a return value, the technique had to be implemented

using a global variable to accumulate the total time.

7.6 Conclusion

On the whole, the use of a methodology as a framework for technology transfer worked

well on the IMPRESS project, and is recommended for other projects. However, a
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number of factors must be considered carefully when doing so:”

e Considerable effort is required to make sure that knowledge analysis is done
properly, because of the effort required to correct errors at a later stage. In larger
projects, or other projects where the knowledge to be acquired is particularly
complex, it may well be worth developing a prototype to assist in knowledge

acquisition.

e The implementation stage should be given at least as much time as the analysis
stage, if not more, unless the chief programmer is fully conversant with the KBS

implementation tool before the implementation stage is reached.

e Documentation should be prepared in a format which is fairly easy to update,

since it is expected that the documentation will change over time.

e The features of the chosen implementation tool should be taken into account at

the physical design stage (or equivalent stage in the chosen methodology).

IMPRESS was built before the CommonKADS methodology was published. The next
chapter looks at how CommonKADS updated KADS, and how this would have affected
the IMPRESS project and another project.

9 These comments assume that the methodology uses the three phases of analysis, design and imple-
mentation.



Chapter 8

Knowledge Engineering: The
Expertise Model!

8.1 Introduction

It was decided that two KBS projects which had been originally developed with the aid
of KADS, or a variant of KADS, would be re-engineered using CommonKADS in order
to obtain first-hand experience of the advantages and disadvantages of CommonKADS
over KADS. The projects chosen were the X-MATE project, which developed a KBS
for deciding whether mortgages should be granted [95], and the IMPRESS project,
which produced a KBS for diagnosing faults in plastic moulding machinery [94].

This paper will describe the re-engineering of the domain, inference and task levels of

expertise in IMPRESS and X-MATE.

8.1.1 How to Build the CommonKADS Expertise Model

In KADS, modeling of expertise was usually performed by selecting an generic inference
structure from the appropriate library, modeling the domain sufficiently to instanti-
ate the inference structure to the current application, and then proceeding with task
modeling and design. CommonKADS suggests a number of approaches to modeling

([191]), including:

! Originally published as Re-engineering IMPRESS and X-MATE using CommonKADS in
Research and Development in Expert Systems X, Proceedings of Expert Systems 93, the annual con-
ference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s College,
Cambridge, December 15-17 1993.
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e bottom-up assembly of models from data;

e model assembly around a problem solving method (e.g. for a constraint satisfac-

tion problem);
e model assembly from generic components (as in KADS);
e model specification based on top-down task decomposition;

e adapting models by knowledge differentiation (introducing new knowledge roles

to circumvent computational or pragmatic constraints);

e model generation by structure mapping.

In the project described in this paper, the primary modeling method used was model
assembly from generic components. However, occasional use of other approaches was
found to be useful - bottom-up assembly was used in domain modeling, and a form of
knowledge differentiation was used to ensure that all relevant domain categories were

represented in the inference structure.

8.1.2 Overview of this Paper

This paper looks at the three levels of expertise modeling in CommonKADS in turn.
For each level, a brief introduction is given, followed by description and results of the
re-engineering of X-MATE and IMPRESS. Finally, an evaluation of the CommonKADS

techniques for that level is provided.

Currently, CommonKADS’ main guidance on generic components is at the inference
level, and so the first step in the re-engineering process was to develop an inference
structure. For this reason, the inference level of CommonKADS is described before
the domain level. In practice, however, it was found that these two levels tended to be
developed simultaneously, with modeling at one level helping to guide and refine the
other. The task level was not developed until the other levels were complete, and so it
is described last. The conclusion to the paper highlights the perceived strengths and

weaknesses of expertise modeling in CommonKADS.
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8.2 The Inference Level in CommonKADS: Configurable
Inference Structures

When developing an expertise model in KADS, one of the first actions which a knowl-
edge engineer performed was to identify the task type of the KBS application (exam-
ples of task types include heuristic classification, assessment, and configuration). On
the basis of this decision, an inference structure was selected from KADS’ library of
task-related models. The next step was to instantiate the knowledge roles and infer-
ence actions in the inference structure to terms from the domain. However, it was
commonly found that this process required alterations to the structure of the generic
model, rather than merely instantiating its nodes; both the X-MATE and the IM-
PRESS projects demonstrated this. At the time of writing, CommonKADS’ proposed
solution to this problem is to decompose the inference structures in the library into
components, and to provide guidance on configuring an inference structure to a partic-
ular application. The guidance is provided by a set of questions which the knowledge

engineer must ask himself about the project.

Configurable inference structure components were defined for the Assessment task type
(see [116]). X-MATE’s task of deciding whether to grant mortgages was identified
as an assessment task, while the IMPRESS project classified the diagnosis faults in
plastic moulding machinery as a systematic diagnosis task. The X-MATE project will

therefore be used to provide the worked example for this section.

8.2.1 Using KADS on the X-MATE Project

The main contribution of KADS to the X-MATE project was the inference structure
for assessment tasks. This inference structure is shown in Figure 8.1. When the X-
MATE project was carried out, it was found that this structure needed to be changed
in at least one respect in order to reflect the task of mortgage application assessment:
the “ideal system model” in the top right-hand corner had to be changed to “several
typical non-ideal cases”. The reason for this change was that mortgage application
assessment is carried out by trying to identify danger signals in mortgage applications,

rather than identifying aspects of the application which match the profile of an ideal
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applicant. See [95] for more details.

Case description System model

Abstract case
description o Norms

Decision class

Figure 8.1: KADS generic inference structure for Assessment tasks

8.2.2 Using Configurable Inference Structures on the X-MATE Project

In CommonKADS, however, the basic model for Assessment tasks is simply the match-
ing of a case description with a system model to produce a decision (Figure 8.2). This
model is then extended by asking a series of questions about the application.? These
questions ask the knowledge engineer about each knowledge role. Depending on the
answer to each question, inference functions and knowledge roles may be inserted into

the inference structure. For example, if the question:

e Is the case description already abstract enough to be matched?

was answered NO, then an abstract inference function and an abstract case de-
scription knowledge role would be added between the case description knowledge

role and match case inference function.
For the X-MATE project, the questions were answered as follows:
e Is the case description already abstract enough to be matched?

YES. A mortgage application form contains all the requisite information in an

accessible form.

2 The full set of questions, and of consequent model components, can be found in [116].
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case

description system model

decision class

Figure 8.2: Basic inference structure for Assessment tasks in CommonKADS

e Is the system model already specific enough to be matched?
NO. As aresult of this answer, a specify inference function is added to the infer-

ence structure, and further questions are asked about the specification process.

— Is the system model suitable for use in the specification process (or does it
need to be focused because there is more than one type of system?)
It needs to be FOCUSED since there are 3 “system models”, which corre-
spond to the 3 main reasons for defaulting on mortgages. A focus inference

function is therefore added.

— Is the specification of the measurement system independent from the case
description?
YES. Therefore, the case description should provide input to the focus

inference function, not the specify inference function.

e Is the decision class the direct result of matching the case against the measure-
ment system (i.e. measuring the case)?
NO. The decision class depends on the sum of several matches of the case against

the measurement system.

e Is the decision class the result of a computation?

YES. As a result, a compute inference function and another specify inference
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function are included.
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The resulting inference structure is shown in Figure 8.3, and its instantiation to the

domain of mortgage application assessment is shown in Figure 8.4. Note that the

knowledge role that is outlined in bold lines represents static knowledge — that is,

the knowledge in this knowledge role is not changed during the inference process.

The distinction between static and dynamic knowledge roles is another innovation in

CommonKADS.

case
description

measure

decision
classes

system model

focussed
system model

measurement
system

set of norms

grading criteria

grade

Figure 8.3: Inference structure for Assessment tasks, configured to the task of mortgage

application assessment
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factors
indicating risk

acceptable
level of risk
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Figure 8.4: Configured inference structure for Assessment tasks, instantiated to the
domain of mortgage application assessment

8.2.3 Evaluation of Configurable Inference Structures

The inference structure in Figure 8.3 reflects the process of mortgage application assess-

ment much more accurately than the structure shown in Figure 8.1. The configuration

process takes little time, and can be done even by novice knowledge engineers (see

[141] or [178]). On the basis of these observations, configurable inference structures

are judged to be a valuable tool for knowledge modeling.
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8.3 The Domain Level in CommonKADS: Domain Mod-
els

Having configured an appropriate inference structure, the domain level of the exper-
tise model can be completed. While domain modeling was recommended in the KADS
methodology, the only real guidance given was on the analysis of transcripts from in-
terviews; it was suggested that the knowledge engineer should identify domain concepts
from the transcript, and if possible, structure these in a hierarchy. CommonKADS has

taken this idea and extended it to suggest the construction of:

e a domain ontology, which broadly corresponds to defining a number of dictio-
naries of domain terms. It is suggested that the knowledge engineer defines
‘dictionaries’ of

— concepts;

— properties;

relations;

— expressions (one or more statements of the form property = value, which

can be conjoined to produce rules).

e a number of domain models. Typically, there will be one domain model for each
relation identified: for example, if the relation causes(A,B) has been identified
then a causal domain model will be defined, which displays all the terms which

are related by the causes relation.

In addition, CommonKADS suggests that a model ontology and model schema are
defined. These represent the domain models at a more abstract level. The purpose
of these models is to provide an explicit link between the domain models and the
inference structure, and also to produce a representation which can be re-used in other
KBS applications which perform the same task type. The model ontology represents
the domain ontology at a more abstract level (for example, the relation subsystem-of
in the domain ontology might be represented as part-of in the model ontology); the
model schema represents all the domain models, with one node for each domain model,

using the terms defined in the model ontology.
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TECHNICIAN: Here’s a faulty part — as you can see, the fault is black specks,
on the back face of the moulding, on the sides of the moulding — all over,
in fact. [He scratches a speck with his pocket knife|. They’re quite
deeply embedded — not surface specks. That means that the problem is
being CAUSED by something in the material or in the process, rather than
external dust, or dripping water. [He speaks to the machine operator]. How
long has the job been running?

Figure 8.5: Part of a transcript describing diagnosis of plastic moulding machinery

Concepts (underlined) Properties and values (in italic font)
concept faulty part; property colour of specks
concept fault; black, etc
concept specks; property location of specks
concept contaminated material; value-set: all over, etc;
concept process fault; property depth of specks
concept external dust; value-set: deep, surface, etc;
concept dripping water; property duration of job

value-set: value-set: 2 days, etc;

Relations (in SMALL CAPS) Tasks (in bold font)
relation causes; task scratch specks with pocket knife;
task ask duration of job;

Table 8.1: Domain ontology elicited from the transcript shown in Figure 8.5

The analyses below were carried out using KADS TooL, which provides good support
for building domain ontologies and defining domain models. The KaDs ToOOL output

for these analyses forms the appendix to [97].

8.3.1 Domain Modeling for the IMPRESS System

Domain ontology: A transcript from an IMPRESS knowledge elicitation session
was used as the basis for the re-engineering exercise. Concepts, properties, relations
and expressions were identified, created in appropriate dictionaries and linked to the
transcript. KADS ToOOL also supports the identification of inferences and tasks in a
transcript; a number of tasks were identified in the IMPRESS transcript. A portion
of the transcript, with its associated dictionaries (i.e. domain ontology), is shown in

Figure 8.5 and Table 8.3.1.
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Domain models: When the identification of concepts etc. in the acquired knowledge
is complete, the next step is to build one or more domain models. The experience
gained on this project suggests that it is wise to use the inference structure as a guide
in deciding which domain models to build. The configured inference structure for the
IMPRESS system (Figure 8.6%), which is derived from the generic inference structure
for systematic diagnosis tasks?, suggests that the domain models might include the

following:

e a link between complaints (symptoms) and hypothesised faults (based on the
decompose inference function);

e a link between tests and observable properties (based on the select inference
function);

e a link between observable properties and hypothesised faults (based on the refine
inference function);

e a decomposition of a plastic moulding machine into its subcomponents (based on

the system model knowledge role).

All of these suggested relationships are supported by the domain ontology:

e The link between complaints and hypothesised faults is represented by the rela-

tion causes;

e The link between tests and observable properties is represented by the relation

observes;

e The link between observable properties and hypothesised faults is represented by

the relation indicates;

3 The rounded rectangle around measure indicates that “measure” is not, strictly speaking, an infer-
ence function; instead, it is a transfer task, (see section 8.3.3). This syntax is another innovation in
CommonKADS.

* This inference structure is intended to represent the configured inference structure for the IMPRESS
system. In reality, there is no guidance available for configuring inference structures for systematic
diagnosis tasks, and so this model has been based on actual experience with the original IMPRESS
project.
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e The decomposition of a plastic moulding machine into its subcomponents is rep-

resented by the relation part of.

Four domain models were therefore constructed to represent each of these relationships.
Part of the behavioural model (which represents the indicates relation) is shown in

Figure 8.7.°

complaint system model

set of

hypotheses Qdfy

set of tests e

test

measure

observable refine norm

Figure 8.6: Configured inference structure for IMPRESS

In addition, there are some concepts which have been identified, but are not yet found

in any domain model. This discovery requires a decision from the knowledge engineer:

5 Note that Figure 8.7 uses the semantic net representation which is usually used within KAps TooOL to
represent domain models. The CommonKADS book [147] recommends using UML object notation
for these diagrams.
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Figure 8.7: Part of the behavioural domain model for IMPRESS

indicates —————7f=

do these concepts need to be represented in a domain model, or can they safely be
ignored? In the case of the IMPRESS system, the extra concepts included several
concepts which referred to various states of the machine; from the transcript, it became
obvious that a number of tests required the machine to be in a certain state. As a
result, a new relation — requires — was created, and a domain model of preconditions

was built to represent the requirements of tests for certain states of the machine.

Model ontology and model schema: The model schema for IMPRESS is shown
in Figure 8.8. The terms used (i.e. the model ontology) can readily be seen to map each
node to one domain model, with the exception of manifestations, which are defined
as expressions on observable properties. The relations from the domain ontology are

considered to be sufficiently abstract to be used without alteration.

It can be seen from the model schema that the domain model of machine components,
which represents the decomposition of a plastic moulding machine, has no links with the
remainder of the domain model. This suggests that the use of an explicit decomposition
of the machine is not essential for the process of diagnosis — which was actually the

case in the original IMPRESS project. The model schema can therefore be used to



Knowledge Engineering: the Expertise Model 155

complaint  jell——— causes compornant

indicates
|
test |— ebsarves = manifestation }
requrires.
¥
slate of
machina

Figure 8.8: Model schema for IMPRESS

identify concepts which do not need to be built into the final KBS.

The nodes and relations in the model schema should map directly to knowledge roles
and inference functions in the inference structure. The addition of the domain model
of preconditions therefore necessitated a change in the inference structure. The final
top level inference structure for IMPRESS is shown in Figure 8.9. (The double ellipse
for the select inference function indicates that this inference function is expanded into

a more detailed structure at a lower level in the analysis).

8.3.2 Domain Modeling for the X-MATE Project

The domain model for the X-MATE project turned out to be surprisingly simple. The
domain ontology contained many rules but hardly any relations. As a result, only
two domain models were identified: a hierarchy of professions (since certain categories
of professions are more prone to income fluctuations than others), and a hierarchy of
risks (where the top level nodes in the hierarchy represent the “typical non-ideal cases”
identified in the original X-MATE project). The development of the model ontology
proved useful, because it helped highlight the fact that different properties had to be
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Figure 8.9: Final instantiated inference structure for IMPRESS

acquired from different sources — a factor which was a key to the design of the X-MATE
system, because the different sources required widely different amounts of effort from
the user of X-MATE. This necessitated a change to the inference structure: a select
inference action and a selected data source knowledge role were added between the

various data sources knowledge role and the measure transfer task.

The final inference structure for X-MATE is shown in Figure 8.10, which follows the
discussion of the task level. This is because the development of the task level for

X-MATE resulted in some knowledge roles being identified as static knowledge roles
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rather than as dynamic knowledge roles. Discussion of this transformation can be

found below.

8.3.3 Evaluation of Domain Modeling

Performing the task of domain modeling was an enlightening exercise. The elicitation
of a domain ontology and the subsequent construction of domain models was found to

be a valuable exercise for the following reasons:

e It provided models of various aspects of the domain. This dissection of the
domain, and the “cross-checking” effect of using the same concepts in more than
one domain model, is an effective way of checking that all the necessary knowledge

has been acquired.

e It provides a “theory” of the domain which is consistent, (hopefully) complete,

and which has inter-relationships explicitly represented.

e [t provides a structured approach to making alterations to an inference structure
(over and above those made during the configuration process) when instantiating

the inference structure to the domain.

e It provides (and possibly uses) re-usable models of the domain.

During domain modeling, however, some difficulties arose which are worthy of com-
ment. The first difficulty was simply the sheer number of concepts which can be found
in a transcript. The domain modeling exercise was carried out using one transcript of
a protocol analysis session, which contained only 600 words, and yet it produced 50
concepts and 25 other items in the domain ontology. Since an average human being
can speak at about 10,000 words per hour (see [115]), the time required to identify
concepts in a single transcript could potentially be very large indeed®. The use of
KaADs TooL (as opposed to using a highlighter pen and paper) makes this task feasi-
ble, but it can still be onerous. A possible solution to this problem would be to use

structured knowledge acquisition techniques such as the laddered grid, the repertory

6 This is acceptable if all these concepts are to be used in the final KBS, but at this stage of the
modeling process bottom-up assembly is being employed, and so it is not known which concepts will
ultimately be used.
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grid, or card sorting ([47]), but none of these are likely to acquire all the necessary

knowledge ([23]), and none are currently supported by Kaps TooL.

The second difficulty affects the process of domain modeling itself. The development
of an inference structure provides guidance to a knowledge engineer on which concepts
and relations can be expected in the domain, but this is not always sufficient guidance
on determining the ontological type of a fragment of acquired knowledge. For example,
if the transcript indicated that the complaint may be due to a fault in the thermocou-
plings of the plastic moulding machine, the choices for representation in the domain

ontology might include:

concept thermocouplings-faulty;

concept thermocouplings
property faulty

value-set yes, no;

concept thermocouplings
property status

value-set OK, faulty;

property thermocouplings-status

expression thermocouplings-status = faulty;

An attempt has been made to develop heuristics to help in ontological assignment (e.g.
“If the item can have properties of its own, then it is a concept; if it cannot have
properties of its own, it is a property”), but these heuristics have proved difficult to
apply, largely because different domain models present different views on the knowledge

base ([141]).

For the domain modeling of IMPRESS, the inference structure provided sufficient
guidance to make most ontological decisions. However, the ontological assignment
of tests presented considerable difficulties. In the sample application provided with
Kaps TooL (diagnosis of faults in a printer), tests are considered to be transfer
tasks (tasks in which the user or another external information source transfers knowl-

edge to the knowledge base). This is also true of the IMPRESS project — tests obtain
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data about the plastic moulding machine, and this data is reported to the KBS. How-
ever, CommonKADS does not allow tasks to have properties — and yet a key part of
the reasoning in IMPRESS is to decide which test to perform next, on the basis of
the time required for that test and the explanatory power of the properties which are
measured by the test. In order to represent this, tests had to be described both as

tasks and as concepts, which is far from ideal.

A less serious version of this problem can be seen from the above example of repre-
sentation of thermocouplings. It was decided that the information about faulty ther-
mocouplings would be represented as a concept, since thermocouplings-faulty is a
fault, and also as a property, because thermocouplings-status can be checked by

the technician).

A final difficulty is that domain modeling is only intended to represent semantic rela-
tionships, hence the use of semantic nets in KADS TOOL to represent domain models.
Semantic networks only allow a given node to appear once in any one model. This is a
problem when using CommonKADS to model non-semantic relationships. An example
can be found in [178], where modeling of molecular structures using KAps TOOL proved
difficult because organic molecules may contain many carbon atoms, and Kaps TooL

insisted that each atom was represented using a different concept.

On balance, the construction of domain models and a model schema is deemed to be
a useful activity when constructing a KBS. The knowledge engineer should, however,

be aware of the potential difficulties.

8.4 The Task Level in CommonKADS: Problem Solving
Methods

The third level of expertise modeling in CommonKADS is the task level. Com-
monKADS requires a task definition to be written, which is then instantiated into
a task body using one of a number of problem solving methods. For example, if the
task was diagnosing faults in a car engine, the problem solving method chosen might
be “generate (all possible faults) and test (each one)”. The task specification can be

derived from the inference structure (or rather, from the CML description of the infer-
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ence functions — see the appendix of [97] for a worked example); the major decision at

this stage is which problem solving method to use.

Problem solving methods are a prescription of the way in which a certain class of task
definitions can be satisfied. They specify the relation between a task definition and a
task body, by mapping the task specific terms on to the (generic) terms used in the
method description [191]. Tt follows that the choice of the most appropriate problem
solving method is made by comparing the task definition with the method description

of each problem solving method.

8.4.1 Choosing a Problem Solving Method for IMPRESS

The top level task definition for the IMPRESS system is given below, using CML and
first order predicate logic. (Note that capital letters such as H and M are used to

represent sets of data.)

Task definition for IMPRESS:

task machine-fault-diagnosis(c, f)

goal: Find a fault f that explains a given symptom c
A all manifestations observed indicate f
A no other fault is indicated by all the observed manifestations
roles:
case-initial-input: c: complaint
case-user-input: M: set of manifestations
solution: f: fault
task-specification:
covers(f, c)
A (V m:manifestation indicates(m,f))
A —(3 f2:fault A covers(f2,c)
A (V M:manifestation indicates(m,f2)))
F solution(f);
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covers(f, ¢)

A (V m:manifestation indicates(m,f))

A (3 f2:fault A covers(f2,c)

A (V m:manifestation indicates(m,f2)))

A (3 t:test observes(t,m) A indicates(m,f))

F perform(t);

The task specification states that fault f is a solution if:

e f covers (i.e is capable of causing) the observed complaint;
e all the manifestations (observed properties) indicate that f could be true;

e there is no other fault for which the above two conditions are true.

However, if there are still two or more faults under suspicion, the task specification

states that a test should be performed to investigate one of those faults.

The knowledge engineer’s task now is to choose a problem solving method. In this
example, the choice has been narrowed down to two options: generate and test or

confirmation by exclusion. The method definitions for these are given below.

Problem solving method: generate and test:

problem solving method generate and test
goal: G: FIND(s:solution)
task-characterisation:
criterionl(s) A criterion2(s) F solution(s)
control-roles:
¢: complaint
h: hypothesis — solution
sub-tasks:
generate(complaint, hypothesis)
test(hypothesis)

method-definition:
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A1l: V x solution(x) F generate(x)

A2: V x generate(x) A test(x) - solution(x)

A3: V x generate(x) I criterionl(x)

A4: V x test(x) I criterion2(x)

A1 N A2 A A3 N A4 F<P1> T s solution(s)
task-expression-schema P1

REPEAT

generate(c,h)
UNTIL test(h)

RESULT(h)

Problem solving method: confirmation by exclusion:

problem solving method confirmation by exclusion
goal: G: FIND(s:solution)
task-characterisation:
criterionl(s) A —3 criterion2(s) F solution(s)
control-roles:
¢: complaint
h: hypothesis — solution
H: set of hypotheses
M: set of manifestations
n: number of hypotheses in H
sub-tasks:
generate(complaint, set of hypotheses)
test(hypothesis)
refine(set of hypotheses)
compute(number of hypotheses in set of hypotheses)
method-definition:
A1l: V x solution(x) F generate(x)
A2: V x generate(x) A set(manifestations) F solution(x)

A3: V x generate(x) A set(manifestations) F criterionl(x)
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A4: V x generate(x) A set(manifestations) F criterionl(x)
A1 N A2 A A3 N A4 F<P2> T s solution(s)
task-expression-schema P2
generate(c,H)
REPEAT
test(h) — M
refine(M, H)
UNTIL

n<=1

IMPRESS task body: It is clear that these two method definitions are very similar.
Both can be applied if the task specification can be interpreted as a conjunction of two
criteria, and both involve generating and repeatedly testing hypotheses. However, the
task characterisation of the method for confirmation by exclusion indicates that the
method is dependent on the non-existence of the second criterion, which is a key
feature of the task specification. Further examination of the task reveals that it fulfils
all the statements of the method definition, and so confirmation by exclusion is chosen

as the problem solving method for IMPRESS. The resulting task body is as follows:

IMPRESS task body:

task body

sub-goals:
G1: FIND all fault states h with covers(h,c)
G2: TEST a manifestation m such that h € H

A indicates(m, h)
G3: REFINE the set of hypotheses by removing all h for which
indicates(—m, h)

sub-tasks:
G1: generate(c,H)
G2: test(h — m)
G3: refine(m, H)
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control-roles:

hypothesis h: fault

manifestation m: manifestation

number of hypotheses in H n: positive integer
task-expression

generate(c,H)

REPEAT
test(h) — m
refine(m, H)

UNTIL

n<=1

8.4.2 Choosing a Problem Solving Method for X-MATE

The task modeling for X-MATE produced a very simple task structure. The reason
for this is that much of the knowledge required for mortgage application assessment
— the specification of a measurement system, the specification of risk indicators, and
so on — has been compiled into a set of rules. In CommonKADS terminology, much
of the inference has been done in advance, producing knowledge roles which are now
static knowledge roles, from the viewpoint of the KBS. Figure 8.10 shows an inference
structure which indicates the processing which is actually performed by X-MATE.
The obvious problem solving method for a problem in which matching is the critical
inference step is to use rule-based pattern matching. CommonKADS does not yet
provide any guidance on choosing an appropriate rule-based paradigm (e.g. forward
chaining vs backward chaining); some heuristic guidance can be found in the “probing

questions” approach of [104] (see also appendix C).

8.4.3 Evaluation of Task Modeling

It can be seen that the task body for IMPRESS shown above provides a much more
detailed prescription for the design phase of CommonKADS than the task structure
in the KADS methodology. The use of problem solving methods is therefore recom-

mended. The main difficulty is that the library of problem solving methods currently
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contains just one method (generate and test, specified in [191]) — the method for confir-
mation by exclusion was defined in the course of this project, thus doubling the current
size of the library! It is therefore unsurprising that little is known about techniques for
choosing between similar problem solving methods. It is hoped that such techniques
will be developed in due course. (For guidance on development on problem solving

methods, and a theoretical underpinning of them, see [4]).
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Figure 8.10: The actual inferences performed by X-MATE

8.5 Conclusion

The process of re-engineering two existing KBS applications into CommonKADS has

shown that the refinements introduced to expertise modeling by CommonKADS are
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all useful techniques, and are recommended for future KBS projects. However, both
the guidance on configuring inference structures and the library of problem solving
methods are currently very sparse, and need to be expanded greatly for CommonKADS
techniques to be widely usable. Domain modeling in CommonKADS has undergone the
greatest transformation of all from KADS; it encourages greater understanding of the
domain, provides explicit links with (and justification for adaptations to) the inference
level, and aids in the development of re-usable domain models. Domain modeling can
be a big task, however; it would be made easier by the provision of some guidance on

ontological classification.

Having reviewed the Expertise model in detail, the next two chapters look at research
that I have carried out to extend the library of generic inference structures that is
available to assist with developing the Expertise model. The first chapter looks at a

model for planning tasks, and the second at a model for design tasks.



Chapter 9

An Inference Structure for
Issue-based Planning!’

9.1 Introduction

The key element in the success of CommonKADS is the library of generic inference
models which can be applied to tasks of specified types. These models suggest the
inference steps which take place in a typical task of that type, and the roles which are
played by domain knowledge in the problem solving process. For example, the generic
model for a systematic diagnostic task (e.g. [97]) includes inference steps such as de-
composing a set of possible faults, and matching observed values against expected
values. This model also shows that the set of possible faults plays two roles in the
diagnostic process; firstly as a part of a model of the behaviour of a faulty system, and
secondly as hypothesised causes of the symptom(s) currently being observed. These
generic models can either be used in a top-down manner, as frameworks for knowl-
edge acquisition (e.g. [95]), or they can be used to verify the completeness of models

developed bottom-up by analysis of the domain (e.g. [37]).

CommonKADS’ generic model for diagnostic tasks is well-developed and well-understood.
However, the generic models for some task types are not as well developed. This is
true for tasks involving knowledge-based planning; while CommonKADS does give

some guidance in this area [177], this guidance focuses on domain models, rather than

! Originally published as CommonKADS Models for Knowledge Based Planning in the pro-
ceedings of AAAI-96, the Nineteenth Annual Conference of the American Association for Artificial
Intelligence, Portland, Oregon, July 1996.

167
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inference models. Since knowledge-based planning is an important commercial appli-
cation of Artificial Intelligence, there is a clear need for the development of generic

models for planning tasks.

Many of the generic models which currently exist have been derived from existing
AT systems, whose operation has been modeled and purged of their domain content.
These models have the strength of proven applicability. There are a number of well-
known and well-tried Al planning systems in existence; one of the best known is the
Open Planning Architecture (O-Plan) [170]. O-Plan, which was developed by AIATI’s
Knowledge Based Planning and Scheduling Group, provides a generic domain inde-
pendent computational architecture suitable for command, planning and execution
applications. O-Plan makes use of a variety of Al planning techniques, including a
hierarchical planning system which can produce plans as partial orders on actions
(cf. [145]); an agenda-based control architecture; incremental development of “plan
states”; temporal and resource constraint handling (cf. [184]); and a number of data
structures used in Nonlin [167] which was the forerunner of O-Plan. It therefore seemed
that there would be considerable benefit in using O-Plan as a basis for generating a

CommonKADS generic model for planning tasks.

The purpose of this paper is to describe the CommonKADS models which were devel-
oped from O-Plan. The paper also briefly describes the verification of these models
in the context of a real-life planning task: the assignment and management of Search

and Rescue operations by the Royal Air Force.

The format of the paper is:

A brief description of the CommonKADS methodology;

A brief description of O-Plan, and how its components relate to the Com-

monKADS view of knowledge representation;

A description of the key planning models which were derived from O-Plan;

A description of how these generic models were verified during the development

of a KBS which supported Search and Rescue planning.
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9.2 Knowledge Representation in CommonKADS

CommonKADS is the name of the methodology developed by the KADS-II project,
which was funded under the CEC ESPRIT programme [149]. It is a collection of
structured methods for building knowledge based systems, analogous to methods such
as SSADM for software engineering. CommonKADS views the construction of KBS as
a modeling activity, and so these methods require a number of models to be constructed
which represent different views on problem solving behaviour, in its organisational and

application context. CommonKADS recommends the construction of six models:

A model of the organisational function and structure. The key elements of this
model are business processes, structural units, business resources and the various

relationships between them.

e A model of the tasks required to perform a particular operation. The key ele-
ments in this model are the tasks required for a single business process, and the

assignment of tasks to various agents.

e A model of the capabilities required of the agents who perform that operation.
The key elements of this model are agents (human or automated) and their

capabilities.

e A model of the communication required between agents during the operation.

The key elements of this model are transactions.
e A model of the expertise required to perform the operation (see below).

e a model of the design of a KBS to perform all or part of this operation. The key
step in a CommonKADS design model is (usually) a functional decomposition of

a knowledge-based process into its component functional units.

The key model — the expertise model — is divided into three “levels” representing dif-

ferent viewpoints on the expert knowledge:

e The domain knowledge which represents the declarative knowledge in the

knowledge base. The key elements in domain knowledge are concepts, proper-
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ties of concepts, and relations. Tasks can also be considered to be part of the

domain knowledge in some circumstances.

e The inference knowledge which represents the knowledge-based inferences
which are performed during problem solving. Inference knowledge is represented
using inference functions (inferences which must be made in the course of prob-
lem solving) and knowledge roles (domain knowledge which forms the input and

output of the inference functions).

e The task knowledge which defines a procedural ordering on the inferences. The
key elements at this level are tasks and their decomposition; in this respect, this

level is very similar to the CommonKADS task model.

The contents of these three levels can be defined graphically, or using CommonKADS’
Conceptual Modeling Language [19] [46] [148]. For a worked example of the develop-

ment of each of these three levels, see [97].

CommonKADS models are typically developed concurrently with the acquisition of
knowledge; initial knowledge acquisition is used to populate higher level models (e.g.
the organisational or task models) and then these models may be used to document,
structure, or guide knowledge acquisition. Partially completed models and/or generic
models may even be presented to the experts to allow them to comment on the appro-
priateness of the models; this technique is similar to the “rapid prototyping” (iterative
refinement) approach which was popular in the early days of KBS development. The
key difference is that the CommonKADS models are being iteratively refined, rather
than an implemented system; this removes many of the problems which were associated
with “rapid prototyping” of a KBS, such as lack of documentation, and difficulties in

identifying and justifying design decisions.

For more details on the contents of all the models described above, see [46].

9.3 O-Plan: The Open Planning Architecture

The development of open planning and scheduling systems seeks to support incremental

extension and change, and to facilitate communication between processing agents (both
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automated and human). The need to support inter-process communication has become
apparent from practical experience; unforeseen events or consequences of concurrent
activities can have a major effect on planning, and so the role of the human system
operator is crucially important. O-Plan has therefore been designed with an agent-
oriented architecture in which job assignment, planning and execution are separated
[170], and communication between agents is conducted using the same representations
that the planner uses. This separation not only introduces flexibility into the planning
process, but also fits well with CommonKADS’ multi-viewpoint approach to knowledge

representation.

O-Plan is a multi-faceted system, and much has been written about its different features

(e.g. [169] [38] [53]). The main components of O-Plan are:

Domain information;

Plan/schedule states;

Knowledge sources;

Controller;

Several support modules, including constraint managers.

The remainder of this section describes how these components relate to the different

models proposed by CommonKADS.

9.3.1 Domain information

The best model in CommonKADS for representing domain information is the domain
level of the expertise model. This model normally contains declarative information
about physical objects, states which objects can be in, and relationships between ob-
jects; objects and states are represented using concepts and properties, while relation-
ships are represented by relations. However, domain information in O-Plan includes
a description of the activities which can be undertaken to achieve various planning
tasks, as well as information on physical resources available to the planning process

(e.g. helicopters, lifeboats, hospitals), and possible states of those resources. The need
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to represent activities in the domain information implies that the corresponding Com-
monKADS domain knowledge will include many tasks - procedures which can or must
be carried out as part of a plan to achieve an objective.? From this, it becomes clear
that a key factor in knowledge-based planning is the ability to represent activities in a
declarative form, so that these activities can be reasoned about. Using this paradigm,
the constraints between activities can be represented as relationships between tasks in

the CommonKADS domain model.

9.3.2 Plan states

Plan states have three components: a plan agenda, the planning entities, and plan
constraints. The agenda consists of issues to be resolved, such as getting a resource
into a particular state; planning entities typically consist of planned activities which
change the state of resources; and plan constraints provide detailed domain information
which constrains further planning, such as the availability of resources. If the Search
and Rescue planning task (which is described in section 9.5) is taken as an example,
then an issue might be “a helicopter must be present at the site of the operation”;
a planning entity might be “scramble helicopter no. 007 immediately”; and a plan
constraint might be “helicopter no. 007 only has enough fuel for 2 hours’ flying”. 3

This tripartite breakdown of plans corresponds to the <I-N-OVA> (issues, nodes and

constraints) model described in [168].

All these components map to knowledge roles in the inference level of CommonKADS’
expertise model; in other words, they consist of domain knowledge which plays a par-
ticular role in problem solving. As a reminder, domain knowledge consists of possible
activities, physical resources, possible states of those resources, and relationships be-

tween resources and states. At the inference level:

e Issues consist of one or more resource states (which need to be achieved), and

form an input to a particular planning cycle;

2 CommonKADS and O-Plan ascribe different meanings to the term task. For the purposes of this
paper, O-Plan “activities” and CommonKADS “tasks” can be considered to be broadly equivalent.

3 Tt is convenient to consider these three components separately when making the comparison with
CommonKADS, even though all of these components can be thought of as constraints on future
planning.
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e Planning entities in the plan consist of activities, and form the output of a

planning cycle;

e Plan constraints consist of both the states of physical resources, and of rela-
tionships between planned activities. They provide an intermediate input to a

planning cycle.

9.3.3 Knowledge sources

The knowledge sources in O-Plan address specific planning requirements through the
application of plan state modification operators. These include expanding an activity
into sub-activities; choosing activities to achieve desired domain states; and selecting

resources to perform activities.

These knowledge sources map to inference steps (in the inference knowledge of the
Expertise model) in the CommonKADS framework. The knowledge sources transform
the components of the plan state into other components; for example, an issue from
the agenda which is expanded is likely to produce new issues. Since the components of
the plan state have been identified as CommonKADS knowledge roles, the knowledge

sources must correspond to CommonKADS inference steps.

9.3.4 Controller

Throughout the plan generation process, O-Plan identifies outstanding issues to ad-
dress; these issues are then posted on an agenda list. The controller computes the
context-dependent priority of the agenda items and selects an item for processing.

This provides the fundamental opportunism which is inherent in any planning task.

The knowledge used by the controller could be represented in CommonKADS at the
task level of the Expertise model (with a few extensions to represent opportunism). The
task level specifies ordering on the inference level, and also identifies input and output.
For O-Plan, the task knowledge performs reasoning which dynamically determines an
ordering on the inference knowledge; this is eminently sensible for any task which
involves reacting to a dynamically changing situation, such as planning, scheduling, or

control tasks.
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9.3.5 Support modules

Support modules, such as database management facilities or context-layered access to
the plan state, do not map into CommonKADS knowledge representation; they are
either considered as external agents or extra requirements which have to be considered
when the CommonKADS Design model is produced. However, some support modules
in O-Plan, such as the constraint managers (which track the availability of resources,
the temporal constraints on activities, and the relational constraints on objects), have
a considerable effect on the planning cycle. The constraints themselves can be repre-

sented as knowledge roles in the inference knowledge of the Expertise model.

9.4 Generic CommonKADS models for Planning

It can be seen from the section above that the knowledge representation structure used
in O-Plan corresponds fairly closely with the knowledge representation framework used
by CommonKADS:; specifically, by the CommonKADS Expertise Model. This made
it possible to subdivide the next task in this project, which was to derive generic
CommonKADS models for planning from the architecture of O-Plan. It was decided
to focus on deriving generic inference models (“inference structures”) for the inference
level of the CommonKADS Expertise model, since, as noted in section 9.1, these models

often provide most assistance to a KBS developer.*

The derived inference structure can be seen in Figure 9.1. A typical “run” through the

inference structure would see the following operations taking place:

e The current plan state is notionally decomposed into three components: the
agenda of issues which are to be resolved, the current plan entities and the
availability of resources. This decomposition does not alter any of these
structures; it simply makes explicit the role which each component of the plan

state plays in the problem solving process. These roles are described in [169].

* O-Plan can be used for a variety of tasks, including but not limited to planning. For the sake of
the current project, it is useful to specify an inference structure which represents the operation
of O-Plan as a planner. This inference structure is designed to make explicit the processes which
O-Plan goes through when performing planning tasks.
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Figure 9.1: Top level inference structure for the O-Plan planner

e From the agenda of issues, at least one issue is selected for resolution. The choice
of an issue depends on a number of factors monitored by the controller, such

as the available processing capabilities, the knock-on effect on other issues, etc.

e Pattern matching between issues and possible activities is used to find a way
of resolving the current issue, perhaps by adding activities to the plan, or by
creating new issues. Three ways of resolving issues are shown in Figures 9.2 to

9.4 below.

e The plan is updated with the modified plan state and any new issues that have

arisen.

Figures 9.2 to 9.4 show three of O-Plan’s “knowledge sources”, represented as Com-
monKADS inference structures. These knowledge sources are each capable of resolving

an outstanding issue, but in different ways. The methods used are:

e Adding a new activity, or further constraints on currently planned activities, in

order to resolve the issue (Figure 9.2);
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e “Backward chaining”: adding new issues to the plan which, if resolved, will allow

the current issue to be resolved (Figure 9.3);

e Expanding the issue into a number of sub-issues (Figure 9.4). °

In CommonKADS terms, these three knowledge sources constitute different possible
decompositions of the match-3 inference step. The three decompositions are described

in more detail in the following paragraphs.

Figure 9.2 represents the resolution of an issue by condition satisfaction: i.e. the
conditions for an activity, that is capable of fulfilling the outstanding issue, are found
to be matched. Conditions typically consist of one or more resources being in one
or more states. For example, if an issue in the plan was to arrange transport for a
mountain rescue team from Kinloss to Ben Nevis, then one possible activity (discovered
by match-3.1.7) might be to transport the team by helicopter. The conditions of this
activity might be that the mountain rescue team is present at a helicopter landing
site, and an airworthy helicopter is also present at that site; constraints determined
by the availability of resources and currently planned activities will determine if these
conditions can be fulfilled (match-3.1.14). If the conditions of an activity can be
fulfilled, and that activity is selected as the best method of transporting the team

(select-3.1.8), then the plan is modified and the issue is removed from the agenda.

It is possible that there may be more than one way of matching the conditions of an
activity; for example, there may be more than one helicopter available. In that case,
O-Plan automatically selects one option which is used for further depth-first reasoning,
and maintains the other Possible modified plans as choice points in case backtracking

is required.

5 The numbering system used for inference steps in these inference structure diagrams is based on
the numbering scheme used in the IDEF3 method for process modeling. In the top level diagram,
every inference step is given a single unique number. At lower levels, inferences are numbered z.y.z,
where:

— 1z is the unique number of the “parent” inference step;

— y is the number of the decomposition. An inference usually only has one decomposition, but if
there are alternative ways of achieving an inference step then there may be multiple decomposi-
tions;

— zis the unique number of this inference step.
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Figure 9.3 represents the resolution of an issue for which there is no matching ac-
tivity whose conditions are currently satisfied (as determined by match-3.2.9). The
approach taken by O-Plan in this case is a form of “backward chaining”; a search is
made for other activities which, if added to the plan, will create the right conditions
for an activity to be added that fulfils the current issue (specify-3.2.15). If a suitable
activity is found, then the performing of this activity is added to the agenda of issues

(specify-3.2.10). This is known as achieving in O-Plan.

Figure 9.4 represents the resolution of an issue by expansion. If the current issue
matches with an activity (match-3.3.11) which can be decomposed into sub-activities,
then the current issue is removed from the agenda and appropriate sub-issues are cre-
ated and added to the agenda (decompose-3.3.16. For example, if “move mountain

2

rescue team to pickup point” was an issue, then this might be expanded into “contact

team”, “instruct team”, and “confirm team have arrived at pickup point”.

In summary, these inference structures represent the core activities of the O-Plan
planning process. The system-independence of these inference structures allows them
to be used as generic models of the inference processes required for knowledge-based

planning.®

9.5 Verifying the generic planning models in the context
of Search and Rescue planning

In the previous section, a set of inference structures were derived from the O-Plan ap-
proach to planning, and were proposed as generic inference models for knowledge-based
planning tasks. Despite the fact that O-Plan is intended to be a generic architecture
for implementing different types of knowledge-based planning systems, this proposi-

tion is a strong one, because there is a wide variation in task types which fall under

6 There are also many controls on efficiency and processing capability implemented within the O-Plan
Controller; these are not considered here.
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the category of knowledge-based planning. Knowledge-based planning tasks may vary
in the type of feedback data which is available to the planner” [176]; in the depth of
search required; and in the type of support which a human user needs (fully automated

planning vs. monitoring and support of human planning).

9.5.1 Inference modeling for Search and Rescue planning

In order to verify the claim that the inference structure presented in the previous sec-
tion can act as a generic inference model for planning tasks, it is therefore important
that these models should be seen to be appropriate for real-life planning tasks. One
such task is that of planning the use of resources in a Search and Rescue incident.
A project entitled “Acquiring and Using Planning Knowledge for Search and Rescue”
[37] was carried out jointly by the University of Nottingham and ATAI, and produced a
prototype KBS for supporting Royal Air Force (RAF) personnel in their allocation and
management of resources such as Search and Rescue helicopters, RAF mountain res-
cue teams, and RAF Nimrod aircraft. The responsibilities of the Rescue Co-ordination
Centres of the RAF include support and co-ordination of civilian emergencies; this in-
cludes direct responsibility for the allocation, application and co-ordination of military
resources, as well as co-ordination with a number of civilian emergency authorities such
as fire, police, ambulance, coastguard and civilian mountain rescue teams. A rescue
incident can vary in scale from retrieving a walker with a sprained ankle to handling a
large aircrash; the Rescue Co-ordination Centres may have to manage several incidents
simultaneously, each requiring one or two aircraft as well as one or more other search

teams or emergency services.

Knowledge acquisition and high-level task modeling for this system are described in
[37]; the result of these activities was to design and develop a system which sup-
ported RAF personnel in making planning decisions, in remembering all the tasks
which needed to be undertaken, in deciding what to do next, and in logging actions
taken. The system was not designed to be a ‘closed-loop’ planner, which would gen-

erate a complete plan with little user consultation; during knowledge acquisition, it

7 Valente classifies planners as linear, non-linear, reflective or skeletal according to the use which they
make of state change data and plan assessment knowledge.
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was noted that the users always maintained control over the planning process, to the
extent that planning is sometimes deliberately delayed until more domain information
has been obtained. If the generic inference models which were derived from O-Plan can
be shown to be applicable to a system which, unlike O-Plan, is not a closed-loop plan-
ner, then the generic models should be applicable to a wide range of knowledge-based

planning tasks.

The approach which was taken to the design of the KBS for search and rescue support
was to develop a domain-specific inference structure in a bottom-up fashion based on
structured interviews, video tape analysis, protocol analysis, incident documentation
and structured analysis of specific incident cases [37]. This inference structure can be
seen in Figure 9.5. Although Figure 9.5 looks very different from Figures 9.1 to 9.4 at
first sight (partly because it uses the terms “goal” and “action” instead of “issue” and
“activity”), there are some common components between the two. Figure 9.5 shows
that planning for Search and Rescue operations takes place by choosing an appropriate
“template plan”, which contains a list of goals (issues) to be satisfied; selecting one
of these goals; either matching the goal to an action, or expanding it into a set of
sub-goals, which are then individually matched against actions; and then adding all
the actions into the current plan. Both Figures 9.1 to 9.4 and Figure 9.5 represent the
matching of issues against possible activities (match-3 in Figure 9.1 and match-1
in Figure 9.5); both allow issues to be decomposed as part of the planning process
(decompose-3.3.16 in Figure 9.4 and decompose in Figure 9.5); and both identify
selection of the next issue as an important inference step in the planning process

(select-2 in Figure 9.1 and select in Figure 9.5).

The generic inference structure was then used to critique the domain-specific inference
structure. The result of the comparison showed that the inference structure derived

from O-Plan:

e had aricher representation of techniques for matching issues to activities (match-
1 in Figure 9.5 is replaced by the whole of Figure 9.2; decompose and match-2
in Figure 9.5 are replaced by Figure 9.4; and there is no representation in Figure

9.5 of the “achieving” represented in Figure 9.3);
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e identified some important knowledge roles (resource constraints, and the library
of possible activities) which were not explicitly represented in the domain-driven

inference structure.

while the domain-derived inference structure highlighted knowledge which is particu-
larly important in the Search and Rescue domain. This primarily consisted of the use

of an outline plan template as a framework for planning.

The next stage of modeling is to determine whether the model components which
are present in the generic model but do not appear in the domain-derived model are
in fact applicable to this planning task. It was easy to determine that the task of
Search and Rescue planning is sometimes constrained by available resources (there are
only a few helicopters and aircraft available to them), and that the planners select
from a library of possible activities when deciding how to fulfil an issue (this is most
noticeable when different ways of transporting a casualty to safety are considered).
Further investigation also determined that there was (occasionally) a requirement to
“achieve” a state of affairs by introducing other activities earlier in the plan. This often
occurs when the planners want to use facilities controlled by other authorities, such as
lifeboats; in these situations, the facilities cannot be used until permission has been
granted by the controlling authority. The activity of “scramble lifeboats” therefore
requires the activity of “obtain permission” to be performed before its conditions can

be fulfilled.

The conclusion which can be drawn is that the generic inference models specified in
Figures 9.1 to 9.4 are adequate for representing the task of Search and Rescue planning,
once a few domain-specific adaptations have been made® ; more importantly, the use of
a generic inference model acts as a completeness check on acquired procedural knowl-
edge, by prompting a knowledge engineer to consider possible aspects of the planning

process which may not have been identified during initial knowledge acquisition.

8 Such adaptations are a common feature of KBS projects which use CommonKADS (see [116], for
example).
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9.5.2 Implementation

In the course of developing the Design Model, it became apparent that there were two
options for implementing the planner, using the CLIPS KBS development package.
The first option was to implement the acquired issue/activity matching rules directly
in CLIPS; the second option was to encode these acquired rules and their conditions
as possible activities, as is done in the domain knowledge of O-Plan. These possible
activities would effectively be declarative rules (i.e. concepts stating that if this activity
was added to the plan, which could only occur IF certain pre-conditions were fulfilled,
THEN certain changes would be made to the plan state), which would then be activated
by a set of meta-rules. In the former approach, planning is achieved by running any or
all rules which are applicable; in the latter approach, planning consists of running rules
which compare the conditions of possible activities with the current state of the world.
If the conditions of an activity are matched, then that activity may be introduced
into the plan; if the conditions are not matched, the system can reason about what is

required in order to permit that activity to be introduced to the plan.

The second approach was chosen. A set of meta-rules were written in CLIPS, which
match a set of possible activities (encoded as instance objects within CLIPS’ object-
oriented language) against data about the Search and Rescue incident and the avail-
ability of resources (also represented as instance objects). This meta-rule approach
enables a virtual planning architecture to be implemented within the CLIPS language.
The identification of this approach was a direct consequence of the use of generic infer-
ence models as a basis for system design, and the structure of the implemented system

reflects the structure of the inference models which were developed.

The system which was constructed was therefore based on an inference structure which
incorporated the best of both worlds; it had all the matching capabilities and inputs of
the generic inference structure, as well as the selection of a “template plan” specified by
the domain-derived inference structure. The structure of the system was based on the
inference structure (with additional transformations and design decisions made using
the CommonKADS Design Model); the reasoning component of the system consisted

of a number of objects representing possible activities, another set of objects repre-
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senting issues on the agenda, and a set of rules which matched issues against possible
activities. The system also used objects to represent resources (helicopters, mountain
rescue teams, etc), and to represent the plan itself, with relations between objects
specifying the order of planned activities. User interfaces included a PERT chart-style
viewer of the planned activities, a TO DO list showing issues on the agenda, and a
“status board” showing the current commitments of resources. For further details, see

[37).

9.6 Future work

We have showed that a set of CommonKADS inference models can be derived to
represent the workings of the O-Plan system. We have also seen that these models can
be beneficially applied to the modeling of a real-life planning task, identifying important
aspects of the task which were not immediately obvious from acquired knowledge. We
can therefore argue that the consideration of these generic models will be beneficial to
anyone constructing a planning system, for these models may highlight aspects of the

problem which should have been considered.

However, this paper does not claim that the generic inference models highlight every
aspect that needs to be considered in any planning task. Knowledge-based planning
is a wide-ranging field, using a number of different approaches. While O-Plan can
perform a wide range of planning tasks (and some other tasks as well), it is based on a
particular approach to planning; the inference models derived from O-Plan inevitably
reflect the approach. If the generic models shown in Figures 9.1 to 9.4 included control
information, then the relationship between O-Plan and the generic models would be the
same as the relationship between MYCIN and the expert system ‘shell’ derived from
it, E-MYCIN. The deliberate exclusion of control information from CommonKADS
inference models helps to lift the generic models to a slightly higher level of abstraction
than E-MYCIN, but these models cannot be considered to be a generic model for all

planning tasks.

What is needed is a top-down approach to classifying planning tasks, which identifies

the important characteristics of different approaches to planning, and suggests the
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types of knowledge which are considered by each type of planning. Since this paper
was originally submitted, a paper has been published [8] which takes such an approach,
using the CommonKADS framework to produce a high-level description of different
planning systems and the approaches which they use. From this perspective, the models
produced by Barros et al are the “generic” models, specifying the types of operation
which a planner is expected to perform (e.g. select goal or critique plan), whereas the
models described in Figures 9.1 to 9.4 are the “domain-derived” models, representing
the actual operation of a particular planning system. By applying the same technique of
comparing and combining “generic” models with “domain-derived” models, the models
described in Figures 9.1 to 9.4 can be verified for completeness, and correctly classified
according to the types of planning task for which they are most appropriate, while the
models described by Barros et al can be enriched. Furthermore, this technique could
be used to incorporate a number of other “generic planning models” which have been
proposed (such as that of [22], and possibly even case-based models such as that used
by [71]) into a common framework, thus permitting rational selection of the “best”

generic planning model for a particular planning task.



Chapter 10

An Inference Structure for
Propose-and-Revise Design!

10.1 Introduction

The original KADS methodology classified task types into a taxonomy [20]. The princi-
pal distinction in this taxonomy is between system analysis tasks and system synthesis
tasks. Analytic tasks, such as diagnosis and assessment, have as their ultimate goal
the establishment of unknown properties or behaviour of the system; synthetic tasks,
such as configuration and planning, aim to define a structural description of a system
in terms of some given set of elements. Certain tasks, such as repair or control, are
considered to involve aspects of both analytic and synthetic tasks; these are known as
system modification tasks. The majority of successful KBS systems have dealt with
analytic tasks, such as diagnosis or selection, although several successful KBS have
been developed for synthetic tasks, either using KADS or CommonKADS (see e.g.
chapter 13) or without such methods (e.g. [124] [169]). There are very few successful

KBS systems which successfully handle modification tasks.

Design problems are classified in the taxonomy as synthetic tasks, and are classified
into three subtypes: design by hierarchical decomposition, design by gradual refine-
ment, and design by transformation. Each of these subtypes has its own inference

structure. The thesis of this paper is that the repertoire of inference structures for

! Originally published as Design by Exploration: A Proposed CommonKADS Inference
Structure, AIAI Technical Report, number ATAI-PR-62.
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design tasks is incomplete. At least one more model needs to be added: a model which
supports the process of exploration-based design (also known as propose-critique-modify
design). This paper contains a justification for the addition of this model, a suggested
framework for the model, and a discussion of knowledge acquisition techniques suitable

for exploration-based design.

10.2 The design process

10.2.1 KADS modeling of the design process

There is considerable debate about the way in which design is, or should be, carried out.
The underlying reason for this debate is that designers not only work in different ways,
but actually think in different ways. Many textbooks on design encourage designers to
think divergently, deliberately not restricting themselves to a fixed “design process”,
in order to stimulate the emergence of “creativity” which is seen as the key to many
successful designs. Others argue that a design process should be used because, in some
situations, creativity is less important than productivity, reusability, or ensuring that

a design meets safety standards.

While the arguments continue, attempts have been made to categorise the ways in
which design is actually performed (e.g. [121]). KADS offered the following categori-

sation [20]:

1. Hierarchical design. In this process, a design task is broken down into a
number of smaller design tasks, which are tackled separately, and then the results
are recombined. Ideally, each subtask would be further decomposed until it
reaches the stage where there is a well-understood solution: for example, in
software design, a low-level subtask might be to design an ordered set of elements.
This task could be solved by writing a sorting algorithm and applying it to the

elements.

Hierarchical design is used in cases where independent subproblems can be de-
fined, such as software design, where modules only interact via their inputs and

outputs. However, such independence is often impossible to achieve in design
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tasks; for example, the construction of a house cannot be broken down into an
independent consideration of the design of each room in the house, because the
chosen shape and the location of utilities in each room affects the design of the

other rooms.

An example of the use of hierarchical design can be found in [109], which records
an empirical study which aimed to identify the approaches taken by industrial

designers to designing a garbage disposal system for a train.

2. Transformational design. This is a version of design in which a full specifi-
cation of the artifact is available at an early stage of the design process, but is
formulated in a different manner from the elements of the solution domain. A
good example is VLSI design in which an algorithm is input to the design process
(a formal specification) and the layout of the actual chip is the required output
[20].

It is likely that the main knowledge-based components of transformational design

will be problem-specific.

3. Incremental design. This occurs when there is no straightforward transforma-
tion of the conceptual design to a detailed design model; instead, the conceptual
model is separated into design elements and constraints. Both of these are then
transformed (perhaps in several stages) to a form where they can be amalgamated

into a final design model.

In order to understand the above categorisation, it is important to note two points:

1. The categories above represent generic frameworks for performing a design task.
These frameworks need to be instantiated to particular design tasks, which may
involve the addition or removal of some inference steps in order to reflect the
actual inferences which are performed for a particular task. The knowledge en-
gineer is therefore asked to determine the most appropriate generic inference

structure, rather than the only appropriate inference structure.

2. The modeling of expert tasks may require more than one level of decomposition

or refinement: taking hierarchical design as an example, each sub-part of the
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overall design may need to be modeled individually in order to produce a fully
detailed model of the design. It is important to note that tasks specified at a
more detailed level will not necessarily use the same approach to problem solving
(and hence the same generic inference structure) as the top level task; to continue
the example, an approach which uses hierarchical design as the overall approach
to problem solving level may use transformational design or incremental design

to produce certain sub-parts of the design.

10.2.2 Higher level frameworks for design: data flow vs iteration

The different approaches to design suggested by KADS provide a fairly comprehensive
classification of approaches to design — if it is assumed that design is a sequential,
non-iterative process. This can be seen in the KADS “generic design model” (repro-
duced in Figure 10.1), in which an informal problem statement is transformed into a
detailed design with no significant iteration between the various stages of transforma-
tion. The different approaches to design suggested by KADS are essentially special
cases of the generic design model, with emphasis on different inference steps; for ex-
ample, incremental design emphasises the transform/expand/refine inference step

[166].

This sequential approach to design has been recommended by several sources (e.g.
[7] [83]), including the influential Royal Institution of British Architects ([140]). It
has been proposed as a suitable model for software engineering, where it corresponds
to the ‘waterfall’ model of software development (see [143]). However, more recent
writers have criticised the sequential approach to design. It has been claimed that
this approach over-emphasises the need for the communication of data and under-
emphasises the need to integrate the knowledge and information used in design [158];
that the development of sequential models fails to represent the true nature of the
design process [185]; and that the sequential approach has more to do with the job of
managing the people employed in design, rather than with what designers actually do
(cf. pp. 25-26 of [111]). The second and third criticisms certainly seem to be valid
in software design, for very few software projects actually adhere to a strict waterfall

model of development.
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Informal problem
statement

expand/transform

Formal
specification

select/aggregate

Conceptual model

transform/
expand/refine

Detailed design

Figure 10.1: The sequential “generic design model” suggested by KADS

So, if designers do not work according to a sequential model of design, how do they
operate? The alternative to a sequential approach is an iterative approach. In such an
approach, designers do not work through a problem step by step, first analysing and
then synthesising. Instead, designers propose a solution at an early stage, and then
iterate towards a final solution by presenting the early solution for criticism; this may
involve elicitation of further constraints. In software engineering, this approach to de-
sign design corresponds to “rapid prototyping” which has commonly been used for the
development of knowledge based systems, and is sometimes used to aid requirements
specification in large software projects. Rapid prototyping involves preparing and im-
plementing a software design quickly before showing it to the client for criticism; the
implementation is then altered to take account of any changes which are suggested, and

the process is repeated. This iteration normally continues until an acceptable design
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is reached.

The following experiment [112] illustrates the use of iterative design by architectural
designers. Two groups of students - postgraduate science students and final year ar-
chitectural students - were given a set of blocks which had some faces coloured blue
and some coloured red. The students were told to build a structure which had as few
external blue faces as possible. The students were also told that there was another
rule which limited their freedom of choice, but they would not be told what that rule
was. Instead, they could present possible designs for criticism. They were, however,

to present as few intermediate designs as possible.

The experiment revealed that the engineering students tended to focus on determining
the unknown rule. Once they had presented enough attempts to deduce the rule, they
calculated the optimum configuration of blocks. The design students, however, tended
to propose a fairly good solution as a first step; if it was declared to be incorrect, they
altered the design slightly, and continued to make slight alterations until they had
produced the best design possible which was not declared to be incorrect. Analysis
of the results showed that the design students performed as well as the engineering
students in reaching an optimum design, and produced a significantly lower number of

intermediate designs in the process.

There is documented support for the use of iterative design by architectural designers
[111], bridge designers [138] and user interface designers [73] [72], as well as support
from the AI community, with its inherent interest in identifying and modeling hu-
man cognitive processes [10] [158] [28]. Indeed, Chandrasekaran [28] discusses itera-
tive design, which he calls propose-critique-modify design, in detail. While Chan-
drasekaran’s preferred name is an accurate description of the processes involved in
iterative design, this paper follows Smithers et al [158] in using the term “exploration-

based design” to describe this approach to design.?

The thesis of this paper is that exploration-based design is a commonly used approach
to design, and is worthy of being included in the KADS library of generic inference

structures, because it is sufficiently different from the approaches already specified in

2 At the time of writing this Ph.D. thesis, this type of design was widely described as “propose-and-
revise” design.
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the library. The structure of the paper is as follows:

e The next two sections discuss two key aspects of exploration-based design: the
role of constraints in design, and the use of previous models as a basis for a

design;

e The following two sections bring the conclusions together into a suggested infer-
ence structure, and show how that inference structure was applied to a particular

project;

e The final section looks at how knowledge acquisition might be performed for a

task which uses exploration-based design.

10.3 The role of constraints in exploration-based design

In any design task, the key elements of the design problem are the constraints placed
on the designer. Designers must identify these constraints, and then work within them
to produce an acceptable design. If a design cannot be produced which fully satisfies
all constraints, then one or more constraints must be relaxed, or abandoned entirely,

in order to produce a feasible design.

In exploration-based design, a client’s criticisms of a possible design effectively place
more constraints on the design. However, since criticism requires communication, the
designer may take the opportunity to negotiate with the client on which constraints
can be relaxed, and how far. It is therefore crucial for the designer to understand
each constraint, and the consequences of relaxing it, thoroughly. This is particularly
important if there are time restrictions on the design process, which reduce the number

of explorative iterations which can be performed.

10.3.1 Understanding constraints

In order to understand constraints fully, Lawson [111] suggests that constraints should

be analysed on three dimensions:

e Is the constraint imposed internally or externally? An internal constraint is one
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imposed by a decision of an interested party; for example, an architectural design
may be required to include ramps throughout for use by disabled people, or a
graphic design may be required to make use of the colours associated with the
client company’s corporate image. An external constraint is one which cannot
be altered by any decision of the project team; the points of the compass (and
hence the position of the sun) is an important external constraint on the design

of housing.

e Who imposes the constraint? Is it the designer, the client, the user (if different
from the client), or legislators? A graphic designer might decide that a better
effect would be achieved if he limits his design to soft pastel colours only, which
is an example of a designer-imposed constraint. The width of corridors and the
number of doors in a building is affected by fire regulations, which is an example
of a legislative constraint. (As an aside, Lawson notes that legislative constraints
tend to be biased towards factors that can easily be measured. This has often
led to designer dissatisfaction with legislation which is seen as overly restrictive,

or failing to take account of special features of the particular design problem).

e What function does the constraint fulfil? Is it a radical constraint, affecting
the fundamental purpose of the design, a practical constraint imposed by the
limitations of technology or nature, a constraint on form, affecting the style
and visual impact of the design or a symbolic constraint, affecting the visual
symbolism of the design? A radical constraint might be that a school building
requires rooms suitable for teaching classes; a practical constraint might be that
the site for a building has a certain load-bearing capacity; a constraint on form
might be that a graphic designer is required to make an advertisement striking,
unusual and memorable; and an example of a symbolic constraint is that the roof
of the Sydney Opera House was designed to be parabolic in shape because it is
intended to symbolise the surrounding marine environment. Practical constraints
can usefully be subdivided into constraints on the parameters of the design and
its environment, and constraints on the process of making, testing or assembling

the artifact [21].
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Gaining an understanding of constraints also requires designers to recognise that they
themselves sometimes place implicit constraints on the design process which are non-
essential. Lawson [111] reports an exercise in which novice designers (architectural
students) were asked to design the floorplan for a block of flats (see Figure 10.2).
The students were unable to produce a design which allowed sufficient light into the
living room of each flat until they relaxed the constraint which they had unconsciously
imposed upon themselves that no part of one flat should overlap with a neighbouring
flat. The floorplan shown in the lower half of Figure 2 allows plenty of light into both
living room and kitchen, makes each flat slightly narrower, and also provides a recessed
“entrance area” for each flat. The lesson to draw from this example is that the students
did not recognise the constraint on overlapping, and therefore did not realise that this

constraint could be relaxed.

Living room Bedroom
Kitchen Bathroom
Bedroom
Living room
Bathroom
Kitchen
!

Figure 10.2: Proposed designs for single-bedroom deck-access flats (a) with a rectan-
gular floorplan (b) with one flat overlapping the next
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10.3.2 Prioritising constraints

A second key factor in exploration-based design is that designers who are presented
with a large number of constraints to fulfil tend to focus on fulfilling a small number
of constraints which are perceived to be important. In another experiment on students
of architectural design [111], three groups of students were asked to design an office
building for a design competition. They were told that the building would be sited
between two major roads, across the line of an existing public footpath, and that it
should not present a remote or forbidding image to local ratepayers. The students all
appeared to focus on one aspect of the problem, and to design their whole solution
around that one aspect. One group focussed on the office environment, and designed
an office layout with careful attention to the provision of service ducts and flexibility
of partitioning. Another group focussed on making the building visitor-friendly, and so
designed a building with different departments in different blocks leading off a central
court. The third group, however, focussed on the image presented to ratepayers, and
particularly on the public footpath. They proceeded to design an arch-shaped building

with a covered mall in the centre doubling as the footpath!

It is important that this prioritisation of constraints is made explicit, so that a reasoned

decision can be made on the relative advantages of one constraint against another.

10.4 The use of previous designs as a basis for current
designs

An obvious possibility for reducing the time required to perform exploration-based
design is to start with a design used in a previous similar situation, which therefore
ought to satisfy most of the constraints. The issue of whether it is wise to use a
previous design as a basis for a current design has been a subject of considerable
debate within the design community. On the positive side, the main advantage of
using an existing design is that this design (presumably) satisfies all the constraints
which were imposed on it, and so is likely to satisfy many of the constraints which will
be imposed in a similar situation. Some would also claim that it is well-nigh impossible

for a designer to ignore his previous experience of similar designs when producing a
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new design, and so the process might as well be explicit. On the negative side, it is
claimed that re-use of existing designs stifles creativity in design; the experiment cited
in section 10.3.1 showed how the unconscious effects of previous experience hindered
the students from arriving at an acceptable solution to their design problem. It is
accepted that innovative design is largely dependent on improvement of a feature of
an existing design, but it is argued that truly creative design is crucially dependent
on freedom from such restrictions. This argument is at the heart of much criticism of
designs (from both sides), and it is unlikely that designers will ever agree completely

on this matter.

In the Al community, the recent successes of case-based reasoning technology for design
tasks [183] have swung the pendulum towards favouring re-use of existing designs.
Case-based reasoning attempts to match the key features of the current design task
against the key features of previous design tasks. If it finds a previous task which
closely matched the current task, it retrieves the solution to that previous task, and
then presents that solution to the user for minor modifications, or possibly attempts

to make modifications itself.

Given the potential of case-based reasoning, and a degree of suspicion about whether
Al is appropriate for “creative” design, it seems pragmatic to assume that any Al-
based approach to exploration-based design is likely to make use of an existing design

as a basis for the current design.

10.5 The inference structure

Based on the above analyses of the process of exploration-based design, a generic

inference structure should include:

e acquisition of constraints
e ordering of constraints
e creation of a possible solution

e verification of that solution
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e feedback from verification to an earlier stage in the process, thus creating an

iterative loop

e potential input from previous design models

In some cases, it is possible that attempts at producing a design may prove to be
dead-ends, because constraints cannot be relaxed sufficiently to produce an acceptable
design. In these cases, the designer has to choose another initial model, and re-start
the reasoning process. The inference structure should therefore also represent the

possibility of selecting a new initial model from the model library.

The suggested inference structure is shown in Figure 10.3. As described in section
10.2.1, KADS allows inference structure diagrams to be hierarchically decomposed.
In this case, it is convenient to decompose the transform-2 inference function in the
top level model. This inference function, which represents the process of assigning

importance to constraints, is shown in Figure 4.

Model library select

Design problem Domain entities Initial model
~ (Partially) ordered
@ Constraints transform-2 constraints Possible solution

Rejected design

Reasons for
rejection veriy

Final solution

Figure 10.3: Top level inference structure for exploration-based design

The inference structure shown above is not intended to make every aspect of the de-
sign process explicit; it only shows the typical processes in exploration-based design.
Certain information which is specific to the problem domain must be added for the
model to be complete. For example, the model does not indicate which constraints

should be relaxed or abandoned if it proves impossible to produce a design which fully
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Degree to which
constraints can be
relaxed

Constraints sort

Cost of relaxing
constraints

Figure 10.4: Expansion of transform-2

(Partially) ordered
constraints

satisfies all constraints; nor does it provide any information about how an appropriate
initial model is selected from the model library. Both of these factors form a signifi-
cant component of design expertise, and should be specified as part of the process of

instantiating the generic inference structure to a particular task.

Task structure for the top level inference structure

task design
goal to synthesise a solution to a design problem
task structure
refine(design problem — domain entities)
specify(design problem — constraints)
select(model library — initial model)
for all constraint € constraints do
specify(constraint — degree to which constraint can be relaxed)
specify(constraint — cost of relaxing constraint)

sort(constraints & cost of relaxing constraints & degree to which constraints can

be relaxed — (partially) ordered constraints)

transform(domain entities & initial model & (partially) ordered constraints —
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possible solution)
loop

verify(possible solution — rejected design & reasons for rejection OR final so-

lution)

specify(reasons for rejection — further constraints OR select new model from

model library)

transform(rejected design & constraints — possible solution)

10.6 Validation of the inference structure

The suggested inference structure has been validated by applying it to a real-life
knowledge-based design problem. The problem chosen was that of a consultant or
subcontractor negotiating an acceptable workplan for a commercial contract. The
tasks to be done, the skills required for each task, and the overall cost of the task must
all be defined by the consultant and agreed by the client. Previous workplans may be
used as a basis for a current workplan, especially in companies which have well-defined

“packages” of work which are sold as a whole.

The application of an inference structure requires the knowledge roles to be instantiated
to entities from the domain. If necessary, inference functions and knowledge roles may
be added or deleted. In this case, no alterations were required; the mapping was as

follows:

This study indicates that the proposed generic inference structure for exploration-based

design can indeed be instantiated to a real-world design problem.

10.7 Knowledge Acquisition for exploration-based design

The process of instantiating a generic inference structure requires that knowledge ac-
quisition is carried out which identifies the information required for each knowledge
role. The information which must be acquired includes the domain entities and initial

constraint which form the design problem, the contents of the model library, and the
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Prepare proposal
at appropriate
level of detail
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and commercial
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Figure 10.5: The processes involved in discussing a proposal with a client

format of knowledge generated from these initial inputs.

The most obvious technique for acquiring knowledge for exploration-based design is
to perform exploration-based design; this quickly provides a lot of useful knowledge,
particularly about constraints. This technique has been used successfully in a number
of knowledge based projects, by using “rapid prototyping” as a basis for knowledge
acquisition. However, some information has to be gathered before an initial design can
be produced; there may also be some benefit in reducing the number of times that
solutions are presented to the client/expert, to avoid causing irritation, or to reduce
the total time required for design. It therefore seems wise to devise techniques which
can acquire as much knowledge as possible before presenting a solution to a client, and

on each iterative loop thereafter.

This section presents some suggested techniques for knowledge acquisition, looking

particularly at acquisition of constraints.

10.7.1 Knowledge Acquisition for constraints

According to the inference structure, a design problem can be described in terms
of the constraints which are placed on the design, and the domain entities. It is
rarely difficult to determine what the domain entities are (although the relationships

between them may require a little more thought); many of the difficulties in design
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revolve around undetermined or underspecified constraints. Knowledge acquisition for

a design problem is therefore primarily concerned with the acquisition of constraints.

Interviews

So how can constraints be acquired? An obvious method for acquiring knowledge of
any sort is to perform interviews with experts in the field. While interviews have advan-
tages, particularly at early stages of a knowledge engineering project, they also have
considerable disadvantages, particularly in the elicitation of tacit knowledge. Many
designers find it easier to work on refining an actual design rather than attempting to
analyse every constraint, and many design faults are due to unidentified constraints; it
follows that many constraints on design problems are either within the designer’s mind
but unexpressed, or within the problem but unnoticed. These constraints can there-
fore be classified as tacit knowledge. While it is possible that structured interviews
may have value at later stages of the knowledge acquisition process (for example, a
designer may be asked to critique a written list of constraints), it seems that knowl-
edge engineers will need to rely on techniques other than interviews in order to acquire

constraints successfully.

The Problem Identification Game

For the early stages of constraint acquisition, Lawson [111] suggests the “Problem
Identification Game”, which was devised at the Open University as an aid to identifying
constraints. The ‘game’ requires designers to start by making a short and simple
statement of the design problem as a contrasting pair; an example might be “slum
clearance — aged slum dwellers”. Next, designers are asked to amplify this statement

by considering the following principles:

e Conflict - convert the statement into interested parties who might be viewed as in
conflict. For example, “Town planners see a need for change and renewal which
is not necessarily appreciated by the aged who have lived in the area all their

lives”;

e Contradiction - trying to contradict an earlier statement by taking an opposing
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viewpoint (e.g. “slum clearance — old people need safety & hygiene”);

e Complication - identify any factors which should really have been considered
when making a previous statement e.g. “Old folk need modern housing because
they need safety & hygiene” is subject to the complication “But modernisation

usually means increased rent charges”;

e Similarity - try to think of, and then think through, an analogous situation (e.g.
slum clearance is to housing as a plough is to a field; the process of slum clearance

destroys previous street patterns, but opens up the area for new growth);

e Chance - pick a word from a dictionary and see if it sparks any new ideas. For
example, the word “softly” might suggest soft music, which in turn leads to a
consideration of the difficulties of moving grand pianos and other accumulated

furniture into modern housing.

It is usually a simple task to extract constraints from these statements, although further
analysis may have be done on the degree to which the constraints can be relaxed and
the cost of relaxing them. For example, two constraints which can be extracted from
the example given above are “Old folk prefer large housing to accommodate their
possessions” and “Old folk prefer low-rent housing”. However, these two constraints
are (usually) in opposition, and further analysis is needed to determine how resistant
old people would be to giving up possessions in order to live in smaller housing, or how

heavy the financial burden of large housing would be.

Multi-dimensional techniques

Once some constraints have been identified, it is also possible to elicit constraints
using multi-dimensional knowledge elicitation techniques such as the card sort [152]
and the repertory grid [93]. To use the card sort technique for acquiring constraints,
the name of each constraint is written on an individual index card, and the designer
is asked to sort the cards into piles, in any way which seems sensible. This technique
is repeated several times, until the constraints have been classified in several different
ways. The key step in eliciting constraints is to ask the designer, after each sort has

been completed, if there are any other constraints which belong in the categories he has
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created, but which are not represented on cards. Despite its simplicity, card sorting

has proved to be an effective technique in commercial projects.

The repertory grid is used in a similar fashion. The repertory grid technique identifies
problem elements which have constructs (attributes).For constraint elicitation, con-
straints form the elements of the grid, and the designer is then presented with three
constraints (chosen at random) and asked to state how two of them differ from the
third. The designer’s answer (e.g. “Two of these have a low impact on cost of the
design, while one has a high impact”) is taken to be an attribute of all constraints,
and is defined as a construct. Each constraint is then assigned a value for this con-
struct on a continuous scale. If the scale used for constructs is the same throughout
the grid, and is numerical, then repertory grids can be subjected to statistical analysis
which produces an implicit clustering of elements. This clustering can be discussed
with the expert designer, with emphasis on unexpected assignment to clusters and the
nature of the clusters themselves. As with the card sort, it is possible to enquire if any

constraints which are not yet represented belong in the clusters.

Eliciting constraints by identifying incompatibilities in possible solutions

It is possible to use a variation of the repertory grid knowledge acquisition technique to
analyse constraints, if possible solutions to the design problem (or parts of the design
problem) can be defined. Bradshaw [16] shows how “possibility grids” can be defined,
in which possible solutions are assigned “goodness” values on a range of constraints.
The grid is then analysed in terms of the “goodness values”; incompatible combinations
of values are ruled out, and all other possible combinations are generated. If there is
a combination of constraint values which does not match an existing design solution,
then either a new possible solution has been found (if this combination is permissible),

or a new constraint is elicited (if this combination is deemed unacceptable).

10.7.2 Knowledge Acquisition of model library

At first sight, it might appear that obtaining examples of previous designs would not be
difficult. In practice, the situation is more complex. The problem lies in deciding how

to represent designs within a library. Either the library will contain a large number of
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previous designs, which must be indexed by some key design features in order to allow
for efficient search through the library, or it will contain an abstracted set of “typical”

designs, in which certain specific features of real-life designs are not represented.

In either case, it is crucial that the key factors which differentiate designs are defined
carefully. The existence of differentiating factors implies an underlying classification
scheme; however, there is no agreed classification for design tasks in general. As a
result, key differentiating factors must be defined for each domain. This is a significant
task in knowledge acquisition. It is possible that machine learning techniques, such as
rule induction or neural networks, may be of assistance here, but little empirical work

has been done to verify this.

10.7.3 Knowledge Acquisition of inference functions

The best way of acquiring knowledge about the various inference processes in a design
task is likely to be highly domain-dependent. If there are a considerable number of
procedural steps to be followed, however, then certain knowledge acquisition techniques
such as protocol analysis, the laddered grid [152] or the “20 Questions” technique [24]

may be useful. For an example of the use of these techniques, see [94].

10.8 Conclusion

This paper has demonstrated that an iterative approach to design, which is termed
“exploration-based design”, is used by real-life designers. It is not used by all de-
signers — sequential approaches to design are often used where they are feasible. The
existing KADS library of generic inference structures provides a useful classification of
techniques for sequential design. However, some designers clearly do use exploration-
based design, and the library lacks an inference structure for exploration-based design.
A suitable inference structure is therefore proposed, and tested in the field. Techniques

for acquiring the knowledge required for exploration-based design are also suggested.

In order to introduce the subject of exploration-based design, this paper has given
considerable space to discussion of the nature of design tasks. A key conclusion of this

discussion is that design tasks can be classified at two levels of abstraction. At the
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higher level, design tasks can be classified as either sequential or iterative. At a lower
level, sequential design tasks can be classified as hierarchical design, transformational
design or incremental design. Iterative design tasks currently include exploration-
based design only; it is possible that further research may produce more categories of
iterative design, which would help to expand the KADS library of inference structures

even further.

The next chapter looks at knowledge acquisition techniques, and how (or whether) they

can be used to acquire specific kinds of knowledge as recognised by CommonKADS.



Chapter 11

Knowledge Acquisition
techniques for the Expertise

Model!

11.1 Introduction

The major difference between knowledge engineering — the science of constructing
knowledge-based software systems — and ‘conventional’ software engineering is the re-
quirement for knowledge engineers to capture, represent, analyse and exploit knowl-
edge in order to produce a successful system. Experience has shown that none of these
tasks are simple; taking knowledge capture as an example, knowledge is typically only
available within the head of an expert, or implicitly within written procedures or case
records, and cannot be extracted from these sources without considerable effort. These
difficulties have provided an incentive for the development of a variety of techniques to
overcome the problems; techniques for knowledge capture, for example, are known as
knowledge acquisition techniques. There is considerable literature proposing, analysing

and advising on the use of knowledge acquisition techniques (e.g. [125]; [93]).

The task of representing the acquired knowledge in a format suitable for analysis is
equally important for successful knowledge engineering; yet it has had a comparatively

low profile. A number of different approaches have been suggested and used, including

! Originally published as “Linking Knowledge Acquisition with CommonKADS Knowledge Analysis”
in Research and Development in Expert Systems XI, Proceedings of Expert Systems 94, the an-
nual conference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s
College, Cambridge, December 15-17 1994.
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encoding the knowledge in a prototype knowledge based system (KBS); identifying
and extracting rules within acquired knowledge (both “production rules” [65] and rules
for qualitative simulation [110]); using “systemic grammar networks” [89]; and using
semantic networks. Sometimes, more than one representation is used, which suggests
that no one representation is entirely adequate to represent acquired knowledge. It
seems that there are different types of knowledge, which are better suited to different

representations.

The KADS methodology for developing knowledge-based systems has attempted to
resolve the problem of adequate representation of acquired knowledge by suggesting
that knowledge should be represented and analysed on several different levels simul-
taneously. KADS encourages the development of models of knowledge viewed from
different perspectives; these models include hierarchies of domain concepts, “infer-
ence structures” which show the inferences required to perform a particular task, and
“task structures” which impose procedural information on inference structures. Com-
monKADS, the recent successor to KADS, has extended and refined the recommended
representations for each level, so that CommonKADS now provides a comprehensive
suite of representations for the analysis of knowledge. In particular, CommonKADS has
introduced a set of ontological primitives for domain knowledge, which allows distinc-
tions to be drawn between concepts, properties, relations, and other ontological types
at the domain level. These recommendations, coupled with a library of generic tem-
plates for inference and task structures, have provided a workable and useful solution to
the problem of representing acquired knowledge, with the result that CommonKADS

is probably the most widely used methodology for KBS development in Europe.

However, there are no knowledge acquisition techniques which generate output in a
form suitable for direct input into CommonKADS models. Instead, knowledge ac-
quisition techniques typically produce textual transcripts, or classifications of domain
terms on many different dimensions. This means that the knowledge engineer is re-
quired to identify relevant terms within the acquired knowledge, and to classify these
manually into CommonKADS’ ontology. This is an onerous task, even with the as-
sistance of hypertext-based software support, such as the transcript editors available

within ILOG’s KADS TooL and Bull’s Open KADS. The main difficulty lies in the fact
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that CommonKADS provides little guidance on how to identify relevant knowledge in
a transcript, or to classify acquired knowledge into its ontology; such decisions are

dependent on the expertise of the knowledge engineer.

It has been observed, however, that the output generated by most knowledge acquisi-
tion techniques is not an unsorted jumble of items of knowledge; instead, the acquired
knowledge is usually structured in one way or another. All knowledge acquisition
techniques produce output which is structured to some degree; even the transcript
of an interview is structured according to the rules of natural language. Knowledge
acquisition, which used to be viewed as the “mining” of chunks of knowledge, is now
considered to be more like crystallography; the knowledge must be viewed from vari-
ous viewpoints in order to determine how individual items of knowledge relate to each
other. The implication here is that expert knowledge exists within a structure, and
that the output of a knowledge acquisition technique may not reflect the whole struc-
ture, but it will reflect some of it. Experience suggests that it is important to discern
the structure in order to understand fully the knowledge contained within it; indeed, it
has been suggested that knowledge acquisition and subsequent modeling actually helps
experts in a domain to develop and improve their own structuring that domain [63],
which suggests that even the experts themselves find it useful to discern the structure

of their knowledge.

The thesis of this paper is that it is possible to automate much of the identification
and classification of domain knowledge by identifying and exploiting the structure of
acquired knowledge. Some previous work has been done in this area, including the
generation of production rules from a repertory grid (e.g [153]), and the production of
a logical framework into which the results of card sorting, laddered grids and repertory
grids can be written (cf. [139]). However, no one has yet attempted to make use
of the structure of acquired knowledge to perform the classifications required for the

CommonKADS ontology.

The purpose of this paper is to describe how such links were devised and implemented in
a knowledge engineering toolkit, known as TOPKAT (The Open Practical Knowledge
Acquisition Toolkit). The format of the paper is:
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A description of the implementation of TOPKAT;

A description of the knowledge acquisition techniques which are implemented in

TOPKAT;

A description of the CommonKADS methodology (with particular emphasis on

the domain knowledge in the expertise model);

A description of the links between each knowledge acquisition technique and the

CommonKADS classification system.

Figures 11.1 to 11.5.1 in this paper are drawn from applications modeled using TOP-
KAT.

11.2 Implementation of TOPKAT

TOPKAT (The Open Practical Knowledge Acquisition Toolkit) is a hypertext and
diagram-based toolkit which supports the acquisition of knowledge using various knowl-
edge acquisition techniques, as well as supporting much of the CommonKADS modeling
framework. TOPKAT has been implemented in CLIPS and in HARDY. HARDY [156]
is a tool which uses node and link diagrams, hypertext and hyperlinks to allow the
creation of graphical models representing many different processes and relationships.
The key to HARDY’s usefulness in this situation is the ability to define a diagram type,
which allows a system developer to define permitted nodes and arcs for a particular
diagramming style; this means that HARDY can be used to produce modeling tools
for a wide range of graphical formalisms with little effort. HARDY also provides an
interface to CLIPS, allowing CLIPS functions to automate much of the functional-
ity for diagram manipulation which is available interactively. HARDY is available on

machines which support X Windows, Open Windows or Microsoft Windows.

TOPKAT consists of a hierarchy of hypercards, which act as an index for the different
facilities available. The “leaf cards” of the hierarchy each support a diagramming type
suitable for a particular knowledge acquisition technique or CommonKADS model;

the diagrams are drawn on newly created hypercards which are “instances” of the pre-
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defined card, and therefore share the same diagramming type. TOPKAT currently

supports the following knowledge acquisition techniques:

e transcript analysis;
e laddered grid;
e card sort;

e repertory grid.

The support for transcript analysis is based on a hypertext card, rather than a dia-
gram card with an appropriate diagram style. HARDY permits the development of
a hypertert type in a similar fashion to a diagram type; this allows blocks of text,
highlighted in appropriate fonts and colours, to be linked to diagram nodes or other
hypertext blocks. This linking can be accomplished manually or (as in TOPKAT) it
can be automated using CLIPS, so that complex linking operations can be executed

with a few mouse clicks.
TOPKAT also provides support for representing the following elements of the Com-
monKADS Expertise Model:

e Domain Knowledge

— Domain ontology
— Domain models

— Model ontology

Model schema
e Inference Knowledge

— Inference structures

— Library of inference structures
e Task Knowledge

— Task structures
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In addition, facilities exist within TOPKAT for representing parts of the CommonKADS
Task Model, Communication Model and Design Model.

TOPKAT is currently being re-implemented in version 6.0 of CLIPS, which permits full
integration of object hierarchies with CLIPS’ other facilities. This feature is being used
to allow CLIPS objects to serve as a knowledge repository, with HARDY being used as
a tool for visualising and manipulating that knowledge; this is achieved using a small
set of event handlers (daemons) which create TOPKAT nodes or arcs to correspond
to CLIPS instances or slot/value pairs, and another set of handlers which generate
CLIPS whenever nodes or arcs are created in TOPKAT. This allows the functions
within TOPKAT which perform verification, analysis and automated linking to be

implemented entirely in CLIPS, thus increasing the portability of TOPKAT.

11.3 Techniques for knowledge acquisition

The most widely used method for knowledge acquisition has been the interview which,
as the name implies, requires a knowledge engineer to interview an expert, and to record
the entire conversation. This approach requires the knowledge engineer to transcribe
the interview and analyse the transcript in order to identify and extract relevant items
of knowledge. Transcript analysis does provide useful knowledge, and the transcript
forms a good record of the source of that knowledge; however, transcript analysis is
time-consuming, prone to generate much irrelevant information, and provides no guar-
antees about the completeness of the knowledge acquired [188]. Alternative methods
for obtaining a transcript, such as performing carefully structured interviews, or asking
the expert to talk through a case history (protocol analysis), have been developed to
provide more structured transcripts; such transcripts alleviate the problems associated

with transcript analysis, but do not remove them.

In order to overcome some of these problems, knowledge engineers have drawn on the
field of psychology, and particularly on psychometric testing, to produce techniques
such as the card sort, the repertory grid and the laddered grid. The benefits of these
techniques are that they provide output in the form of categorisations and relationships;

they ensure complete coverage of knowledge, by continual prompting or by requiring
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Figure 11.1: Screendump showing some of TOPKAT’s hypercards

all items to be categorised; and they are relatively simple to administer. The repertory
grid has been particularly well used, with over 150 applications to date having used

this technique successfully [13].

11.3.1 Card Sort

The card sort is a simple but surprisingly effective technique in which an expert cate-
gorises cards which represent terms from the knowledge domain [152]. The names of
various terms from the domain are written on individual index cards, and the expert
is presented with the pile of cards and asked to sort them into piles in any way which

seems sensible. When this has been accomplished, the classification of each card is
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noted, the cards are shuffled, and the expert is asked to repeat the procedure using a
different criterion for sorting. This process is repeated until the expert cannot think

of any more criteria on which to differentiate the cards.

Refinements to the procedure include sorting large piles into several smaller piles; and
asking the expert to name any domain terms which could be in a pile but are not
represented on a card. The output of the card sort is a set of classifications of domain

terms into one or more categories on many different dimensions.

Figure 11.2 shows the result of a single categorisation of a set of ‘cards’ represent-
ing vehicles. In TOPKAT, the ‘cards’ are sorted into columns rather than piles; the
columns are created by creating an (invisible) arc between the ‘card’ and its category,
which updates the list of ‘cards’ in the category, as well as moving the ‘card’ into the

appropriate column.

11.3.2 Repertory Grid

The repertory grid is a technique derived from psychotherapy in which an expert
makes distinctions between terms in the domain on chosen criteria [15]. The criteria
are similar to the categories generated by card sorting, except that they are all assumed
to be continuous variables; for example, “price” would be a suitable distinction for a
repertory grid, because all prices lie on a continuous numeric scale between zero and
infinity, whereas “nationality” would not be suitable. Criteria are usually generated by
the ‘triadic’ technique — selecting three domain terms at random and asking the expert
to name one way in which two of them differ from the third. All domain terms in the
grid are then classified on each criterion (normally using a 1-5 or 1-7 scale), resulting

in a grid in which every term is categorised on every variable (see Figure 11.3).

One of the features of the repertory grid which sets it apart from other knowledge
acquisition techniques is that the classifications in the grid can be analysed statistically,
using cluster analysis, to see if the expert has implicitly categorised the terms in any
way. The clustering of concepts produced by statistical analysis of the repertory grid is
normally represented by a dendogram (literally, a tree diagram), in which every domain

term is a leaf node, and closeness in the ‘tree’ represents statistical similarity. However,
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Figure 11.2: A set of cards representing vehicles, sorted according to price
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dendograms often require some interpretation and rationalisation by an expert in order

to be meaningful; also, a dendogram bears a considerable resemblance to a taxonomic

hierarchy. TOPKAT makes use of these two observations to represent the statistical

clustering as a laddered grid, in which the domain terms form the leaf nodes, and the

“classes” indicate the level of similarity between domain terms using a percentage value

(100% indicates the two objects are identical on all the dimensions, 0% indicates that

they are at opposite ends of the spectrum on every dimension). The expert and/or

the knowledge engineer is then allowed to rationalise this laddered grid by assigning

meaningful names to some classes and deleting others. For example, Figure 11.4 shows

statistical similarity of crimes (derived from the repertory grid shown in Figure 11.3),

and Figure 11.5 shows a rationalised version of this hierarchy.
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The laddered grid uses pre-defined questions to persuade an expert to expand a tax-

onomic hierarchy to its fullest extent [24]. Starting with a single domain term, the

questions can elicit superclasses, subclasses or members of classes, which are linked

to the existing object in a hierarchical “grid”.

Typical questions include “What is

term and example of 77, or “What other examples of term 1 are there apart from term

27”. By repeatedly applying the same procedure to newly elicited objects, an extensive

taxonomy can be built up.
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Figure 11.4: A statistical analysis showing an implicit categorisation of crimes

11.4 Knowledge analysis using CommonKADS

CommonKADS is the name of the methodology developed by the KADS-II project,
which was funded under the ESPRIT programme ([191]). CommonKADS is an ex-
tended and revised version of the KADS methodology; in addition to KADS, it draws
on ideas from other knowledge engineering methods, principally the Generic Tasks

approach [27] and the Components of Expertise approach [161].

CommonKADS views KBS development as a modeling process. Knowledge analysis
is performed by drawing up a number of models which represent the knowledge from
different viewpoints. CommonKADS recommends a number of different models, which

start with the identification of business problems within an organisation, and support
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Figure 11.5: The hierarchy of crimes shown in Figure 11.4, after being rationalised

the whole knowledge engineering process up to the point of producing an implementable

design. The recommended models are:

e the organisational model, which examines an organisation from various perspec-

tives in order to identify business problems ([44]);

e the task model, which describes how a particular process is carried out, and
assigns roles to each sub-task. This model is based on the KADS “model of

cooperation” [42];

e the agent model and the communication model, which represent the capabilities of
various agents who perform subtasks, and the communication protocols between

agents [186] [187];
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e the expertise model, which models acquired knowledge for a KBS [192]. This

model is described further below;

e the design model, which transforms analysed knowledge into a design suitable to

be implemented in the chosen tool [179].

The key model — the expertise model — is itself divided into three “levels” representing

different viewpoints on the expert knowledge. These levels are:

e The domain knowledge which represents the declarative knowledge in the

knowledge base;

e The inference knowledge which represents the knowledge-based inferences
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which are performed during problem solving. The knowledge roles which form

the input and output for the inferences are also defined;

e The task knowledge which defines a procedural ordering on the inferences.

The contents of these three levels can be defined graphically, or using CommonKADS’
Conceptual Modeling Language. For a worked example of the development of each of

these three levels, see [97].

11.4.1 Modeling domain knowledge

The domain knowledge in the model of expertise represents the declarative knowl-
edge which has been acquired. CommonKADS suggests that each item of declarative

knowledge is classified into one of six ontological types. These types are:

e Concepts: classes of objects in the real or mental world of the domain studied,
representing physical objects or states. Instances of concepts can also be defined;
TOPKAT (and other existing KADS support tools) categorise these with the

concepts.
e Properties: attributes of concepts;?
e Expressions: statements of the form “the property of concept is value’;

e Relations: links between concepts. Relations are more than a juxtaposition of
two concepts to produce a compound concept (e.g. machine tool or government
department); one concept must affect the other in some way. An example of a

relation might be “concept 1 causes concept 27;
e Inferences: single inference steps;

e Tasks: actions which are performed, but which do not require reasoning.?

2 CommonKADS also defines a type called “attributes”; these do not differ greatly from properties.
Most KADS support tools do not differentiate attributes from properties.

3 Strictly speaking, inference steps and tasks belong to the other levels of the CommonKADS expertise
model; however, their identification often takes place at the same time as domain level items, and
so they are described along with the domain level ontology.
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Once items of domain knowledge have been classified, they can be used in domain mod-
els, which show relations between different items of knowledge. The CommonKADS
convention is for each domain model to display all tuples of a particular relation. For
example, a single domain model might show all acquired examples of a concept caus-
ing a concept or value; or it might show a taxonomic hierarchy of concepts, connected
to each other by is-a relations. See Figure 11.7 for an example of a taxonomic domain

model.
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Figure 11.7: A domain model which represents a taxonomy of faults

In addition, CommonKADS suggests that a model ontology and model schema are
defined. These represent the domain models at a more abstract level; their purpose is
to provide an explicit link between the domain knowledge and the inference knowledge,

and to produce a re-usable domain level representation.
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11.5 Mapping acquired knowledge to the domain level

It can be seen from the previous two sections that the four knowledge acquisition
techniques which are supported by TOPKAT produce output in differing formats,
some of which are similar to certain aspects of CommonKADS modeling, and some of
which are not. The task of the knowledge engineer is to transfer knowledge from the
format produced by the knowledge acquisition technique to the formats required for
CommonKADS. TOPKAT provides functions for each knowledge acquisition technique
to support this transfer process: the functionality is based on the structure provided by
the knowledge acquisition technique, and on experience of developing CommonKADS

models. The functionality provided is described below.

11.5.1 Transcript analysis: classification according to word class

Textual transcripts differ from the output of the other knowledge acquisition tech-
niques supported by TOPKAT in that they rarely produce knowledge which is obvi-
ously structured in a taxonomic or relational manner. Despite this, transcripts are
by far the most widely available form of acquired knowledge; they may be produced
from interviews, protocol analysis, or scanning of existing documentation. Of course,
language has a structure of its own; words are classified as different word classes (parts
of speech), which may only appear in particular combinations permitted by the rules
of grammar. Is it possible to make use of the grammatical structure of language to

perform ontological classification?

The starting point for this discussion is Woods’ linguistic test [195]. In the course of
a discussion on the nature of links in semantic networks, Woods asserts that, given an
object O, it is possible to use a linguistic test to determine if A is an attribute of O.
The test is that it must be possible to state that “V is the/an A of (some) O”. If this
test is passed, then in CommonKADS terminology, O is an concept, A is a property
of that concept, and V is a value of that property. From a grammatical viewpoint,
however, it can be seen that O must be a noun, A must be a singular noun, and V
must be an adjective which modifies O. From this analysis, it seems that there is some

connection between the CommonKADS ontology and word classes.
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A second link between the CommonKADS ontology and word classes can be found
in the definitions of the different ontological types within CommonKADS (see section

11.4.1).

e Concepts are classes which represent objects or states. The Shorter Oxford Dic-
tionary defines nouns as “names of persons or things”; if it is assumed that all
objects or states are “persons or things” in the “real or mental world of the
domain” (cf. [191]), then it can be seen that all concepts can be named using

nouns.

e Properties are attributes of concepts. It is difficult to assign attributes to partic-
ular word classes, because, while attributes can be represented as singular nouns
(according to Woods’ linguistic test), they may also be identified using plural
nouns (e.g instances) or verbs (e.g. has component). Nor is the preposition “of”
a universal indicator of a property: other prepositions may sometimes be used
instead (e.g. Ol is connected to O2), and the word “of” may appear in idioms

such as “a matter of course”.

e Expressions are derived from a concept, a property, and a value. CommonKADS
anticipates that values could be strings, numbers, booleans, or of a domain-
specific type; it is difficult to generalise about word classes which are associated
with all these types, although it can be seen that certain specific categories of
words (such as nouns or adjectives describing numbers) are likely to be associated

with values.

e Relations form links between concepts in which one concept affects another. This
is normally accomplished linguistically by a verb, and so it seems that a verb
which links two objects or states probably indicates a relation. The identifica-
tion of verbs with relations is further supported by the correspondence between
adverbs and CommonKADS’ facility which allows relations to have properties
of their own; if relations correspond to verbs, then adverbs represent (values
of) properties of relations. For example, in the sentence “Peter married Jane

yesterday”, the adverb (yesterday) is an property of the marry relation.

From these analysis, it seems that identification of nouns, adjectives, verbs, and the
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words which they modify (if any) can provide a great deal of information for onto-
logical classification in CommonKADS. There is therefore considerable potential for
automated classification if a textual transcript can be parsed (providing grammati-
cal information), or at least lexically tagged, so that the word class of each word is
known. TOPKAT uses the analyses above to support semi-automatic classification, in

the following manner:

e A textual transcript is written to a file;
e The file is lexically tagged, using a publicly available tagging package;

e TOPKAT re-reads the resulting file to determine the word classes of each word

in the transcript.

Once this has been performed, TOPKAT offers the user the options of identifying

concepts and properties in the transcript. This is accomplished by:

e Collecting all nouns in the transcript into a list (classifying any instances of two

adjacent nouns as a single compound noun);

e Sorting the nouns according to their frequency of occurrence in the transcript,
compared with their expected frequency in everyday English. Nouns which ap-
pear much more frequently than expected are placed at the head of the list, on
the basis that these nouns are more likely to represent domain-specific concepts.
Three measures of expected frequency are used (two based on written frequency
and one on spoken frequency); an average likelihood from all three measures is

used.

e Presenting the list of nouns to the knowledge engineer, and asking which nouns

represent concepts that are relevant to problem solving.

e Identifying any adjectives which immediately precede concepts in the transcript,
and using a question based on Woods’ linguistic test to define a name for the

property associated with that adjective.

This approach has been used successfully to produce the classification shown in Figure

11.5.1.
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TECHNICIAN: Here’s a faulty part — as you can see, the fault is black specks,
on the back face of the moulding, on the sides of the moulding — all over,
in fact. [He scratches a speck with his pocket knife]. They're quite deeply
embedded — not surface specks. That means that the problem is being
caused by something in the material or in the process, rather than external
dust, or dripping water. [He speaks to the machine operator]. How long
has the job been running?
Key: Concepts are underlined; Properties are in italics.

Figure 11.8: Transcript classified using semi-automatic natural language analysis

Two features of this approach to classification are immediately obvious: firstly, that it
is highly interactive; and secondly, that it is based on a pragmatic but simple approach
to natural language understanding, which means that it is vulnerable to errors in
lexical tagging and in adjective/noun pairing. The key to the success of TOPKAT’s
approach is that these two features balance each other out. Much of the work which has
been carried out on understanding natural language has attempted to analyse language
with maximum accuracy and minimum human intervention; despite the high level of
sophistication of some systems, it has proved very difficult to comprehend language
unambiguously without considerable use of general knowledge, which is difficult to
encode. TOPKAT’s natural language capabilities, however, are complemented by the
domain knowledge and general knowledge of the knowledge engineer using the system,
which enables an accurate and largely complete classification to be produced; while
for the knowledge engineer, providing guidance to TOPKAT is much less effort than

performing transcript analysis without assistance.

TOPKAT thus makes use of the structure of language to identify appropriate mappings
between acquired knowledge and CommonKADS domain modeling. While the state
of natural language technology does not permit exhaustive identification of ontologi-
cal types in a transcript using automated analysis, the guidance which is provided is
much more useful than simply being presented with a transcript and asked to identify
and classify fragments of text. The usefulness of this technique was verified during a

4

training course” in which students were asked to identify concepts, properties and rela-

tions in a transcript similar to the one shown in Figure 11.5.1. Despite the availability

4 The course was entitled “Expertise Modeling”, and was given as part of the Catalyst project, project
no. 10327, supported by the CEC ESSI programme. The aim of this project was to assist selected
companies to learn and apply the CommonKADS methodology.
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of software support for hyperlinking text fragments to items of domain knowledge,
the students spent well over an hour on the task without finishing it. When the
semi-automatic classification of TOPKAT was demonstrated during the course, the

classification process was completed in 6-7 minutes.

11.5.2 Laddered grid: from one taxonomy to another

The output of the laddered grid technique is a taxonomic hierarchy of domain objects.
It is taxonomic because the prompt questions which are used should only generate
examples or subclasses of other domain terms® ; the domain terms are assumed to be

objects which are capable of possessing subclasses or examples.

On the basis of this structure, each term in the laddered grid is classified as a concept
in the CommonKADS domain ontology, and the entire laddered grid is mapped to a

taxonomic domain model at the CommonKADS domain level.

11.5.3 Card sort: when is a property not a property?

The card sort produces a number of domain terms which are classified into different
categories on a number of dimensions. It can be seen that the categories supplied
for each dimension form a range of possible values for that dimension; this correlates
closely with the relationship between properties and values, and so it seems likely
that dimensions will map to properties in the CommonKADS domain ontology, and
categories will map to values of those properties. Furthermore, it can be seen that
the dimensions must be properties of the domain terms, which implies that, as in the

laddered grid, the domain terms should be mapped to concepts.

TOPKAT uses the information listed above to map all domain terms into concepts in
the CommonKADS domain ontology. However, it turns out that dimensions cannot
be uniformly classified as properties. The reason for this is that the flexibility of the
card sorting technique; the expert is simply asked to “sort the cards in any way which

seems sensible”. The resulting dimensions might differentiate the cards in several ways.

5 The laddered grid technique can also be used with different sets of prompt questions, in which
case the taxonomic assumption will not apply. TOPKAT currently only supports prompt questions
which will generate a taxonomic laddered grid.
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For example, if knowledge acquisition was being performed to learn about the task of
maintaining a zoo, then a card sort might be performed with the name of a zoo animal

on each card. The resulting card sorts might include:

e A sort according to the animals’ lifespan, with categories such as “short”, “aver-
age” and “long”. In this case, lifespan can safely be assumed to be a property of

each animal;

e A sort according to the genus of the animals (reptiles, mammals, etc). This is

clearly a tazonomic classification of animals;

e A sort according to the zoo collection to which animals belong, which may include
categories such as “monkey house” or “children’s corner”. In this case, the ani-
mals are considered as part of a particular collection, which in turn is part of the
z00’s overall population. This constitutes a hierarchical (though non-taxonomic)

classification of animals.

It can be seen from the above example that dimensions cannot simply be mapped
to properties in the CommonKADS domain ontology without further investigation.
The approach taken in TOPKAT to classification of dimensions is to ask the knowl-
edge engineer some questions about each sort which help to determine the appropriate
classification for that sort. These questions enable the knowledge engineer to make
key distinctions between different subtypes of property, including the identification of

taxonomic relationships and part relationships within card sorts.

TOPKAT’s guidance starts by obtaining a name for the property. The name is obtained
by asking a question based on Woods’ linguistic test (see section 11.5.1). Using the card
sort shown in Figure 11.2 as an example, the question derived from Woods’ linguistic

test would be:

Cheap is the/an WHAT of Mini?

which is generated by selecting one card (Mini) from the first category (Cheap) and

instantiating a template question with these two values. Wood’s linguistic test is useful
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in enforcing discipline on the naming of properties, by preventing names with prepo-
sitions (connected-to), verbs (is-needed) or plurals instances); instead, these names
must be transformed into equivalent singular nouns (such as connection, acquisition-
procedure and instance). This naming discipline helps to standardise the properties
which are created, and the effort of finding a suitable name may also lead to new

insights about the conceptual structure of the domain [76].

Once the prospective property has been named, it is necessary to determine whether
it really is a property. This is achieved in TOPKAT by asking further questions of
the knowledge engineer. The questions are derived from a semi-formal approach to
classification emerging from the Italian National Project on Hybrid Systems [76]; they
not only determine whether the prospective property is genuinely a property, but they
also introduce a sub-classification of properties.® This classification is illustrated in

Figure 11.9.

It can be seen from Figure 11.9 that classification depends on determining :

e Whether the prospective property is founded or essentially independent. A prop-
erty is considered to be founded if it can only exist if its accompanying concept
also exists; for example, the price of a car is founded, but the wheel of a car
is essentially independent, because the wheel can exist even if the car does not
exist. The foundedness of a prospective property is determined by asking “ Can
the/an property of concept exist if (the/an) concept does not exist?”; for exam-

ple, Can the/an Nationality of Mini exist even if (the/an) Mini does

not exist?

e Whether the property is semantically rigid or not. A property is semantically
rigid if it is a necessary condition for the identity of its value; for example, colour
is semantically rigid, because red must be a colour in order to exist, but driver

is not semantically rigid, since Fred does not necessarily have to be a driver of

6 All the types of “property” described in this section (roles, qualities, and parts) can also be con-
sidered as concepts in their own right; Guarino’s discussion is phrased in terms of concepts and at-
tributes. This is de-emphasised in this paper, however, to avoid confusion with the CommonKADS
domain ontology.
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Figure 11.9: Ontology of attributes (from [76])

a car in order to exist.

Developing a suitable question to determine semantic rigidity is not as simple

as it first appears. For example, the template “Is value necessarily a property?”

should elicit the correct answer (N

o) when instantiated with Wheel and Part; it

should also elicit the correct answer when instantiated with Fred and Person.

It is therefore suitable for distinguishing between part names and natural con-

cepts (which may, despite Woods’ linguistic test, occasionally occur as property

names). However, it is likely to obtain the wrong answer (No) when instantiated

with Short and Lifespan, because Short is a possible value of many properties.

It is possible to circumvent this problem by making use of another of Guarino’s
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observations: that the values of qualities (which are semantically rigid) can be
considered as predicates, whereas the values of roles (which are not semantically
rigid) can be described as instances of the property. On the basis of this, the
question which was devised for distinguishing between relational roles and qual-
ities was “Is walue an instance of property, or a predicate describing the value of

property?”. For example, fg

Is Fred an instance of Driver, or a predicate describing the value of

Driver?

TOPKAT therefore asks if a dimension is founded, and then asks the appropriate
question to determine semantic rigidity. On the basis of the answers to these two
questions, a property can be classified into Guarino’s suggested ontology of attributes.
If a property is defined as a relational role or a quality, then it is simply added to
CommonKADS’ domain ontology as a property; if it is a part name, a part relation
is created in an appropriate domain model; and if it is a natural concept, then a
taxonomic hierarchy is created, in which each category is linked to the dimension by
a subclass link. For example, cars could be classified according to their manufacturer;
the manufacturer of a car can exist even if the car does not exist (assuming that car
is not their only product), and Vauxhall (for example) is necessarily a manufacturer.
Manufacturer is therefore a natural concept; TOPKAT’s response to this situation
is to define Manufacturer as a concept, and then define each category (i.e. each

manufacturer) to be a subclass of Manufacturer.

Non-relational roles (such as pedestrian or by-pass capacitor) should be filtered out by

Wood’s linguistic test.

11.5.4 Repertory grid: assigning meaning to numbers

The repertory grid technique produces two outputs. The first is the repertory grid
itself, which is a two-dimensional table in which domain terms (elements) are assigned
numeric values on several dimensions (constructs). The second is the statistical cluster-
ing produced by comparing these numbers. It has already been seen (in section 11.3.2)

that the statistical clustering bears some resemblance to a laddered grid; in order to
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produce a meaningful hierarchy, the “classes” which represent statistical closeness must
be interpreted as representing semantic closeness, or as irrelevant, and the hierarchy
must be updated accordingly. TOPKAT currently handles this task by asking the

knowledge engineer and/or the expert to perform it.

Once the hierarchy has been rationalised, TOPKAT treats it as if it were a laddered
grid. The domain terms (which appear in the repertory grid and in the statistical
clustering) are therefore mapped to concepts in the CommonKADS domain ontology,

and the (rationalised) statistical clustering is converted into a taxonomic domain model.

Having decided that the domain terms which appear in the repertory grid should be
mapped to concepts, it is necessary to decide how the dimensions and the accompanying
numeric values should be treated. Dimensions in the repertory grid are restricted to be
continuous variables, which makes it likely that the majority of them will be qualities
in Guarino’s classification. However, it is possible that binary dimensions will be
introduced (e.g. whether a crime is or is not a felony); such dimensions may well
represent relational roles, taxonomic hierarchies or part hierarchies, and so the two
questions used to determine the correct classification of card sorts must be used again

to classify dimensions accurately.

Before the property classification questions can be asked, however, the numeric values
in the repertory grid must be translated into textual values. While numeric values are
acceptable as values of properties, they are not very informative outside the context of
the repertory grid, and numbers make little sense when instantiated into the property
classification questions. TOPKAT makes use of the observation that most dimensions
in the repertory grid are continuous to generate text which corresponds to each value;
this text is based on the name of the dimension, and the names of the poles (low
and high values) assigned by the knowledge engineer. The knowledge engineer is then
prompted to edit that text until satisfied with it. Using the repertory grid shown in
Figure 11.3 as an example, TOPKAT will generate the following text for the Frequency

dimension:

1. Sensational

2. Fairly Sensational
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3. Average Frequency
4. Fairly Common

5. Common

This text will then be used in the property classification questions; so the knowledge

engineer will be asked:

Can the/an Frequency of Theft exist even if Theft does not exist?

and

Is Sensational an instance of Frequency, or a predicate describing the value

of Frequency?

The answers to these questions should be “No” and “Predicate” respectively, which

classifies Frequency as a quality.

The repertory grid can also be used to generate a large number of expressions in the
CommonKADS domain ontology — one expression for each numeric value in the grid.
These expressions could be used as individual conditions of production rules, which
is the principle used by tools such as KITTEN and NEXTRA to derive rules from

repertory grids [153].

11.6 Summary

It can be seen that all the knowledge elicitation techniques supported by TOPKAT
produce output which consists not only of knowledge, but of a structure within which
knowledge is stored. The output of these knowledge elicitation techniques can be
used to generate concepts, properties, expressions, relations, and even domain models

directly, with only occasional assistance from the knowledge engineer.

There are many opportunities for future work on improving the linking of knowledge

elicitation techniques to CommonKADS knowledge analysis
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e For the card sort, the classification of properties into relational roles, qualities,
part relations and natural concepts could be extended by using the mereology

(classification scheme for part relations) suggested in [70].

e For the card sort and the repertory grid, Woods’ linguistic test could be used
when dimensions are created. While this might restrict the breadth of the ac-
quired knowledge, it should produce a more coherent set of dimensions, which
is particularly important in the repertory grid where dimensions are compared
against one another. The effort of finding a correct name would also be trans-
ferred from the knowledge engineer to the expert by this technique, which may
lead to further knowledge acquisition as the expert reconsiders the conceptual

structure of his knowledge.
e For transcript analysis, there are many possible improvements:

— Use a chart parser to obtain linguistic information, permitting extensive

automatic identification of properties, and perhaps of relations;

— Feed back linguistic information obtained from a knowledge engineer to the

parser or lexical tagger, to improve accuracy;

— Define and apply a “coding schema” [189] — a set of phrases which are known

to indicate the presence of certain ontological types;

— Use questionnaires or structured interviews to obtain highly structured tran-
scripts which are written in simple declarative sentences. It should be pos-
sible to parse these transcripts and classify the knowledge contained therein

without human intervention (see [86]).

e For knowledge in the inference and task levels of CommonKADS, define a map-
ping between knowledge acquisition techniques which acquire procedural knowl-
edge (such as protocol analysis, or the “20 Questions” technique [152]) and Com-
monKADS inference steps and primitive tasks. TOPKAT already supports a

simple decision tree editor.

There is one final CommonKADS model to be considered: the Design model. This is

discussed in the next chapter.
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Chapter 12

Knowledge Engineering: Design
Modeling!

12.1 Introduction

The problem of designing a knowledge based system well is one of the most com-
plex problems that knowledge engineers face. When knowledge based systems are
developed by rapid prototyping, good design relies on the knowledge engineer’s pro-
gramming skills, and on his ability to devise, remember, and dynamically update a
design specification. This is a difficult task for all but the smallest knowledge based
systems, especially if the system intermixes expert knowledge with system control oper-
ations.? It is possible for the system to get out of control so that even its author cannot

understand why apparently small changes have large effects on the overall system.

These problems can be alleviated by producing representations of the expert’s knowl-
edge and of the design specification in the form of text or diagrams, thus documenting
the expert’s knowledge and the important design decisions independently of the sys-
tem. CommonKADS recommends such an approach, derived from its Expertise Model,
which models expert problem solving in three components: domain (declarative) knowl-

edge, inference (procedural) knowledge and task (control) knowledge.

! Originally published as Designing Knowledge Based Systems: The CommonKADS Design
Model in Research and Development in Expert Systems XIV, Proceedings of Expert Systems 97, the
annual conference of the British Computer Society’s Specialist Group on Expert Systems, St. John’s
College, Cambridge, December 15-17 1997. Also published in a special double issue of the Knowledge
Based Systems Journal containing the twelve best papers from ES ’97: Elsevier, May/June 1998.

2 (MYCIN did this; and this was a primary reason for the failure of the GUIDON system, which
attempted to “teach back” MYCIN’s knowledge to users [81].

235
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The responsibility for representing design decisions is passed to the CommonKADS
Design Model. The Expertise Model is intended to represent knowledge at a level of
abstraction which is independent of implementation; it neither allows representation
of, nor gives guidance on, decisions about which programming techniques to use in

order to represent the acquired knowledge.

The Design Model was specified towards the end of the CommonKADS project [180];
apart from a worked example published by the project team [150], little or nothing
has been published describing its use in realistic applications. The purpose of this
chapter is to describe the CommonKADS Design Model, including sources of guidance
for making design decisions. The chapter illustrates the use of the Design Model by
reverse engineering two existing KBS systems to show how the CommonKADS Design
Model would have applied to them. The example systems are the same ones which

were described in chapter 8.

12.2 The CommonKADS Design Model

The CommonKADS Design Model is intended to support knowledge engineers in choos-
ing knowledge representations and programming techniques in order to produce a good
design of a KBS system. It aims to do this in a way which is both generic (i.e. platform-
independent for as long as possible), and economical (it encourages preservation of the
structures within the expertise model). It also makes use of the CommonKADS Com-

munication Model (see chapter 6) as a source for user interface requirements.

The Design Model supports selection of representations and techniques by encouraging
the designer to start with the knowledge contained in an expertise model, and to per-
form a three-stage transformation process in order to produce design recommendations.

These three stages are:

o Application design: choosing an overall approach to design decomposition;

o Architectural design: choosing ideal knowledge representation and programming

techniques;

e Platform design: deciding how to implement the recommended techniques in the
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chosen software.

12.2.1 Application Design

The application design is the first of these three stages. The purpose of application
design is to decompose the knowledge into manageable “chunks”. The size and content
of each chunk depends on the approach to decomposition which is used. Broadly

speaking, three approaches to decomposition are available:

e Functional decomposition;
e Object-oriented decomposition;

e Various Al paradigms.

Functional decomposition involves treating each inference step from the Expertise
Model as being a “chunk” of functionality. Functional decomposition is therefore a
structure-preserving approach to design, because the form of the inference structure
is maintained in the design specification. The benefits of this are that the KBS will
replicate the expert’s problem solving process (or whatever process was modeled in the
inference structure); any inference step that is identified as a canonical inference (see
[2]) will have its expected functionality clearly defined; and perhaps most important
of all, preserving the inference structure usually preserves the task structure from the
Expertise Model as well. The task structure is very important for KBS design because
it provides a semi-formal specification of the required flow of control for knowledge
based processing, while the Design Model recommends only a high-level textual de-
scription. Knowledge engineers therefore need to use both the Design Model and the

task structure as a specification for KBS implementation.

Object-oriented decomposition treats each concept from the domain model as being a
“chunk” of information - i.e. each concept is treated as an object class. Since concepts
have properties with values, and relationships with other concepts, it’s often helpful
to represent concepts as objects in object-oriented design. Object-oriented decompo-
sition preserves the structure of the domain models in the expertise model; indeed,

CommonKADS domain modeling can be seen as a generalisation of object oriented
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data modeling [88]. Preserving the inference and task structures is harder in object-
oriented design, though some benefits can be obtained by considering the inference
structure to be broadly equivalent to the Object Management Technique’s Functional
model, while the task model is compared with OMT’s Dynamic model. Individual rules
can, if necessary, be represented in the domain models using expressions; see section

8.3 for a description of these.

Another option for knowledge engineer is to decide that an “Al paradigm” — a well-
known approach to Al problem solving — is appropriate. Possible Al paradigms might
include blackboard systems, constraint-based programming, qualitative simulation or
model-based reasoning. In this case, the “chunks” of knowledge may be constraints,
knowledge sources, cause-and-effect rules or whatever is appropriate for the chosen
approach. If an AI paradigm is chosen, it may be that little of the structure of the
Expertise model will be maintained. In practice, this means that the knowledge en-
gineer will either have identified the likelihood of an Al paradigm being appropriate
earlier in the development process, and will have customised the Expertise model ac-
cordingly, or Al paradigms will be considered unfavourably because of the extra effort
required to re-analyse the knowledge. Exceptions to this heuristic would be the use of
a blackboard architecture (where only the task structure of the Expertise Model needs
to be revised) or the use of an Al paradigm for a system subcomponent e.g. model-
based simulation to perform diagnostic tests on a system, under the overall control of

a diagnostic inference structure.

Once decomposition has been performed, it’s necessary to characterise the contents of
each “chunk” in a way that specifies further design requirements. For example, if func-
tional decomposition has been performed, it’s helpful to designate the operation being
performed by each inference step in the form of an architectural command — a “func-
tion name” which describes the action which the function performs. Typical operations
might be subset, get-property-value, or calculate. As mentioned above, the definitions
of canonical inference steps in the CommonKADS expertise model may be helpful in
defining appropriate architectural commands; for example, an inference step of type
select-subset is very likely to be implemented by a subset operation. This process also

helps validate the Expertise Model; if the architectural command differs significantly
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from the inference step definition, then a possible error in labelling or understanding
the inference structure has been highlighted. A full set of possible architectural com-
mands has not been published, but a suggested BNF for these commands is given in
[150], and knowledge engineers are encouraged to use this to help them develop their

own set of commands.

12.2.2 Architectural Design

The task of architectural design is to define a computational infrastructure capable of
implementing all the architecture commands defined in the application design. It is
at this stage that the preferred knowledge representation and programming techniques

are selected.

Knowledge representations available to knowledge engineers typically include objects,
facts, and production rules, as well as more “conventional” representations such as
tables or arrays. Many programming techniques are available including data- and goal-
driven reasoning, truth maintenance, meta-rules, and various search strategies. The
architectural commands specified during the previous phase provide guidance to the
knowledge engineer on which representations and techniques are appropriate; for ex-
ample, a get-property-value operation specifies a preference for objects as a knowledge
representation technique, because properties are an essential feature of objects. The
emphasis in this phase is on choosing ideal techniques; the appropriateness of these for
the available software tool should be considered in the next phase. In practice, most
knowledge engineers know which tool they will be using when this phase is performed,
and so will not select representations or techniques which will be impossible to imple-
ment; this phase is still useful, however, in assessing the appropriateness of the chosen

tool or the chosen Al paradigm.

It is at this stage of design that the experience of a knowledge engineer can be brought
to bear in making good design decisions. If the knowledge engineer knows that a
particular technique or representation has proved suitable (or otherwise) for a similar
problem in the past, then a knowledge engineer can use this information to guide his
choices. There have been some attempts to capture and encode this knowledge for the

use of less experienced knowledge engineers; it turns out that there are a large number
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of features of knowledge based problems which affect the choice of representations and
techniques, so many that an entire book has been filled with probing questions. Probing
questions ask if certain features are present in a knowledge-based problem, and suggest
suitable functionality based on that feature. An example of a probing question is given

below:

On average, do we know five or more new facts about a domain object

simply by being told that it is of type X7

OR

Are these new facts not known with certainty, but assumed unless

there is evidence to the contrary?

Yes — Place the object in a data structure (e.g. frames, semantic
nets or objects) whose inheritance mechanism will provide the facts
when needed, and whose default values will be assumed unless an

exception is specifically asserted.

No — Assert the new facts explicitly, which is a ‘cheap’ solution.

Kline & Dolins’ book [104] contains probing questions based on successful Al systems
up to the time of publication. AIAI has done some further knowledge acquisition
and system development in this area (see chapter D), but there is a need for more
research and development of probing questions to keep pace with new technologies and

techniques.

12.2.3 Platform Design

The final phase of the CommonKADS Design Model considers how (or whether) the
ideal knowledge representations and inference techniques should be implemented in

the chosen software. Most modern KBS tools support both objects and rules, so
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knowledge representation is rarely a problem. However, some programming techniques
can be awkward to implement; for example, implementing data-driven reasoning in
a tool which primarily supports backward chaining. The restrictions of the tool may

mean that a different programming technique needs to be used.

12.3 Worked Example 1: IMPRESS

The use of the CommonKADS Design Model will be demonstrated with two worked
examples — IMPRESS, which diagnoses faults in plastic moulding machinery, and X-
MATE, which assesses the risk of mortgage applicants failing to make repayments.
These two projects have been chosen because their expertise models have been de-

scribed in some detail in chapter 8.

IMPRESS (the Injection Moulding Process Expert System) diagnoses the causes of
faults in plastic injection mouldings. Given data about the type of fault (e.g. “black
specks in the moulding”), IMPRESS considers all possible causes of the fault, suggests
tests for the system user (a technician or machine operator) to perform on the system,
and iterates through a cycle of test-discard hypotheses-suggest tests until there is only

one hypothesis left.

12.3.1 IMPRESS: Application Design

No Al paradigms appeared to have overriding advantages for IMPRESS, so the choice
of application design became a choice between functional and object-oriented decompo-
sition. A few relations had been identified at the domain level, and a detailed inference
structure with a little extra procedural ordering information had also been developed,

so there was more detail in the inference structure than in the domain models.

It was decided to break down the expertise model using functional decomposition i.e.
to preserve the inference structure, which is shown in Figure 12.1. The chosen functions

are described in Table 12.3.1. It can be seen from the architectural commands that

3 The initial development of these systems pre-date CommonKADS, and so the design models used
in these projects have been reverse engineered, to show how the decisions which were actually taken
during system design would have been represented if a CommonKADS design model had been
developed.
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‘ Inference step ‘ Function ‘ Arguments ‘
decompose subset :set all-faults :set hypotheses :key symptom
. :concept hypothesis
f t- t
Specily gel-property :property expected-value :key observable
:concept hypothesised-fault
1 - s
select get-property :property distinguishing-observables
:set all-tests :set discriminating-tests
subset e
‘key distinguishing-observables
get-property :concept test :property time-required
sort :set discriminating-tests :key time-required
measure Transfer Task
:concept hypothesised-fault
fi t- t
retme gel-property :property expected-value :key test
match :element observed-value :element expected-value
subset . :set hypotheses .
:set remaining-hypotheses :key difference

Table 12.1: Application Design for IMPRESS

IMPRESS requires a subset operation, where a set (of possible fault states) is reduced
to a smaller set which are compatible with all observed symptoms and measurements;
several get-property-value operations, which obtain values such as the expected value
of an observable if a particular hypothesis is true; a sort of tests according to the time
required to undertake them; a transfer task which asks a user to perform a test which
will observe or measure some relevant parameter of the machine, and to report the
measured value to IMPRESS; and a match-2 operation (a match between 2 values) to
compare an observed measurement against the expected value of that observable in

each fault state.

An interesting observation on this mapping is that the decompose inference step in
IMPRESS is mapped to a subset operation, whereas CommonKADS’ definitions of
canonical inference actions suggests that decompose requires replacing a single concept
with a set of its component concepts. The reason for this difference is that the initial
step in IMPRESS’ diagnosis is determining a relevant subset of all possible fault states,
rather than identifying a set of machine components; this was highlighted by Breuker
[18] and is discussed in chapter 18.
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12.3.2 Architectural Design

It should be noted here that a functionally decomposed Design model actually consists
of three diagrams; one for the inference steps, one for the knowledge roles, and one for
the communication transactions. Each of these reflects the three steps of application
design, architectural design and platform design. The relevant diagrams for IMPRESS
can be seen in Figures 12.2, 12.3 and 12.4.

Inference Application Design (hy Architectural Platform- specific
Structure Functional Decomposition) Design Design
decompose*——________%
update
subset > . —
object \ built-n
specify K*E‘PPA
read Fromm / functions
oet-property e
select
Transfer
Task
tneasure
user-defined
" rles " KAPPA
refine function

Figure 12.2: IMPRESS Design Model: Inference steps

The design for the inference steps identified a preference for production rules to carry
out the match step. The other steps were identified as capable of being implemented
with simple object-based operations: the subset operation involved a member-of oper-
ation on the symptoms, plus changing values of the “set membership” slot from Yes
to No, while the get-property operation requires reading the value of a slot in an ob-
ject. The measurement task was considered to be a transfer task, so the only design
requirements were for the user interface to instruct the user on the task, and obtain

the result correctly.

The architectural design for IMPRESS’ domain knowledge was not too complex; fault

states, tests and other concepts were implemented using objects, and domain relations
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Figure 12.3: IMPRESS Design Model: Domain Knowledge

were to be represented using slots. Set membership was also indicated using a slot,
which carried the name of the set, and possible values of Yes and No. The user interface
design was also fairly simple, since the most complex user interface feature required

was a multiple-choice menu.

12.3.3 Platform Design

IMPRESS was implemented in KAPPA-PC on a Compaq 386 PC. KAPPA-PC pro-
vided good support for object representations and object accessing functions, so the
relevant architectural design recommendations were followed exactly. However, the
rule system in that version of KAPPA-PC effectively operated as an add-on module to
the rest of the system; it needed to be carefully set up and explicitly invoked. Since the
matching algorithm only needed to match 2 parameters (test results against faults),
and there were approximately 40 faults and 40 tests in the knowledge base, then the

maximum number of possible matches was 1600, and a quick survey of the knowledge
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base established that the mean number of matches was much lower — less than 100. It
was therefore feasible to perform the matching with a doubly-iterative function, thus

avoiding the need to introduce the rule system into the program at all.
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Figure 12.4: IMPRESS Design Model: User Interfaces

12.3.4 Flow of Control

Design decisions on flow of control are made on the basis of the task structure from
the Expertise Model. The knowledge representations and programming techniques
recommended by the Design Model must be chained together in order to replicate
the task body specified. For IMPRESS, the task body (see section 8.4.1) specifies a
generate-and-test approach: an initial set of candidate faults is identified, and then
the system enters a REPEAT-UNTIL loop in which tests are selected, performed, and

the set of possible faults is narrowed down, until the set of possible faults has 1 or less

members in it. This was easy to implement in KAPPA-PC.
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12.4 Worked Example 2: X-MATE

X-MATE (eXpert Mortgage Arrears Threat Advisor) [95] was developed for a large
UK building society by Hewlett Packard’s Knowledge Systems Centre with assistance
from ATAI Its task was to assess the likelihood of mortgage applicants meeting their

loan repayments.

The building society’s problem was that the percentage of defaulters was too high, and
it was difficult to enforce quality control on acceptance of applications because, within
certain guidelines, the acceptance or rejection of applications was almost entirely at
the discretion of the local branch manager. The system was intended to support a
branch manager or branch clerk by highlighting applications which were worthy of
further investigation, and assisting the user in performing some further checks on the
application. It did this by identifying the key features of “typical high risk customers”,
determining what data on the application form would indicate these features, and then
scanning application forms (and, if necessary, data supplied from other sources) for the

presence of these high risk indicators.

12.4.1 X-MATE: Application Design

X-MATE was also decomposed using functional decomposition. The inference struc-
ture for X-MATE is shown in Figure 12.5. The application design for X-MATE can be
seen in Table 12.4.1.

The most obvious factor about this design is that several inference steps are labelled
“pre-compiled”, and no architectural commands are defined for these steps. What has
happened is that several of the problem-solving steps required to perform mortgage
application assessment have been carried out once and for all by the experts who
supplied the knowledge for the system; the system only contains the results of that
process. This “distilled wisdom” is considered to be “shallow” knowledge (i.e. direct
associations between key inputs and important outputs.) in Al terminology, replacing
the “deep knowledge” of the full problem-solving process. This can be reflected in a

revised version of the inference structure; see section 8.2.2.
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Figure 12.5: Inference structure for X-MATE
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‘ Inference step ‘ Function ‘ Arguments
:set all-risk-indicators :set some-risk-indicators
focus subset . .
-key situation
select selectsimple :set available-data-sources
P :key phase-of-problem-solving
specify pre-compiled
specify pre-compiled
specify pre-compiled
Measure matchN :elements apph.catl.on—.form—data
:elements risk-indicators
compute calculate :number risk-score :number risk-threshold

Table 12.2: Application Design for X-MATE

The application design also contains an extra problem solving step (the selection of
a particular data source) which did not appear in the inference structure. This extra
step reflects a design decision to run the system up to four times, using different sets
of data; the reason for this was to speed up processing by making all automatic checks
first, and only proceeding to ask the user to input data if the application is deemed
to be medium or high risk. While this is a control issue, and therefore is largely the
concern of the task structure, it was necessary to select the appropriate data source

for each run, and this had to appear in the Design model.

The select-simple function is given a list of four data sources; its functionality is to
select the next data source from the list. match-N performs pattern matching between

2 or more items, while calculate performs arithmetic calculations.

12.4.2 Architectural Design

The architectural design for X-MATE’s processes is as follows:

e Select data sources: the key to this selection is the phase of processing. It can
be implemented as a case statement i.e. “if phase 1, select source X; if phase 2,

select source Y; etc.”

e Matching should be implemented using production rules. Note that the rec-

ommendation for production rules is much stronger than it was for IMPRESS,



Knowledge Engineering: Design Modeling 250

Inference Application Design (bhy Architectural Platform-specific
Structure Functional Decomposition) Design Design
select- CASE built4n
select _| simple | statement T EAFPA
/ functions
- - /jKﬁPPArule
focus = mubszet > rule sets > sets
EATPA
match = match > rules >
rules
arithmetic
compite » calculate *| functions

Figure 12.6: X-MATE Design Model: Inference steps

because X-MATE correlates multiple features in order to determine risk, whereas
IMPRESS only matched pairs of properties. The theoretical set of possible
matches is therefore much larger in X-MATE.

e Focus on a set of risk indicators: choose an appropriate rule set.

e Computation should be implemented using arithmetic functions.
As for the domain knowledge design, the application form was represented using 2
or more objects: one object for each applicant (instances of a Applicants class) and

one to represent the “case” (details of the property, and other non-applicant-specific

information).

12.4.3 Platform Design

X-MATE was implemented in KAPPA-PC 1.1 on a HP Vectra 386 PC. The platform

design mirrored the architectural design; no changes were deemed necessary.

The full design model for processes in X-MATE can be seen in Figure 12.6.
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12.4.4 Flow of Control

The flow of control specified for X-MATE (see section 8.4.2 is to repeat running
through the whole inference structure until the computed risk score doesn’t meet
a particular threshold, or until there are no more rule sets to be processed (each
rule set corresponded to a different data source). When an application comes in, the
first rule set is selected and is run on the objects representing the applicants and the
case. If the resulting risk score does not reach a certain threshold, the application is
deemed OK; if it does reach the threshold, another rule set is loaded and run on the
same objects after extra data have been added by an automatic request to a credit
search bureau. If a second threshold is breached, a third rule set is loaded which asks
the user questions about the text in the application and accompanying references; if
another threshold is breached, then the system loads its final ruleset, which requires

the applicants themselves to attend an interview to answer further questions.

The final accumulated risk score is then recorded and can be displayed later, or sorted
to produce a list of the riskiest applications for forwarding to Head Office. The system

has been designed not to reject any applications without further consultation.

12.5 Conclusion

It can be seen that the CommonKADS Design Model is a useful way of recording
design decisions, and of viewing how one design decision flows from another; it therefore
provides useful documentation of the process of system design. The separation of flow-
of-control design from selection of representations & techniques is a consequence of
a similar separation in the Expertise Model; this encourages greater modularity and
reusability of designs. The three-stage design process helps to validate the Expertise
Model and to separate decisions on good design techniques from decisions on what can

be implemented.

Weaknesses in the Design Model include a lack of guidance on selection of techniques;
probing questions provide some remedy for this. The lack of a defined set of architec-

tural commands is also a weakness.
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In summary, the CommonKADS Design Model is a useful aid to knowledge engineers
in representing and recording design decisions, especially if an Expertise Model and a
Communication Model have been developed previously. The usefulness of the Design
Model will be improved by further recommendations on content (particularly archi-
tectural commands) and guidance on making selections (i.e. development of further

“probing questions”).

The final chapter of this thesis (excluding the “critical review” chapters) suggests
which aspects of CommonKADS are really necessary, in the context of a very short

KBS development project.



Chapter 13

Pragmatic KADS: A

methodological approach to a
small knowledge based systems
project!

13.1 Introduction

It might be thought that KADS, with its specific guidance for the system developer
and flow of information for the project manager, would quickly become the standard

approach to KBS development.

There is, however, a vociferous faction amongst KBS developers which believes that
methodological approaches to KBS development add so much overhead to some projects
that they are not worth using. For example, the KADS methodology has been criti-
cised both for the time required to construct all the detailed models, and for the large
number of reports which are required to document progress made and decisions taken.
KADS’ approach may be essential for large-scale commercial projects, but it is argued

that this approach is not appropriate for many KBS developments.

This overhead causes particularly severe problems for small and medium-sized KBS
projects. There is also less perceived need for methodology on these projects, since

they are typically least at risk from informal KBS development procedures. In order

! Originally published (with the same title) in Research and Development in Expert Systems VIII,
Proceedings of Expert Systems 91, the annual conference of the British Computer Society’s Specialist
Group on Expert Systems, St. John’s College, Cambridge, December 15-17 1991.
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to solve this problem, some KBS developers have rejected methodological approaches
altogether; others have developed their own streamlined methodology; and others still
have used parts of a recognised methodology, attempting to extract the benefits of
formalisation and guidance for developers while minimising document preparation and

other overheads.

COURSE SELECTOR is a small KBS, developed by the Artificial Intelligence Applications
Institute of the University of Edinburgh in 6 man weeks. The use of a full-scale
method for such a short project would have been prohibitively time-consuming, and
so a pragmatic version of the KADS methodology was used. This paper describes
the use of “pragmatic KADS” in the development of the COURSE SELECTOR system,
highlighting those parts of KADS which were found to be particularly useful. For
comparison purposes, it also shows CommonKADS models that represent the same

knowledge.

13.2 COURSE SELECTOR: The problem

The COURSE SELECTOR system was implemented for the Department of Business Stud-
ies in the University of Edinburgh. The Department’s problem was that, in the first
two weeks of the Autumn term, every student is required to choose courses for the
coming year. Each student has a Director of Studies who is responsible for ensuring
that a legitimate combination of courses has been chosen, and every Director of Stud-
ies finds that the whole of the first week of term, plus a significant proportion of time
thereafter, is taken up with advising students on this complex problem. The task of

choosing an acceptable combination of courses is complex, for the following reasons:

e The University of Edinburgh permits students to choose from a very wide range
of courses. While most Business Studies students choose their courses from the
20 subjects offered within the Faculty of Social Science, it is not unknown for
students to take courses such as Chinese Civilisation, or Forensic Medicine. As

a result, there are a large number of potential timetable clashes.

e The Department of Business Studies requires students to take certain combina-

tions of courses in their second and third years. All Honours students are required
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to take Business Studies 1, Business Studies 2 and Business Studies 3 in their
first three years; in addition, most students must take six other courses, in one

of the following combinations:

— Levels 1, 2, and 3 in a single subject, and three other level 1 courses
— Levels 1 and 2 in two subjects, and two other level 1 courses

— Levels 1 and 2 in a single subject, three level 1 courses, and two extra

half-courses in Business Studies

These regulations can be difficult to coordinate with timetable clashes and stu-

dents’ preferences.

e The Department of Business Studies offers ten different Bachelor degrees which
include a Business Studies component. Each of these has different compulsory
courses, and some require 2nd and 3rd year students to take more than six courses

(in addition to Business Studies 1, 2 and 3).

e Students are permitted to transfer to Business Studies from other degrees, pos-
sibly from other Faculties, and students with appropriate qualifications are per-

mitted to start in 2nd year.

e All the above requirements may be overridden at the discretion of the Head of

the Department(s) concerned.

The current procedure (in theory) is for the students to examine the University Calen-
dar, an 800-page volume describing the regulations and timetables of every available
course, and to make their course choices which are then verified by their Director of
Studies. In practice, many students rely on their Director of Studies to be a source of
wisdom, making little or no effort to look at the University Calendar themselves. The
result is that the Director has to conduct one or more lengthy interviews with each
student. Since each Director is currently responsible for 60 students, the workload is
large. There is also considerable scope for error; the number of possible interactions
between courses is so great that, during the development of the COURSE SELECTOR Sys-
tem, the University Calendar itself was found to have omitted to mention a timetable

clash between two courses which were recommended for a particular degree.
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The COURSE SELECTOR system was designed to encode the knowledge stored in the
University Calendar, with some additional input from two experienced Directors of
Studies. It was initially used by 2nd and 3rd year undergraduates and later by 1st

years as well.

13.3 Analysis: Modeling expertise

Despite the short time available for the construction of the COURSE SELECTOR system,
it was decided that the guidance for KBS development provided by an Expertise model
was worth the effort required to develop the model. A communication model was also

developed, as a necessary input to the design phase.

As described in chapters 7 and 8, the Expertise model consists of one or more models

of:

e Domain knowledge: knowledge about concepts, objects, properties, and values

that are important in this domain.

e Inference knowledge: knowledge about the deductions that must be carried out

to solve a problem.

e Task knowledge: knowledge about the order in which inferences are carried out.

The development of the expertise model for the COURSE SELECTOR system proceeded

as follows:

13.3.1 The model of expertise: Domain knowledge

The vast majority of the domain information was laid out clearly and succinctly in
the University Calendar. Only one knowledge acquisition session (plus a few telephone
calls) was necessary, in order to elicit some Department-specific regulations which were
not represented in the University Calendar; some knowledge about optional courses
which fitted well with certain degrees; and some examples of typical course combi-
nations. As a result, the creation and structuring of the domain knowledge model

required comparatively little effort.
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13.3.2 The model of expertise: Inference knowledge

The creation of an inference structure involves:

e deciding what type of task the KBS is tackling;
e finding the interpretation model for that task type;

e adapting and instantiating that interpretation model for the particular domain.

It was decided that the task of generating a schedule of courses which fitted in with a
range of different restrictions was a configuration task. An example of a configuration
task is the task tackled by the XCON knowledge based system, where a number of
components had to be chosen and then correctly placed into boxes to create a VAX
computer [124]. In the COURSE SELECTOR system, a course schedule must be built up
from a number of individual courses, some of which are incompatible with each other;
the task is therefore analogous to the task performed by XCON, with a course schedule

replacing a VAX computer, and individual courses replacing computer components.

Having decided that the COURSE SELECTOR system was performing a configuration
task, the next step was to find the appropriate generic inference structure for modeling
configuration tasks. The library of generic inference structures available when COURSE
SELECTOR was developed [20] did not include an inference structure for configuration
tasks; instead, a “generic” inference structure was adapted from the inference structure
used in a previous case study [190], which used KADS to support the development of
a KBS for configuring industrial mixers. This inference structure is shown in Figure

13.1.
According to Figure 13.1, a configuration is generated by:
1. Producing a list of all components that need to be added to the configuration
(the component list);

2. Adding one component to a partial configuration (represented by the instantiate-

1 inference action)
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Figure 13.1: ”Generic” inference structure for configuration tasks

3. Calculating all the ramifications of that addition (represented by the verify

inference action)

4. If the configuration is not yet complete, and is still within its constraints, return

to step (2)

5. If the configuration is complete, perform some final actions and produce some

output

This generic inference structure was adapted for the COURSE SELECTOR system to
produce an problem-specific inference structure, which is shown in Figures 13.3.2 and
13.3.2. While this inference structure appears to differ considerably from the generic

inference structure, it follows the same principles:

e All students are required to take certain courses, and these are added to the
course schedule first (one at a time) - this is represented by the identify-1 and
assemble inference steps. Students are then allowed to select further courses, a

process which is represented by the inference step select. These courses (both
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required and optional courses) correspond to the component list in the generic

inference structure.

e Each course is then added to the course schedule (one at a time). This is repre-
sented by the assemble inference step, which corresponds to the instantiate-1

inference step in the generic inference structure.

e The current course schedule knowledge role corresponds to the partial configura-

tion in the generic inference structure.

e The selection of a course may make some other courses ineligible, because of
timetable clashes or University regulations on the allowed combinations of courses.
This is represented by the inference step refine-1. This corresponds to the verify

inference step in the generic inference structure.

e The student continues selecting courses until his schedule is full. The check on
whether a student’s course schedule is full is represented by compare-1 on the

right hand side of the diagram.

Sometimes, certain inference steps are sufficiently complex that they must be decom-
posed into a number of inference steps and knowledge roles. This is the case with
the refine-1 inference step. The breakdown of this inference step is shown in Figure

13.3.2.

These two diagrams describe the instantiated inference structure (or, in the language
of the Zachman framework, the system level process model) for the COURSE SELECTOR

system.

13.3.3 Strategy level

Strategy level comments for this system include:

e When generating or updating the initial list of Eligible courses, course combi-
nation regulations will rule out some courses. It is probably more efficient to

generate the list once and to remove non-permitted courses from the Eligible
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Figure 13.2: Instantiated inference structure for COURSE SELECTOR: top level

courses than to repeatedly construct a new list of those which are still permit-
ted. This is because it is likely that more courses will be permitted than will be

forbidden whenever a new course is added to the course schedule.

e A caveat to the statement above is that the user may sometimes want to ‘undo’
selections, which could require adding deleted courses back into the list. Con-
sequently, a form of truth maintenance should be used; the preferred option is
a “negative truth maintenance” approach where the system maintains a set of
all courses that the user might be permitted to choose; when a choice is made,
all courses are checked; and courses that clash with the chosen course due to
timetabling or regulations are marked as unavailable due to that course. An ad-
vantage of this approach is that a course which is unavailable due to clashes with

two selected courses will not become available again if one of these two courses

is de-selected.

e The inference structure suggests that the generation of eligible courses, and the
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Figure 13.3: Instantiated inference structure for COURSE SELECTOR: expansion of
refine-1

initial filtering based on last year’s grades, can be done in parallel to the iden-
tification of required courses. In practice, it is proposed that the list of eligible
courses is generated before the required courses are dealt with; furthermore, it
is proposed that the list of eligible courses should initially include the required
courses. This is because the initial filtering based on low grades may apply

equally to required courses as to optional courses.

13.3.4 The model of expertise: Task knowledge

Once an instantiated inference structure has been developed, and the strategy level
issues have been identified, a task structure must be developed to determine the order

in which these tasks are carried out. This task structure describes the task (control)
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knowledge within the model of expertise. The chosen order is shown below; it can be
seen that, although this may have been a short project, it required a lot of inference

and control knowledge.

task configure-course-schedule
goal allow a student to select a legitimate combination of courses
control-terms
Eligible courses — the set of all courses which students can choose
Required courses — those courses which this student must take
task structure
configure-course-schedule (Initial Specification + Regulations — Course Schedule)

obtain(Initial Specification) i.e. the student’s name, degree course, and year of

study
identify-1(Initial Specification + Degree regulations — Required Courses)

identify-2(Initial Specification + Regulations on allowed optional courses + De-

partments’ own regulations — Eligible Courses)

identify-3(Initial Specification + Degree regulations — Number of Courses to be

taken)
for all (course in Required Courses)
assemble(Course Schedule + course — Course Schedule)
inform(user)
end
begin loop
compute(Course Schedule — Number or courses chosen so far)

compare(Number of Courses chosen so far vs Number of Courses to be taken)
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if comparison = equal then exit loop
ask(user)
select(Eligible Courses — Chosen Course)
assemble(Course Schedule + course — Course Schedule)
inform(user)
refine-1(Eligible Courses — Eligible Courses):
remove(Chosen Course + Eligible Courses— Eligible Courses)
for all (course in Courses with timetable clashes with Chosen Course)
refine-2(course + Eligible Courses — Eligible Courses)
end

for all (course in Courses no longer permitted by course combination regula-

tions)
refine-2(course + Eligible Courses — Eligible Courses)

end
ask(user)
select(Course Schedule — Deselected Course)
assemble(Course Schedule 4+ Deselected Course — Course Schedule)
inform(user)
refine-1(Eligible Courses — Eligible Courses):

add(Eligible Courses— Eligible Courses + Deselected Course)

for all (course in Courses with timetable clashes with Deselected Course)

add(Eligible Courses — Eligible Courses + course)
end

for all (course in Courses not permitted by course combination regulations)
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if level of course = level of Deselected course
then add(Eligible Courses — Eligible Courses + course)
end
end loop

The primary purpose of the task structure is to specify a procedural ordering of tasks.
For example, the step of comparing the number of courses chosen against the number
required to be taken was placed at the beginning of the loop, because it is possible
that the student’s course schedule may be filled by the required courses; so the loop

may never need to be executed at all.

Some parts of the task structure would benefit from further explanation. It might
appear that the task structure given above is self-defeating: within the loop, the user
adds a course to their schedule and then removes a course, thus ensuring that the
schedule will never be complete. This is not the case; it is envisaged that the user
will be offered a menu of options, which will include adding a course to their course
schedule or removing a course from their course schedule. Neither of these options is
compulsory, and since the execution of the loop is dependent on the user’s selected

option, the loop will not always be executed in its entirety.

13.4 Analysis: Modeling Communication

The communication model was developed by identifying all tasks identified in the task
structure, identifying dependencies between tasks to the diagram, and then making a
decision about which tasks would be performed by the KBS, and which by the student
— in other words, a model of interaction was developed. The result, which is shown
in Figure 13.6, suggests that most of the tasks will be performed by the knowledge
based system; this is to be expected, since the KBS is intended for (highly) non-expert
users. However, the completed communication model also highlights several occasions
in which the KBS is required to communicate with the user or with files elsewhere in
the system; this information is worth modeling for completeness, and as an input to

the design phase.
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13.5 Design phase

The design phase is the next major phase of the KADS methodology. In both Com-
monKADS and Pragmatic KADS, this involves the construction of a Design Model.
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Figure 13.5: Tasks plus dependencies in COURSE SELECTOR

13.5.1 COURSE SELECTOR: Application design

Application design was performed using functional decomposition for the COURSE SE-

LECTOR project. The functional decomposition can be found in the Application Design
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Figure 13.6: Model of interaction for COURSE SELECTOR

columns of Figures 13.5.3 to 13.5.3.

A more detailed functional decomposition, showing the links between inference steps,
knowledge roles and interface functions, was also prepared. This was recommended by

the original KADS methodology, and users of Pragmatic KADS may use this approach
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Figure 13.7: Communication model for COURSE SELECTOR

in preference to the CommonKADS Design Model if they prefer, since it summarises
more information in fewer diagrams than the Design Model achieves. However, this
approach is only recommended for systems with less knowledge than the COURSE SE-
LECTOR system; it can be seen from Figure 13.5.1 that this diagram quickly becomes

too detailed to be of any real use.

Developing this detailed functional decomposition did prove useful in identifying a few
communication paths and minor knowledge roles which had been omitted from, or not

fully specified in, the Expertise and Communication models.

13.5.2 Architectural design

KADS and CommonKADS provide almost no guidance on architectural design; while
this is consistent with the overall descriptive rather than prescriptive approach, guid-
ance is particularly missed at this stage. What guidance there is can be found in [146],

but the suggestions provided are not very detailed, and there is no guidance at all for
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As a result, the “probing questions” approach (see chapter 12)

Figure 13.8: Detailed functional decomposition of COURSE SELECTOR
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was identified (based on the work of Kline & Dolins at Rome Labs [105]) and used.
The full set of probing questions asked of the COURSE SELECTOR system can be seen
at the end of this section. Only two “probing questions” (6 and 15) affected the ar-

configuration tasks.
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chitectural design. Question 6 asked whether it was sensible to enumerate all possible
solutions to the problem, or whether the system should be capable of generating solu-
tions. In a configuration problem, there are a very large number of possible solutions,
and so it is better that solutions are generated. Data-driven reasoning is therefore sug-
gested. It is also likely that the partial configuration will need to be represented, which
suggests the use of objects and dynamic object creation. Question 15 asked whether
the system has to re-make elaborate decisions; the answer is yes, if the user should
decide to undo a choice. The consequent suggestion is to use either backtracking or
truth maintenance. Since it is very difficult to combine backtracking with data-driven

reasoning, truth maintenance seems to be the preferred approach.

As far as KBS programming is concerned, the probing questions analysis recommended
the use of data-driven reasoning and truth maintenance. It also suggested that objects,

with dynamic object creation, might be useful as well.

Architectural design is recommended not only for problem solving techniques, but
also for domain information, and for communication. An analysis of the maintenance
requirements for the COURSE SELECTOR system had determined that the characteristics
of courses are likely to change frequently (every year, at least). Probing question 16
suggests that it would be helpful if the domain information about courses could be
read from a file, rather than being hard-coded into the KBS, thus allowing it to be
updated without having to re-program the whole KBS. This suggestion was adopted;
its main effect on the architectural design is that the chosen representation for courses

should be human-readable as well as machine-readable.

The decisions regarding communication design were fairly simple, since there were only
three types of communication that needed to take place: users had to type in text, the
system had to offer menus that the users selected an item from, and the system had

to display explanatory text when the users requested it.

See the “Architectural design” columns of Figures 13.5.3 to 13.5.3 for a summary of

the architectural design decisions made for COURSE SELECTOR.
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Probing questions for COURSE SELECTOR

1. How well designed is the project? A weakly designed one may need a broad range

of features for prototyping.
Answer: The COURSE SELECTOR system has been designed in detail using KADS
design techniques.

2. Is the KBS attempting to produce an optimal solution or just a satisfactory one?

Answer: A satisfactory one.

3. How much confidence can one have in the results of the system?
Answer: A lot, since they are based on regulations, rather than possibly inexact
measurements

4. Does the system have to “fuse” data from different sources?

Answer: Not to such an extent that this fusion requires management

5. Will the KBS be using ‘deep’ knowledge?
Answer: No.

6. Is it sensible to enumerate all possible solutions, or should the system be capable
of generating solutions?

Answer: In a configuration problem, solutions should be generated. It is likely
that the partial configuration will need to be represented, which suggests the use

of objects and dynamic object creation. Data-driven reasoning is also suggested.
In practice, the partial configuration is unlikely to be very complex (it is simply
a list of the names of courses plus their timetables), and so objects may not be
necessary to represent this.

7. How many things will the system have to consider simultaneously?

Answer: One course at a time.

8. Will the KBS have to reason about relationships between things?

Answer: No, with the exception of courses 