

Project title

co.div.job:doc/issue

‑
CDL to Act Translator Documentation

Page
 of 10

Artificial Intelligence Applications Institute

Common Domain Editor CPL to Act Translator

Prepared by

Peter Jarvis (Peter.Jarvis@ed.ac.uk)

Artificial Intelligence Applications Institute

The University of Edinburgh

80 South Bridge, Edinburgh, EH1 1HN, UK

Version :

0.1

Date:

1998 (altered to Unrestricted Circulation by Austin Tate on 30-Mar-2001)

Circulation:

Unrestricted

Copyright 1998, Artificial Intelligence Applications Institute, The University of Edinburgh.

1. Introduction

This document describes the Common Domain Language (CDL) to ACT translator written for Polyak's Common Domain Editor tool. It describes both the software design and conceptual translation.

2. Integrating a New Translator into the CDE

The classes involved in the translation process are shown in Figure 1. Class cpe.java
 is the "main" class in the CDE system. It contains the code for generating the menu bar at the top of the editor. This method (createMenuBar()) must be modified to include the name of the new translator. The event handler attached to this menu item must call the exportTo method with the format parameter set to the desired output format. The exportTo method creates a new instance of the class cpeFileFTPDialog send the desired output format to this Class' constructor method. The FTPDialog obtains from the user the name of the file the domain is to be exported to and the location type (local file system or FTP). The FTP class the calls either cdeSpecTF.writeOut() or cdeSpectAct.writeOut() depending on the desired output format. The code within these classes takes the CDL statements and outputs them in the desired format.

Figure 1: Classes with a role in the export process

3. Mapping CDL to Act 2.2

3.1 Introduction

In this section we step through each construct in CDL and determine a mapping for it in Act2.2. We conclude with a list of issues that concentrates on the "difficult" mappings that require further attention.

3.2 Types and Instances

CDL supports types and instances of those types. Act supports classes and subclasses, properties of classes, and instances of classes. Examples of CPL and Act specifications are given in Figure 2 and Figure 3 respectively.

type(airframe)
instance(airframe, manned), instance(airframe, unmanned), instance (airframe, no_airframe)

Figure 2: CPL types and instances

CLASS: AIRFRAME
SUBCLASSES: MANNED, UNMANNED, NO_AIRFRAME;
INSTANCES: TOMAHAWK;
PROPERTIES:,
SPEED = 250,
SERVICE = USAF,
CAS = 0,
BURN-RATE = 10000,
AIR-SELF-PROTECT = 0;
END CLASS

Figure 3: Act classes, subclass, instances and properties

The mapping is shown in Table 1
	CPL Construct
	Act Construct

	Type(?type_name)
	CLASS: upcase(?type_name)

	Instance(?type, ?instance)
	INSTANCES: forall i ?instance of ?type (?i)

	Subtype
	CLASS.SUBCLASS

Table 1: CPL to Act mapping

The Act constructs for which there is no equivalent in CPL are given in Table 2.

	Act Construct
	Comment

	CLASS.PROPERTIES
	

Table 2: Act constructs with no CPL equivalent

The CPL constructs for which no Act equivalent could be found and shown in Table 3

	CPL Construct
	Comment

	Always(fact)
	Could be inserted into every task definition as a fact in the initial state. Could also check for acts that retract such a statement and remove them. However, both methods are outside of the representation. Since learnt from David Wilkins that SIPE and PRS do handle these "static" facts. It has just not been specified in the Act formalism.

Table 3: CPL constructs with no Act equivalent
3.3 Process Constraints

A CPL process constraint maps to an Act Act. All the constraints within a process map the fields within an Act. The mapping is described in Table 1.

	CPL Construct
	Act Construct
	Comments

	Process.label
	Actid
	The label and actid fields are equivalent in providing a process or act with a unique name.

	Process.expands
	Environment.cue.achieve
	The expands statement indicates the name of the action for which this process can be used as a refinement. In act, the cue predicate indicates the purpose that the act can be used for. This mapping does not feel quite right as the cue.achieve fields definition is closer to that of only_use_for_effects in the Task Formalism.

	Process.variables
	Environment.setting.est
	

	Process.resource-constraints
	Environement.resouces.use-resouce
	

	Process.include-constraints
	Plot.nodes
	Act does not represent the begin and end point of actions. Therefore, each process.include-constraint is converted into two Act nodes. The first representing the start and the send the finish. (this is not true of the first and last nodes in a process, they are converted as is).

	Process.output-constraints
	Plot.conclude
	These are added as conclude statements to the end node in a process.

	Process.input-constraints
	Plot.achive
	These are added as achieve conditions to the first node in a process.

	Process.ordering-constraints
	Plot.orderings.next
	

Table 4: Mapping of CPL process sub constraints into Act

4. Outstanding issues

In this section, we discuss the issues raised when mapping CPL to Act.

4.1 Expression syntax

CPL does not dictate the syntax that is to be used when writing constraints. In TF expressions are of the form, {on a b} = true, while in act they are of the form, on(a, b). In the CPL translator to both TF and Act the format of expressing is ignored. The content of a constraint is simply inserted in the appropriate place.

Work is urgently needed to produce an expression syntax that can be used to express both TF and Act expressions (and other formalisms). It will then be possible to write process models in CPL that can then be output to several formalisms. To start this process, the following main section compares Act to TF in more detail.

4.2 CPL Expands

The CPL expands constraint type is currently mapped to Act as an environment.cue.achieve predicate. This may be incorrect, as the Act predicate is designed to capture the goals that the Act can be used to achieve. This implies sub-goaling rather than just expansion.

5. Comparing TF v2.3 and Act 2.2

5.1 Introduction

In this section we compare TF with Act to determine the similarities and differences between the formalisms. Please read it as the Author's strawman position. The comparison steps through the environment and plot divisions in Act and considers each act slot and meta-prediacte.

5.2 Environment

5.2.1 Name

Provides a unique identifier for an Act. The is equivalent to the TF schema name construct.

5.2.2 Cue

The Cue indicates the purpose for which an Act can be used. Three metapredicates can be used in cue slot.

· Achieve: means that this act can be used to make a predicate true. Specifically, it can be used for sub goaling. This is equivalent to the TF only_use_for_effects statement.

· Test: indicates that an act can be used for information gathering. Specifcally, if one wants to know the state of the predicate preceded by the test metapredicate then this act should be used. There is no equivalent information gathering type in TF. However, it is not clear want effect a Test predicate has. Is the Act forbidden for concluding anything other than the test predicate?

· Conclude: Indicates that an act should be invoked when a predicate P is added to the database. This appears designed to specify how a system should react to events. There is no equivalent in TF.

5.2.3 Precondition

Provides situational constraints that must be satisfied for an Act to be applicable. Two metapredicates can be used in the preconditions slot.

· Test: means that a predicate P must be true for the act to be applicable. This is equivalent to the O-Plan only_use_if filter condition.

· Achieve: means that a goal G must be on the system's agenda for the act to be applicable. There is not mapping in TF for this metapredicate / slot combination.

5.2.4 Setting

The setting slot represents the conditions on an act that will be satisfied by variable binding. This slot maps to the only_use_for_query condition type in TF.

5.2.5 Resources

The USE-RESOURCE metapredicate is mapps to the non-consumable, non-sharable resource type in TF. Use of it will secure resources for the duration of the Act. Act does not have the rich resource types available in TF.

5.2.6 Properties

Properties are used for documentation and to capture information specific to a planner or executor. TF supports comments but does not provide a place for expanding the formalism.

5.2.7 Comment

Documentation. This is supported in TF through the Lisp ";;;" notation. The additional structure supported by Act more readily supports the automated extraction of documentation comments from a model.

5.3 Plot

The plot specifies the activities for accomplish the purpose of an Act.

5.3.1 Context metapredicates

· Test: Is used in conjunction with conditional branches to determine which branch should be executed. TF does not have conditional branches, see node-types below.

· Use-Resource: describes the resource used by a node. This is equivalent to a TF resource constraint placed on a node.

5.3.2 Action metapredicates

· Achieve: The act would like to achieve the predicate at this point in the plan. It looks like the planner is free to use any mechanism (including sub-goaling) to realise this. This is equivalent to the TF achieve condition type.

· Achieve-by: This is similar to the TF expands statement in that is specifies the set of acts from which one can be used to refine an action. TF supports the definition within a schema of the action pattern that it expands. Act requires each node to specify the act-ids of the each schema. The TF approach is easier to maintain but does not offer so much control over the set of schemas that can be used to refine an action.

· Achieve-All:

· Wait-Until: equivalent to the TF Unsupervised condition type

5.3.3 Effects metapredicates

· Require-Until: equivalent to the TF Supervised condition type.

· Conclude:

· Retract:
5.3.4 Topologies

In act nodes do not have begin and end points that can be linked using "-(" relationships. Allen intervals are used instead.

5.3.5 Node Types

Act provides two node types: conditional and parallel. Arcs coming out of a parallel node are conjunctive in that every node must be executed. In the case of conditional nodes, only one of the successor branches must be executed.

6. References

Wilkins, D., and Myers, K., 1994, A Common Knowledge Representation for Plan Generation and Reactive Execution, Journal of Logic and Computation.

Myers, K., and Wilkins, D., 1997, The Act Formalism, Version 2.2, SRI International Working Document.

Tate, A., Drabble, B., and Dalton, J., 1994, The Use of Condition Types to Restrict Search in an AI Planner. In proceedings of Twelfth National Conference on AI, Seattle.

cdeSpec.java

[writeOut()]

cdeSpecAct.java

writeOut()

cdeSpecTF.java

writeOut()

cpeFileFTPDialog.java

fileTFExport

fileActExport

fileTFExportLocal

fileActExportLocal

cpe.java

createMenuBar()

exportTo(format)

� CPE is correct. CDE uses much code from CPE.

"

