
The pursuit ability
of a robot ‘pet’

Julien Roux

MSc Dissertation

Distributed and Multimedia Information Systems
Academic Year 2004/2005
Supervisor: Patrick Green

Julien Roux – The pursuit ability of a robot ‘pet’

2

Declaration

I, Julien Roux , confirm that this work submitted for assessment is my own and is

expressed in my own words. Any uses made within it of the words of other authors in any form e.g.

ideas, equations, figures, text, tables, programs etc are properly acknowledged. A list of references

employed is included.

Signed: __

Date: ___ ___

Julien Roux – The pursuit ability of a robot ‘pet’

3

Julien Roux – The pursuit ability of a robot ‘pet’

4

Abstract

This report presents the development of a new behavioural pattern for a robotic dog,

Sony Aibo ERS-7, which aims to find a form of prey to chase and eventually catch. In our

case, the robot will wander around for a short period, then look for the pink ball and,

once located, Aibo will chase it until it is close enough to what he considers the prey as

caught. The general behaviour has been implemented using a hierarchy of Finite State

Machines and covers several topics in robotics: object detection and recognition,

navigation in an unknown and changing environment and, ability to follow a target. The

idea of this project is to investigate how the robot achieves behaviour selection, based on

stimuli from the environment. Several different approaches for decision making for

autonomous agents have been studied and the state machine approach has been chosen

for the implementation of the behaviour.

Julien Roux – The pursuit ability of a robot ‘pet’

5

Acknowledgements

I would like to thank my supervisor Dr Patrick Green for his support at all times

during the development of this project.

Also big thanks to Peter Killisperger, Delphine Giner, Fabien Leboiteux for their

help and their support during this year, and Clément Chazarra for lending his camera

for the experiment.

I also think to my family who have been a great support during all my studies.

Special thanks to Ethan Tira-Thompson from the Carnegie Mellon University and Pr.

Austin Tate from Edinburgh University for their help, advices and availability.

And finally a very special thanks to Lynsey Cormack who supported me through this

project and has been a precious help. It has not been easy. Merci Beaucoup!

This project has been really interesting and motivating. I enjoyed working on Aibo and in

the end, it appeared to be a very good support for working and developing personal

behaviour. At the begining of the project, I had many problems regarding the availability

of Aibo, the memory sticks and the reader needed for the developement. Then I had

problem to connect the Aibo and my laptop and finally, the environment showed some

difficulties to be setted up correctly. But once this has been achieved, the developement

was natural and intuitive.

The people working on Aibo all over the world are gathering their work to improve their

capacities. Therefore, Professor Tate and Ethan Tira-Thomson have been a precious help

as have been the users of the website Aibo-friends.com and the Yahoo ! group

development mailling list dedicated to Aibo.

Thanks all.

Table of contents

Abstract ..4
Acknowledgements ...5
Table of contents...6
Table of figures ...9
1 Introduction ..10

1.1 Background and context... 10
1.2 Objectives.. 11

1.2.1 Purpose of this report ... 11
1.2.2 Scope .. 11

1.3 Structure of the report ... 12
1.4 Methodology... 12

2 Project background..13
2.1 Introduction ... 13
2.2 The Aibo Robot ... 13

2.2.1 Origins of robots.. 13
2.2.2 Before Aibo... 14
2.2.3 Aibo as an autonomous and social robot.. 17
2.2.4 The Aibo ERS7-M2 ... 20

2.3 The Robocup challenge .. 22
2.4 Review of previous research on Aibo .. 24

2.4.1 The German Team ... 24
2.4.2 The Team Chaos 2004 (formerly Team Sweden)..................................... 25
2.4.3 The NUbots 2004 ... 26
2.4.4 Top dog.. 27
2.4.5 Dog-like Behaviour Selection by Christina Ihse Bursie 27

2.5 Experimental design .. 28
2.6 Project plan and risk management... 28

3 Design problem analysis ..29
3.1 Introduction ... 29
3.2 Alternatives for the behaviour selection .. 29

3.2.1 Introduction .. 29
3.2.2 Deliberative architectures ... 31
3.2.3 Reactive architectures .. 32
3.2.4 Hybrid architectures ... 33

3.3 Choice for the behaviour selection design ... 34

Julien Roux – The pursuit ability of a robot ‘pet’

7

3.4 Alternatives for the software framework ... 35
3.4.1 Introduction .. 35
3.4.2 R-Code SDK.. 35
3.4.3 URBI.. 36
3.4.4 The OPEN-R SDK ... 36
3.4.5 The Tekkotsu development framework for Aibo 37

3.5 Choice of software framework ... 38
4 Technical Background ..39

4.1 Introduction ... 39
4.2 The Aperios Operating System .. 39
4.3 Overview of Tekkotsu .. 40

4.3.1 Worldstate .. 41
4.3.2 MotionManager.. 41
4.3.3 SoundManager .. 42
4.3.4 StateNode .. 42
4.3.5 Transition ... 42
4.3.6 Event Passing.. 42
4.3.7 Vision and object recognition ... 43
4.3.8 BehaviorBase .. 43

4.4 Decision Trees .. 43
4.5 Finite State Machine .. 44
4.6 Hybrid Automata... 46

5 Conceptual solution ...48
5.1 The Behaviour .. 48
5.2 Recognise the prey.. 48
5.3 Search for the prey.. 49
5.4 Chase the prey ... 49
5.5 Completing the task... 50

6 System Design ...51
6.1 Introduction ... 51
6.2 PANode.. 51
6.3 PAWalk .. 52
6.4 PAWalkTo... 52
6.5 PAExplore .. 52
6.6 Finite State Machine .. 53

7 Experimental design and results ..54
8 Conclusions ...58
9 References...60

Julien Roux – The pursuit ability of a robot ‘pet’

8

10 Credits ..65
11 Appendix...66

11.1 PANode.h .. 66
11.2 PANode.cc ... 67
11.3 PAExplore.h ... 69
11.4 PAExplore.cc .. 70
11.5 PAWalkTo.h ... 72
11.6 PAWalkTo.cc .. 73
11.7 PAWalk.h... 75
11.8 Pictures... 79
11.9 Poster ... 81

Julien Roux – The pursuit ability of a robot ‘pet’

9

Table of figures

Figure 1- Tamagotchi [source: firebox.com]... 15
Figure 2 – Furby [source: pinkangel15.tripod.com] ... 16
Figure 3 – Mutant [source: vieartificielle.com] .. 17
Figure 4 - Aibo ERS-220 [source Aibo-fr.com] .. 19
Figure 5 - Aibo ERS-7 White and Black Pearl with the pink ball and the Aibone [source:
converj.com] ... 20
Figure 6 The hardware of the Aibo ERS7, front view [source: Sony website] 21
Figure 7 The hardware of the Aibo ERS7, rear view [source: Sony website] 21
Figure 8 Field with players for the Robocup 2005 [source: Rules of the competition 2005.
Available on the Robocup website].. 23
Figure 9 Aperios: Representation of the Object/Meta-Objects hierarchy [source: Team
Chaos (Bie, 2004)] ... 40
Figure 10 The structure of Tekkotsu [source: Tekkotsu website] 41
Figure 11 Decision tree for the project... 44
Figure 12 Example of a Finite State Machine (FSM) [source: Wikipedia] 45
Figure 13 Simplified finite state machine for the project... 46
Figure 14 Finite State Machine for the project... 53
Figure 15 Experiment area .. 54
Figure 16 Pink ball on the purple floor and on the blue floor 55
Figure 17 Telnet connection to the Aibo robot and the Tekkotsu WLAN user interface ... 55
Figure 18 Aibo and the laptop used during the experiment 56
Figure 19 The Aibo robot running to the ball in the experiment area 57
Figure 20 'Biscuit' and his pink ball ... 79
Figure 21 'Biscuit' "eating" the prey .. 79
Figure 22 'Biscuit' looking for the prey... 80
Figure 23 The development "environment"... 80

For more details, see chapter 10 credits.

Julien Roux – The pursuit ability of a robot ‘pet’

10

1 Introduction

This report is the result of a Master of Science project in Distributed and Multimedia

Information Systems at the School of Mathematical and Computer Sciences of Heriot

Watt University, Edinburgh. This work was conducted between May and September 2005

and is composed of two parts, this report and a program. The report focuses on how to

implement a new behaviour for a Sony Aibo ERS-7, to simulate and test theories about

the outcomes of interactions between entities when a group of animals hunt prey in an

environment and how to implement them in the context of the Robocup Soccer

challenge.

The Aibo robot is used as a platform to test the interactions during co-ordinated actions.

The outcomes of this project should be used as a basis for building a framework for the

Robocup soccer [Robocup, 2005] using similarities between the behaviour of a dog

hunting for a prey and a football player looking for the ball.

1.1 Background and context

Nowadays, robots are not only considered as slaves primarily intended to dangerous,

repetitive or difficult scenario [Rico, 2004]. Called social robots, they are now used for

entertainment, with no other aim than to mimic a companion, be it human, animal or

abstract, attempting to provide company to human beings [Kaplan, 2001]. The most

popular of these entertainment robots is the Aibo, launched by Sony in 1999. This robot

pet, resembling a dog, was created by the Digital Creature Laboratory for Sony in Japan

after six years of research lead by Doctor Toshitada Doi [Jerome, 2004]. It basically

fulfils the most current constraints arising when we consider autonomous robots. It can

be active without being linked to a computer and it does not need a permanent plug to a

power supply other than its battery.

Many researches about artificial intelligence and robotics have been done using Aibo

[Rico, 2004] and one of the main outcomes is the Robocup [Robocup, 2005]. It is a

tournament organized every year gathering impassioned of programming and robotics

from all over the world and team from universities. The aim of this cup is have robots

playing a full game autonomously. Each team uses the same physical platform for the

Four-Legged Robot League, i.e. the Aibo, but two models are currently allowed, theERS-7

and the older ERS-210 [4Legged, 2005] [Bie, 2004]. Aibo robots were not intended to be

football players at first. Thus, their entire behaviour has to be adapted to give good

Julien Roux – The pursuit ability of a robot ‘pet’

11

results. Moreover, interactions between robots have to be improved to avoid the game to

turn into a mess where every player would just run to the ball without playing as a team.

Robots are regularly used to tests theories about the outcomes of complex interactions

between agents. This area of research is called ‘Biorobotics’ and can be seen as the

intersection of biology and robotics. Creating a robot which is supposed to behave like an

animal should take into account that the robot and the animal will suffer the same

constraints: they are both behaving systems requiring an autonomous control system to

interact with their environments and fulfil tasks. Therefore, robots are used in biology to

model animals and their behaviour in a given environment [Webb, 2001].

Sony provides a framework called Open-r available for those who wish to design and

develop new behaviours to improve the capabilities of the dog [Fred, 2004] [Open-r,

2005]. It allows the possibility of programming some specific features such as new

movements and actions, while using varying music and lights. The Aibo robot simulates

the behaviour of a dog: it can wander around, emit noises and seek care but even after

more than ten years of development, the robot still requires massive improvement in

terms of fluidity of movement and response to environmental interactions. At the

moment, the dog can recognise its pink ball and its Aibone that it can play with, and its

station for power supply when the battery is low. It has the capacity of recognising its

owner visually and by voice and can read a collection of cards to receive orders [Aibo,

2005].

1.2 Objectives

1.2.1 Purpose of this report

This dissertation aims to study the pursuit ability of a robotic dog, Sony Aibo, in

simulating the chase of a prey. An additional goal of this project is to study different

models of behaviour selection and image recognition to design a system which is credible

from a human point of view.

1.2.2 Scope

The main objective of this project was to design and implement a new behaviour to

extend the capacities of the Aibo robot. The original aim of this project was to simulate a

group of Aibo robots attacking a moving prey in a co-ordinated pack hunting style. This

would have involved the robots recognising others from their group and moving to keep

their necessary individual attack positions in their efforts to get close to the prey. This

Julien Roux – The pursuit ability of a robot ‘pet’

12

aspired to be used as a basis for creating defence behaviour for use in the Robocup.

Robots could behave as a pack to get to the ball or to the opponent and then achieve a

better defence by allying efforts as a human team would do. Due to the short time

allowed to realise this project, and also due to delay in having the robot and the

development tools available, the scale of the project has been reduced to a single

predator chasing a prey in an open environment. Finding the ball and controlling the

action with respect to the target is the basis of hunting just as it is when playing football.

Therefore, it should be taken into account the different kinds of interactions that can

happen between an animal hunting, the surrounding environment and the hunted prey.

The main part of this project will be to study interactions between the robot and the

environment and how the robot reacts to any kind of stimuli. We need to bear in mind

that “a model is a representation of reality" [Lamb, 1987]: so the behaviour of the dog

should model the reality of hunting a prey in an open environment.

1.3 Structure of the report

The report presents a new behavioural pattern that is designed to instruct the robot to

explore the surrounding world, look for prey and, consequently, chase it.

The report begins with a background on the Aibo robot including its history and

specifications. Additionally, this background covers a presentation of the Robocup and

the work achieved by other teams taking part in the competition, along with different

studies undertaken on Aibo and its capabilities. Chapter 3 discusses design problem

analysis: it covers the alternatives and choices for behaviour selection and the software

framework. Chapter 4 explains the technical background with an overview of the

behaviour selection system, the software framework and the operating system running

on Aibo.

1.4 Methodology

Several alternatives for the software framework and the behaviour selection system have

been evaluated according to the project requirements. Following this, a system has been

designed and implemented based on the results from the evaluation which has then been

evaluated. This methodology is based on the “Evaluate, redesign and re-evaluate” model.

This report presents the design of usability experiments and how they have been

conducted. Finally the results are analysed with a presentation of further work to be

undertaken.

Julien Roux – The pursuit ability of a robot ‘pet’

13

2 Project background

2.1 Introduction

Aibo is an entertainment robot designed by Sony. This four-legged robot has the shape of

a dog and is used to entertain people, but it is also used in research to test theories

about the outcomes of complex interactions between agents. The model used in this

project is the ERS-7M2.

2.2 The Aibo Robot

2.2.1 Origins of robots

For some time, robots were simply large, heavy machines fixed on a base. They were

primarily intended for dangerous, dull, dirty, or difficult scenarios or to perform specific

tasks, often repetitive or precise. Working with heavy or oversized materials was often

the reason for using robots in industry. Research brought new possibilities and capacities

for robots in terms of movement and wandering, they could now work in dangerous or

inaccessible areas. For this, designers had to make them smaller, lighter and improve the

technologies to make the robots work without being linked to a based power supply. One

of the main issues in the research is autonomy [Rico, 2004]. Even if robots could be

autonomous in terms of power supply, at least for a given time, they were still driven by

humans, using keyboards or joysticks, and could not behave independently of man,

especially not in unpredictable situations [Kaplan, 2001]. If robots were supposed to

perform tasks, they needed a human to devise a meticulous step-by-step program and to

think of any possible scenarios that could happen [Payen, 2005]. Thus, generating

autonomous and unpredictable behaviours relies on writing the adequate program for the

robots [Rico, 2004].

So robots were just tools and not used as human labour replacement. This notion

introduced the concept of autonomous robots, which are easier to use as they do not

need a permanent instruction from a man. The user can give an order to the machine,

which then performs the task by elaborating its own strategy, trying to achieve it in its

own way. It can receive information about its environment and to analyse it before

interaction. Interacting with a robot means being able to communicate with it. It is a

particular characteristic of humans and animals, and a great challenge when it comes to

robots. That is why many of the robots were designed to resemble humanoids or pets.

Julien Roux – The pursuit ability of a robot ‘pet’

14

Creating humanoid robots means having them behave in human environments with

human constraints [Payen, 2005]. Thus, walking means being able to maintain

equilibrium and to counteract gravity. It also means being able to perceive environments

and obstacles on the path. Additionally, human communication is performed using

gestures and sounds. So humanoid robots should be able to understand vocal orders and

to recognise such gestures and other non-verbal communication. If a robot resembles a

dog, it needs to be able to be trained the same way. Thus, if somebody presses on the

back of the robot dog, it should sit down or if somebody presses on the chest, it should

go backward [Yamada, 2004].

All of these are issues for laboratories who are trying to achieve this. Honda has created

a robot capable of walking and running at a speed of 3 Km/h and able to communicate

with a human through speech. Another laboratory, Kawada, has created a robot which is

able to fall and recover from this fall without external help. Fujitsu has a laboratory

working on a robot able to stand in equilibrium on its head.

2.2.2 Before Aibo

Robots were primarily used for work. Karel Capek, a Czech writer, invented the term

‘robot’ in 1920 in his novel “R.U.R.” [Capek, 1920]. In this story, a genius called Rossum

wanted to create an artificial creature to avoid people having to work. So he created the

term robot from the Slavic word ‘robota’, which means work [Kaplan, 2001]. Therefore,

robots were slaves dedicated to work and accomplishing tasks humans did not want to or

could not accomplish. In more recent times, the entertainment industry took an interest

in robots. They have created robots that can be useless if their existence is based only on

satisfying the human need for company and entertainment. They aim solely to behave

like a new entity in an existing world with an unpredictable and adaptable behaviour. This

is when what is called “social robot” appeared. A social robot needs to interact with its

environment. This would mean environmental interaction such as avoiding walking into

things. The word social in itself has several meanings. It encapsulates the will to spend

time with fellow humans and the capacity to adapt to the surrounding society [Ihse,

2004]. Thus, for a robot to qualify as being social, it needs to be able to adapt and

change its behaviour according to its surrounding environment or the human user. Also,

it needs to express some emotions to demonstrate its capacity to understand what is

happening. This is why robots where created as virtual companions.

“First, he wanted to create an artificial dog…”

K. Capek, R.U.R. [Kaplan, 2001]

Julien Roux – The pursuit ability of a robot ‘pet’

15

The first robot for company, even though it cannot be considered properly as a robot

because it is only a computer simulation and has no effectors, was the Tamagotchi

(figure 1). This small object, the size of a watch, ovoid with a screen and few buttons

[Kaplan, 2001], was launched in 1995 by the Japanese company Bandai [Mystic, 2004].

It differed from other portable electronic equipment typical of this period, such as the

Nintendo Game Boy, by the fact the user had neither goal nor aim. The Tamagotchi is

just a virtual animal that comes to life, matures and eventually dies. The user is

supposed to have some interaction with it, feeding it and cleaning the virtual

environment the Tamagotchi lives in. But there was no real purpose apart from trying to

keep it alive and watching it grow. This was the very first ‘useless’ electronic toy and

even though it was fairly simple, it encountered huge success, especially from youth. Far

from being a slave, it was, on contrary, rather a burden for the user. Some were even

asking for the services of baby-sitters to take care of their Tamagotchi when they were

unable to do so themselves. It quickly became an entity in the family like a pet and took

an important place in some people’s lives.

Figure 1- Tamagotchi [source: firebox.com]

Following the success of the Tamagotchi, several companies launched their own products

and toys based on the same principle. For example, tiger had a very remarkable success

in 1998 with a toy called Furby (figure 2). It was a kind of bird produced in several

colours [Phoebe, 1998]. At first sight, it reminded consumers of the ‘Duracell Bunny’

which appeared in the battery company’s advertisements during the 1970s and 1980s

[Kaplan, 2001]. The main difference was the fact the Furby had some interactions with

the user. It was seeking care and if nobody was playing with it when it was requested, it

could start screaming and crying. In the end it would not grow up as it should, for

example by refusing to speak a normal language and only trying to communicate in its

Julien Roux – The pursuit ability of a robot ‘pet’

16

own fictional language called “furbish”. This toy aimed to develop a relationship with its

user and had no further goals.

Figure 2 – Furby [source: pinkangel15.tripod.com]

The first of these to really be considered as a robot was the Aibo ERS-110 launched by

Sony in 1999. This four-legged robot resembled a dog and aimed to replicate animal

behaviour [Roberty, 2005]. At first sight, it is a little motorised dog. It can play with a

ball, wander around, likes to be touched and seeks attention. The action of playing is

achieved by a set of patterns like the action of seeking attention. That is where the main

difference between a robot and the animal it is imitating lies. All behaviours are modelled

by a programmer, randomly achieved or are in function of the environment. Progress in

artificial intelligence (AI) still does not allow for proper instinctive and unpredictable

behaviour.

In order to be accepted as social, a robot has to interact with the surrounding world and

needs some specific behavioural skills. Therefore, it has requirements which differ from

those needed for industrial robots. Visual cues such as gestures or facial expression are

very important in social interaction [Breazeal, 2000] [Ihse, 2004]. This highlights the

importance for a robot to have a body. A social robot also needs believability. It should

develop life-like qualities to make its behaviour realistic from the point of view of the

human user. This means that the behaviour should not follow a given path, but be more

adaptive to the interaction with the surrounding world. Therefore, it needs to respond

adequately to human interaction. Another requirement is readability. The user should be

able to understand the robot. This quality is in some ways linked to the believability. It

means the sounds emitted by the robot along with the facial expressions, gesture and

general behaviour should be understandable by the user [Ihse, 2004].

Julien Roux – The pursuit ability of a robot ‘pet’

17

On the other hand, the robot should also be able to perceive social cues and respond to

them according to implicit social rules. The reaction time should be adapted. If the robot

reacts too quickly to a stimulus, the user could feel stressed and it might result in the

robot being intimidating. If the reaction time is too long, the robot will be boring. Also,

the robot should reflect its capacities by its appearance. According to the Uncanny Valley

study published by Masahiro Mori in 1970 [Uncanny, 2005], users expect more

capabilities from a robot with a humanlike appearance than from a robot looking

unrealistic. From the human point of view, a robot which looks real yet lacks certain

lifelike capabilities can be regarded as daunting.

Aibo is the first real entertainment robot by definition. It perceives the world around it

through a miniature camera located in its mouth along with a set of microphones and

touch sensors. It can thus perceive the surrounding world and behave accordingly. The

most recent model also includes infrared and a range of sensors such as pressure,

acceleration, vibration, and temperature for a better analysis of the Aibo’s environment.

2.2.3 Aibo as an autonomous and social robot

The history of Aibo the robot pet began in the 1990s. Thanks to major developments in

AI and image recognition, the idea of an autonomous robot could become a reality

providing that the creation of lightweight, miniature components was feasible [Jerome,

2004]. The idea originally came from Doctor Toshitada Doi, who led Sony’s Digital

Creature Laboratory in Japan in 1992. The research and development started in 1993

and they had to face many factors that could be technical or related to the design of the

robot. Never before the Aibo, had a walking robot been equipped with cameras.

Movements during the walk were an issue as it blurred the image from the camera and

thus image recognition was difficult to achieve. Also, the robot needed to be light and

small, so components had to be reduced to a minimum size. Finally, the robot had to

behave in environments within differing places, using varying lights and walking surfaces

and be able to avoid obstacles whilst managing navigation

Figure 3 – Mutant [source: vieartificielle.com]

Julien Roux – The pursuit ability of a robot ‘pet’

18

The first prototype was demonstrated in 1997. It was called Hexapode and it displayed a

grand performance after five years of intensive research. Robots using wheels were

common and could behave using cameras to obtain information from the surrounding

environment, but this was a major issue for legged robots as the camera was not stable

nor could it produce clear images. This was problematic for image recognition and object

detection thus constricting the robot for using this information. The main idea was to

have the robot moving on six legs to obtain smooth motion avoiding disturbances for the

camera [Frederic, 2004]. Then, in 1998, Sony presented to the press a new model called

Mutant (fig. 3) during the Robocup in Paris. It was walking on four legs and had sixteen

degrees of freedom for a weight of approximately 1.25kg with batteries. It was the very

first prototype of this kind and it made a huge impression as it was behaving freely even

though it still encountered some technical problems. In particular, the prototype had

difficulties for image recognition. In a laboratory, with walls uniformly white, recognising

an object was easier than in a house with varying environments. The ball it was following

was orange and it was sometimes difficult to identify, and that is why the colour has

since been changed to flash pink as it is far less used in traditional houses.

In June 1999, Sony launched the first commercialised model with the denomination ERS-

110 [Jerome, 2004]. The design was made by Hajime Sorayama, a very popular

Japanese artist [Sorayama, 2005]. This first version was sold only on the Web in Japan

and was limited to 3000 units. They sold out in twenty minutes. In the United States,

where 2000 units were stocked, every single one was sold after four days [Roberty,

2005]. In November of the same year, a new model denominated ERS-111 (fig. 4) was

commercialised. It was very close to the previous one, with minor modifications, for

example the tail had been reduced as it was too fragile. There were 10,000 units

produced but it was far from enough for the 135,000 unit demands.

One year later, in November 2000, Sony unveiled the ERS-210. The shape was quite

different with smaller ears and thinner lines. It was an immediate success due to its

design and to the large selection of software available. One of those, called “Aibo Life”,

introduced the concept of educating the robot from the behaviour of a puppy to that of a

grown up dog. The behaviour could differ significantly depending on how the robot was

treated. Another improvement was on the technical side. At the rear of the machine, a

PCMCIA slot allowed the installation of a WIFI card for remote control from a computer.

It was the first of the Aibos to be produced in an unlimited series and this helped for its

success. Soon, it would become the mascot of Sony, appearing in advertisements on

television and printer to promote other products from the company.

Julien Roux – The pursuit ability of a robot ‘pet’

19

Figure 4 - Aibo ERS-220 [source Aibo-fr.com]

Two new models appeared in 2001. They were called Latte and Macaron from their

colours; white and maroon. These two robots were less expensive than the ERS-210 and

to achieve this, designers had made them smaller, simpler and modified their design to

look more like teddy bears. The success was lower than expected. After this, the ERS-

220 was launched in November 2001 (figure 4). Very different from the previous ones,

its shape abandoned the idea of trying to look soft and turned to be more robotic rather

than puppy like. The main targets for this model were teenagers and young adults. This

model was more curious than previous ones, investigating, wandering around, and it

used lights to communicate with users. After this, both ERS-210 and ERS-220 were

upgraded in 2002 for better performances. A new model called ERS-31L joined the series

being based on the same idea as Latte and Macaron.

Last of the series of the Aibo is the ERS-7 (figure 5). This model of the four-legged robot

manufactured by Sony was released in September 2003 [Bie, 2004] [Sony, 2005]. A

major improvement, when compared to the previous editions, lies in the new degree of

freedom on the neck which allows Aibo the movement necessary for ‘playing’ with the

toys such as a ball and bone shaped toy Aibone. Also a WIFI connection was incorporated

to the system for remote control. The system is controlled by new software called Aibo

Mind. It controls the behaviour of the robot and all the applications related to it. The new

version of the software called Aibo Mind 2 came out in October 2004 with the ERS-7 Pearl

Black which keeps the same design but with a new pearl black colour. This version of the

software is a great improvement in the behaviour of the robot dog: it is no longer limited

to simply pushing objects; it can simulate playing with them.

Julien Roux – The pursuit ability of a robot ‘pet’

20

2.2.4 The Aibo ERS7-M2

This document will now only refer to the ERS-7 model as it was the one used during the

development of this project.

Figure 5 - Aibo ERS-7 White and Black Pearl with the pink ball and

the Aibone [source: converj.com]

The Aibo is a complex machine composed of a wide range of sensors and effectors. It has

the capacity to feel, hear and view its surrounding environment. The feeling is achieved

using two kinds of sensors: electrostatic and pressure [Bie, 2004]. There is one

electrostatic sensor on the head and three on the back. They light up when they perceive

a contact. The pressure sensors are under the paws and the chin. It allows Aibo to detect

if the four paws are on the ground or if something is under the chin, out of range of the

camera. Also, acceleration, temperature and vibration sensors give Aibo a more accurate

rendering of the environment [Sony, 2005] [Rico, 2004]. Acceleration is measured to

prevent the robot from falling down due to acceleration when moving or to detect if the

robot is abruptly stopped, for example, when encountering an obstacle or being grabbed

by the user [Technostuff, 2005]. Vibration sensors analyse linear velocity, displacement

and proximity and are also used in measuring acceleration [Globalspec, 2005].

Julien Roux – The pursuit ability of a robot ‘pet’

21

Figure 6 The hardware of the Aibo ERS7, front view [source: Sony website]

The robot can see through a camera located in its nose. It has three resolutions

208x160, 104x80 and 52x40 for a horizontal angle of view is 56.9 degrees and a vertical

one of 45.2 degrees. Two distance sensors placed in its nose and its chest, with

operating distances from 10cm to about 90cm, help gather information about the

presence of obstacles. Two microphones located on its head would function as ears

achieving the dog’s hearing. The sound is recorded in stereo at 16.000Hz in 16bits linear

pulse code modulation [Onrobo, 2003].

Figure 7 The hardware of the Aibo ERS7, rear view [source: Sony website]

Julien Roux – The pursuit ability of a robot ‘pet’

22

To interact with the surrounding environment, whether it is the human user or simply the

ball or the Aibone, Aibo uses several effectors for movement and communication. The

movement is performed using four legs with three joints in each to elevate, rotate and

bend. The neck is also composed of three joints to tilt, pan and nod. The tail has two

joints to tilt and pan. The mouth has one joint to be opened and closed. The ears also

move when flicking up and down [Bie, 2004] [Sonystile, 2005].

To communicate, Aibo uses three types of effectors. They are visual, audible and

wireless. A wide range of LEDs with several colours are located on the forehead of the

robot. Also the electrostatic sensors light up to express feelings. The sound is displayed

by a miniature speaker on the chest playing polyphonic sounds. The wireless connection

is an IEEE 802.11b wireless Ethernet interface with a range to up to three hundred feet.

2.3 The Robocup challenge

The Robocup is an international tournament aiming to promote artificial intelligence,

robotics and related fields [Robocup, 2005]. By providing a standard problem to different

research groups, it intends to further knowledge and skills for specific IT related

problems for the benefit of all the researchers involved. It compares techniques and

methods used to choose the best solutions. The main challenge takes place in the form of

a soccer game. The goal being that the innovation gained from the challenge can then be

applied in industry for every-day life. The final aim of this project is to develop by 2050 a

team of fully autonomous robots which could play and win against the human world

champions under the official rules set by the FIFA (Fédération Internationale de Football

Association, the organisations setting the rules for official competitions around the

world). Various technologies are used during the contest including design principles of

autonomous agents, multi-agent collaboration, strategy acquisition, real-time reasoning,

robotics, and sensor-fusion [Robocup2005, 2005]. There are three major competitions

during the Robocup: the RoboCupJunior, the RoboCupRescue, and the RobocupSoccer.

Julien Roux – The pursuit ability of a robot ‘pet’

23

Figure 8 Field with players for the Robocup 2005 [source: Rules of the
competition 2005. Available on the Robocup website]

The RobotCupJunior began in 1998 with a demonstration at Robocup-98 in Paris. It is a

project-oriented educational initiative intended for young students [RobocupJunior, 2005]

[Robocup2005, 2005]. There are several challenges during the competition: students can

compete on soccer, dance, and rescue. The RoboCupRescue aims to gather research on

rescues for large scale disasters. It is an effort to gather technologies on autonomous

agents able to act in dangerous and barely accessible areas [RobocupRescue, 2005].

The RoboCupSoccer is the soccer challenge. There are five different leagues in this

challenge. The simulation league concerns a computer simulated soccer game. The small

robot league is for robots with a maximum diameter of 18cm and maximum height of

15cm. The middle size league is for robots with a maximum diameter of 50cm and a

maximum height of 80cm. The humanoid league is for bipede robots with human

appearance. The last league is the four legged league [4legged, 2005]. This one concerns

the Aibo robots. They are competing against each other in a soccer game. They have to

be autonomous and act as a team. There are three field players and one goalkeeper in

each team. The field is 5.4m by 4m wide with goals 0.8m large. To allow robots to locate

themselves and each other on the fields, there are coloured landmarks on the side

indicating with a specific pattern where they are. The robots can be the Aibo ERS210 (or

the evolution ERS210A) or the Aibo ERS-7 (or the evolution ERS-7M2).

The basic rules are similar to human soccer, with two halves of 10 minutes each and a

break of the same length between. There is extra time, golden goal penalty shoot-out as

in normal competitions. Some rules have been introduced regarding the physical and

Julien Roux – The pursuit ability of a robot ‘pet’

24

mental capabilities of the Aibo. Pushing and obstructing are forbidden as it is for a field

player to enter with more than two paws in the penalty area. It is also forbidden to hold

the ball for more than three seconds for a field player or five seconds for a goalkeeper. If

a robot commits a foul, the referee will remove it from the field for 30 seconds.

In addition to the soccer competition, there are three technical challenges open to the

team. The variable lighting challenge intends to improve the vision capabilities of the

robots by providing a penalty shoot-out competition with changing lights. The robot has

three minutes to score as many goals as possible with two immobile opponents on the

field and the light changing in an unspecified way. The “almost SLAM challenge” tries to

improve the self localisation capabilities of the robot. The robot has one minute on the

field to get itself localised and then the landmarks are removed and the robot has two

minutes to get to a series of points on the field. The last challenge is the open challenge.

Each team has three minutes on the Robocup field to demonstrate their work. The

entrants vote to elect the winner.

2.4 Review of previous research on Aibo

Aibo robots are regularly used in projects for academic institutions all around the world.

Many of the research projects focus on the Robocup or intend to simulate and test

theories about the outcomes of interactions between entities when ‘pack-hunting’.

2.4.1 The German Team

The German Team gathered students and researchers from four German universities: the

Humboldt-University of Berlin, the University of Bremen, the Technische University of

Darmstadt, and the University of Dortmund. They won the cup in 2005 in Osaka

[Germanteam, 2005]. The work from the German Team is one of the most complicated

for somebody not experienced. The have participated since 2001 and have encountered

great success. They provide good publications about the Aibo and how to program and

improve its abilities.

First, the architecture produced by the German Team is platform independent to be able

to run on several models and different Robocup leagues. This has also lead to the

development of a simulator which can be used to test the code without having to boot

the robot. This can save a lot of time when developing a piece of code for the Aibo.

Alongside of the platform independence, the project needed to support multiple team

Julien Roux – The pursuit ability of a robot ‘pet’

25

work. Therefore, the architecture includes the notion of entity to support the

collaboration between universities. Each entity, called module, has its own interface and

a specific purpose. They are also exchangeable. This way of programming allows the

changing of one module in the whole architecture without affecting the others.

To build an image of the surrounding world, the German Team has decided to split the

information from the sensors in two groups. The first group takes information from all the

sensors except the camera and keeps it in a buffer to calculate an average sensor value

over a given lap of time or to access information at a given time and put it in relation

with other information, usually an image from the camera. The vision module performs

the processing of the images from the camera. It uses a technique called “horizon

aligned grid” developed by the Humboldt University of Berlin [Juengel, 2004]. This

technique determines by calculating the position of the horizon which is then used to

determine the robot position and those of the opponents. The behaviour control is

performed using an improved version of the Extensible agent behaviour specification

language XABSL [Lötzsch, 2004].

This work represents a huge collaboration between developers over a country. This

shows how a cooperative work should be conducted. The technology used has been

proved to be successful and the architecture is well defined. Additionally, the team’s

official website delivers good information for beginners.

2.4.2 The Team Chaos 2004 (formerly Team Sweden)

Team Chaos has been competing in the Robocup since 1999. It is a collaboration

between the University of Murcia, Rey Juan Carlos University in Madrid, University of

Alicante from Spain and Örebro University from Sweden. Their work is focused on the

creation of a behaviour based control for ERS-7 robots and is based on the Tekkotsu

framework developed by the Carnegie Mellon University. This framework is going to be

explained in detail in the chapter 4.3. They intended to make something fast and robust

with exchangeable modules to ease cooperative work. The framework is composed of six

modules: Tekkotsu, Vision, Localization, Wireless, Behaviour and Worldstate [Bie, 2004].

The code written for the project is supposed to be general enough to be reused in many

different applications. This study compared different approaches for decision making on

autonomous agents. They compared the possibilities of using state machines approach,

hybrid automata, hierarchical structure of decision trees and symbolic planning. The

framework is based on a finite state machine approach. It is part of the reactive

paradigm regularly used in robotics and computer science. A reactive paradigm is a way

to simulate intelligent behaviour by having a direct link between sense and act. This is a

Julien Roux – The pursuit ability of a robot ‘pet’

26

biologically based behaviour [Murphy, 2004]. In a finite state machine, the condition of

the robot or the content of the memory at a given time is represented by the states. The

Moore machine, used as a finite state automaton has the outputs defined by the current

state without considering the input [Moore, 2005]. In this case, the output is the

corresponding behaviour. Therefore, the state of the machine represents the behaviour.

They finished the tournament at the last position of the qualification but their work is

interesting as they started a new behaviour from nothing and have it well documented

[Bie, 2004]. The Team Chaos took part in the Robocup 2005 and had better results even

though they were not ranked.

2.4.3 The NUbots 2004

The NUbots from the University of Newcastle in Australia [Newcastle, 2005] have taken

part in the Robocup and finished 3rd in 2002, 2003 and 2004. They also took part in the

recent Robocup in Osaka and finished 2nd, beaten in final by the German Team. The

framework is based on a sense-think-act cycle architecture which is another planning

strategy [[NUbots, 2004]. In this architecture, the robot receives information from the

sensors, then analyses them and tries to plan the best way to achieve the goal. Then the

action is undertaken. This architecture will be explained in detail in chapter 3.2.2. As with

Team Chaos, NUbots have created a whole framework for their robots, but with more

success. Therefore, the vision is one of the major areas in the project. This is very

important as determining the position of the ball and the position of each robot remains a

weakness for all teams at the moment. Their work concentrated was especially on robot

recognition and multiple lookup tables. The robot recognition is used to determine where

the other robots on the field are thus it will have a better set of information when

deciding which action to undertake whether it be for defending or attacking purpose.

Multiple lookup tables were used to have a better precision for colour recognition. It can

then adapt to different lighting or shadowing: for instance, avoid having the orange ball

used in the 2004 competition being mistaken for the red team stickers on the robot team

members. Finally, the NUbots worked on extra landmark recognitions like sidelines or

penalty box. This is another way to help self localization on the field.

This work is interesting as it shows a team that has great success in the competition. It

also shows another planning strategy to be analysed.

Julien Roux – The pursuit ability of a robot ‘pet’

27

2.4.4 Top dog

The project Top Dog is conducted at the Rennselaer Polytechnic Institute [RPI, 2005]. It

is the first time this university is taking part on a project like this using Aibo. This project

is supposed to be a basis for a future framework which could be used in Robocup. They

started on the statement that the team-work among Aibos was minimal if not inexistent.

They noticed that for most of the teams, attacking was performed by one of the robots

while the others were sitting in defence. Thus, they aimed to have robots passing the ball

to each other in order to have an actual cooperation between them to achieve the goal.

They intended to use finite state machine architecture to enable Aibos to keep track of

each other and the ball and to respond to occurring events [Top dog, 2005]. Their project

needed to have a revised goal since passing appeared to be more difficult than first

anticipated. The final project succeeded by having two robots passing the ball back and

forth to each other. This implies looking for the ball as well as the target and performing

an efficient kick to actually force the ball to the other robot.

In parallel, another project was also conducted at same university. This group was

working on the way the Aibo walks. They intended to implement a new way of running

which closer resembled the way a dog would run and would therefore be more efficient

and quicker. They intended to mimic natural animal gaits to have the robot reaching

more than the 180mm/s performed by the Tekkotsu gait. They intended to have the

robot perform a trot which could be a lot quicker than the former way of walking. They

could not implement an upright gait and finally further developed a crouched gait.

This project is quite interesting because it shows how a project has been conducted since

the beginning and all the difficulties that can be encountered. It also demonstrated the

innovation that the Robocup can bring to the programming environment and all the

major improvements needed in the soccer simulation.

2.4.5 Dog-like Behaviour Selection by Christina Ihse Bursie

This master thesis report, written by a student from the department of numerical

analysis and computer science from the Royal Institute of Technology of Stockholm,

Sweden, is about dog ethology and behaviour and how to implement this on an Aibo

robot dog [Ihse, 2004]. The work relies on the Breazeal model for the Kismet robot from

the MIT [Breazeal, 2000] and the Tekkotsu framework. The selection of the appropriate

behaviour is based on the perception and the current emotion of the robot. This work

intends to get a close representation of the emotional behaviour of a dog. A large part of

the project is about the perception and the distance to the objects. The study reviews

dog behaviour in different kind of situations such as dominance, fear, or friendly

Julien Roux – The pursuit ability of a robot ‘pet’

28

interaction. Behaviours have then been reproduced with the Aibo robot. This work is

mainly focused on how to choose the right emotion to coincide with particular

circumstances and stimuli.

Therefore this project is especially interesting because Team Chaos made use of

Tekkotsu using another planning strategy and incorporated testing theories about animal

behaviour.

2.5 Experimental design

The main point in this project was to assess the ability of the robot to recognise objects

and to behave adequately. The robot should be able to recognise two types of object and

to behave according to them. The robot should pursuit a ‘prey’ and stop when it has

‘caught’ it. The ‘prey’ will be simulated by the pink ball moved by a human person.

The Aibo should be able to take the adequate decision according to the situation after

analysis of the environment and evaluation of the possibilities. The robot should stop

chasing the ball once it has ‘caught’ it, i.e. once the robot touches the prey with its

mouth or at least when the ball is between the paws of the robot. Also the robot should

look again for the ‘prey’ after a given time.

2.6 Project plan and risk management

The project is composed of a succession of studies, each being a follow up from the

previous one. Thus, the risk is limited as the failure of one study will just bring the need

for another one. In case something would go wrong, the topic is wide open to perform

research in other directions.

Technical failure is possible. It can happen with any problem concerning the Aibo

available from university. In this case, the project would move from programming to full

study of the capacities of the robot by analyse of the code and simulation.

Julien Roux – The pursuit ability of a robot ‘pet’

29

3 Design problem analysis

3.1 Introduction

An autonomous agent willing to perform an action and aiming to fulfil a goal in a dynamic
environment, has to adapt its behaviour by choosing the correct action at the appropriate
time to either respond to a specific stimulus or change in the surrounding environment.

“Autonomous agents are computational systems that inhabit some

complex dynamic environment, sense and act autonomously in this

environment and by doing so realize a set of goals or tasks for

which they are designed.”

Pattie Maes [Maes, 1995]

The world is too complex to be completely predicted and thus not all possibilities can be

programmed and fed into the robot. Furthermore, agents are limited in terms of time and

capacities when calculating the next action to perform. Thus, action selection is never

optimal but should be as fast and efficient as possible [Maes, 1990].

3.2 Alternatives for the behaviour selection

3.2.1 Introduction

First, we have to understand what a behaviour is. It can be seen as many things: moving

an arm or grabbing a pen. The action to get up in the morning and go to work can also

be seen as behaviour. Indeed, even the absence of action is behaviour. The dictionary

gives the following definition:

“Behavior (or behaviour) refers to the actions or reactions of an

object or organism, usually in relation to the environment.

Behavior can be conscious or unconscious, overt or covert, and

voluntary or involuntary.”

Definition on Wikipedia [Wikipedia, 2005]

Concerning the Aibo, or any other kind of autonomous agent, a behaviour refers the

same way to an action or a sequence of actions that accomplishes something. The agent

has to decide when, how and which action it should perform. It can be seen as what

Julien Roux – The pursuit ability of a robot ‘pet’

30

should be done under given circumstances or under which circumstances a given

behaviour should be activated. Therefore, as it is impossible to predict all that can

happen in an open environment, the second solution will be more suitable. Many

solutions have been designed to implement decision making for autonomous agents.

Behaviours, be they in robotics or zoology, can be divided into three categories. Reflexive

behaviours are direct reactions to the input without the control from a third party. For

instance, eyes will instinctively maintain a level of moisture supply to keep from drying

by means of blinking. Reactive behaviours are also used without real conscious

awareness but, unlike reflexive behaviours, these are learned. Humans learn how to ride

a bike or how to swim and, once learned, they will perform such activities without

thinking about how to do it. The last type of behaviour is the one most complex.

Conscious behaviours imply that the agent performing them has to be conscious of

planning them, for instance, when playing a game or cooking.

Researchers in Artificial Intelligence spent decades trying to model human-like

intelligence. The focus was on knowledge-based systems with symbolic representation

and thus, all research was based on human-like approaches. The strategies developed

under this paradigm were quite elaborate but they lacked autonomy and were often

unable to cope with a changing environment [Bruemmer, 2005]. Therefore, intelligence

was seen as the strategy capable of processing information while, according to Arkin

[Arkin, 1998], a behaviour-based approach would make proof of its intelligence through

meaningful and purposeful action in a given environment. Additionally, the behaviour-

based approach does not intend to represent cognition or a human-like decision process.

As shown by Brooks [Brooks, 1986], humans are trying to recreate something they are

not fully aware of and proposed one of the first behaviour-based strategies. He argues

that cognition is a reaction to information received through an observer and biased by its

perspective on the environment [Brooks, 1991]. A behaviour based control system

consists of a collection of behaviours [Mataric, 2004]. Each of them can receive stimuli

from sensors or from other behaviours as an input and send outputs to the effectors or

other behaviours. Therefore, it can be seen as a structured network of behaviours

interacting with each other. This feature does not constrict behaviour based systems in

their expressive and learning capabilities. Systems based on a behaviour architecture

attempt to make a representation with a uniform time-scale. Representations are

parallel, distributed and active which accommodates the requests in real time from other

behaviours or other parts of the system.

The design of behaviour based controls for autonomous agents is also subject to debate.

Three kinds of architectures have been used since the beginning of artificial intelligence

Julien Roux – The pursuit ability of a robot ‘pet’

31

design. They are defined by the behaviour selection system used to make the robot

behave without following a precise and pre-programmed order [Logan, 2004]. The

hierarchical architecture, also called deliberative architecture, has been used since the

late 1960s with ‘Shakey the robot’, which was the first agent to demonstrate reasoning

about its action [Logan, 2004]. It was based on a ‘sense then think then act’ design. The

idea was to plan the next action by generating alternatives before choosing between

them. After this, the reactive architecture appeared in the 1980s. This new architecture

removed the planning part considered as too consuming, either in terms of resources or

computation. Sensor readings are directly translated into actions. Finally, another type of

architecture appeared in the 1990s merging the previous designs. Hybrid architectures

decompose tasks into subtasks and then decide what the suitable behaviour for each

subtask should be.

Moreover, having multiple agents perform a task together whilst showing signs of

collective behaviour is a big challenge. They have to avoid unpredictable or harmful

behaviour yet they lack a global point of view of the problem [Sycara, 1998]. This

criterion means that when several agents have to cooperate, such as during the

Robocup, the design becomes more complex and the agents have to be organised.

3.2.2 Deliberative architectures

The principle in a deliberative architecture is that the agent contains an internal model of

the surrounding world, and a planner [Ihse, 2004]. The planner is used to decide which

action should be performed next, using short and long term predictions of the outcomes

from this action. These predictions are based on the world model the agent has created

from information, either fed into the robot in advance or gathered during the previous

actions. This model can also be updated using new sensor readings.

The world model can be of many types: such as a map of the surrounding world, a list of

objectors’ knowledge of how to use a particular object. This can also concern knowledge

of how the world is perceived under different conditions [Ihse, 2004]. But the model

depends also on the robot’s limits in terms of calculation capacity and time, sensor

accuracy and also what needs there are. Deliberative architectures depend on changes to

the surrounding world. The model has to be very accurate otherwise the model can be a

source of faulty predictions. On the other hand, the model cannot be too precise or else it

could be too time-consuming to update and be difficult to use in a changeable

environment.

Julien Roux – The pursuit ability of a robot ‘pet’

32

Deliberation is about considering several alternatives for one action. Therefore, the agent

has to generate different alternatives in order to choose between them. However, the

agent does not always solely decide on how to achieve a goal but sometimes whether or

not to achieve it at all [Logan, 2004]. This is the work of the planner. Its structure often

follows a hierarchical model with modules on different levels. The world model is

structured in the same way: lower levels usually deal with the sensor readings while

higher levels work on the global knowledge. Likewise, the planner has lower modules

used for real time and focusing on nearest parts of the world while global problems

needing a solution less urgent are treated by higher level modules.

3.2.3 Reactive architectures

In a reactive architecture, the agent does not have a representation of the world: instead

it responds to a stimulus. An agent is constantly calculating how to perform the next

action but it does not keep history of what happened nor are plans made on any further

action even though we can find use of short term memory in some reactive architecture

[Ihse, 2004]. Therefore, stimulus and response are closely coupled and can exhibit

complex behaviour from simple interactions with other agents. Additionally, the agent

does not need to generate a model of the surrounding world and record the changes,

making it more robust and fault tolerant. Another quality is that it allows behaviour

development in small incremental steps.

A reactive architecture will be suitable when the environment is unpredictable or cannot

be properly modelled [Ihse, 2004]. However, a reactive architecture has its limitations.

As it has no knowledge of the world, it is heavily dependant on the sensors and if

something is not caught by a sensor, the robot will be unaware of it. Hence, it cannot

recover from silent faults, i.e. stopping abruptly without sending any signals to the main

system. Therefore, the perception the robot has of the world is the input for the

behaviours. A behaviour will react to a set of stimuli, and only to these, and respond by

performing an action. If the stimulus is too weak or wrong, no action will be produced.

Furthermore, the agent only takes decisions based on local information brought by the

sensors and cannot take into consideration the global behaviour. Thus, the relationship

between the agents considered as individual, the surrounding environment and an overall

behaviour cannot be predicted making it difficult for agents to work together as a team.

Notions of reactive architecture first appeared in Brooks’s criticism of deliberative

architecture [Brooks, 1991]. He noticed that:

Julien Roux – The pursuit ability of a robot ‘pet’

33

“Intelligence is the product of the interaction of an agent and its

environment and intelligent behaviour emerges from the

interaction of various simpler behaviours organised in a layered

way through a master-slave relationship of inhibition”

AI Magazine, summer 1998 [Brooks, 1991].

Another way to see a reactive architecture is to design it as the result of a group of

entities competing to get control of the robot. This was first proposed in the society of

mind published by Marvin Minsky [Minsky, 1986] [Sycara, 1998]. Tasks are set in

conflict and only one can be active at a time. In this case, a task is seen as a high-level

behavioural sequence. A coordinator is used to decide which action should be carried out

next. It can be either competitive or cooperative. A cooperative coordinator will allow

several behaviours at a time to affect the robot usually using superposition. A

competitive coordinator will select one behaviour which could be triggered by one

stimulus and reject the others. The selection is performed in one three ways. If the

behaviour is organised in a hierarchy, the coordinator will choose the behaviour with the

highest level. In action-selection coordination, the coordinator assigns activation levels to

the behaviours according to both the robot’s goal and the external stimuli; consequently,

the one with the highest level is activated. Finally, the coordinator can let behaviours

vote for each other’s behaviour responses and the one with the most votes is chosen.

3.2.4 Hybrid architectures

Completely removing the planning section appeared to be a bit drastic. Reactive

architectures can be more efficient and flexible when incorporating certain forms of

knowledge. That is how hybrid architectures were created, which appeared in the 1990s

[Bie, 2004] [Ihse, 2004]. Thus, reactive behaviour can be configured according to some

knowledge of the surrounding world. Some known problems or weaknesses of reactive

architectures can be handled by adapting the behaviour to the world. A major problem

when it comes to reactive behaviour is their tendency to get into a deadlock. When

subject to two opposite and equally strong stimuli, the agent cannot react.

Hybrid architecture consists of three parts: a reactive layer, a planner and a layer linking

them together. It is suppose to be a combination of the two time-scales and

representations from a reactive and a deliberative architecture with a middle layer. Thus,

hybrid architectures are often defined as three layer architectures. Many implementations

of hybrid architectures have been designed and, according to Nwana [Nwana, 1996],

they generally suffer from two high level problems. First, most of the architectures

created with a hybrid model appear to be application specific. Secondly, the theory on

Julien Roux – The pursuit ability of a robot ‘pet’

34

hybrid systems is still vague and designers will have differing ideas of it. Additionally, the

scope about hybrid architectures is quite narrow. Many other possibilities rather than

reactive/deliberative should be explored, for instance combining interface and mobile

agents together [Nwana, 1996]. [Not clear what this means – say more]

3.3 Choice for the behaviour selection design

The Aibo is supposed to behave in a rapidly changing environment. It shall adapt quickly

to unexpected events and react accordingly. Researchers still debate over the interest of

having an internal model of the surrounding world. Some think that robots cannot mean

any of their actions without having a representation of them with semantically related

contents [Pylyshyn, 1988]. Others, like Rodney Brooks [Brooks, 1987], believe the

planner is not compulsory and is just an abstraction barrier, as it is only used to bring a

level of abstraction for the system designer and is not really used by the robot. In our

case, the strategy does not require a built model of the world and needs to operate

quickly. This makes the pure deliberative architecture less adequate and brings the

interest on a reactive architecture with a control paired between stimulus and response.

If the environment where the agent will behave is bounded and known by the strategy

designer, it is possible to create a set of stimulus-response pairs covering all possible

events [Bruemmer, 2005]. This kind of approach can be applied to our system if the

robot is behaving in a laboratory or an empty space. It becomes too restricted when

considering the Robocup and it appears necessary to find some way of compromising

between reactive and deliberative architecture. Having no internal representation at all

bans the system from tasks having to deal with memory while a system relying on an

internal model will be subject to errors in a new environment.

In the architecture developed by Brooks in 1986 [Brooks, 1986], the reactive system is

structured from the bottom up with layers and related rules. It shows that some basic

behaviour, such as avoiding collision take precedence over some others like achieving a

specific goal. Therefore, the first one should be on a bottom layer with highest priority

while the second should be on a high level layer and might be built from behaviour

located on lower layers or by satisfying them. A key point in this approach is that the

interactions between behaviours should be kept to a minimum. Each of them should

behave simultaneously but asynchronously and independently to reduce interferences.

The main point in designing such architecture lies in the behaviour selection called

arbitration. Even if the behaviours have been assigned priorities by layering the system,

a coordinator should be used to manage the transitions between the states. Rosenschein

Julien Roux – The pursuit ability of a robot ‘pet’

35

and Kaelbling defined in 1990 [Jennings, 1995] a reactive system where finite state

automata are used as a strategy to identify stimulus and react to events. The aim in this

strategy was to have real-time control in a bottom-up design with both the capacity of

learning through incremental growth and a tight coupling between sensors and effectors

[Bruemmer, 2005]. Representation is avoided but there is a link between symbolic

meaning and action. Using hybrid approaches, designers have attempted to subordinate

planning to reactivity as a way to guide the system at a high level. According to Arkin in

1989,

“The false dichotomy that exists between hierarchical control and

reactive systems should be dropped”

Arkin, 1989 [Bruemmer, 2005]

As seen in the autonomous robot architecture called AURA, designed by Arkin [Ina,

2004], it is possible to design a representation based hierarchical system working whilst

coupled with a reactive component. This validates the decision to use hybrid architecture

to design the project. The agent will be in several states with different aims. It should be

hungry or satisfied, aware of the position of the prey or not, and close enough, or not, to

feast. It can also aim to find, chase or eat its chosen prey. One way of designing such a

system is to use a finite state machines model, as was developed in Robocup by Team

Chaos in 2004 [Bie, 2004]

3.4 Alternatives for the software framework

3.4.1 Introduction

Many development environments have been developed for the Aibo robot. They all have

different capacities and are used for different purposes. The following is a review of those

most common.

3.4.2 R-Code SDK

R-Code SDK is a tool provided by Sony to allow programming using the R-Code

language. This language is dedicated to the ERS-7 model and tools can be downloaded

free of charge from Sony’s SDE website [Sony, 2005]. A program designed using the R-

Code language is a list of commands that the Aibo can understand and closely resemble

BASIC programs [Tellez, 2004]. The user needs the Master Studio delivered with the Aibo

but there is a wide range of software available to develop some R-Code scripts without

much trouble [R-Code, 2004]. Among them, YART, which stands for ‘Yet Another R-Code

Julien Roux – The pursuit ability of a robot ‘pet’

36

Tool’, appears to be the most simple. It can be used by beginners and allows the creation

of behaviours for the Aibo, using a drag and drop technique without the need for any

programming experience [Yart, 2005]. AiboPet’s Performance Editor and Skitter

Performance Editor can also be used in replacement of the Master Studio.

The fact that the R-Code is a scripting language makes it easier to write commands using

a simple text editor, but it also allows high level commands to be sent. Therefore, the

language is easy to learn but with drawbacks of having narrower possibilities for

controlling the robot than with a typical low level language like C++, even though it still

allows the implementation of complicated behaviours [Tellez, 2004]. For example, Aibo

can be driven to sit, stand, lie, walk, turn around, track its ball, kick and find a face or

the Aibone.

3.4.3 URBI

URBI stands for ‘Universal Robotic Body Interface’. This library allows the control of any

kind of robot using a powerful script language protocol. The programming can be done by

implementing the adequate library with one of the several language supported (C++,

Java and Matlab) under several operating systems (Windows, Mac OSX, Linux). It uses

client/server architecture, meaning the robot is linked to the computer used as a server

and acts as a client to it. URBI is a low level programming language which directly reads

and sets sensors and effectors. It uses time oriented control mechanisms and command

separators to parallelise commands and serialise them [Baillie, 2005]. Behaviours are

created with event based programming. For the user, the main advantage with URBI

appears to be its simplicity: the system is supposed to be understood in a few minutes.

Furthermore, the URBI system and the libraries are distributed under a GNU Licence

allowing anybody to work with it.

3.4.4 The OPEN-R SDK

OPEN-R is Sony’s interface to the Aibo hardware allowing users to program behaviours

for the robot [Open-r, 2005] [Ihse, 2004]. This extends the capabilities of social robots.

It is a modularised and object oriented software kit based on a layered architecture. It

allows concurrently running objects to communicate with each other and supports

Wireless LAN and the TCP/IP protocol [Open-r, 2005]. The OPEN-R SDK is the cross

development environment for OPEN-R based on the 'gcc' compiler for C++ and can be

downloaded free of charge from the Sony’s SDE website. The environment can run under

Linux or Cygwin for Windows. The OPEN-R API allows access to the low level functions of

Julien Roux – The pursuit ability of a robot ‘pet’

37

the robots by writing programs charged into the memory card and then into the robot. It

is possible to move joints, turn the LEDs on or off, play audio data, acquire information

from sensors and receive images from the camera.

The OPEN-R architecture is composed of two layers: the system layer and the application

layer. The system layer is used as an interface to the robot hardware using a range of

services. These services are provided by three objects from the system layer:

OVirtualRobotComm is used to handle the sensors, effectors and the camera:

OVirtualRobotAudioComm handles the audio communication and: ANT is used to perform

the TCP/IP communication. The program is written in the application layer which

interfaces the system layer to access the robot’s hardware. It is used as an input to the

system layer’s services. Once they have processed the last sent data, they send an event

to the object indicating their capacity to receive data.

The system layer is composed of OPEN-R modules called objects, but these are not like

the standard objects found in C++ even though they have the same basic functionalities.

They contain some extensions such as multiple entry points. All objects communicate via

messages passed through inter-object communication using pre-defined communication

channels. The object sending the messages is called the subject whilst the module

receiving them is called the observer. All OPEN-R programs are constituted of one or

more concurrently running modules. As the system is modularised and object-oriented,

there are no difficulties made when replacing a module, subsequently, there is no need

to recompile the whole program. Another beneficial feature of OPEN-R lies in the ‘Remote

Processing Utility’ which makes it possible to execute parts of the program on different

platforms for testing purposes.

3.4.5 The Tekkotsu development framework for Aibo

Tekkotsu is a high level application framework developed in C++. It can be used to

control different kinds of robotic platforms and it handles low level functions and routine

tasks. It has been released under ‘Open Source’ licence by the Carnegie Mellon University

(CMU) and can be downloaded, free of charge, from the Tekkotsu website. ‘Tekkotsu’ is a

Japanese term meaning iron bones but this is also a term to define the structural

framework within a building. This analogy is here to show that the Tekkotsu framework

has been designed to be used as a structure for the robotic applications to be built on

[Ihse, 2004] [Tekkotsu, 2005].

It is based on top OPEN-R and inherits its capacities by making full use templates. The

Tekkotsu framework saves from developing low level functionalities and aids the focus on

Julien Roux – The pursuit ability of a robot ‘pet’

38

programming advanced behaviour instead. As OPEN-R, Tekkotsu is object-oriented and

an event-passing architecture. It also makes use of three system processes [Bie, 2004]:

- MainObj handles most of the bulk processing including vision, decision

making and tracking the state of the world.

- MotoObj is used to control the positions of joints and to turn the LEDs on

and off.

- SoundPlay, as its name suggests, is used to mix and send sound data to

the system.

Already implemented in Tekkotsu, are several interesting features: colour segmentation

used for object recognition and the low walking style used by the CMU team in 2001

allowing the robot to ‘dibble’ forward with the ball.

3.5 Choice of software framework

As the control system chosen is quite elaborate, the software framework used had to

present object-oriented programming capabilities with the possibility of developing

modules. This excludes the utilisation of R-Code based systems. URBI can fit but the lack

of documentation and users makes it difficult for a beginner to use.

OPEN-R and Tekkotsu are both based on C++ programming language. The difference for

the programmer lies in the work he/she wants to achieve. If the aim is to directly control

the joints and have access to low level functions, OPEN-R would be suitable. But in our

case, the focus is on the development of a high level and Tekkotsu would save design

time by providing inbuilt solutions to control the robot. This way, the design can focus on

the implementation of finite state machines. Additionally, the Tekkotsu framework

provides tools to easily handle finite state automata which are generalised finite-state

machines for modelling hybrid systems.

Julien Roux – The pursuit ability of a robot ‘pet’

39

4 Technical Background

4.1 Introduction

This chapter covers the technical knowledge which the reader will need in order to

understand the system. First, it presents the Aperios Operating System running on the

Aibo. Then, a deeper overview of Tekkotsu explains the way it works followed by an

explanation of decision trees. This chapter finishes with an outline of Finite State

Machines and hybrid automata.

4.2 The Aperios Operating System

Aibo is run by the operating system Aperios (formerly known as Apertos). It is used in

many of Sony’s products, such as the bipede Qrio [Tan, 2004] and the play station.

Based on metal-level architecture, this object-oriented and distributed real-time

operating system is interesting for embedded systems due to its small size:

approximately 100KB. The only constituent of Aperios is the object. The operating

system is open to evolve and adapt to its environment to allow objects freedom of

movement within a distributed environment. Thus, each object encapsulates the state,

the methods to access the state, and a virtual processor used to execute such methods.

Therefore, an object can change its semantics and properties at running-time. That is

where the object/meta-object separation lies. An object is no more than a container for

the information whilst a meta-object contains the definition of its semantics.

An object owns its group of meta-objects giving abstract instructions or meta-operations

defining its semantics. A meta-object is also an object; therefore it can also have meta-

objects. This defines a meta-hierarchy as illustrated in figure 9. The behaviour of an

object is thus defined using a meta-hierarchy of meta-objects. The group of meta-objects

used by an object is called its meta-space. Also, if an object cannot continue its

execution when it is evolving or changing, it can change its meta-space to a new one or

migrate to keep running.

Julien Roux – The pursuit ability of a robot ‘pet’

40

Figure 9 Aperios: Representation of the Object/Meta-Objects hierarchy
[source: Team Chaos (Bie, 2004)]

When an Aperios application is running, it is supported by one of many meta-spaces.

Each meta-space contains at least one meta-object, called the reflector. A reflector acts

like a gateway: it intercepts incoming requests to the meta-space and forwards them to

the appropriate meta-object.

4.3 Overview of Tekkotsu

Tekkotsu is a large framework with many possibilities. The structure of the framework is

represented in figure 10. In addition to the three main objects explained in chapter 3.4.5,

some structures have to be considered [Ihse, 2004] [Bie, 2004] [Tekkotsu, 2005].

Julien Roux – The pursuit ability of a robot ‘pet’

41

Figure 10 The structure of Tekkotsu [source: Tekkotsu website]

4.3.1 Worldstate

This module is where the state of the dog at a given time is stored. This is a shared

memory region holding information about joint positions and torques, buttons and power

status, distance reported by the sensors, accelerometer, temperature, LED values, PID

settings and ear positions.

4.3.2 MotionManager

This class is used to serialise requests from behaviours to move the joints in the legs, the

head or the tail. It is based on a singleton called ‘MotMan’ which means the motion

manager has to insure that the ‘Main’ and ‘Motion’ processes have mutually exclusive

access to the command and it provides simultaneous execution of several motion

primitives concurrently. A motion primitive is a shared memory space based on

‘MotionCommand’.

If a behaviour requests moving a joint, a request is sent to the lock of the appropriate

motion command from the MotionManager. It sets new values for the joint position and

the changes are performed by the effectors and the lock is then released. This module

communicates to the MotoObj and MainObj processes described in chapter 3.4.5.

Julien Roux – The pursuit ability of a robot ‘pet’

42

4.3.3 SoundManager

This module is similar to the MotionManager but is dedicated to the sound diffused by the

robot. Similar to the previous module, it makes use of a singleton this time named

‘SndMan’. Every time a sound has to be played, the playfile method is called in the

sound manager and sounds from various sources are mixed and sent to the SoundPlay

process described in chapter 3.4.5.

4.3.4 StateNode

This module is a subclass of Behaviorbase (described below) and is used to implement

state machine nodes, as well as controllers, which permit the implementation of

multilevel state machines.

4.3.5 Transition

Like StateNode, Transition is a subclass of BehaviorBase and this is a base class used for

implementing transitions between state nodes and state machines. A transition has to

subscribe for events like for instance a timer to be informed when the activation of the

transition has to take place. The activation of a transition is the transition from one state

to another. Then the destination node becomes activated whilst the source node becomes

deactivated.

4.3.6 Event Passing

When a sensor receives stimulus from the surrounding world or the camera detects an

object, the system has to be aware of this in order to express the adequate behaviour.

But the sensors, nor the vision system, are not aware of which objects to call as a result

of the stimulus. Thus, the system posts the information in a message called ‘event’ by

Tekkotsu to the event handler used to manage the distribution of messages to the

objects having registered to the listener. A listener is a part of the program accessible

from any class and which is constantly waiting for a signal or event from any object in

the system. The event handler, a singleton like the motion and sound managers, is called

‘EventRouter’ and it will call the ‘processEvent’ method from the object that should be

notified.

EventRouter is globally accessible, which means it can be called by any object from

anywhere in the code. So any object can register, listen and throw events at any time.

Many event generators have been built in Tekkotsu: for instance, VisionEvent is

generated by the vision system. The user can define new event generator in classes

inheriting the ‘EventListener’ class.

Julien Roux – The pursuit ability of a robot ‘pet’

43

4.3.7 Vision and object recognition

The system used for object recognition is based on the colour segmentation code from

the Carnegie Mellon University. For the Aibo robot, the vision is the primary sensor. The

camera records colour images in the YUV perception model with a frame rate of 25 Hz. It

then uses colour segmentation to analyse them as it is computationally inexpensive

compare to other features.

4.3.8 BehaviorBase

This is a subclass of ‘EventListener’. It is the base class for any application the user

wants to produce. At the start and the end of an application, the Tekkotsu framework will

first call the DoStart and DoStop method from the application based on the

corresponding methods from the BehaviorBase.

4.4 Decision Trees

Decision trees are widely used and represent a robust solution to represent any discrete

functions on discrete features [Garabadu, 2003]. A decision tree is a hierarchical

structure used to represent a behaviour or a hierarchy of behaviours. The tree can be

read from the top to the bottom until reaching a leaf. It is used to reach a decision from

a situation entered as input to the tree. The decision corresponds to the output value

corresponding to the input. The decision is performed by sequential testing. Each internal

node in the tree corresponds to a test the system will perform before reaching the

decision. The branches under the node correspond to the possible solution resulting from

the test. And finally, every leaf will be the value to be returned when reached [Bie,

2004].

Therefore, a leaf corresponds to a simple behaviour and an internal node will correspond

to a more complex one, composed of the behaviour below it. In our case, as shown in

figure 11, the predator can be hungry or not. Thus, he waits or looks for some food. If he

is hungry, and cannot see any prey, he will look for it. Otherwise, if he is close enough,

he will eat it, or chase it if too far.

Julien Roux – The pursuit ability of a robot ‘pet’

44

Figure 11 Decision tree for the project

4.5 Finite State Machine

A finite state machine (FSM), also known as finite state automaton, is a model of

computation composed of states, transitions and actions (figure 12). It was first defined

in the automata theory [FSM, 2005]. The states represent the condition of an object at a

given time. Transitions correspond to a change of state for the object and they are

described by a condition which triggers the transition.

Actions are the descriptions of activities performed at a given time. An action can be of

different types. An entry action will be executed when the system enters the state while

the exit action will be triggered when the system leaves the state. An input action can be

executed or not depending on the present state and an input condition. Finally, a

transition action is performed when the system is on transition [Black, 2005].

Julien Roux – The pursuit ability of a robot ‘pet’

45

Figure 12 Example of a Finite State Machine (FSM) [source: Wikipedia]

An FSM can be represented using a diagram as shown in figure 12. This example [FSM,

2005] shows an FSM for a system opening and closing a door. The door is originally

closed, but if somebody opens it, its state becomes opened. ‘Open door’ will be the entry

action for the state ‘opened’ while ‘close door’ is the one for the state ‘closed’.

‘close_door’ and ‘open_door’ are the transition conditions between the states.

Julien Roux – The pursuit ability of a robot ‘pet’

46

Figure 13 Simplified finite state machine for the project

Figure 13 shows a simplified version of FSM for the project. All the actions and the states

of the robot dog are represented with transitions between them. They are many ways to

design an FSM. The two main examples are the Mealy Machine, which has the actions

associated with the transitions, and the Moore machine which associates actions to

states. Also, some FSMs can have multiple start states, transitions conditioned on a null

input symbol, or more than one transition for a state [Black, 2005].

4.6 Hybrid Automata

The automata theory is part of computer sciences and focuses on finite state machines

using mathematical models to represent them [Automata, 2005]. A hybrid automaton

combines discrete transition graphs with continuous dynamical systems [Henzinger,

2000]. It is a model and specification as well as a generalised finite state machine for

modelling hybrid systems [Alur, 1993]. A hybrid automaton is an extension of timed

automata allowing the use of continuous variables but with more dynamics than can be

found in clocks. A hybrid system is constituted of a discrete program within an analogue

environment. The discrete transitions between all the states of the system are defined by

a change of the program counter, from a finite set of control locations.

They can be written using Tekkotsu with a class inheriting the basic node called

StateNode. This node is defined as either a state machine controller or a node within a

Julien Roux – The pursuit ability of a robot ‘pet’

47

state machine itself. This way, a node belongs to a hierarchical structure similar in some

respect to a decision tree.

Julien Roux – The pursuit ability of a robot ‘pet’

48

5 Conceptual solution

5.1 The Behaviour

As defined in chapter 3.2, a behaviour is an action or a sequence of actions that

accomplishes something. To design a behaviour, we have to design an object in the

Tekkotsu framework. This object is charged into the robot and can be started using the

Tekkotsu user interface called TekkotsuMon; a server running on a computer and linked

to the robot by a Wireless Local Area Network (WLAN) connection. Using this, the user

can start and stop a behaviour manually. The specifications of the system imply that only

one behaviour is supposed to be able to run at a time. The behaviour from this project is

called ‘Pursuit Behaviour’ and deals itself with commanding the different behaviours

required to perform the chase. When the behaviour is triggered, the robot starts

wandering without a particular purpose and after a certain time will get hungry and start

looking for its prey. Once it has located the prey, it will chase it trying to catch it.

5.2 Recognise the prey

The first module needed for this behaviour was the capability for the robot to recognise a

prey. In our design, the chosen prey to be used would take the form of the pink ball

which is available with the robot. Object recognition is a very important area in robotics;

although humans can easily recognise an object based on a known pattern, this remains

difficult for a robot as the process for object recognition goes well beyond simple image

processing. To simplify this problem, the most common technique used to recognise

objects is based on their colour. This implies making the assumption that an object

requiring recognition has a unique colour in the environment. This is a utopia in a real

environment; however, it can also be achieved in a closed environment and appears to

be a viable solution in the Robocup as this is the technique used to recognise the

landmarks on the side of the pitch and the goals. The main issue for this technique

occurs when dealing with different types of lights. Nuances of colour are easily subject to

change depending on the amount of light on an object, and even small changes can have

an effect on the colour recognition. This sensitivity exists also in the human brain but the

brain compensates and allows the human to recognise colours under different lighting.

We shall now assume that the ball is the only pink object in the environment and that the

lights are optimal. Therefore, the robot can assume it has located the ball when it

receives a signal notifying a pink object in the environment. The Tekkotsu framework

provides a tool for detecting any pink object in the range of the camera. This tool

Julien Roux – The pursuit ability of a robot ‘pet’

49

supposedly only detects the ball but in fact triggers for every pink object, be it the

Aibone or a pink carpet.

5.3 Search for the prey

In order to find the ball, the robot will explore the environment looking for it. It will walk

at random, hoping to get close to the ball. This is not the optimum way of exploring an

area but it has the advantage to be simple and to avoid the robot following a given path

or exploring the environment in a predictable way. During this move, the robot moves its

head side to side to have a wider view range and therefore a better coverage of the

environment. When the vision system detects a pink object, the robot then starts chasing

the prey.

The robot moves in the environment using the crawl walking mode defined by the

Carnegie Mellon University for the Robocup challenge. The robot is walking on its knees

and elbows. This is not the natural way for a dog to walk but this mode is more stable

and faster in consideration to the capacities of the Aibo robot. This also provides a better

stability for the camera and therefore a better image analysis as well as object

recognition. Stability for the camera is a well known issue when dealing with walking

robots as seen when designing the Mutant (see chapter 2.2.3).

5.4 Chase the prey

Once the prey is located, the robot has to get closer to it to be able to attempt capture.

The principal for the chase is that the camera has to keep centred on the ball and the

robot goes where the head points. If the ball is static, the camera will easily keep the

prey in the centre of the vision area, but dealing with a moving prey is more complicated.

The robot is constantly adjusting its head position to have the prey as close as possible

to the centre of the image. If the head makes an angle with the body superior to a given

threshold, the robot will stop moving forward but will adapt its trajectory to go towards

the prey. At the same time, the head will turn the opposite direction to keep the prey at

the centre of the image. This way, the robot gets closer to the prey while looking directly

at it.

An important aspect of chasing the prey is to keep the prey in sight. If the robot loses

the track of the prey, it has to revert to searching for it. The robot may lose sight of the

prey for many reasons; if the lighting changes as seen in chapter 5.2, the colour

recognition might be inefficient. Also, if the prey is too fast for the robot, it can move to a

Julien Roux – The pursuit ability of a robot ‘pet’

50

position out of the vision range of the robot while the robot could not move quickly

enough to follow the trajectory.

While the robot is getting close to the prey, it has to decide when it launches the attack

to try to catch it. In this project, when the robot receives information indicating the prey

is close enough, it will stop running and start making noises resembling a dog feasting.

Deciding when the prey has been caught appeared to be an issue as it is complicated to

have the robot stop right on the prey and not walk past it or stop too early. The sensors

for the distance detection appeared to be unreliable on occasions thus the results are not

always very accurate. The shape of the ball was not helping as the curved surface of the

ball might reflect the rays from the sensors in different directions making it less precise.

Also, as the head is constantly moving during the chase and the sensors are located in

the nose of the robot, the sensors readings are less accurate.

5.5 Completing the task

Once the robot has “caught” the prey, it simulates eating it. By this point, it has

accomplished its task in the particular case of the experiment. This means the robot has

stopped close enough to the prey and has emitted some noises indicating it is feasting.

At this point, the system goes back to the start state and the whole behaviour is run

once again.

Julien Roux – The pursuit ability of a robot ‘pet’

51

6 System Design

6.1 Introduction

This chapter goes through the development of the modules. This represents the work

achieved to program a behaviour based on the conceptual solution. Only the classes

which have been designed for the behaviour are described here. Some of them are

heavily inspired from the behaviour of demonstration available with the Tekkotsu

framework, but they have been adapted for the needs of this project.

6.2 PANode

The PANode class is a subclass of the Tekkotsu StateNode class, itself a subclass of

BehaviorBase. When the ‘Pursuit Ability’ behaviour starts, the PANode object is created

and it creates all the objects needed: PAExplore, PAWalk, PAWalkTo and

SmallSequenceNode. It also loads the sounds in the system for future use. When the

behaviour stops, the class deletes all the objects it has created and releases the sounds.

The different objects created are:

- n_Start from PAWalk. The robot stands still.

- n_Wander from PAExplore. The robot wanders around.

- n_Turn from PAWalk. The robot does a u-turn.

- n_GoTo from PAWalkTo. The robot goes towards a given prey.

- g_Search from GroupNode. The robot wanders around moving its head trying to

see the prey. It is composed of n_Explore from PAExplore and n_Head from

SmallMotionSequence.

-

Each of these objects is considered as a node. The system uses a system of transitions to

change behaviour. At each transition, the robotic dog emits a noise to signal the change.

The sounds are loaded into the system at the start of this object and are as follow:

- howl.wav is the scream of a wolf. It means the behaviour is starting.

- sniff.wav is the noise made by a dog when it is sniffing around. It means the dog

starts looking for the prey.

- barkreal.wav is the real bark of a dog. It means the dog has seen the prey and

starts chasing it.

- whimper.wav is the noise of a sad dog. It means the dog has lost sight of the

prey.

- growl.wav is the noise of an angry dog. It means the dog has caught the prey

Julien Roux – The pursuit ability of a robot ‘pet’

52

- barkmed.wav is a happy bark of a dog. It means the dog has finish eating and

starts wandering around.

6.3 PAWalk

This class is heavily based on the class WalkNode from Tekkotsu. The robot is given a

direction, an angle and a velocity and move according to this information. Using this

class, the robot can move in any given direction as long as it does not encounter an

obstacle. If the direction is null, it is possible to have the robot doing U-turn.

6.4 PAWalkTo

This class is heavily based on the class WalkToNode from Tekkotsu. The robot is given an

object to follow. It will follow it as long as it does not get too close to it, otherwise it

would stop. If it loses sight of the target, it will send a signal to the system.

6.5 PAExplore

This class is heavily based on the class ExploreMachine from the demonstration

behaviour of the Tekkotsu. The robot wanders around and change direction when it

encounters an obstacle. This is used to have the robot to instruct the robot to explore the

environment.

Julien Roux – The pursuit ability of a robot ‘pet’

53

6.6 Finite State Machine

The system is based on the Finite State Machine approach. Figure 14 shows the structure

of the FSM.

Figure 14 Finite State Machine for the project

We can notice the class SmallMotionSequenceNode for the state ‘Move the head’. This

class has not been described before as it is an original class from the Tekkotsu

framework. It is used to load motions defining series of movement for the robot.

Julien Roux – The pursuit ability of a robot ‘pet’

54

7 Experimental design and results

The behaviour designed for this project was to find a prey and chase it until reaching it.

The purpose of this experiment is to assess the capabilities of the robot and to use the

results as a start for further development. We have to bear in mind that the behaviour is

just a basis for future development and was used to assess the capabilities of the robot

rather than to display a real intelligence.

The experiment took place in a closed area as shown in figure 15. First experiments

where performed in a square area but the robot was sometimes stuck in a corner ending

the experiment. Thus, some areas located in the angles have been removed. They

correspond to the green area on the figure 15. Within this environment, the robot had no

difficulties to behave and was never blocked. The experiment could be undertaken

efficiently.

Figure 15 Experiment area

The floor in the area was dark blue and the walls white. The first series of tests were

performed in another room with a purple floor and it has soon been noticed that the

robot was mistaking the floor for the ball and was triggering an event as if it was seeing

something pink (figure 16).

Julien Roux – The pursuit ability of a robot ‘pet’

55

Figure 16 Pink ball on the purple floor and on the blue floor

The robot and the pink ball have been placed at random in the area. The behaviour has

been started using the Tekkotsu interface as shown in figure 17. A connection by Telnet

on port 59000 allows to have a contact with the robot and to receive information

regarding its condition. It displays information about the hardware of Aibo and it also

displays messages sent by the system to acknowledge some performances. If the robot

sees the ball, a message will be displayed to the user in the Telnet window. If something

goes wrong, an error message will be displayed. This helps during the development of

the behaviour.

Figure 17 Telnet connection to the Aibo robot and the
Tekkotsu WLAN user interface

Julien Roux – The pursuit ability of a robot ‘pet’

56

The Aibo was connected to a laptop using a wireless connection on an ad hoc mode, i.e.

connected one to one without any other devices between them. The connection on the

laptop was performed using a PCMCIA WIFI card and this has been subject to many

problems. The card did not communicate correctly with the Aibo robot. Often, the card

had to be disabled and re-enabled to keep on working, especially after a crash from the

Aibo system. This problem appeared on two different laptop using two different cards. On

figure 18, we can see the material used for the experiment. We can notice on the screen

a raw image of what the Aibo can see, and also the PCMCIA WIFI card on the left of the

laptop.

Figure 18 Aibo and the laptop used during the experiment

During the experiment, the robot has been tested under different lights, with the ball on

different places, moving or immobile. Results are mitigating. When the robot is placed

under too much light, like on a sunny day, it reacts as when it is used in a relatively dark

room. The image recognition system analyse the image and return the region with the

biggest area matching the colour needed, in our case the pink. This area returned is

called a blob. When the light is too strong or when it is dark, the colours appear

differently and the system cannot find any blob. Therefore, it does not recognise the ball.

Under optimal conditions, the robot does not always find the prey, even when passing

just next to it. We can notice that the vision is quite narrow for the robot which needs to

move the head consequently to look at the environment.

Julien Roux – The pursuit ability of a robot ‘pet’

57

Figure 19 The Aibo robot running to the ball in the experiment area

During the tests, the Aibo showed a poor capacity to recognise the pink ball. Stability of

the camera seemed to be deficient as the robot was noticing the ball less than half of the

times it appeared on its vision range while the robot was moving. We could assess that

the ball was on the vision range as we could see it on the display in the Tekkotsu

interface on the computer. Thus, we can assume that the image recognition was not

optimal during the tests. The system, developed by the Carnegie Mellon University,

appears to be reliable as long as the robot is standing still but when it is moving, it does

always not recognise the pink ball.

To perform some deeper tests, we used the demonstration behaviour called StareAtBall.

The robot looks at the pink ball and moves the head to follow the ball if the ball starts

moving. During this test, the robot does not move its legs. Using these conditions, the

robot was able to recognise the ball easily, even under strong lighting or in a relative

darkness.

Julien Roux – The pursuit ability of a robot ‘pet’

58

8 Conclusions

During the test, the robot showed good capabilities regarding the mobility. It can move

quickly and has a good reaction time. The camera has a good rendering and shows great

possibilities for implementing a concrete vision system. With the use of the other sensors

from the robot, especially the distance sensors, it could be possible to design a system

able to be independent in an open environment.

However, some tests showed the limitations when the robot was moving in an area not

perfectly flat. When confronted to a step of one centimetre, the robot does not notice it

and shows incapacity to pass it. Also, during the first series of tests, the system could be

stuck in a corner and needed human intervention to be able to keep the experiment

running. These limitations constrict the experiment to laboratory environment where the

experimental area can be designed adequately. The ability of passing a step could be

subject to further work.

The robot showed capabilities to follow the prey but with some limitations. When the prey

is static, the robot had no difficulties to go straight to it once it has been localised. But

when it comes to deal with a moving prey, the robot shows some difficulties to cope. If

the prey is too quick and goes outside the vision area, the robot will lose track of it and

will not be able to find it. As long as the prey remains in the middle of the robot’s vision

range, everything is fine, but if it goes quickly to the side and reach the border of the

range, the robot can barely cope with the movement. The vision system seems to be

adequat to rendre image of a quickly moving prey and the joints in the head appear to be

good enough to follow it but the image treatment does not appear strong enough. The

system used for image recognition is quite fragile and would need further work. For every

team taking part in the Robocup, the vision treatement is one of the major research and

many different solutions have been designed, each with good and bad sides.

The robot also showed good features when exploring the environment, being quick and

efficient regarding the reaction to stimulus. The system of sensors used to detect the

distance to an obstacle showed good feature with large obstacle like a wall. It did not

detect small obstacles like a step or anything located under its chin. This is due of the

location of the distance sensor : the nose of the robot. Because of this feature, the robot

does not detect an obstacle being close to the paws. Further work could be done on this

feature by having the robot consider information coming from pressure sensors locateed

in the paws and in the effectors to assess the presence of objects or obstacles under the

chin.

Julien Roux – The pursuit ability of a robot ‘pet’

59

The design used to implement the system showed good results. The robot had a quick

response time and was performing the right action at the right time according to the

requirements. Therefore, it appeared that finite state automata for hybrid systems were

good way of design.

The Aibo robot seems to be a good support for testing theories about animal behaviours.

Since Sony has open the access to programming the robot using the Open-r

environment, the Aibo robot shows great potential for future use in several kinds of

researchs like vision, object recognition, moving, or independent localisation.

Furthermore, Tekkotsu provides good tools for handling high level features and leaves to

the user the ability to improve them.

Thus, the Aibo did not show good ability for the pursuit of a moving prey, but this could

be developed and improved making the robot a good subject for further work.

Julien Roux – The pursuit ability of a robot ‘pet’

60

9 References

[4Legged, 2005] Sony four legged robot league website
Link: http://www.tzi.de/4legged/bin/view/Website/WebHome

[AIBO, 2005] Sony AIBO Europe FAQs
Link: http://www.eu.aibo.com/1_3_1_faq1.asp#q17

[Alur, 1993] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho,
Hybrid Systems I, Lecture Notes in Computer Science 736, Springer-Verlag, 1993, pp.
209-229.
Link: http://www-cad.eecs.berkeley.edu/~tah/Publications/hybrid_automata.html

[Arkin, 1998], R. C. Arkin, Behavior-Based Robotics. MIT Press, 1998.

[Automata, 2005] Automata on Wikipedia
Link: http://en.wikipedia.org/wiki/Automata_theory

[Baillie, 2005] Jean Christophe Baillie, Universal Robotic Body Interface official website
Link: http://www.urbiforge.com/eng/index.html

[Bie, 2004] Stefan Bie, Johan Persson, Behavior-based Control of the ERS-7 AIBO Robot.
Faculty of Science, Lund University, Sweden
Link: http://ai.cs.lth.se/xj/StefanBie/report.pdf

[Black, 2005] Paul E. Black, "finite state machine", from Dictionary of Algorithms and
Data Structures, Paul E. Black, ed., NIST.
Link: http://www.nist.gov/dads/HTML/finiteStateMachine.html

[Breazeal, 2000] Cynthia L. Breazeal, Sociable Machines: Expressive Social Exchange

Between Humans and Robots PHD Thesis, chapter 9. The MIT press, Cambridge

Link: http://groups.csail.mit.edu/lbr/mars/deliverables/deliverables9900.html

[Brooks, 1986] Brooks, R. A. "A Robust Layered Control System for a Mobile Robot", IEEE

Journal of Robotics and Automation, Vol. 2, No. 1, March 1986.

Link: http://people.csail.mit.edu/brooks/papers/AIM-864.pdf

[Brooks, 1987] Brooks, Rodney Allen, "Planning is Just a Way of Avoiding Figuring out

What to Do Next" inCambrian intelligence : the early history of the new AI_, Cambridge,

Mass.: MIT Press, 1999. Chapter 6, , pp. 103-110.

Link: http://www.ece.osu.edu/~fasiha/Brooks_Planning.html

[Brooks, 1991] Brooks, R. A. Intelligence without Representation. Artificial Intelligence

47(1-3): 139-159.

Link : http://people.csail.mit.edu/brooks/papers/representation.pdf

[Bruemmer, 2005] Bruemmer Davir, Behavior-based robotics. Idaho National Laboratory

Julien Roux – The pursuit ability of a robot ‘pet’

61

Link: http://www.inl.gov/adaptiverobotics/behaviorbasedrobotics/index.shtml

[Butoi, 2005],

Link: http://cs.brynmawr.edu/Theses/Butoi.pdf

[Capek, 1920] Capek, Karel Biography. Biography.ms

Link: http://karel-capek.biography.ms/

[Fred, 2004] Fred, Un nouveau kit de développement. vieartificielle.com

Link: http://www.vieartificielle.com/nouvelle/?id_nouvelle=637

[Frederic, 2004] Frédéric, Mutant, L’ancêtre de l’AIBO. vieartificielle.com

Link: http://www.vieartificielle.com/article/?id=199

[FSM, 2005] Finite State Machine on Wikipedia.
Link: http://en.wikipedia.org/wiki/Finite_state_machine

[Garabadu, 2003], Brijesh Garabadu, Learning decision trees. Machine learning lectures,
School of computin, University of Utah.
Link: http://www.cs.utah.edu/classes/cs5350/slides/d-trees4.pdf

[Germanteam, 2005] German team official website
Link: http://www.germanteam.org/

[Globalspec, 2005] The engering search engine
Link: http://sensors-
transducers.globalspec.com/LearnMore/Sensors_Transducers_Detectors/Acceleration_Vib
ration_Sensing/Vibration_Sensors

[Henzinger, 2000] Thomas A. Henzinger, The theory of hybrid automata. Proceedings of
the 11th Annual Symposium on Logic in Computer Science (LICS), IEEE Computer
Society Press, 1996, pp. 278-292.
Link: http://www-
cad.eecs.berkeley.edu/~tah/Publications/the_theory_of_hybrid_automata.html

[Ihse, 2004] Christina Ihse Bursie Dog-like behavior selection for an AIBO robot dog.
Royal institute of technology, Stockholm, Sweden
Link:
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2004/sammanf04/ihse_b
ursie_christina.html

[Ina, 2004]Goihman Ina, Aura, autonomous robot architecture. Haifa University
Link: http://math.haifa.ac.il/robotics/Projects/AuRA_Ina.pdf

[Jennings, 1995] Nick Jennings, Intelligent agent, theory and practice. Knowledge
Engineering Review Volume 10 No 2, June 1995.
Link:
http://www.csc.liv.ac.uk/~mjw/pubs/ker95/subsubsectionstar3_3_2_3.html#SECTION00
03230000000000000

[Jerome, 2004] Jerome, L’histoire AIBO. vieartificielle.com
Link: http://www.vieartificielle.com/article/?id=197

Julien Roux – The pursuit ability of a robot ‘pet’

62

[Juengel, 2004] Matthias Juengel, Joscha Bach, Using a flexible grid for image
recognition. Humboldt University of Berlin
Link: http://www.informatik.hu-berlin.de/~juengel/papers/

[Kaplan, 2001] Kaplan, Frédéric, Un robot peut-il être notre ami ? Orlarey, Y., editor,

L'Art, la pensée, les émotions, pages 99-106, 2001. Grame.

Link : http://www.csl.sony.fr/downloads/ papers/2001/kaplan-rmpd2001.pdf

[Lamb, 1987] Lamb, J. R., Computer simulation of biological systems. Molecular and

Cellular Biochemistry, 73:91-98

[Logan, 2004] Brian Logan, Deliberative architecture.University of Nottingham

Link: http://www.cs.nott.ac.uk/~bsl/G53DIA/

[Lötzsch, 2004] Martin Lötzsch, XABSL, a behavior engineering system for autonomous

agents. Thesis report, Humboldt University of Berlin

Link: http://www.martinloetzsch.de/papers/diploma-thesis.pdf

[Maes, 1990] Maes, Pattie, How to do the right thing. Connection science journal, special
issue on hybrid Systems, v1
Link: http://agents.www.media.mit.edu/groups/agents/publications/Pattie/consci/

[Maes, 1995] Maes, Pattie, Artificial Life Meets Entertainment: Life like Autonomous
Agents, Communications of the ACM, 38, 11, p.108

[Mataric, 2004] Maja J. Mataric, Behavior based control, a brief primer
Link: http://www-robotics.usc.edu/~maja/bbs.html

[Minsky, 1986] Marvin Minsky, The society of mind
Link: http://web.media.mit.edu/~minsky/

[Moore, 2005] Moore Machine on Wikipedia
Link: http://en.wikipedia.org/wiki/Moore_machine

[Murphy, 2004] Dr. Robin R. Murphy, Introduction to AI robotics: Reactive Paradigm.
University of South Florida
Link: http://www.csee.usf.edu/~murphy/book/slides/chapter4v2.ppt

[Mystic, 2004] Mystic Fortress, Tamagotchi history, in an egg shell. Tamagotchi
Connection
Link: http://www.mimitchi.com/tamaplus/tama_history.shtml

[Newcastle, 2005] Newcastle Robotics Laboratory web site. University of Newcastle,

Australia

Link: http://robots.newcastle.edu.au/robocup.html

[NUbot, 2004]The 2004 NUbots team report. University of Newcastle, Australia

Link: http://robots.newcastle.edu.au/publications/NUbotFinalReport2004.pdf

Julien Roux – The pursuit ability of a robot ‘pet’

63

[Nwana, 1996] Hyacinth S. Nwana, Software agents, an ovreview. Knowledge

Engineering Review, Vol. 11, No 3, pp.1-40, Sept 1996

Link: http://agents.umbc.edu/introduction/ao/

[Onrobo, 2003] Onrobo product review and info. Onrobo.com

Link: http://www.onrobo.com/reviews/AIBO/ERS_7_Series/on00ers700rosny/

[Open-r, 2005] AIBO SDE official website

Link: http://openr.aibo.com/

[Payen, 2005] Payen, Guillaume, Technologie des robots autonomes. CNRS Paris-Sud
official website
Link : http://www.lri.fr/~felkin/agents/GuillaumePayen/sma-payen.html

[Phoebe, 1998] Phoebe, Furby autopsy. phoebe.com
Link: http://www.phobe.com/furby/

[Pylyshyn , 1988] Fodor, J.A., and Z.W. Pylyshyn. 1988. Connectionism and Cognitive

Architecture: A Critical Analysis, Cognition. 28:3-71

Link: http://ruccs.rutgers.edu/ftp/pub/papers/jaf.pdf

[R-Code, 2004] R-Code supplies website

Link : http://dogsbodynet.com/rcode_supplies.html

[Rico, 2004] Francisco M. Rico, Rafaela G. Careaga, Jose M. C. Plaza, Vicente M. Olivera,

Programming model based on concurrent objects for the AIBO robot. Universidad Rey

Juan Carlos, Madrid, Spain

Link : http://gsyc.escet.urjc.es/robotica/publicaciones/concurrencia04.pdf

[Roberty, 2005] Roberty, Jérôme, Le site francophone des fans d’AIBO.
Link : http://www.premiumwanadoo.com/aibo-fr.com/menu.htm

[Robocup, 2005] Robocup official website

Link: http://www.robocup.org/overview/21.html

[Robocup2005, 2005] Robocup 2005 Osaka official website
Link: http://www.robocup2005.org/about/what.aspx

[RobocupJunior, 2005] Robocup Junior official website
Link: http://satchmo.cs.columbia.edu/rcj/

[RobocupRescue, 2005] Robocup Rescue official website
Link: http://kaspar.informatik.uni-freiburg.de/%7Ercr2005/

[RPI, 2005] Rennsselaer Polytechnic Institute official website
Link: http://www.rpi.edu/about/index.html

[Sony, 2005] Sony official website

Julien Roux – The pursuit ability of a robot ‘pet’

64

Link: http://www.sony.net/Products/aibo/

[Sonystile, 2005] SonyStyle official website
Link: http://www.sonystyle.com/is-bin/INTERSHOP.enfinity/eCS/Store/en/-
/USD/SY_DisplayProductInformation-Start?ProductSKU=ERS7M2/WKIT1

[Sorayama, 2005] Hajime Sorayama, official website
Link: http://www.sorayama.net/

[Sycara, 1998] Katia p. Sycara, Multi agent systems. AI magazine

Link: http://www.findarticles.com/p/articles/mi_m2483/is_n2_v19/ai_20914130

[Tan, 2004] Tan Hellen, Quest for curious robot. Computer Times 23rd June 2004

Link: http://computertimes.asia1.com.sg/ctkids/story/0,5104,2533,00.html

[Technostuff, 2005] Techno-Stuff Robotics

Link: http://www.techno-stuff.com/Accel.htm

[Tekkotsu, 2005] Tekkotsu official website

Link: http://www.cs.cmu.edu/~tekkotsu/index.html

[Tellez, 2004] Ricardo A Tellez. R-Code SDK Tutorial

Link : http://www.ouroboros.org/rcode_tutorial_1v2.pdf

[Top dog, 2005] Team “Top dog”, Jack Liu, Bryan Knight, David Elrod, AIBO cooperative
soccer project. Rennsselaer Polytechnic Institute
Link: http://www.cat.rpi.edu/~wen/aibo/

[Uncanny, 2005] The Uncanny Valley study on Wikipedia

Link: http://en.wikipedia.org/wiki/Uncanny_Valley

[Webb, 2001] Webb, Barbara, Can robots make good models of biological behaviour?
Link: http://www.bbsonline.org/Preprints/Webb/

[Wikipedia, 2005] Behaviour on Wikipedia
Link: http://en.wikipedia.org/wiki/Behavior

[Yamada, 2004] Yamada Seiji, Yamaguchi Tomohiro, Training Aibo like a dog. National

Institute of Informatics, Tokyo, Japan

Link: http://research.nii.ac.jp/~seiji/publication/Conference/2004/ROMAN-2004-
yamada.pdf

[Yart, 2005] Yet Another R-Code Tool official website

Link: http://www.aibohack.com/rcode/yart.htm

Julien Roux – The pursuit ability of a robot ‘pet’

65

10 Credits

Figure 1 : http://www.firebox.com/?dir=firebox&action=product&pid=859

Figure 2 : pinkangel15.tripod.com/

Figure 3 : www.vieartificielle.com/article/?id=197

Figure 4 : http://www.premiumwanadoo.com/aibo-fr.com/ERS220.htm

Figure 5 : http://www.converj.com/blogs/converjed/archives/2004_10.html

Figure 6 : http://www.sony.net/Products/aibo/

Figure 7 : http://www.sony.net/Products/aibo/

Figure 8 : http://www.tzi.de/4legged/pub/Website/Downloads/Rules2005.pdf

Figure 9 : http://ai.cs.lth.se/xj/StefanBie/report.pdf

Figure 10 : http://www.cs.cmu.edu/~tekkotsu/

Figure 11 : Julien Roux

Figure 12 : http://en.wikipedia.org/wiki/Finite_state_machine

Figure 13 : Julien Roux

Figure 14 : Julien Roux

Figure 15 : Julien Roux

Figure 16 : Julien Roux

Figure 17 : Julien Roux

Figure 18 : Julien Roux

Figure 19 : Julien Roux

Figure 20 : Julien Roux

Figure 21 : Julien Roux

Figure 22 : Julien Roux

Figure 23 : Julien Roux

Julien Roux – The pursuit ability of a robot ‘pet’

66

11 Appendix

11.1 PANode.h

// Julien ROUX
// Heriot Watt University
// File: PANode.h
// September 2005

#ifndef INCLUDED_PANODE_H_
#define INCLUDED_PANODE_H_

#include "Behaviors/StateNode.h"
#include "Shared/ProjectInterface.h"

//Class to simulate the Pursuit Ability (PA)
class PANode : public StateNode
{
 public:
 //Constructor
 PANode()
 : StateNode("PANode","PANode"),
 start(NULL)
 {}

 //Destructor
 ~PANode()
 {
 if (issetup)
 teardown();
 }

 virtual void setup();

 virtual void DoStart();

 virtual void teardown();

protected:
 StateNode* start;

private:
 PANode(const PANode&);
 PANode operator=(const PANode&);
};
#endif

Julien Roux – The pursuit ability of a robot ‘pet’

67

11.2 PANode.cc

// Julien ROUX
// Heriot Watt University
// File: PANode.cc
// 06 September 2005

#include "PANode.h"
#include "PAExplore.h"
#include "PAWalkTo.h"

#include "Behaviors/Transition.h"
#include "PAWalk.h"
#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetTrans.h"
#include "Behaviors/Nodes/OutputNode.h"
#include "Behaviors/Nodes/MotionSequenceNode.h"
#include "Behaviors/Nodes/GroupNode.h"
#include "Sound/SoundManager.h"

void PANode::setup()
{
 StateNode::setup();

 //********** Variables **********//
 const float m_TurnSpeed = 1;
 const float m_Null = 0;
 const float m_Low = 50;
 const float m_Mid = 80;

 //************ Nodes ************//
 //Beginning of the behaviour. The robot don't move
 PAWalk * n_Start = new PAWalk(m_Null, m_Null, m_Null);
 n_Start->setName(getName()+"::n_Start");
 addNode(n_Start);

 //Wander around without purpose
 PAExplore * n_Wander = new PAExplore (getName()+"n_Wander", m_Low);
 n_Wander->setName(getName()+"::n_Wander");
 addNode(n_Wander);

 //Turn around
 PAWalk * n_Turn = new PAWalk (m_Null, m_Null, m_TurnSpeed);
 n_Turn->setName(getName()+"::n_Turn");
 addNode(n_Turn);

 //Look for the prey
 GroupNode * g_Search = new GroupNode (getName()+"::g_Search");
 addNode(g_Search);
 {
 PAExplore * n_Explore = new PAExplore(g_Search-
>getName()+"::n_Explore", m_Mid);
 g_Search->addNode(n_Explore);
 SmallMotionSequenceNode * n_Head = new
SmallMotionSequenceNode(g_Search->getName()+"::n_Head",
"pan_head.mot",true);
 g_Search->addNode(n_Head);
 }

Julien Roux – The pursuit ability of a robot ‘pet’

68

 //Go to the prey
 PAWalkTo * n_GoTo = new PAWalkTo(ProjectInterface::visPinkBallSID);
 n_GoTo->setName(+"::n_GoTo");
 addNode(n_GoTo);

 //Beginning of the behaviour. The robot don't move
 PAWalk * n_Eat = new PAWalk(m_Null, m_Null, m_Null);
 n_Eat->setName(getName()+"::n_Eat");
 addNode(n_Eat);

 //********** Transistions **********//
 Transition * t_Trans=NULL;

 //after 3 seconds, the robot starts
 n_Start->addTransition(t_Trans = new TimeOutTrans(n_Wander, 3000));
 t_Trans->setSound("howl.wav");

 //after 10 seconds, the dog is hungry
 n_Wander->addTransition(t_Trans = new TimeOutTrans(g_Search, 10000));
 t_Trans->setSound("sniff.wav");

 //the dog sees the prey and starts chasing it
 g_Search->addTransition(t_Trans = new VisualTargetTrans(n_GoTo,
ProjectInterface::visPinkBallSID));
 t_Trans->setSound("barkreal.wav");

 //the dog lose sight of the prey
 n_GoTo->addTransition(t_Trans = n_GoTo->newDefaultLostTrans(g_Search));
 t_Trans->setSound("whinmper.wav");

 //Once the dog reached the prey, it eats it
 n_GoTo->addTransition(t_Trans = n_GoTo->newDefaultCloseTrans(n_Eat));
 t_Trans->setSound("growl.wav");

 //after 10 seconds, the dog is hungry
 n_Eat->addTransition(t_Trans = new TimeOutTrans(n_Turn, 2000));
 t_Trans->setSound("barkmed.wav");

 //once you've turned around, wander for a while
 n_Turn->addTransition(t_Trans=new TimeOutTrans(n_Wander,(unsigned
int)(M_PI/m_TurnSpeed*1000))); //turn 180 degrees (aka PI radians)
 t_Trans->setSound("barkmed.wav");

 //preload the sounds so we don't pause on tranisitions
 sndman->LoadFile("howl.wav");
 sndman->LoadFile("sniff.wav");
 sndman->LoadFile("barkreal.wav");
 sndman->LoadFile("whimper.wav");
 sndman->LoadFile("growl.wav");
 sndman->LoadFile("barkmed.wav");

 //starts out exploring
 start=n_Start;
}

void PANode::DoStart() {
 StateNode::DoStart();
 start->DoStart();
}

Julien Roux – The pursuit ability of a robot ‘pet’

69

void PANode::teardown() {
 //release the sounds
 sndman->ReleaseFile("howl.wav");
 sndman->ReleaseFile("sniff.wav");
 sndman->ReleaseFile("barkreal.wav");
 sndman->ReleaseFile("whimper.wav");
 sndman->ReleaseFile("growl.wav");
 sndman->ReleaseFile("barkmed.wav");
 StateNode::teardown();
}

11.3 PAExplore.h

// Julien ROUX
// Heriot Watt University
// File: PAExplore.h
// Base on ExploreMachine.h from Tekkotsu
// 06 September 2005

#ifndef INCLUDED_PAEXPLROE_H_
#define INCLUDED_PAEXPLORE_H_

#include "Behaviors/StateNode.h"
#include "Motion/MotionManager.h"

class PAExplore : public StateNode
{
 public:
 //!constructor
 PAExplore(const std::string& nm)
 : StateNode("PAExplore",nm),
 start(NULL),
 turn(NULL),
 walkid(MotionManager::invalid_MC_ID)
 {}

 //Constructor with a speed
 PAExplore(const std::string& nm, float speed)
 : StateNode("PAExplore",nm),
 start(NULL),
 turn(NULL),
 m_Speed(0),
 walkid(MotionManager::invalid_MC_ID)
 { m_Speed = speed;}

 //!destructor
 ~PAExplore()
 {
 if(issetup)
 teardown();
 }

 virtual void setup();
 virtual void DoStart();
 virtual void DoStop();
 virtual void teardown();

 virtual void processEvent(const EventBase&);

Julien Roux – The pursuit ability of a robot ‘pet’

70

protected:
 StateNode * start;
 class PAWalk * turn;
 MotionManager::MC_ID walkid;
 float m_Speed;

private:
 PAExplore(const PAExplore&);
 PAExplore operator=(const PAExplore&);
};
#endif

11.4 PAExplore.cc

// Julien ROUX
// Heriot Watt University
// File: PAExplore.cc
// 06 September 2005

#include "PAWalk.h"
#include "Behaviors/Transitions/SmoothCompareTrans.h"
#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Shared/ERS7Info.h"
#include "Wireless/Socket.h"
#include "Shared/WorldState.h"

#include "PAExplore.h"

void PAExplore::setup() {

 //********** Variables **********//
 unsigned int IRDistOffset;
 SharedObject<WalkMC> walk;
 const float m_Null = 0;

 if(state->robotDesign&WorldState::ERS7Mask)
 IRDistOffset=ERS7Info::NearIRDistOffset;
 else
 {
 serr->printf("ExploreMachine: Unsupported model!\n");
 return;
 }

 walkid=motman->addPersistentMotion(walk);

 //************ Nodes ************//
 //Walk
 PAWalk * move=NULL;
 addNode(move=new PAWalk(getName()+"::move",m_Speed,m_Null,m_Null));
 move->setWalkID(walkid);

 //turn
 turn=new PAWalk(getName()+"::turn",m_Null,m_Null,0.5f);
 addNode(turn);
 turn->setWalkID(walkid);

Julien Roux – The pursuit ability of a robot ‘pet’

71

 start = turn;

 //********** Transistions **********//
 move->addTransition(new SmoothCompareTrans<float>(turn,
 &state->sensors[IRDistOffset],
 CompareTrans<float>::LT,
 350,
 EventBase(EventBase::sensorEGID,
 SensorSourceID::UpdatedSID,
 EventBase::statusETID),
 .7));
 turn->addTransition(new TimeOutTrans(move,3000));

 StateNode::setup();
}

void PAExplore::DoStart()
{
 StateNode::DoStart();
 start->DoStart();
 erouter->addListener(this,
 EventBase::stateMachineEGID,
 (unsigned int)turn,
 EventBase::activateETID);
}

void PAExplore::DoStop()
{
 erouter->removeListener(this);
 StateNode::DoStop();
}

void PAExplore::teardown()
{
 motman->removeMotion(walkid);
 StateNode::teardown();
}

void PAExplore::processEvent(const EventBase&)
{
 cout << "IRD: " << &state->sensors[ERS7Info::NearIRDistOffset] << endl;
 float vel=rand()/(float)RAND_MAX*2.0f-1;
 if(vel<0)
 vel-=.25;
 if(vel>0)
 vel+=.25;
 turn->setAVelocity(vel);
}

Julien Roux – The pursuit ability of a robot ‘pet’

72

11.5 PAWalkTo.h

// Julien ROUX
// Heriot Watt University
// File: PAWalkTo.h
// Adatation of WalkToTargetNode.h from Tekkotsu
// 07 September 2005

#ifndef INCLUDED_PAWALKTO_H_
#define INCLUDED_PAWALKTO_H_

#include "Behaviors/StateNode.h"
#include "Motion/MotionManager.h"

class PAWalkTo : public StateNode
{
 public:
 //Constructor
 PAWalkTo(unsigned int obj)
 : StateNode("PAWalkTo","PAWalkTo"),
 tracking(obj),
 walker_id(MotionManager::invalid_MC_ID),
 headpointer_id(MotionManager::invalid_MC_ID)
 {}

 //Constructor
 PAWalkTo(const std::string& nodename, unsigned int obj)
 : StateNode("PAWalkTo",nodename),
 tracking(obj),
 walker_id(MotionManager::invalid_MC_ID),
 headpointer_id(MotionManager::invalid_MC_ID)
 {}

 virtual void DoStart();
 virtual void DoStop();

 static std::string getClassDescription() { return "go to a target"; }
 virtual std::string getDescription() const { return
getClassDescription(); }

 virtual void processEvent(const EventBase& event);

 virtual Transition* newDefaultLostTrans(StateNode* dest);
 virtual Transition* newDefaultCloseTrans(StateNode* dest);

protected:
 PAWalkTo(const std::string& classname, const std::string& nodename,
unsigned int obj)
 : StateNode(classname,nodename),tracking(obj),
 walker_id(MotionManager::invalid_MC_ID),
headpointer_id(MotionManager::invalid_MC_ID)
 {}

 unsigned int tracking;
 MotionManager::MC_ID walker_id;
 MotionManager::MC_ID headpointer_id;

Julien Roux – The pursuit ability of a robot ‘pet’

73

private:
 PAWalkTo(const PAWalkTo&);
 PAWalkTo operator=(const PAWalkTo&);
};

#endif

11.6 PAWalkTo.cc

// Julien ROUX
// Heriot Watt University
// File: PAWalkTo.h
// Adatation of WalkToTargetNode.h from Tekkotsu
// 07 September 2005

#include "PAWalkTo.h"

#include "Motion/HeadPointerMC.h"
#include "Motion/WalkMC.h"
#include "Motion/MMAccessor.h"
#include "Events/VisionObjectEvent.h"
#include "Shared/WorldState.h"
#include "Behaviors/Transitions/TimeOutTrans.h"
#include "Behaviors/Transitions/VisualTargetCloseTrans.h"

void PAWalkTo::DoStart()
{
 StateNode::DoStart();
 cout << "PAWalkTo starts" << endl;
 headpointer_id = motman-
>addPersistentMotion(SharedObject<HeadPointerMC>());
 walker_id = motman->addPersistentMotion(SharedObject<WalkMC>());
 erouter->addListener(this,EventBase::visObjEGID,tracking);
}

void PAWalkTo::DoStop()
{
 erouter->removeListener(this);
 motman->removeMotion(headpointer_id);
 headpointer_id=MotionManager::invalid_MC_ID;
 motman->removeMotion(walker_id);
 walker_id=MotionManager::invalid_MC_ID;
 StateNode::DoStop();
}

void PAWalkTo::processEvent(const EventBase& event)
{
 static float horiz=0,vert=0;
 const VisionObjectEvent *ve = dynamic_cast<const
VisionObjectEvent*>(&event);

 if(ve!=NULL && event.getTypeID()==EventBase::statusETID)
 {
 horiz=ve->getCenterX();
 vert=ve->getCenterY();
 cout << horiz << "x" << vert << endl;

Julien Roux – The pursuit ability of a robot ‘pet’

74

 } else
 {
 cout << "-----------return" << endl;
 return;
 }

 double tilt=state->outputs[HeadOffset+TiltOffset]-vert*M_PI/6;
 double pan=state->outputs[HeadOffset+PanOffset]-horiz*M_PI/7.5;
 if(tilt>outputRanges[HeadOffset+TiltOffset][MaxRange])
 tilt=outputRanges[HeadOffset+TiltOffset][MaxRange];
 if(tilt<outputRanges[HeadOffset+TiltOffset][MinRange]*3/4)
 tilt=outputRanges[HeadOffset+TiltOffset][MinRange]*3/4;
 if(pan>outputRanges[HeadOffset+PanOffset][MaxRange]*2/3)
 pan=outputRanges[HeadOffset+PanOffset][MaxRange]*2/3;
 if(pan<outputRanges[HeadOffset+PanOffset][MinRange]*2/3)
 pan=outputRanges[HeadOffset+PanOffset][MinRange]*2/3;
 {MMAccessor<HeadPointerMC>(headpointer_id)->setJoints(tilt,pan,0);}

 {
 MMAccessor<WalkMC> walker(walker_id);
 if(pan<-.05 || pan>.05)
 walker->setTargetVelocity(80,0,pan);
 else
 walker->setTargetVelocity(130,0,0);
 }
}

Transition* PAWalkTo::newDefaultLostTrans(StateNode* dest) {
 return new TimeOutTrans(dest,1500,EventBase::visObjEGID,tracking);
}

Transition* PAWalkTo::newDefaultCloseTrans(StateNode* dest) {
 return new VisualTargetCloseTrans(dest,tracking, 120);
}

Julien Roux – The pursuit ability of a robot ‘pet’

75

11.7 PAWalk.h

// Julien ROUX
// Heriot Watt University
// File: PAWalk.h
// Adatation of WalkNode.h from Tekkotsu
// 07 September 2005

#ifndef INCLUDED_PAWalk_h_
#define INCLUDED_PAWalk_h_

#include "Behaviors/StateNode.h"
#include "Motion/MotionManager.h"
#include "Motion/WalkMC.h"
#include "Motion/MMAccessor.h"
#include "Events/LocomotionEvent.h"
#include "Events/EventRouter.h"

class PAWalk : public StateNode
{
 public:
 enum WalkMode_t { VelocityWalkMode, DistanceWalkMode };

 public:
 //!constructor
 PAWalk()
 : StateNode("PAWalk"),
 walkid(MotionManager::invalid_MC_ID),
 walkidIsMine(true),
 x(0), y(0), a(0), n(-1),
 walkMode()
 {}

 //!constructor, positive @a yvel is counter-clockwise from above (to
match coordinate system), assumes velocity
 PAWalk(float xvel, float yvel, float avel)
 : StateNode("PAWalk"),
 walkid(MotionManager::invalid_MC_ID),
 walkidIsMine(true),
 x(xvel), y(yvel), a(avel), n(-1),
 walkMode(VelocityWalkMode)
 {}

 //!constructor, positive @a yvel is counter-clockwise from above (to
match coordinate system), assumes distance
 PAWalk(float xvel, float yvel, float avel, int steps)
 : StateNode("PAWalk"),
 walkid(MotionManager::invalid_MC_ID),
 walkidIsMine(true),
 x(xvel), y(yvel), a(avel), n(steps),
 walkMode(DistanceWalkMode)
 {}

 //!constructor, positive @a yvel is counter-clockwise from above (to
match coordinate system), assumes velocity
 PAWalk(const std::string& name, float xvel, float yvel, float avel)
 : StateNode("PAWalk",name),
 walkid(MotionManager::invalid_MC_ID),

Julien Roux – The pursuit ability of a robot ‘pet’

76

 walkidIsMine(true),
 x(xvel), y(yvel), a(avel), n(-1),
 walkMode(VelocityWalkMode)
 {}

 //!destructor, check if we need to call our teardown
 ~PAWalk() {
 if(issetup)
 teardown();
 }

 //! sets the velocity of the walk
 void setDisplacement(float xd, float yd, float ad, int np = -1) {
 storeValues(xd, yd, ad, np, DistanceWalkMode);
 }

 //! sets the velocity of the walk
 void setVelocity(float xvel, float yvel, float avel, int np = -1) {
 storeValues(xvel, yvel, avel, np, VelocityWalkMode);
 }

 //! sets the velocity in x direction (positive is forward)
 void setXVelocity(float xvel) { x=xvel; storeValues(xvel, y, a, n,
VelocityWalkMode); }

 //! returns the velocity in x direction (positive is forward)
 float getXVelocity() { return x; }

 //! sets the velocity in y direction (positive is forward)
 void setYVelocity(float yvel) { y=yvel; storeValues(x, yvel, a, n,
VelocityWalkMode); }

 //! returns the velocity in y direction (positive is forward)
 float getYVelocity() { return y; }

 //! sets the velocity of the turn, positive is counter-clockwise from
above (to match coordinate system)
 void setAVelocity(float avel) { a=avel; storeValues(x, y, avel, n,
VelocityWalkMode); }

 //! returns the velocity of the turn, positive is counter-clockwise
from above (to match coordinate system)
 float getAVelocity() { return a; }

 virtual void DoStart()
 {
 StateNode::DoStart();
 if (walkid != MotionManager::invalid_MC_ID)
 erouter->addListener(this, EventBase::locomotionEGID,
walkid, EventBase::statusETID);
 cout << "PAWalk starts" << endl;
 updateWMC();
 }

 virtual void DoStop()
 {
 erouter->removeListener(this);
 if(walkid!=MotionManager::invalid_MC_ID)
 {
 MMAccessor<WalkMC> walk(walkid);
 walk->setTargetVelocity(0,0,0,0);

Julien Roux – The pursuit ability of a robot ‘pet’

77

 }
 StateNode::DoStop();
 }

 //! receive locomotionEGID status event and throw stateMachineEGID
status event, ie a completion event
 virtual void processEvent(const EventBase& e)
 {
 cout << "PAWalk event" << endl;
 if (e.getGeneratorID() == EventBase::locomotionEGID)
 {
 const LocomotionEvent le = *reinterpret_cast<const
LocomotionEvent*>(&e);
 if (le.x == 0 && le.y == 0 && le.a == 0)
 postCompletionEvent();
 }
 }

 //! removes #walkid if #walkidIsMine
 virtual void teardown()
 {
 if(walkidIsMine) {
 motman->removeMotion(walkid);
 walkid=MotionManager::invalid_MC_ID;
 }
 StateNode::teardown();
 }

 //! use this to force the WalkNode to use a shared WalkMC - set to
MotionManager::invalid_MC_ID to reset to internally generated walk
 virtual void setWalkID(MotionManager::MC_ID id) {
 if(walkidIsMine) {
 motman->removeMotion(walkid);
 walkid=MotionManager::invalid_MC_ID;
 }
 erouter->removeListener(this, EventBase::locomotionEGID);
 walkid=id;
 walkidIsMine=(id==MotionManager::invalid_MC_ID);
 erouter->addListener(this, EventBase::locomotionEGID, walkid,
EventBase::statusETID);
 }

 //! use this to access the WalkMC that the WalkNode is using
 virtual MotionManager::MC_ID getWalkID() { return walkid; }

 //! returns true if #walkid was created (and will be destroyed) by
this WalkNode - false if assigned by setWalkID()
 virtual bool ownsWalkID() { return walkidIsMine; }

protected:
 //! stores the values and if active, calls updateWMC()
 void storeValues(float xp, float yp, float ap, int np, WalkMode_t wmode)
{
 x = xp;
 y = yp;
 a = ap;
 n = np;
 walkMode = wmode;

 if (isActive()) {

Julien Roux – The pursuit ability of a robot ‘pet’

78

 updateWMC();
 }
 }

 //! makes the appropriate calls on the WalkMC
 void updateWMC() {
 if(walkid==MotionManager::invalid_MC_ID) {
 SharedObject<WalkMC> walk;
 MotionManager::MC_ID id = motman->addPersistentMotion(walk);
 setWalkID(id);
 walkidIsMine=true;
 }
 MMAccessor<WalkMC> walk(walkid);
 switch(walkMode) {
 case VelocityWalkMode:
 walk->setTargetVelocity(x,y,a,n);
 break;
 case DistanceWalkMode:
 walk->setTargetDisplacement(x,y,a,n); // WalkMC will calculate
velocities.
 break;
 default:
 std::cout << "Unknown Walk Mode" << std::endl;
 break;
 }
 }

 MotionManager::MC_ID walkid; //!< the current WalkMC
 bool walkidIsMine; //!< true if the walk was created in updateWalk
(instead of assigned externally)
 float x; //!< velocity in x direction (positive is forward), or
distance if #walkMode is DistanceWalkMode
 float y; //!< velocity in y direction (positive is dog's left), or
distance if #walkMode is DistanceWalkMode
 float a; //!< velocity of the turn, positive is counter-clockwise
from above (to match coordinate system), or distance if #walkMode is
DistanceWalkMode
 int n; //!< number of steps (-1 means walk forever)

 WalkMode_t walkMode; //!< the current interpretation of #x, #y, and #a
};

#endif

Julien Roux – The pursuit ability of a robot ‘pet’

79

11.8 Pictures

The robot we used during the development was called Biscuit. Following is a small

portrait gallery.

Figure 20 'Biscuit' and his pink ball

Figure 21 'Biscuit' "eating" the prey

Julien Roux – The pursuit ability of a robot ‘pet’

80

Figure 22 'Biscuit' looking for the prey

Figure 23 The development "environment"

Julien Roux – The pursuit ability of a robot ‘pet’

81

11.9 Poster

