
Appl Intell
DOI 10.1007/s10489-011-0331-y

Critical reasoning: AI for emergency response

Stephen Potter

© Springer Science+Business Media, LLC 2011

Abstract Effective response to emergencies depends upon
the availability of accurate and focused information. The
goal of the FireGrid project is to provide an architecture
by which the results of computer models of physical phe-
nomena can be made available to decision-makers leading
the response to fire emergencies in the built environment.
In this paper we discuss the application of a number of AI
techniques in the development of FireGrid systems, and in-
clude algorithms developed for reasoning about dynamic sit-
uations. It is intended that this paper will be of technical in-
terest to those who have to construct agents that are able to
reason about the complexities of the real world, and of more
general appeal to those interested in the ontological and rep-
resentational commitments and compromises that underlie
this reasoning.

Keywords Emergency response · Decision support · Belief
revision

1 Introduction

To minimize losses to life and property during emergen-
cies, responders must make decisions in a timely manner;
and, if the right decisions are to be made, the availability of
relevant information is critical. Technological developments
have ensured that computer systems have become an impor-
tant source of information in even the most difficult and de-
manding situations, with access to mapping tools, database

S. Potter (�)
School of Informatics, The University of Edinburgh, Edinburgh,
UK
e-mail: s.potter@ed.ac.uk

records and other compiled information being widely ac-
cepted and assimilated into responders’ systems of work.
The successes of these systems have served to inspire in-
vestigations into more ambitious uses of computers in this
area. The vision behind the FireGrid project [5, 11] is of a
generic software architecture that provides decision-makers
with access to information based on interpretations (of vary-
ing sophistication and complexity) of real-time sensor data
polled from within and around the environment of an emer-
gency. In the first instance, the project has focused on sup-
porting the response by emergency services to fires in the
built environment.

For obvious reasons, fire-fighters will rarely be aware of
the exact conditions that hold within a building during a fire
incident and, consequently, they will be compelled to make
intervention decisions based on the information provided by
their own senses and the reports of others, and drawing heav-
ily on their training and on their past experiences of fires.
However, given the complex nature of fire, for even the most
experienced of fire-fighters the accurate interpretation and
prognosis of conditions is a difficult task. Advances in sev-
eral technologies when taken together suggest one way in
which this difficulty might be eased:

• Developments in sensor technology and a reduction in
unit cost offer the prospect of deploying large-scale, ro-
bust and cost-effective sensor networks within buildings;

• Advances in the understanding of fire and related phe-
nomena have resulted in sophisticated computer models
which might be used to interpret sensor data;

• The availability of distributed High Performance Com-
puting (HPC) and data processing over a grid suggests a
platform on which these models, calibrated against and
steered by the live sensor data, could be run quickly
enough to make their use during emergencies a practical
proposition.

mailto:s.potter@ed.ac.uk

S. Potter

The FireGrid approach aims to improve—both in range and
quality—the information available to fire-fighters. The em-
phasis of the project lies firmly on the integration of exist-
ing technologies in the areas mentioned above rather than
on the development of new ones. In practical terms, this in-
volves the coupling of diverse computational models, seeded
and steered as appropriate by real-time sensor data, and pro-
cessed using HPC resources accessed across a grid, and all
placed in the context of a system interface tailored to the
target user working in his or her operational context. While
there have been numerous computer systems developed in
recent years to assist emergency response, the motivation
driving FireGrid, the combination of technologies it draws
upon, and the particular challenges that it presents have no
real precedents.

Artificial Intelligence represents the fourth core techno-
logical field in the FireGrid project. AI techniques and ap-
proaches to software development play an important role in
FireGrid, both in the development of software and of the
underlying concepts that serve to link together the various
components of the architecture. The following section pro-
vides some background information to help understand the
use of AI in FireGrid. This is followed by a detailed descrip-
tion of some of the AI technologies used in FireGrid, specif-
ically the system ontology and its uses, and belief revision
and hazard interpretation mechanisms, with a discussion of
the issues raised, and concludes with a brief discussion of
the interface developed to display the system results to the
end-user. A final section offers some conclusions.

2 FireGrid: background and requirements

In this section we provide more detailed information about
the background against which AI is to be used within
the FireGrid project. Specifically, we discuss the require-
ments and constraints that emerge from two stakeholder
communities, namely fire-fighters (as the target user group,
that is, as ‘consumers’ of the information provided by a
prospective FireGrid system) and fire modellers (as the core
technology—and hence, information—providers), as well as
describing the nature of the sensor data that is to underpin
this information.

2.1 FireGrid and the fire-fighter

Before any FireGrid system could be designed, it was nec-
essary to understand in detail the nature of the task that such
a system will support. This has been done by study of the
available literature (which, in this case, takes the form of
best-practice field manuals) and a series of interviews with
serving fire officers, which eventually led to the develop-
ment of prototype interfaces to elicit feedback.

During emergency response the tactical level of activ-
ity generally encompasses those directional and command
activities that have the express aim of bringing about the
overall objectives of the response. This is in contrast to the
lower operational level, which involves the actual physical
activities that individuals and teams of individuals employ
to achieve the tactical ends, and the higher strategic level,
which involves establishing the objectives of the response
and, often, of the responding organization as a whole. It is at
the tactical level that computer-based decision-support sys-
tems are often aimed, since it is there we find a degree of
mental reflection and engagement with a specific incident
(sense-making and planning), occurring above the (often in-
stinctive or reactive) physical interactions with the incident
found at the operational level and below the wider contex-
tual and cultural considerations of the strategic level. Fire-
Grid too aims to provide information of use at this tacti-
cal decision-making level; accordingly the most obvious tar-
get user is (using UK fire service terminology) the Incident
Commander (IC) (or, more realistically, a senior support of-
ficer stationed in an on-site command room and detailed to
monitor the FireGrid system and report directly to the IC).
The IC is:

. . . responsible for the overall management of the inci-
dent and will focus on command and control, deploy-
ment of resources, tactical planning, the coordination
of sector operations . . . and the health and safety of
crews. [15], pp. 15–16.

Rather than being determined in advance, the range of pos-
sible incidents and contributing factors means that the re-
sponse to any given incident is left to the experience and
expertise of the IC in question, except when very specific
or rare hazards are involved (such as incidents involving
chemicals or aircraft). However, one decision is effectively
universal when dealing with building fires, regardless of
specifics: the decision of whether or not to send fire-fighters
into the building. Fire-fighters may be sent into a building
(and the IC is then said to have adopted an offensive tacti-
cal mode) if and only if the IC considers that in doing so
the chances of saving people (especially) or property out-
weighs the additional risk to fire-fighters. Otherwise a de-
fensive tactical mode—the default—is adopted, whereby the
fire-fighters stay outside the building until such time as ei-
ther the fire is extinguished, all occupants accounted for and
the incident closed or else the arrival of additional informa-
tion causes the IC’s interpretation of the conditions to alter
so that an offensive mode is now considered appropriate.

Whether offensive or defensive tactics are adopted, this
decision is subject to continuous review by the IC through
a process known as dynamic risk assessment. This process,
which of necessity is often done rapidly and with incomplete
or uncertain information, represents an attempt to rationalize

Critical reasoning: AI for emergency response

the factors contributing to the tactical mode decision. This
gives us most the appropriate target for the information pro-
vided by a FireGrid system: this information (and its modes
of presentation) should be such as to contribute to the IC’s
dynamic risk assessment. And the need to rapidly assess this
information led to the early suggestion by fire-fighters of a
‘traffic light’-like display of the risks within the building,
and idea that, as will be seen, would be adopted for Fire-
Grid.

2.2 FireGrid and fire data

The acquisition and use of data describing the incident is
integral to the FireGrid concept. We envisage a continual
process of high-quantity data collection from sensors de-
ployed around buildings. Any sensor that records data po-
tentially useful for the response (either directly, or as in-
put to a model) could be deployed; typical examples include
smoke detectors, thermocouples (temperature sensors), and
CO and CO2 detectors. Usually these sensors will be polled
in batch mode periodically by one or more ‘data loggers’,
physical devices with which groups of sensors have some di-
rect communications link, and which also convert the signals
received from the sensors into their corresponding quanti-
ties (so, for instance, voltage levels reported by thermocou-
ples are converted into the corresponding temperature read-
ings). In modern systems, these steps are automatic, and at
this point these data values can be stored in a centralized
database (to which all models have access). Since sensors
(or their lines of communication) can be noisy or can fail be-
cause of manufacturing flaws or the extremes of the fire in-
cident itself, the data first needs to be verified and filtered to
provide some measure of the accuracy and quality of data re-
ceived from the building. To address this issue, we have de-
veloped a constraint-based filtering algorithm for validating
sensor readings [26]. The data values must also be tagged
with meta-data describing their origin and sampling time,
before being transferred in real-time into some data storage
facility. While a higher sampling rate produces more data
and increases the potential for downstream data processing,
it also means more data must be processed, transferred and
stored in the same amount of time. Hence, some practical
compromise must be found.

In addition to the dynamic real-time data that is being
continuously fed from the sensor network, the database also
holds data that is (reasonably) time-invariant such as the ge-
ometry/layout of the building, the types of sensors and their
locations, the types and material of furniture and the loca-
tion of fire suppression systems. This ‘static’ data is vital if
the sensor readings are to be interpreted appropriately by the
models. The content of this information is driven to a large
extent by the needs of the various available models.

2.3 FireGrid and the fire modeller

Another key FireGrid concept is the use of computer models
of physical phenomena to provide information to emergency
responders. Given the initial focus of FireGrid on fires in
the built environment, our interest lies in as far as possible
adapting and using existing models that are designed to in-
terpret and predict the behaviour of the fire, the movement
of smoke, the reaction of the building and its occupants dur-
ing the incident, and so on—anything that might be relevant
to decision-making during an emergency response. Hence,
the other major area of expertise influencing the command-
and-control elements of the architecture surrounds the mod-
elling of fire and its related phenomena. Experts in this field
are usually academics and, as a consequence, their objec-
tives are not necessarily the same as those of the FireGrid
project.

These computational models, then, transform the col-
lected data into descriptions of the current status and predic-
tions of the development of the incident. This may be done
by models employing interpretative and simulation methods
of varying sophistication and complexity. A simple model
might involve, for instance, little more than a simple calcu-
lation over the latest sensor readings to provide the current
maximum temperature in a room, whereas richer approaches
that exploit Computational Fluid Dynamics or Finite Ele-
ment methods can model complex aspects of fire develop-
ment and associated phenomena such as structural integrity,
smoke movement and human egress.

The use of these models raises a number of issues [20].
Since these models have not been developed for emergency
response purposes, their outputs will not necessarily contain
that information most relevant to the IC and the risk assess-
ment task. And where the results do provide this information
it may not be expressed in the most appropriate manner, and
may contain some degree of uncertainty, which again is po-
tentially problematic for the IC who, it seems fair to say,
would prefer to deal in certainties.

For the purposes of FireGrid ideally any model would
operate independent of any particular context (such as a spe-
cific building) or incident, and would rely for its initial con-
ditions on information acquired from the system database,
with updates based on later sensor data whenever appropri-
ate. In this context, the computational cost of running a sim-
ulation arises from the interplay of a number of factors: the
complexity of the underlying model; its spatial and temporal
scope; the amount of data to be processed; and the desired
accuracy and precision of the results. At their most costly—
say, models that attempt to extrapolate from the data and
produce accurate, precise and far-reaching predictions of the
course of the incident—these simulations are computation-
ally intensive, and require a proportional amount of com-
putational power if results are to be produced in a timely

S. Potter

fashion. Furthermore, strategies for effective and efficient
data communication are required to support this processing.
These considerations have led to the adoption of High Per-
formance Computing (HPC), with computationally hungry
simulation models deployed on specific HPC resources (and
optimised to run most effectively on those resources), and
accessed using a grid computing infrastructure.

2.4 FireGrid: system requirements

Notwithstanding the difficulties sketched above, there is a
clear overlap between the interests of both modellers and
fire-fighters at the level of the physical properties of fires
and their environments: modellers have a scientific interest
in these properties, and they are of concern to fire-fighters
insofar as they determine the hazards that may be encoun-
tered during an incident. In practical terms, it becomes nec-
essary to define more formally this intersection through the
definition of a FireGrid system ontology. With this ontol-
ogy established, it can then be used for the development of
knowledge-based ‘wrappers’ for existing models so that the
information they produce is more directly relevant to the re-
sponse task. This ontology also allows users to interact with
a FireGrid system in ways that will be described later in this
paper.

In addition, situating the FireGrid system in (from the
perspective of the user) an agent-based framework through
which models can be invoked and their results collected
would allow the system to be constructed and deployed in
a modular and distributed fashion. This has benefits from a
software engineering perspective—a system can be devel-
oped in the form of self-contained and more readily man-
ageable components—and also from a deployment perspec-
tive, since different components could be integrated flexibly
to form different systems to respond to incidents of differ-
ent types, while the need to use HPC resources for deploy-
ment of models means that some form of distributed com-
putational architecture becomes necessary.

Hence, we view a FireGrid system as a multi-agent sys-
tem, and more specifically as some federation of interact-
ing humans and computer agents; the actual constitution of
the system will be dictated by the circumstances (and may
change over the lifetime of a given system or incident). As
such, agents are either autonomous software processes (an
example might be some fire model, appropriately wrapped
to allow it to interact with other agents) or some combina-
tion of human and intelligent interface (such as the principal
IC interface, which will be discussed in more detail later).
Agents interact in this system by passing messages between
one another; hence, the only demands we place on agents
in the system are that their messages conform to predefined
format (of which more below), and that they all use the same
message-passing medium (in the case of FireGrid, the I-X

system [23, 24] has been used to implement the agents and
provide this message-passing framework).

The AI in such a system resides in the knowledge-level
structures and algorithms that allow communication of com-
mands and advice between the agents, and that allow au-
tomated reasoning about the content of these communica-
tions. These knowledge-level structures and algorithms are
the subject of the following section. (More details about the
system architecture from a fire modeller’s perspective can
be found in [25], while Han et al. [14] provides a descrip-
tion from HPC/grid computation point of view.)

3 AI and FireGrid: technologies

In this section we describe the application of AI tools and
technologies in the context of FireGrid. In particular, we
discuss the ontology that was developed to underpin a Fire-
Grid system and the uses of this ontology; the belief revision
mechanism used to maintain a consistent view of the infor-
mation provided by the models in a FireGrid system; and of
the use of rules to interpret the set of beliefs in terms of the
hazards it implies.

3.1 The FireGrid ontology

A FireGrid system is intended to allow its fire-fighter user
to relate the output from simulation and interpretation mod-
els to the risks faced in the current incident. In order to do
this, some common form must be identified within (or else
imposed upon), on the one hand, the information emerging
from the computer models, and on the other, the information
that is understood by fire-fighters and can be related to the
risks they face. In other words in AI terms it is necessary
to establish an ontology for use within the system. An ontol-
ogy sets out in explicit terms the key concepts in the domain,
along with the relationships that hold among them, and in so
doing it defines the terminology to be used when referring to
these concepts. Based on discussions with both fire-fighters
and modellers, we (the knowledge engineers on the project)
were able to identify a number of common concepts under-
stood by both modellers and fire-fighters. In its underlying
approach this ontology draws on other ontological work, in
particular the categories defined in DOLCE [13], but it was
primarily envisaged as an engineering tool, able to meet the
requirements of the FireGrid system. The ontology was de-
veloped, revised and extended as our grasp of the scope and
aims of the project developed. In this process, the ontology
had already begun to fulfil one of its principal (and often
observed) roles, that of allowing the various human partic-
ipants in the project to establish some basis for mutual un-
derstanding.

Critical reasoning: AI for emergency response

Fig. 1 A high-level view of part of the FireGrid ontology

Below we discuss some of the key ontological defini-
tions that emerged, specifically in the area of understand-
ing the relationship between the interpretations of the out-
puts of fire models that are possible and the implications
these interpretations can have for fire-fighters. These con-
siderations led to the introduction of and distinction between
State-Parameters and Events; the notion of Hazards; and a
number of ontological assumptions made about space and
time. A high-level view of part of the FireGrid ontology is
shown in Fig. 1.

In Fig. 1 the concepts (Time-Point, Location, etc.) shown
in boxes are arranged in a sub-concept hierarchy below the
most generic FireGrid-Thing concept. Dashed lines denote
relationships among concepts. So, for instance, the concept
of Event is a sub-concept of Spatio-Temporal-Phenomenon;
it in turn has sub-concepts corresponding to different types
of event; and it has specific relationships with Time-Point
and, via its parent concept, with Location. Terms in the hier-
archy shown without boxes (here, red, amber and green) cor-
respond to instances of the parent concept (Hazard-Level).

3.1.1 State parameters and events

The FireGrid ontology makes a distinction between State-
Parameters and Events. State parameters are quantities that
are considered to be continuously measurable for some
place over some duration of time. Illustrative sub-concepts
include Maximum-Temperature and Smoke-Layer-Height.
As a vital constituent of the definition of these parameters it
is also necessary to establish (and enforce) a consistent unit
of measurement for expressing values (which might also in-
clude some frame of reference)—for instance, a Maximum-
Temperature value is expressed in terms of degrees Cel-
sius, whereas a Smoke-Layer-Height value is expressed in

terms of metres above the floor of some location. Although
apparently quite straightforward, care needs to be taken
when defining State-Parameters: we choose Maximum-
Temperature rather than simply Temperature since, while
at any given location a wide range of temperatures might be
measureable (and not inconsistently so), this would be more
difficult to reason about (we would have to maintain a richer
representation of temperature) and moreover (and perhaps
more pertinently) is the maximum value that effectively de-
fines the danger to individuals in that space. (It can also be
seen that the definition of these parameters and the concept
of location are not wholly independent.)

Events, in contrast to State-Parameters, are considered
to be instantaneous occurrences at some location; examples
are Collapse and Explosion. Furthermore, it is asserted that a
certain sub-concept of Event can only occur once (if at all) at
a particular location during the incident—although in reality
multiple occurrences of an Event sub-concept are certainly
possible, this constraint was imposed to ease the conceptual
difficulties of knowing which occurrence of a particular type
of Event a model is referring to, when, for example, it pro-
vides a revised set of predictions. One further complexity
that accompanies the concept of Event is that since an Event
need never occur at any particular location (this in contrast
to State-Parameters, which can be considered to have some
value at any point in time and space, even if this is not known
or is a zero or negligible value), there must be some mech-
anism for retracting a previous assertion of the occurrence
of an Event if subsequent model results now indicate that it
will not occur. In other words, the ability to talk about the
occurrence of Events must bring with it the ability (and an
accompanying obligation) to talk about the non-occurrence
of Events.

S. Potter

It is intended that both State-Parameters and Events can
be derived mechanistically (albeit perhaps only through ad-
ditional knowledge-based interpretation) from the output of
models; and while no model need refer to all possible State-
Parameters and Events, if any given model does not produce
information about at least one recognized State-Parameter
or Event then to all intents and purposes it is useless and
irrelevant to FireGrid.

3.1.2 Hazards

From the fire-fighter’s perspective, the values of State-
Parameters and the occurrence of Events can be related
(again, through knowledge-based interpretation) to the con-
cept of a Hazard: a Hazard is defined as something that
can impinge upon the operational safety of fire-fighters at a
particular place for some particular duration. It is not neces-
sary to further elaborate Hazard with sub-types, since these
will effectively be determined by the State-Parameter or
Event which brings about the Hazard in the first place. For
the purposes of relating Hazards to a simplified traffic light
paradigm for information presentation, we can define the
concept of Hazard-Level as being a relative measure of the
severity of a Hazard that pertains at some time at some lo-
cation; and, more specifically, we can identify three specific
instances of Hazard-Level and define these in terms directly
related to fire-fighting operations:

• A green Hazard-Level should be interpreted as “the sys-
tem is unaware of any specific hazard to fire-fighters op-
erating under normal safe systems of work at this location
at this time”;

• An amber Hazard-Level as “additional control measures
may need to be deployed to manage hazards at this loca-
tion at this time”;

• A red Hazard-Level as “this location may be dangerous
for fire-fighters at this time”.

3.1.3 Space and time

As defined above, each Hazard, as well as each State-
Parameter and Event, extends to a particular physical lo-
cation, which raises the question of the definition and ex-
tent of Location within the system ontology. This is not
as straightforward as may first appear; in models, differ-
entiated spaces (usually) correspond to roughly homoge-
nous volumes of gas bounded by physical partitions (and
hence often correspond to rooms), but this may vary if
the model is of either a large space or a high resolution.
For fire-fighters, on the other hand, the notion of Location
is situation-dependent and dynamic, depending on (among
other things) the nature and scale of the building includ-
ing its vital access and exit routes, the position of the fire
incident and any occupants, the tactical operations that are

currently underway and so on. Moreover the fire and its re-
lated phenomena can often alter the topology of a building.
A further complexity lies in the relationship between Lo-
cation and State-Parameters/Events. Consider the parame-
ter Maximum-Temperature: if a particular Location is too
large—say an entire floor of a multi-storey building—then
the value of this parameter cannot be used to infer an accu-
rate appraisal of the real risk to individuals within this space,
and hence this information may have an undesirable effect
on decisions regarding fire-fighting operations.

To reconcile these views we have adopted a pragmatic
approach, defining contiguous, unchanging locations each
of which corresponds to a room in the building in question,
since this is one notion that seems to be mutually under-
stood.

Similarly Hazards, State-Parameters and Events all oc-
cur in time, and the fire-fighters’ decisions relate to both
their understanding of what is currently happening and what
is predicted to happen in the future. And, as for Location,
the handling of time within a FireGrid system is not a sim-
ple matter. It is necessary that all information in the system
is tagged with absolute timestamps, rather than referring to
relative times (and it follows that the clocks of system com-
ponents that generate or present information must be syn-
chronized). We shall return to the representation of time in
a FireGrid system in the context of the discussion of belief
revision given below.

In summary, it is insufficient—and from the perspective
of the system, meaningless—to talk of State-Parameters,
Events or Hazards without also referring to some location
and some time.

3.1.4 Applying the FireGrid ontology

As mentioned above, the ontology proved to be a useful
tool for communication among the system-builders and with
other interested human parties; it is also used to express and
communicate messages within the agent-based system, and
more specifically in this case, the information that is gener-
ated by the models. This usually requires the model to be
wrapped by appropriate interpretation code, developed with
the cooperation of the modeller, that is able to interpret the
native output of the model (typically this output will con-
sist of ‘raw’ numerical data representing the values of key
parameters) in terms of State-Parameters or Events.

With the models appropriately wrapped, communication
occurs in the context of a ‘query-answering’ approach that
enables the system user—through an appropriate user inter-
face agent—to construct and pose to a FireGrid system re-
quests for specific information. This involves the introduc-
tion of different types of query, with each type intended to
elicit particular instances of State-Parameter or Event. For
example, a confirm-query is used to request the current (or

Critical reasoning: AI for emergency response

most recent) value of a designated State-Parameter at some
location; an extension of this, a monitor-query indicates that
the requester wishes to be kept informed of the value of
the designated State-Parameter with values updated at some
stipulated frequency; and a predict-when-query is used to re-
quest the forecast time of the occurrence (if any) of some
specified type of Event at a location:

confirm-query state-parameter-type: maximum-temperature
location: room-1

predict-when-query event-type: collapse location: room-2

Hence, the query types effectively provide a set of agent
message performatives, with each indicating both how the
rest of the message contents should be interpreted and what
constitutes an appropriate response(s) (which we denote
with an inform performative).

All requests are handled by an intermediary agent in the
form of an autonomous query manager agent. This agent ef-
fectively acts as a centralized repository of the details of all
model agents in the system. Each model agent advertises its
availability to the query manager; along with its name, the
model agent provides some description of the information-
providing capabilities of its model, and an indication of the
parameters required for invocation of the model. We assume
that the model agent wrapper encapsulates the actual mecha-
nism for invoking the models; the diversity of models and of
the platforms they run on—which in this case include HPC
resources accessed over a grid, which requires authorization
and appropriate interactions with middleware—mean that
this must be engineered in collaboration with the model de-
veloper, and often with resource managers, since the objec-
tives of producing real-time information can entail running
models on platforms other than those on which they have
been developed and run in the past.

The description of an agent’s information-providing ca-
pabilities provides the basis for deciding which models to
invoke: an (agent’s) model is considered appropriate for
answering a query if its information-providing capabilities
‘satisfy’ the query. These capabilities are also expressed us-
ing the terms of the ontology; consider the following rule
that expresses the capabilities of a ‘current maximum tem-
perature’ agent:

If query is of type confirm-query ∧ query is about
state-parameter Maximum-Temperature then
this model is capable of answering the query

Else
this model is not capable of answering the query

Given expressions of model capabilities in this form, the
query manager should be able automatically to match
queries to model agents. In the event of more than one
agent being capable of satisfying the query, rather than
making an arbitrary choice, the decision of which to use
might call upon other information surrounding the agent and

its model—one could envisage weighing model certainty,
speed, quality, and even factors such as service costs. Alter-
natively, multiple agents might be invoked and the results
given by each somehow combined or else used to confirm
or corroborate those of others. In our experiments, however,
the issue did not arise since the models used had no such
overlapping capabilities. See [20] for more details of this
query-answering approach.

Its model having been invoked and results generated,
the agent then sends these as messages, relayed via the
query manager, to the user interface agent where the query
originated; here, the message contents are processed and
reasoned about from the perspective of the end-user—that
is, for the purposes of fire-fighting decision support. This
brings us to the second broad use of an ontology: in addition
to enabling effective communications, an ontology can help
define what constitutes useful reasoning, and, where this can
be automated, to define appropriate algorithms. Before dis-
cussing this reasoning, however, we shall consider in greater
detail the content of inform messages that are generated by
the model agents, since it is to this content that reasoning is
applied.

The discussion of the ontology in previous sections is re-
stricted to the conceptualization of physical phenomena sur-
rounding fires; however the ontology also includes other el-
ements, such as the types of FireGrid agents, definitions of
valid queries and answers to pass back and forth between
these agents and the content of these messages. In the form
of an illustrative fragment of a context-free grammar, we
present a description of the definition of the content of in-
form messages, with reference to the ontological terms in-
troduced previously.

MessageContents = StateOrEventExpression
LocationExpression

StateOrEventExpression = StateExpression |
EventExpression

LocationExpression = “has-location” Location
StateExpression = (MaxTemperatureExpression |

SmokeLayerHeightExpression |...)
StateTimeExpression

MaxTemperatureExpression = “Maximum-Temperature”
Operator MaxTemperatureValue
...
Operator = “=” | “>” | “≥” | “<” | “≤”
MaxTemperatureValue = defined numerical convention for

temperature
StateTimeExpression = “has-start-time” Time-Point [
“has-end-time” Time-Point]
...
EventExpression = (“flashover” | “collapse” | ...) (
EventTimeExpression | “will-not-occur”)
EventTimeExpression = (“has-occurrence-time” Time-Point)
...

S. Potter

Location = “room 1” | “room 2” | ...
Time-Point = defined numerical convention for time

This (part of the) grammar is used to form constatives that
refer to State-Parameters and Events, that is, its use deter-
mines the range of statements that model agents can make
and, correspondingly, the range of statements about the
world that interface agents can expect to receive. Note that
here we make further pragmatic decisions about what can
be said. For instance, while values of State-Parameters are
defined to persist over some duration, in practice (especially
when interpreting their current values) the extent of this du-
ration will be unknown; hence, by convention we allow that
an expression of such a value may have a start time only,
with its end time understood as being (as yet) undetermined.
We also introduce a means of stating that some Event will

not occur at some location, along with application-specific
terms for referring to these locations.

In practice, this ontological grammar is translated into
the form of an XML Schema (with the necessary modifica-
tions entailed by the syntax and conventions of schemata),
which provides a convenient way of sharing the grammar
and compliance-checking of well-formed messages within
code. In the context of the schema, locations, which are ap-
plication specific, are defined through the use of a unique
URI for each (which all agents in the system are then con-
strained to use when referring to that location); and times
are expressed in “Unix time” as the number of milliseconds
since midnight on 1st January 1970, a choice made for the
sake of convenience, since this value can be expressed as
a simple integer and is expressive enough for the precision
required here.

<xs:complexType name=’’messageContents’’>
<xs:sequence>

<xs:element name=’’state-or-event-expression’’
type=’’tns:stateOrEventExpressionType’’></xs:element>

<xs:element name=’’location’’ type=’’xs:anyURI’’></xs:element>
<xs:element name=’’time-point’’ type=’’xs:long’’></xs:element>

</xs:sequence>
</xs:complexType>

<xs:complexType name=’’stateOrEventExpressionType’’>
<xs:choice minOccurs=’’1’’ maxOccurs=’’1’’>

<xs:element name=’’state-expression’’ type=’’tns:stateExpressionType’’>
</xs:element>
<xs:element name=’’event-expression’’ type=’’tns:eventType’’></xs:element>

</xs:choice>
</xs:complexType>

<xs:complexType name=’’stateExpressionType’’>
<xs:choice minOccurs=’’1’’ maxOccurs=’’1’’>

<xs:element name=’’max-temperature-expression’’
type=’’tns:maxTemperatureExpressionType’’>

</xs:element>
<xs:element name=’’smoke-layer-height-expression’’

type=’’tns:smokeLayerHeightExpressionType’’>
</xs:element>
...

</xs:choice>
</xs:complexType>

<xs:complexType name=’’maxTemperatureExpressionType’’>
<xs:sequence>

<xs:element name=’’operator’’ type=’’tns:operatorType’’></xs:element>
<xs:element name=’’max-temperature-value’’

type=’’tns:maxTemperatureValueType’’></xs:element>

Critical reasoning: AI for emergency response

</xs:sequence>
</xs:complexType>

...

<xs:simpleType name=’’operatorType’’>
<xs:restriction base=’’xs:string’’>

<xs:enumeration value=’’equal-to’’></xs:enumeration>
<xs:enumeration value=’’greater-than’’></xs:enumeration>
<xs:enumeration value=’’less-than’’></xs:enumeration>
<xs:enumeration value=’’greater-than-or-equal-to’’></xs:enumeration>
<xs:enumeration value=’’less-than-or-equal-to’’></xs:enumeration>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name=’’maxTemperatureValueType’’>
<xs:restriction base=’’xs:double’’>

<xs:minInclusive value=’’0’’></xs:minInclusive>
</xs:restriction>

</xs:simpleType>
...
<xs:simpleType name=’’eventType’’>

<xs:restriction base=’’xs:string’’>
<xs:enumeration value=’’flashover’’></xs:enumeration>
<xs:enumeration value=’’collapse’’></xs:enumeration>
...

</xs:restriction>
</xs:simpleType>
...

3.2 Automated reasoning for FireGrid

In order to provide useful decision-making support for fire-
fighters, a FireGrid user-interface agent must interpret the
(potentially very many) messages that it receives. This in-
terpretation is achieved through cycles of belief revision and
hazard interpretation, with the results presented to the user
in a manner designed to allow a quick and accurate assess-
ment of the incident to be made.

3.2.1 FireGrid belief revision

At any time, the information that is presented to the IC is
based on the current set of beliefs about the environment that
is maintained by the user-interface agent. For the purposes
of this discussion, and regardless of any other beliefs that
the agent may be said to hold, we define a belief to be some
proposition about a State-Parameter, Event or Hazard that is
held to be true for some location and at some time (in prac-
tice, to have a common representation we assert that all be-
liefs are held to be true over some duration of time, with (in-
stantaneous) Events held to last over an interval defined by

identical start and end time-points). In addition, every belief
must have one or more justifications, indicating the ratio-
nale for believing it. The justification will usually be one or
more messages, sent via the query manager, from the mod-
els in the system: the content of these messages provides
the basis for beliefs (initially, the agent has an empty set of
beliefs). It is also possible that the justification might con-
sist of some subset of existing beliefs along with some rule
that allows the inference of the belief in question from that
subset. While these rules could be used to express physical
or temporal relationships between beliefs (although in this
case particular care must be taken to not introduce circular
relationships, with beliefs directly or indirectly being used
to justify the beliefs on which they themselves are based),
here they are used exclusively to express the relationship
between beliefs about State-Parameters/Events and beliefs
about Hazards (of which more below).

As more information arrives from the models, a process
of belief revision is required to maintain the consistency of
the set of beliefs. Katsuno and Mendelzon [16, 17] distin-
guish belief update from belief revision: whereas the latter is
the process of revising an agent’s beliefs in the light of new

S. Potter

information about a fundamentally unchanging world, be-
lief update applies in situations where the facts of the world
are changing and the beliefs of the agent must be updated as
a result. According to this definition, then, what is required
for FireGrid is belief update; but for the purposes of this pa-
per we shall use the term belief revision, since it is the more
widely recognized throughout the field of AI and beyond.
That said, the mechanism required for FireGrid differs in
certain important aspects from conventional AI approaches
to belief revision/update which tend to conform to the pos-
tulates set out in [1], the so-called AGM postulates. Specif-
ically, whereas common approaches to belief revision oper-
ate at an abstract logical and application-independent level,
and usually over simple atomic propositions, for FireGrid

the revision must specifically take into account application-
dependent ontological notions and the needs and capabilities
of the end-user, and we have more complex propositions
about the world which can be manipulated by the revision
mechanism in more complex ways.

Hence, we have had to develop our own belief revision
algorithm, which will be described below. While a number
of implementations of belief revision systems are available
in various formats [7, 18, 19], due to the age of the avail-
able source codes, the complexity of the propositions used
here and the domain-specific nature of the algorithm, none
of these was felt to provide a suitable basis for development,
and so the algorithm was implemented from scratch.

Algorithm: Revise-Beliefs (m, S)
Input: m : message, S : set of beliefs
n ← new belief created from (and justified by) the contents of m
! b.location returns the location the belief is about.
B ← {b | b ∈ S ∧(b.location = n.location)}
now ← the current time
If (now—n.end-time) > tolerance then

! message is about the past, so ignore
Return

Else If n is about some event of type e then
! only one event of each type per location allowed:
If ∃b ∈ B such that b is also about e then

Retract-Belief(b, B)
If n is not a notification of the non-occurrence of e then

! add new belief:
B ← B ∪{n}

Else
C ←{b | b ∈ B ∧ b is about the same type of state-parameter as n}
For all b ∈ C then

! note that b.start-time and b.end-time refer to the start and end times of the content of some
! belief b (ie the duration of a state-parameter or the occurrence of an event) and not of the
! belief itself!
! check whether n and b start at effectively the same time:
If (|n.start-time—b.start-time| ≤ tolerance) then

If b.start-time < n.start-time then
n.start-time ← b.start-time

Retract-Belief(b, B)
Else

! check whether temporal extensions of b and n overlap:
If (b.start-time < n.start-time) ∧(b.end-time ≥ n.start-time) then

! overlap with b starting earlier than n: adjust b.end-time:
b.end-time ← n.start-time—δ

Else (b.start-time > n.start-time) ∧(b.start-time ≤ n.end-time) then
! overlap with n starting earlier than b: adjust n.end-time:
n.end-time ← b.start-time—δ

! add new belief:
B ← B ∪{n}

Critical reasoning: AI for emergency response

Algorithm: Retract-Belief(b, B)
Input: b : belief, B : set of beliefs
! first check whether b is used to justify any other beliefs:
C = {c | c ∈ B ∧ b is used to justify c}
For all c ∈ C then

If without b there is no justification for c then
Retract-Belief(c, B)

B ← B / {b}

When a new message arrives from a model, it will corre-
spond to a proposition about either the value of a State-
Parameter or the occurrence (or non-occurrence) of an
Event at some time at some location (and it is tacitly ac-
cepted that this proposition is ‘wholly believed’ by the
model at the time it was sent; in this treatment, we disregard
the possibility that the messages can express ‘degrees of be-
lief’ derived from probabilistic models. We also assume that
all messages—and hence, all models—are believed equally
by the agent). The contents of this message have to be con-
sidered in the context of the existing beliefs—in the termi-
nology of belief revision, the current theory of the state of
the incident must be revised in the light of the message con-
tents in such a way as to incorporate the new information
while maintaining the consistency of the theory as a whole.

For each of the locations we choose to maintain an in-
dependent set of beliefs. In other words, we have an inde-
pendent, deductively closed theory for each location, and
the overall task now comprises a number of independent
sub-tasks, the aim of each of which is to maintain the con-
sistency of one of these sub-theories. Each sub-theory con-
sists of an (initially empty) set of formulae, statements about
the environment in the corresponding location that are be-
lieved to hold over some specified time interval. Consistency
within the sub-theory is determined by the ontological con-
straints that are placed on State-Parameters and Events as
described above. For instance the appearance in the same
sub-theory of two or more formulae that assert different val-
ues of Maximum-Temperature at the same time would rep-
resent an inconsistency, as would two or more appearances
of formulae describing a Collapse Event.

The decision to divide the problem into the maintenance
of independent sub-theories, one per location, requires some
further comment. In reality, locations are unlikely to be in-
dependent in this way, and the conditions in one location
will directly or indirectly affect conditions in another (in-
deed, this is how fire spreads); and from the beliefs held
in one sub-theory one might be able to infer much about
the conditions in the neighbouring locations. However, since
these ‘spatial’ interactions would be reflected in the sensor
data and in the interpretations of this data by the models,
it was decided that explicit spatial reasoning about beliefs
represented an unnecessary complication in this case. For
example, it would not be necessary to infer from a rise in

Maximum-Temperature in one location that there would be
a commensurate increase in this parameter in a neighbour-
ing location, since—assuming both locations to be fitted
with appropriate sensors—this increase would be recorded
by sensors and relayed to the system. On the other hand,
as we shall see, temporal reasoning is a crucial to the be-
lief revision process. In fact, the algorithm can be seen as an
extension of belief revision with something akin to Allen’s
interval-based temporal logic [2, 3] and application-specific
heuristics for reasoning about the temporal extension for
which formulae hold. Interesting future extensions of the
work reported here would be to attempt to enrich the model
of change with spatial interpretations of the sensor data (dos
Santos et al. [9]) or using multi-dimensional modal logics
incorporating both temporal and spatial reasoning [4].

The workings of the algorithm are best illustrated through
the use of an example. Consider a message from some model
agent received by a user-interface agent containing the fol-
lowing statement:

maximum-temperature = 230◦C has-start-time 12:54:32
has-location room-1

If, when it received this message, the interface agent cur-
rently believed nothing about the Maximum-Temperature in
room-1 (one of the instances of Location in this case), the
message alone would provide sufficient justification for the
agent now believing the contents of the message. That is,
if the corresponding sub-theory contains no formula refer-
ring to Maximum-Temperature a new formula can be created
from the message contents and added to the sub-theory—a
case of theory expansion: a new formula can be added to the
set representing the sub-theory for room-1 with no resulting
inconsistency. Moreover, since nothing else is known about
the values of this State-Parameter in this Location, the rea-
soning mechanism would assign a duration to this statement
stretching from the indicated time to some indefinite point
in the future. That is, since it is not believed otherwise, an
assumption of the belief revision mechanism is that the val-
ues of State-Parameters persist, and hence in this case the
Maximum-Temperature in room-1 would now be believed to
remain at 230◦C indefinitely—or at least until such time as
some other message causes this belief to be revised with a
definitive end-point.

If, on the other hand, something is already believed ei-
ther about the current or the future values of the Maximum-

S. Potter

Temperature at this location, then a more complex train of
reasoning begins, which attempts to reconcile this message
with the existing beliefs. This may involve adjusting du-
rations of beliefs (theory revision) or, where there seems
to be a direct contradiction—which would arise if some
formula is already believed about the value of Maximum-
Temperature at the same time indicated in the message—
choosing to adopt one or other of the possibilities and dis-
regarding the other (the simultaneous expansion and con-
traction of the sub-theory). While this might be done on the
basis of, say, the relative trustworthiness of the originating
models, in practice (and in this discussion) we tend to trust
models equally, and rely instead on a single general prin-
ciple encoded in the revision mechanism: the more recent
the message the more likely it is that its contents are true
(and hence should be believed). This principle is more sub-
tle than might first appear. Firstly, since interpretations of
the current state are—by definition—going to arrive later
than predictions about the current state that were made at
some time in the past, this principle effectively favours in-
terpretations over predictions. This can justified by the gen-
eral notion that, all other things being equal, any prediction
based on some set of data will be less certain than an in-
terpretation of the same set of data, and moreover, the in-
terpretation will likely be based on more (and more recent)
information than the earlier prediction. Secondly, the princi-
ple also effectively favours predictions made later over those
made earlier; again, all other things being equal, the further
into the future the time to which the prediction refers, the
less certain the prediction. A later prediction will, on this
basis, be more trustworthy than an earlier prediction about
the same future time.

Contradictions, then, become apparent when trying to
reconcile inconsistent state descriptions about the same lo-
cation at the same time. Since we have effectively compart-
mentalized the incident into discrete locations, determining
whether the message contents refer to the same location is
straightforward: we maintain independent sub-theories for
each location, and every well-formed message is constrained
to refer to one specific location. However, determining if the
contents refer to the ‘same’ time is more problematic; since
absolute timestamps are used to represent time points, the
contents of a message and an existing belief about a state pa-
rameter may have widely differing values at times that differ
by perhaps only milliseconds. Of course, such a transition
in values is possible (often coinciding with some event), but
in practice is more likely to result from the divergence be-
tween new information, derived from later sensor readings
or more complete simulations, and a belief based on obso-
lete information. Moreover, maintaining beliefs at too high
a resolution of time can have undesirable repercussions for
the user interface since the presented information can fluc-
tuate too rapidly to be grasped and acted upon by the user:

even for real-time applications there must be some temporal
stability in the user interface in order for it to be useful (we
shall return to this point later).

Accordingly, we choose to try to reduce the number of
these transitions by defining that if the difference between
the start time of a belief and the start time indicated in the
contents of a message is within some tolerance (we shall
have more to say about the value of this tolerance below)
then they refer to the ‘same’ time. Furthermore, this tol-
erance helps to overcome the problem that interpretations
of ‘current’ state based on sensor data will always refer to
the past due to the inevitable lags and delays in the system;
with this tolerance, these interpretations can be assumed to
be about ‘now’.

A further complexity arises when the content of a mes-
sage is a prediction—that is, it purports to describe the value
of a State-Parameter or the occurrence of some Event at
some Location at some future time. While this might be
adopted as a belief with a duration as before, the inexorable
flow of time will mean that, assuming this belief has not
been retracted or modified in the meantime, at some time
the prediction will come to refer to the current time, and
in the absence of other information a choice must be made
about whether or not to accept the predicted value as an ac-
tual current value. Here we choose to accept the value as
being current, justified on the basis of some information, the
product of a more or less trusted process, being better than
no information.

Note that the algorithm assumes that messages arrive
singly and sequentially, and are handled in the order they
arrive, and hence, that this order defines the relative recency
of messages (although delays in the system might actually
mean that ‘more recent’ messages take longer to arrive).

The algorithm presented above is primarily concerned
with reasoning with information about things happening in
time; and it should be obvious that time is intrinsic to the no-
tion of change implied by the task of belief revision/update.
While many previous approaches to belief revision have
been content to treat time implicitly, there is no shortage of
works that explicitly consider the temporal aspects of belief
revision (see, for example, the approaches of Rao and Foo
[21], Sripada [22] and Bonanno [6]; a typical strategy is the
use of a modal logic to model temporal modalities; such an
approach is not applicable here since we choose to resolve
the set of beliefs into categorical proposition about cur-
rent and future times). These approaches, however, are con-
cerned with the temporal validity and extension of the be-
liefs themselves—that is, those times during some sequence
of revisions for which a particular belief holds—rather than
beliefs that are themselves about things that happen within
time. While the former aspect is undoubtedly important in
the FireGrid application domain (for instance, during post-
incident debriefings, it is important to be able to relate de-
cisions made and actions taken to what was believed at the

Critical reasoning: AI for emergency response

time), it is not the focus of this paper (as presented above the
revision algorithm suggests that a belief is simply discarded
when it is retracted; however, in the implemented system
the temporal interval over which it was believed is closed,
and the belief thereby retained but disregarded during sub-
sequent reasoning). Notwithstanding this difference of em-
phasis, some of the approaches to temporal belief revision
suggested in previous work can be seen to have similarities
to the approach specified in the algorithm given above. This
is perhaps unsurprising since each of the sub-theories could,
in theory at least, be replaced by a sequence of belief sets,
one for each interval defined in the set. While this might
make some sense for ‘discrete’ time-intervals (such as days
of the week) for which reasoning might be applied indepen-
dently, here the definition of possible intervals is unlimited.
As mentioned above, in its handling of time the belief revi-
sion mechanism perhaps has more in common with Allen’s
interval algebra [2, 3].

3.2.2 Hazard rule-based interpretation

Assuming that the set of beliefs has been revised and is con-
sistent, the next step is to interpret these beliefs by applying
a set of hazard rules to them. In effect this is simply a second
step in the belief revision task, where, having established
consistent sub-theories about State-Parameters and Events,
we now must consider the effect of any revisions made on
the set of beliefs about Hazards. We choose to separate these
tasks since Hazards are dependent on State-Parameters and
Events but not vice versa, and so achieving a stable set of
beliefs about these allows us to determine a stable set of be-
liefs about Hazards. Moreover, here the reasoning is based

not on ontological considerations but on user-defined rules.
These rules represent expert knowledge about fire-fighting
capabilities and practice; a simple example might be some-
thing like:

If maximum-temperature ≥ 100◦C at some location l
from start-time s until end-time e then
there exists a Hazard with Hazard-Level = amber
at location l from start-time s until end-time e

where l, s and e are variables. A hazard rule consists of the
conjunction of one or more conditions and a single conclu-
sion, which corresponds to an interpretation of the condi-
tions in terms of a Hazard (with associated Hazard-Level
value) for the time and place in question. In addition, a haz-
ard rule—especially one that refers to less commonly en-
countered hazards—may have an associated explanation and
recommendations. So, for instance, a rule referring to ex-
cessive carbon monoxide levels may offer the explanation
that levels in that range can “cause headache, fatigue and
nausea” alongside the recommendation to “avoid prolonged
exposure or consider the use of breathing apparatus”. It is

intended that the set of hazard rules is derived with the as-
sistance of fire-fighting experts; and that, moreover, differ-
ent rules might apply in different contexts (such as when
there are hazards specific to a building, or to provide rules
appropriate to particular users). As will be seen, this allows
users to tailor the way that the interface agent interprets its
set of beliefs about State Parameters and Events without re-
course to modification of the underlying reasoning mecha-
nisms. The algorithms for applying the hazard rules are out-
lined below.

Algorithm: Interpret-Beliefs(R, S)
Input: R : set of hazard rules, S : set of beliefs
For all l ∈ set of locations then

! consider beliefs about each location separately
B ← {b | b ∈ S ∧ b is about location l}
For all r ∈ R then

C ← Satisfies-Conditions(r, B)
If C
= ∅ then
! note that C is the set of sets of beliefs each of which satisfies the rule conditions:

For all J ∈ C then
h ← new hazard belief
h.hazard-level ← hazard level indicated by conclusion of r
h.location ← l
h.start-time ← b.start-time s.t. b ∈ J ∧ b has the latest start-time in J
h.end-time ← c.end-time s.t. c ∈ J ∧ c has the earliest end-time in J
if (h.start-time = h.end-time) then

! hazard inferred from rule testing for occurrence of some event; and thus is
! currently instantaneous; modify to extend duration indefinitely:
h.end-time ← ∞

S. Potter

! the combination of set of beliefs J and the rule r justify this hazard:
h.justification ← {<J,r>}
If ∃i ∈ B such that (h.hazard-level = i.hazard-level) then

! A hazard of the same level already occurs for this location;
! check whether its duration overlaps that of the new one.
If (h.end-time < i.start-time) ∨(h.start-time > i.end-time) then

! no overlap—so simply add h as new hazard belief :
B ← B ∪{h}

Else
! there is some overlap—so merge hazards:
If (h.start-time < i.start-time) then

! overlap with new hazard starting earlier than existing—extend hazard:
i.start-time ← h.start-time

If (h.end-time > i.end-time) then
! overlap with new hazard ending later than existing—extend hazard:
i.end-time ← h.end-time

! . . . and incorporate justification for new hazard:
i.justification ← i.justification ∪ h.justification

Else
B ← B ∪{h}

Algorithm: Satisfies-Conditions(r, B)
! note: actually returns a set of sets - all possible justification sets
Input: r : hazard rule, B : set of beliefs
C ← ∅

! each set of beliefs. . .
J ← {j | j ∈ B ∧(∀k.(k∈J ∧ k
= j) → about-same-time(j,k)) ∧(∃c.c∈r.conditions ∧ satisfies(j,c))}
C ← C ∪ {J}
Return C

For each rule, then, a search is made in the set of beliefs for
subsets of beliefs (of maximal cardinality) that together sat-
isfy the rule conditions, which includes being all believed
about the same Location and about the same time (that is,
there must be at least one time-point which all these beliefs
are about). If such a subset exists, then the conclusion of the
rule can be drawn. Not apparent in this high-level descrip-
tion of the algorithm is the complexity of identifying these
matching subsets of beliefs; we have implemented our own
algorithm for this matching, but it might be the case that
more efficient matching is possible (and may already have
been proposed elsewhere, although if so we are not aware of
this). Standard matching algorithms, such as the Rete algo-
rithm [12], typically rely on simple pattern matching among
asserted atomic propositions and so lack the richer notion of
finding correspondences in time and space that is required
here.

An inferred instance of a Hazard results in a new belief
(or in the modification of an existing belief about a Hazard
with an additional justification), with a duration delimited by
the latest start time and earliest end time among the subset
of beliefs satisfying the conditions. This in itself presents a
problem in the case where a Hazard is inferred solely on the

basis a belief about some Event: since an Event is considered
to occur instantaneously—that is, at a single time-point—so
too would any inferred Hazard. Since it is not clear what
this might mean, nor how it might be interpreted by the user,
we have excluded the idea of an instantaneous Hazard; in-
stead we modify our definition to assert that any such in-
ferred Hazard has a duration extending from that time-point
to some indefinite point in time, in other words, effectively
until the end of the time window for the application. This
reasoning is justified by the fact that the types of Event,
as defined in the ontology, refer to occurrences that essen-
tially and irrevocably alter the conditions in the location
(and hence would also render any subsequent information
for that location produced by the FireGrid system question-
able at best, since sensors might have been compromised or
even destroyed, and assumptions built into models negated),
and in such a way that, from that time forward, fire-fighting
operations should proceed only with full awareness of this
Hazard. Note too that the requirement that rule conditions
are met by a subset of beliefs each of which refers to the
same time effectively means that conditions that refer to the
occurrences of two or more Events can only be satisfied by
belief in their simultaneous occurrence (which is unlikely

Critical reasoning: AI for emergency response

but not impossible—and the likelihood is governed to some
extent by the chosen granularity of the time-point represen-
tation). In practice, however, and again in large part due to
the nature of Events, rule conditions refer to at most a single
type of Event.

If a newly inferred Hazard is found to overlap in time
with an existing Hazard of the same level in the same place,
we essentially merge these into a single belief by asserting
that there are now additional justifications for the existing
Hazard and extending its temporal duration as appropriate.

Note that changes to the beliefs about State Parameters
and Events due to belief revision can effectively mean that
earlier inferences about Hazards no longer hold: this is a
conventional truth maintenance problem. However, rather
than implement a full-blown Truth Maintenance System
(TMS, [8, 10]), we have implemented a partial solution:
by maintaining justifications for all beliefs, we have a ba-
sic TMS that enables us to identify when there appears to be
some reason to question those beliefs; but rather than reason
about the implications of now-untenable beliefs, we have
adopted the simpler, but maybe less efficient, expedient of
re-computing the Hazards following changes to the belief
set. Here, since the reasoning is relatively shallow, in terms
of the ‘chains’ of inference that are constructed—typically
messages are used to infer beliefs about the environment
which in turn are used to infer beliefs about hazards—it was
felt that the additional memory and computation overheads
associated with full TMS meta-reasoning would not be re-
warded with improved performance. While the use of more
complex chains of reasoning might mean that some more so-
phisticated TMS is required, we have yet to analyse in full
the complexity and requirements of this reasoning and so
this remains an open question.

Another question concerns the dynamics of the hazard
interpretation process, and of the underlying belief revision
mechanism. In theory, there could be a constant stream of
messages arriving at the interface agent and, as we’ve dis-
cussed, these could contain conflicting or contradictory in-
formation. While one might hope that the content of mes-
sages as a whole form a coherent picture of the incident, be-
lief revision under such conditions could lead to an unstable
set of beliefs, possibly with rapid fluctuations between ex-
tremes of State-Parameter values or even between one be-
lief and its opposite (in the case of Event occurrence/non-
occurrence). And this instability would likely be reflected in
the interpreted Hazards, and any attempt to display these
would result in a confusing, disorienting and practically
useless interface for the user. The presented information
must have some degree of stability, enough at least to al-
low the decision-maker to appraise the situation and—when
appropriate—make a decision. But since the goal of Fire-
Grid is to make available to responders real-time informa-
tion, there is clearly a trade-off involved in producing some

level of ‘useful stability’. In some sense, the range and ex-
tent of information that is promised by the FireGrid archi-
tecture now becomes the problem: are users (and the au-
tomated reasoning processes that we devise to help them)
capable of handling this information? Would we be simply
replacing one problem of a lack of information with another
of its surfeit, and leading to no discernible improvement in
the response?

The answers to these questions remain to be seen. Here,
this problem is ameliorated in a number of different ways.
Firstly, the tolerance introduced above for determining
whether two statements refer to the ‘same’ time effec-
tively has a ‘smoothing’ effect by reducing—eliminating—
temporally local fluctuations, and since this tends to favour
interpretations of current state over predictions, and inter-
pretations (especially those that are more immediately de-
rived from sensor readings, such as temperature values) tend
to be—but are not always—less contentious, the effect is one
of making the current state appear relatively stable, even if
later predictions continue to vary. A value of 30 seconds for
this tolerance was found experimentally to provide a reason-
ably stable interface for the sort of applications we have in
mind. Secondly, when querying the output of models with
a monitor-query, we are careful to disallow frequencies that
are too high (once every 30 seconds is the maximum per-
mitted rate), and queries of other types are throttled too, to
prevent the user from requesting more information than can
be handled.

A final point here concerns when the cyclical application
of the belief revision and hazard interpretation mechanisms.
It would be possible to apply these two steps following the
receipt of each message at the user-interface agent. How-
ever, since the number of such messages can be very large,
rather than having the agent spend much of its processing
time continuously performing one task then the other, in-
stead we choose to periodically invoke the hazard inference
task, assuming that changes have been made to the belief
sets in the meantime. And once again this choice has the
effect of providing a greater degree of stability to the pre-
sentation of hazards.

3.2.3 Hazard presentation

Once the set of hazards has been inferred, these must be pre-
sented to the emergency responder in a manner that will help
the user make a swift and correct response decision. This re-
quires an understanding of the particular capabilities, roles
and tasks of the responder, the medium for presenting the
information, and the operational context in which the infor-
mation is delivered, as well as more general theories of sit-
uation awareness and human interface design. The content
and complexity of the interpretation is also an issue here,
since this can encompass both real and projected values and

S. Potter

their variations in space and time and can contain uncertain-
ties and errors.

As described above, our initial focus in FireGrid con-
centrated on providing support for the Incident Commander
and his/her decision of whether to adopt offensive or de-
fensive tactics, a decision based on the process of dynamic
risk assessment. This decision is made for specific places
at specific times—hence the interface would need to repre-
sent both the spatial and temporal dimensions of the inci-
dent. With the assistance of experienced fire-fighters factors
influencing the risk assessment can be built into the condi-
tions of hazard rules, with the conclusions then indicating
their relative severity in terms of the tactical decision. The
next question, then, is how best to present these conclusions
to the user.

The pressures of performing the risk assessment task on
the incident ground are such that seemingly conflicting re-
quirements emerged for information to be presented both in
a manner that can be rapidly assimilated into this assess-
ment process, and in a way that provides sufficiently detailed
rationale to allow its careful consideration. As mentioned
previously, from discussions with fire-fighters emerged the
idea that these requirements might be reconciled at the in-
terface level through a ‘traffic light’ display (already evident
in the reasoning about Hazard-Levels described in the pre-
vious section) to give an at-a-glance overview of the current
status at a particular location, with a point-and-click facility
for delving into the reasons for the colour of light displayed.

Since the application of the hazard rules may have re-
sulted in the inference of multiple simultaneous Hazards, to
provide a summary of this information that is more readily
assimilated by the responder a further reasoning step col-
lates these into a single cumulative expression of the Hazard
(and accompanying Hazard-Level value) for each location.
This is a straightforward matter of determining the ‘worst’
Hazard-Level that is believed to occur at that location at the
current time. So, for instance, if the believed state of room-A
at the current time has allowed the inference of two current
amber Hazards and one current red Hazard then the cumu-
lative current Hazard in room-A is at a red Hazard-Level.

In interface terms, then, the cumulative current Hazard(-
Level) at a particular location is used directly to colour the
corresponding traffic light for that location in the graphical
user interface. Feedback from potential users suggested that,
to supplement this, some direct indication of future Haz-
ards would also be useful, and so a second ‘light’ was added
above the first to display the worst Hazard-Level predicted to
occur in the future. Clicking within a location causes a pop-
up window to appear in which are detailed the hazard rules
which fired to produce the indicated Hazard-Level, along
with any explanations and advice which accompany those
rules. In addition a time-line indicates when any Hazards
are predicted to occur within a time-frame projected into

the future (pragmatically set to 15 minutes for our relatively
short-lived experiments, but different (types of) incidents
might demand different time-frames); moving a ‘slider’ al-
lows the user to explore the nature and basis of these haz-
ards at different points along the time-frame. Screenshots
illustrating these features will be presented later in this pa-
per.

4 FireGrid system application: a case study

For reasons that should be obvious, validating the Fire-
Grid architecture, and more specifically, the various rea-
soning and representation schemes that have been devel-
oped, presents a number of practical difficulties. The project
has adopted an incremental approach, gradually increas-
ing the number and sophistication of implemented compo-
nents, with experiments based on simulated, pre-recorded
and eventually live data collected from fires. This has been
supplemented with interface mock-ups used to elicit feed-
back from fire-fighters about the presentation of informa-
tion (and the information itself). This process culminated in
the deployment of a ‘complete’ FireGrid system to provide
real-time information during an experiment involving a real
fire (under controlled conditions) that was conducted before
a select audience of interested parties at the test facilities
at the Building Research Establishment (BRE), near Lon-
don.

This experiment involved a fire initiated in a specially
constructed experimental rig representing a small 4-room
apartment. The notional scenario for the experiment con-
cerned the possibility of occupants trapped in the apartment:
the tactical decision was whether or not to send fire-fighters
into the building to conduct a search (although no actual fire-
fighting activities or any other intervention in the course of
the fire was performed during the experiment). A member
of the FireGrid team played the end-user role of support
officer to the IC (a senior fire officer was among the audi-
ence).

A total of 125 sensors placed throughout the rig measured
temperatures, heat flux, gas (O2, CO, CO2) concentrations
and deformation of structural elements. Values from each of
these sensors were polled in batch mode at roughly 3-second
intervals, and fed to a database server housed off-site, from
where models could request the data they required. This
rig and its contents were intended to produce a ‘flashed-
over’ fire in a relatively short time (in the event the whole
experiment, from ignition to manual extinguishment lasted
around one hour). An Event in terms of the FireGrid on-
tology, flashover typically occurs when the gases produced
by a fire in some enclosed space reach temperatures high
enough (above 500◦C, as a rule of thumb) to ignite simul-
taneously all combustible matter in the vicinity. From the

Critical reasoning: AI for emergency response

Fig. 2 The experimental rig (based on an original diagram courtesy of P. Clark of the Building Research Establishment)

perspective of responders, flashover represents a potential
transition from a contained fire to an uncontrolled fire. In ad-
dition, certain structural elements of the rig were expected to
deform and fail during the fire; the potential collapse of ceil-
ings and floors is, of course, a major hazard for fire-fighters.
A plan of the experiment apartment, showing the placement
of sensors, is given in Fig. 2.

A number of different models were employed to interpret
sensor data and make predictions based on this data; these
were run on various local and remote resources as demanded
by their processing requirements. Each was given an agent
wrapper so as to be able to respond to any queries for infor-
mation by translating its model’s results into the appropriate
messages.

Once the fire had been ignited and the alarm raised (by
a state-of-the-art smoke detection device connected to the
FireGrid system), the user constructed a number of queries,
which were then relayed to the appropriate models, to mon-
itor maximum temperatures, the level of smoke, build-up of
gases, etc., along with requests for the predictions about the
future values of these State Parameters and the occurrences
of Events. Figure 3 to Fig. 9 show how the results of the
reasoning in the previous section were presented to the user
as the fire escalated and spread. Technically, the experiment
was felt to be a success; the various components worked as
envisaged, and the feedback from those present on the nature
and quality of the information provided by the interface was
unanimously positive. It is quite another thing, however, to
demonstrate that the interface, the reasoning and wider sys-
tem that underlies it, and indeed the entire FireGrid concept,
can have a beneficial effect on responder decision-making in
real emergency situations.

Fig. 3 The user interface at the outset of the experiment; a 3D repre-
sentation of the ‘apartment’ used during the demonstration is shown,
with the green traffic light in each location indicating that conditions
are still amenable to fire-fighting

5 Conclusions

This paper has described the FireGrid project, an ambitious
attempt to harness the potential of a number of complemen-
tary technologies to provide real-time information to emer-
gency responders. Among these technologies, Artificial In-
telligence concepts and approaches have effectively been
used to integrate the system—and its developers—at the
knowledge level. The reality of handling real, dynamic in-
formation has involved difficult and complex choices at ev-
ery turn. While we have been able to draw upon a range of
established AI techniques—including multi-agent systems,
ontologies, belief revision and truth maintenance, and rule-
based reasoning—for a number of reasons, the foremost

S. Potter

Fig. 4 A fire is detected in one of the rooms by one of the sensors
in the system; the floor of the corresponding room in the display is
highlighted in red to convey this information

Fig. 5 The first set of predictions about future conditions in the apart-
ment arrives from one of the models in the system. The pop-up window
indicates that, based on these projected conditions, and specifically the
suggested maximum temperatures, an amber hazard is predicted to be-
gin in just under 2 minutes’ time in room-1. Note that the traffic light
for this room—and for two of the other rooms—is now showing the
future cumulative worst hazard level (the upper light) to be amber.
The current cumulative hazard level is green throughout the apartment
(lower light)

being a discrepancy between AI theory and practice, and
specifically when reasoning about time, existing techniques
were found to be lacking, and so specific applications, in-
terpretations and algorithms have had to be developed and
implemented. While these solutions might well be of use to
those working on problems with similar characteristics, it is
hoped that the general discussion and issues raised by this
paper will be of general interest.

Fig. 6 More predictions arrive; the time-line at the bottom of the
pop-up window now shows multiple hazards predicted at various times
in the next 15 minutes, including some of hazard level red. Accord-
ingly, the cumulative worst predicted hazard level shown on the traffic
light is now red, and note that the latest predictions for conditions in the
far room have caused the worst predicted level there to be ‘improved’
to green

Fig. 7 The current maximum temperature in room 1 is such that the
current cumulative worst hazard level is now red

At the time of writing, the FireGrid project has reached
the end of its initial 3-year funding period. Notwithstand-
ing the success of the experimentation reported above, the
range and complexity of fire incidents, and the difficulties of
interpreting and especially predicting fire conditions within
buildings mean that it is unlikely that FireGrid systems will
be deployed as real emergency response aids at any time

Critical reasoning: AI for emergency response

in the near future. Moreover, when one considers the pos-
sible implications of the decisions that fire-fighters make,
the operational validation of the FireGrid approach, of its
individual components and any systems comprised of these

Fig. 8 The state of the apartment just after flashover, with high tem-
peratures (and associated hazards) throughout

presents a problem (as is often the case for AI applications

which, by their nature, tend to deal with heuristic and ap-

proximate methods, rather than certainties and guaranteed

results). Here, of course, system validation is compounded

by the fact that large-scale emergency incidents can, at best,

only be simulated under laboratory conditions, and then only

at considerable cost.

Acknowledgements The work reported in this paper has formed
part of the FireGrid project. This project is co-funded by the UK
Technology Strategy Board’s Collaborative Research and Develop-
ment programme, following an open competition. The University of
Edinburgh and project funding partners are authorized to reproduce
and distribute reprints and on-line copies for their purposes notwith-
standing any copyright annotation hereon. The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either
expressed or implied, of other parties. The University of Edinburgh
is a charitable body, registered in Scotland, with registration number
SC005336. The author would like to thank his colleagues on the Fire-
Grid project who contributed in one way or another to the development
of the techniques and results reported here, and who collectively made
working on the project such a rewarding experience. He would also like
to thank the anonymous reviewers whose thoughtful comments helped
to improve the paper.

Fig. 9 Simultaneous camera
footage from within the rig
gives some idea of the actual
conditions represented to the
fire-fighter by Fig. 8. The fire
has flashed-over, with flames in
every room (and one camera has
been destroyed)

S. Potter

References

1. Alchourròn CE, Gärdenfors P, Makinson D (1985) On the logic of
theory change: partial meet contraction and revision functions. J
Symb Log 50:510–530

2. Allen JF (1983) Maintaining knowledge about temporal intervals.
Commun ACM 26(11):832–843

3. Allen JF (1984) A general model of action and time. Artif Intell
23:2

4. Bennett B, Cohn AG, Wolter F, Zakharyaschev M (2002) Multi-
dimensional modal logic as a framework for spatio-temporal rea-
soning. Appl Intell 17(2):239–251

5. Berry D, Usmani A, Torero J, Tate A, McLaughlin S, Potter S,
Trew A, Baxter R, Bull M, Atkinson M (2005) FireGrid: inte-
grated emergency response and fire safety engineering for the fu-
ture built environment. In: UK e-science programme all hands
meeting (AHM-2005)

6. Bonanno G (2007) Axiomatic characterization of the AGM theory
of belief revision in a temporal logic. Artif Intell 171(2–3):144–
160

7. Chou TSC, Winslett M (1991) The implementation of a model-
based belief revision system. ACM SIGART Bull 2(3):28–34.
Special issue on implemented knowledge representation and rea-
soning systems

8. de Kleer J (1986) An assumption-based TMS. Artif Intell 28:127–
162

9. dos Santos M, de Brito R, Park H-H, Santos P (2009) Logic-based
interpretation of geometrically observable changes occurring in
dynamic scenes. Appl Intell 31(2):161–179

10. Doyle J (1979) A truth maintenance system. Artif Intell 12:231–
272

11. The FireGrid Consortium, http://www.firegrid.org/, last accessed:
19th September 2011

12. Forgy C (1982) Rete: a fast algorithm for the many pattern/many
object pattern match problem. Artif Intell 19:17–37

13. Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L
(2002) Sweetening ontologies with DOLCE. In: Gómez-Pérez
A, Benjamins VR (eds) Knowledge engineering and knowledge
management. Ontologies and the semantic web, 13th international
conference, EKAW 2002. Springer, Berlin, pp 166–181

14. Han L, Potter S, Beckett G, Pringle G, Welch S, Koo S-H, Wickler
G, Usmani A, Torero J, Tate A (2010) FireGrid: an e-infrastructure
for next-generation emergency response support. J Parallel Distrib
Comput 70:1128–1141

15. HM Fire Service Inspectorate (2002) In: Fire service manual, vol-
ume 2: fire service operations, incident command. HM fire ser-
vices inspectorate publications. The Stationary Office, London

16. Katsuno H, Mendelzon AO (1991) On the difference between
updating a knowledge base and revising it. In: Proc 2nd int
conf on the principles of knowledge representation and reasoning
(KR’91). Morgan Kaufmann, San Mateo, pp 387–394

17. Katsuno H, Mendelzon AO (1991) Propositional knowledge base
revision and minimal change. Artif Intell 52:263–294

18. Le Berre D (2001) ADS: a unified computational framework
for some consistency and abductive-based propsositional reason-
ing. In: Proc 2nd Australasian workshop on computational logic
(AWCL01), Gold Coast, Australia, 31 Jan–1 Feb 2001

19. Liberatore P, Schaerf M (2000) BReLS: A system for the inte-
gration of knowledge bases. In: Proc 7th int conf on principles
of knowledge representation and reasoning (KR 2000). Morgan
Kaufmann, San Mateo, pp 145–152

20. Potter S, Wickler G (2008) Model-based query systems for emer-
gency response. In: Fiedrich F, Van de Walle B (eds) Proc 5th int
conf on information systems for crisis response and management
(ISCRAM), Washington DC, USA, May 2008

21. Rao AS, Foo NY (1989) Minimal change and maximal coherence:
a basis for belief revision and reasoning about actions. In: Proc
11th int joint conf on artificial intelligence (IJCAI-89), pp 966–
971

22. Sripada SM (1993) A temporal approach to belief revision in
knowledge bases. In: Proc 9th IEEE conf on artificial intelligence
for applications (CAIA’93), Orlando, Florida, March 1993

23. Tate A (2000) Intelligible AI planning. In: Proceedings of ES2000,
20th BCS special group on expert systems international conference
on knowledge based systems and applied artificial intelligence.
Springer, Berlin, pp 3–16

24. Tate A (2003) <I-N-C-A>: an ontology for mixed-initiative syn-
thesis tasks. In: Proceedings of the workshop on mixed-initiative
intelligent systems (MIIS) at the international joint conference
on artificial intelligence (IJCAI-03), Acapulco, Mexico, August
2003

25. Upadhyay R, Pringle G, Beckett G, Potter S, Han L, Welch S,
Usmani A, Torero J (2008) An architecture for an integrated fire
emergency response system for the built environment. In: Proc 9th
IAFSS international symposium on fire safety science, Karlsruhe,
Germany, September 2008

26. Wickler G, Potter S (2009) Information-gathering: from sensor
data to decision support in three simple steps. Intell Decis Technol
3:3–17

Stephen Potter is currently a vis-
iting researcher at the School of
Informatics, where he previously
worked in the Artificial Intelligence
Applications Institute, specializing
in emergency response applications.
He holds degrees in computer sci-
ence, artificial intelligence and me-
chanical engineering, and welcomes
any serious offers of employment.

http://www.firegrid.org/

	Critical reasoning: AI for emergency response
	Abstract
	Introduction
	FireGrid: background and requirements
	FireGrid and the fire-fighter
	FireGrid and fire data
	FireGrid and the fire modeller
	FireGrid: system requirements

	AI and FireGrid: technologies
	The FireGrid ontology
	State parameters and events
	Hazards
	Space and time
	Applying the FireGrid ontology

	Automated reasoning for FireGrid
	FireGrid belief revision
	Hazard rule-based interpretation
	Hazard presentation

	FireGrid system application: a case study
	Conclusions
	Acknowledgements
	References

