
CAMP-BDI

An approach for Multiagent Systems

Robustness through Capability-aware Agents

Maintaining Plans

Alan White

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

March 2017

Abstract
Rational agent behaviour is frequently achieved through the use of plans, particularly

within the widely used BDI (Belief-Desire-Intention) model for intelligent agents. As

a consequence, preventing or handling failure of planned activity is a vital component

in building robust multiagent systems; this is especially true in realistic environments,

where unpredictable exogenous change during plan execution may threaten intended

activities.

Although reactive approaches can be employed to respond to activity failure through

replanning or plan-repair, failure may have debilitative effects that act to stymie recov-

ery and, potentially, hinder subsequent activity. A further factor is that BDI agents typ-

ically employ deterministic world and plan models, as probabilistic planning methods

are typical intractable in realistically complex environments. However, deterministic

operator preconditions may fail to represent world states which increase the risk of

activity failure.

The primary contribution of this thesis is the algorithmic design of the CAMP-BDI

(Capability Aware, Maintaining Plans) approach; a modification of the BDI reason-

ing cycle which provides agents with beliefs and introspective reasoning to anticipate

increased risk of failure and pro-actively modify intended plans in response.

We define a capability meta-knowledge model, providing information to identify

and address threats to activity success using precondition modelling and quantitative

quality estimation. This also facilitates semantic-independent communication of capa-

bility information for general advertisement and of dependency information - we define

use of the latter, within a structured messaging approach, to extend local agent algo-

rithms towards decentralized, distributed robustness. Finally, we define a policy based

approach for dynamic modification of maintenance behaviour, allowing response to

observations made during runtime and with potential to improve re-usability of agents

in alternate environments.

An implementation of CAMP-BDI is compared against an equivalent reactive sys-

tem through experimentation in multiple perturbation configurations, using a logistics

domain. Our empirical evaluation indicates CAMP-BDI has significant benefit if ac-

tivity failure carries a strong risk of debilitative consequence.

i

Acknowledgements

This thesis represents the outcome of a long, hard journey which would not have been

possible without the help and advice of my primary supervisor, Professor Austin Tate.

In equal measure, I owe a debt of thanks to Dr Stephen Potter and Dr Michael Rovatsos,

my secondary supervisors in 2010-2012, and 2012 onwards respectively. I would also

like to thank my examiners, Dr Ron Petrick and Prof. Michal Pěchouček, for their

invaluable input and suggestions towards improving the quality of this thesis.

On a technical level, I’d like thank Prof. Jomi F. Hubner and Dr. Rafael H. Bor-

dini, for their assistance with understanding the Jason framework during my imple-

mentation work. Although I ultimately opted for an alternate method, Professor Felipe

Meneguzzi provided valuable advice and help regarding the JavaGP planner imple-

mentation used in the Peleus system.

I also acknowledge my former cohort under EADS sponsorship, Dr Erich Zywssig,

and my erstwhile colleagues at EADS Innovation Works during my funding period. It

would also be remiss not to extend my best wishes to everyone in IF 2.35 - past and

present - for putting up with me and my sometimes incoherent whiteboard writings.

My wife Dr. Poay Ngin Lim served, and continues to serve, as a source of help,

advice and support. Last, but by no means least, I’d like to thank my daughter Juno –

an inexhaustible source of both determination and inspiration.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Alan White)

iii

Table of Contents

1 Introduction 1
1.1 Background and Context . 2

1.2 Motivating Example . 3

1.3 Research Objectives . 7

1.4 Hypothesis . 7

1.5 Contributions . 8

1.6 Thesis Structure . 9

2 Motivating Domain 10
2.1 Domain and Environment Properties 10

2.2 Example IPC Domains . 11

2.2.1 Space Domains . 12

2.2.2 Transport Domains . 13

2.3 Example Multiagent Experimentation Domains 15

2.3.1 Tileworld . 15

2.3.2 Truckworld . 16

2.3.3 Pacifica / PRECiS . 16

2.3.4 Blogohar . 18

2.3.5 Robocup Rescue . 19

2.4 The Cargoworld . 20

2.4.1 Perturbation . 22

2.4.2 Entity types . 22

2.5 Summary . 23

3 Agent Systems 25
3.1 Agents and Multiagent Systems . 25

3.1.1 Multiagent Systems Approach 26

iv

3.2 The Belief-Desire-Intention Approach 26

3.2.1 BDI Mental States . 26

3.2.2 Maintenance Goals . 28

3.2.3 The BDI Agent Reasoning Cycle 28

3.2.4 Runtime Planning In BDI Agents 30

3.3 Mental States for Multiagent activity 31

3.4 Conclusion . 34

4 Agent Robustness Strategies 36
4.1 Defining Robustness . 36

4.2 Failure Diagnosis . 37

4.3 Sentinel Monitoring and Exception Handling 40

4.4 Role Filling Approaches . 43

4.5 Replication . 45

4.6 Conclusion . 49

5 Planning 50
5.1 Planning and Plan Execution . 50

5.1.1 Classical Planning . 51

5.1.2 Hierarchical Task Network (HTN) Planning 53

5.2 Multiagent Planning . 55

5.2.1 Private/Public Actions . 57

5.2.2 Partial Global Planning . 57

5.2.3 Generalized PGP and TÆMs 58

5.3 Conclusion . 59

6 Plan Robustness under Uncertainty 61
6.1 Preventing Failure in Uncertain Environments 61

6.1.1 Conformant Planning . 61

6.1.2 Contingent Planning . 63

6.1.3 Markov Decision Processes 64

6.1.4 Continual Planning . 66

6.2 Handling Plan Activity Failure . 68

6.2.1 Reactive Plan Repair and Replanning 68

6.2.2 Plan Execution Monitoring 73

6.2.3 Determinization with Replanning 77

v

6.3 Conclusion . 79

7 Behavioural Design 81
7.1 The Cargoworld environment . 81

7.1.1 Domain Predicates and Operations 81

7.1.2 Failure Sources . 83

7.2 Agents within a Cargoworld MAS 85

7.3 CAMP-BDI Behaviour . 86

7.3.1 Normal Agent Behaviour . 86

7.3.2 Behaviour to prevent Preconditions Failure 88

7.3.3 Behaviour to prevent Non-deterministic Failure 89

7.3.4 Distributed Maintenance Behaviour 90

7.4 Summary . 91

8 CAMP-BDI Supporting Architecture 93
8.1 Mental State Components within the BDI agent Model 93

8.2 Capabilities . 95

8.2.1 Existing Approaches towards Capability Modelling 95

8.2.2 Capability Model . 97

8.2.3 Typology . 98

8.2.4 Matching capabilities to activities 101

8.2.5 Confidence estimation . 105

8.2.6 Calculating Plan Confidence 108

8.3 Maintenance Policies . 114

8.3.1 Contents . 115

8.3.2 Matching to Activities . 116

8.3.3 Merging Policies . 118

8.4 Contracts . 119

8.4.1 CAMP-BDI specific fields 120

8.4.2 Usage and Execution . 121

8.4.3 Contract Policies . 122

8.5 Conclusion . 122

9 The CAMP-BDI Maintenance Algorithm 124
9.1 CAMP-BDI Agent Reasoning Cycle 124

9.2 Maintenance Tasks . 127

vi

9.3 Agenda Formation . 128

9.3.1 Task Consolidation . 132

9.4 Task Handling . 134

9.4.1 Forming Planning Operator Sets From Capabilities 135

9.4.2 The Maintenance Planner Component 137

9.4.3 Acceptable Plan Criteria . 140

9.4.4 Plan Insertion . 141

9.5 Preconditions Task Handling . 143

9.6 Effects Task Handling . 144

9.7 Running Example . 149

9.7.1 Preconditions Maintenance Task handling 150

9.7.2 Effects Maintenance Task handling 151

9.7.3 Effects Maintenance Task consolidation and handling 152

9.7.4 Iterative Scope expansion in Maintenance 153

9.8 Summary . 154

10 Distributed Maintenance 157
10.1 Introduction . 157

10.1.1 Approach . 157

10.1.2 Synchronization and Communication Requirements 158

10.1.3 Reasoning Cycle Methods 159

10.2 Information sources in Distributed Maintenance 160

10.2.1 External Capabilities . 160

10.2.2 Dependency and Obligation Contracts 161

10.2.3 Maintenance Policies . 162

10.2.4 Forming and Updating Contracts 163

10.3 Maintaining Obligations . 171

10.3.1 Obligation Maintenance Cost 172

10.3.2 Maintaining Joint Obligations 173

10.4 Maintaining Plans containing Dependencies 175

10.5 Example Distributed Maintenance Behaviour 180

10.6 Summary . 187

11 Experimental Evaluation 190
11.1 Implementation . 190

11.1.1 Implementation of the Cargoworld Simulator 191

vii

11.1.2 Implementation of Experimental Systems 195

11.2 Experimental Design . 205

11.2.1 Experimental Geographies 206

11.2.2 Key Metrics . 208

11.2.3 Experimental Protocol . 211

11.3 Experimental Parameters . 212

11.4 Summary . 213

12 Experimental Results 214
12.1 Delivery Success Rate . 214

12.2 Average Activity Success Rate . 224

12.3 Average Delivery Cost (Activities per Goal) 228

12.4 Planning Operations Per Goal . 234

12.5 Planning Time Costs . 242

12.6 Messaging Costs . 247

12.7 Discussion . 255

12.7.1 Goal Success Rates and Activity Costs 255

12.7.2 Planning Costs . 257

12.7.3 Messaging Costs . 258

12.7.4 Summary of Results . 259

12.7.5 Applicability of the CAMP-BDI approach 261

12.8 Conclusion . 261

13 Applicability of CAMP-BDI 263
13.1 General applicability . 263

13.2 Space Domains . 264

13.3 Transport Domains . 267

13.4 MAS Disaster Response Domains 271

13.5 Further Industrial Application Domains 273

13.6 Conclusion . 278

14 Conclusion 279
14.1 Contributions . 280

14.2 Discussion . 282

14.2.1 Achievement of Research Aims and Objectives 282

14.2.2 Relationship and dependencies between CAMP-BDI and BDI 287

viii

14.2.3 Requirements and Potential Generalization 290

14.3 Related Work . 292

14.4 Further Work . 297

14.4.1 Asynchronous Maintenance 297

14.4.2 Heterogeneous Planning . 298

14.4.3 Communications Optimizations 298

14.4.4 Execution Context Prediction 299

Appendices 301

A Cargoworld Simulator Screenshots 302
A.1 World A . 303

A.2 World B . 304

B Experimental Results 306
B.1 Average Goal Achievement . 307

B.1.1 World A – Average Goal Achievement 307

B.1.2 World B – Average Goal Achievement 308

B.2 Average Activity Success Rate . 309

B.2.1 World A – Average Activity Success Rate 309

B.2.2 World B – Average Activity Success Rate 310

B.2.3 World A – Differences between CAMP-BDI.Speed and other

Approaches . 311

B.2.4 World B – Differences between CAMP-BDI.Speed and other

Approaches . 312

B.3 Average Delivery Cost . 313

B.3.1 World A – Average Delivery Cost 313

B.3.2 World B – Average Delivery Cost 314

B.3.3 World A – Differences between CAMP-BDI.Speed and other

Approaches . 315

B.3.4 World B – Differences between CAMP-BDI.Speed and other

Approaches . 316

B.3.5 Differences between CAMP-BDI.Quality and other Approaches 317

B.4 Planning Operations Per Goal . 318

B.4.1 World A – Average Planning Operations Per Goal 318

B.4.2 World B – Average Planning Operations Per Goal 319

ix

B.4.3 World A – Differences between CAMP-BDI.Speed and other

Approaches . 320

B.4.4 World B – Differences between CAMP-BDI.Speed and other

Approaches . 321

B.4.5 Differences between CAMP-BDI.Quality and other Approaches 322

B.5 Planning Time Costs . 323

B.5.1 World A – Average Planning Operation Time 323

B.5.2 World B – Average Planning Operation Time 324

B.5.3 World A – Differences between CAMP-BDI.Speed and other

Approaches . 325

B.5.4 World B – Differences between CAMP-BDI.Speed and other

Approaches . 326

B.6 Messaging Costs . 327

B.6.1 World A – Average Messaging Costs 327

B.6.2 World B – Average Messaging Costs 328

B.6.3 World A – Absolute Messaging Costs 329

B.6.4 World B – Absolute Messaging Costs 330

B.6.5 World A – Absolute Message count differences with increas-

ing nrisk . 331

B.6.6 World B – Absolute Message count differences with increasing

nrisk . 332

B.6.7 Messaging Costs including updatedContract 333

B.6.8 Messaging Costs excluding updatedContract 337

C Publications 341

Bibliography 342

x

Chapter 1

Introduction

Intelligent agents are increasingly employed in challenging realistic environments,

such as military, emergency response, aerospace, or power management systems. This

thesis focuses upon Multiagent Systems (MAS) robustness, specifically with regard

to the Belief-Desire-Intention (BDI) model (Rao and Georgeff [1995]). As plans are

important in defining the rational behaviour of intelligent agents (Pollock [1999]), mit-

igation against the failure of plans and planned activity represents an important com-

ponent of agent robustness.

We target realistic environments where successful plan execution may be threat-

ened by exogenous change during execution – contradicting the beliefs under which

plans were formed and leading to activity failure. Existing BDI architectures typically

employ reactive approaches to handle failure, such as replanning. However, activity

failure may risk lasting debilitative consequences – which can hinder reactive mecha-

nisms, hamper subsequent goal achievement, and potentially extend to loss of material

resources – or human life.

This thesis presents the CAMP-BDI approach for plan execution robustness through

proactive plan modification (referred to as maintenance). We contribute algorithms

for performing plan maintenance, combined with a supporting architecture to pro-

vide knowledge for introspective reasoning and a policy mechanism which supports

flexibility through runtime modification of key variables. We extend locally defined

behaviour to the distributed case, using structured communication and provision of

contractual knowledge to allow decentralized maintenance.

1

Chapter 1. Introduction 2

Our experimental evaluation shows CAMP-BDI can offer improved robustness in

environments where failure risks debilitative consequences, by preventing negative

post-failure states that can hinder reactive recovery. These results also show improved

planning and activity costs over reactive methods, with excess absolute costs miti-

gated by improved robustness (i.e. avoiding expenditure on ultimately failed goals).

The maintenance policy mechanism we define also allows further cost mitigation in

practical implementations – expected to employ CAMP-BDI to complement reactive

methods – through tailoring the sensitivity of maintenance for specific agent and/or

activity types.

1.1 Background and Context

This work addresses robustness in MASs formed of BDI agents acting within realistic

environments, in the context of plan execution. Multiagent systems are employed in

realistic domains including aerospace (Šišlák et al. [2010]), military (Hoogendoorn et

al. [2006]) or emergency response (Zhan and Chen [2008]). The inherently componen-

tized nature of a MAS can be ideal in such environments due to supporting techniques

such as a decomposition, reducing the knowledge and capability requirements of indi-

viduals whilst allowing co-ordinated behaviour through virtual organizations such as

teams or holons (Fischer et al. [2003]). However, realistic environments can present

agents with difficult characteristics (Russell and Norvig [2009]) by being dynamic,

inaccessible, or stochastic. These environments may be hostile, where agents risk de-

bilitation from exogenous change or following activity failure.

Planning holds critical importance within BDI agent rationality, making mitigation

against planned activity failure a key aspect of agent robustness. As MASs frequently

require goals be achieved through the coordinated efforts of agent teams, mitigation

must consider distributed plans, especially as individual failure can have reciprocal

impact across a multiagent team - such as a scout helicopter’s failure to warn cohorts

of a threat leading to consequent ambush. Planning often models the environment in

deterministic terms (Meneguzzi et al. [2010]), as resultant problems and plans are typ-

ically easier to understand and visualize (and more tractable) than with probabilistic

approaches (such as Markov decision processes). However, this can only approximate

the complexity of realistic environments; plans will possess hidden probabilistic or

qualitative components, as states deemed not significant enough to represent in opera-

Chapter 1. Introduction 3

tor preconditions can still influence the outcome of execution (McCarthy [1958]).

Toyama and Hager [1997] categorize robustness approaches as ante or post-failure;

the former seeking to resist failure, the latter responding to it. Architectural frame-

works for BDI agents (Bordini and Hübner [2006], dInverno et al. [2000]) frequently

employ the latter for plans, using repair or replanning to recover from failure. Reactive

response can be justified as offering greater certainty and efficiency through occurring

only when failure is definite; proactive/pre-emptive systems may risk false positives

and negatives – performing ultimately unnecessary mitigation activity, or failing to

identify (and prevent) failures.

However, reactive recovery entails failure must occur before any mitigation is per-

formed; in a realistic environment, activity failure may be accompanied by debilita-

tive consequences that increase the difficulty of recovery. In certain domains these

consequences may be severe - extending to potential loss of life (e.g. in military or

emergency response domains). Finally, as realistic domains are continuous, failure

consequences may also hinder subsequent activity and impact the longer term effi-

cacy of the MAS. Existing proactive approaches often involve providing flexibility to

modify or refine plans during execution. Continual planning approach defers planning

decisions until (close to) their execution, but can risk inadvertently stymieing longer

term goal achievement. Conformant or conditional planning attempts to form plans

which prevent failure arising from uncertainty, but require abstraction for tractability

in complex domains – reducing their ability to prevent all failures.

1.2 Motivating Example

We wish to improve robustness in realistic environments which are subject to unpre-

dictable exogenous change and where activity failure risks debilitative consequences.

An example of these properties can be found in Transport domains (Figure 1.1), where

goals are to transport cargo objects between locations. MAS robustness can be viewed

in terms of the number of deliveries performed (system goals achieved) against increas-

ing environmental perturbation (rate of exogenous change). Our approach assumes ex-

ogenous changes are detected by agents and subsequently represented in their Beliefs,

reasoning that event types directly impacting agent activity are likely to be identified

and modelled during system design and domain analysis.

Chapter 1. Introduction 4

Figure 1.1: Example geography; nodes represent locations and connections the bi-

directional roads between them.

For example, Truck1, situated at H, adopts an (intended) goal to deliver specified

cargo to K. This leads to an intention to perform the following plan:

1 Travel to A (through a sub-plan of movements; H→F→E→A)

2 Load cargo object cargo1 at A

3 Travel to K (following route A→B→C→D→K)

4 Unload cargo1 at K.

We are concerned with preventable, anticipatable failure stemming from exoge-

nous change contradicting the beliefs held at the time of (and used for) intention for-

mation. For example, preconditions of planned activities may be violated by change

before execution, such as a landslip blocking E→ A. Alternatively, exogenous change

could increase failure risk without explicitly violating preconditions – such as E→ A

becoming slippery, increasing the risk of Truck1 skidding and crashing on E → A

without preventing it’s use outright.

Failure may have debilitative consequences; for example, if Truck1 crashes on the

slippery E → A it may damage both itself and any cargo being carried. The resulting

post-failure may render recovery more difficult and/or costly, if not impossible; e.g.

if Truck1 requires additional agents to return to the road, or cargo destruction forces

use of some alternative, more distant, cargo resource. Debilitative consequences may

persist and threaten future goals – damage to Truck1 can risk that agent failing future

activities or being unable to act atall.

Chapter 1. Introduction 5

We suggest agents can be embodied with capability meta-knowledge, allowing in-

trospective reasoning to identify where exogenous changes threatens activities within

intended plans. This can allow agents to determine both when to attempt plan modifi-

cation to address that threat, and which modifications are required.

Our prior example described Truck1 suffering movement failure due to E → A

being slippery. Our desired behaviour (depicted in Figure 1.2) is that, when Truck1

becomes aware of the change in road conditions, it employs capability knowledge to

identify an increased risk of failure for travel along E → A. Truck1 then uses that ca-

pability knowledge to guide appropriate plan modifications, forming an alternate route

to avoid E→ A.

Figure 1.2: Example maintenance behaviour. Truck1, currently on road H→ F , detects

slippery conditions on E→ A. It modifies it’s plan to use an alternate route (solid lines),

avoiding the now-slippery (riskier) road used in the original plan (dashed lines).

MASs frequently employ multiagent teams (performing distributed plans), mean-

ing individual agent failures reciprocally impact others in the same team. For example,

a Commander agent can adopt a goal to satisfy a cargo request at K; resulting in a

plan that selects Cargo1 for delivery, and Truck1 as the delivery agent – leading to

subsequent dependency relationships. Failure on Truck1’s part entails failure of Com-

mander’s dependant activity. Robustness approaches must consider failure on both

local and team levels; i.e. if Truck1 cannot prevent or recover from failure, Comman-

der must adapt accordingly.

In a realistic environment, the world is likely to be be highly complex and only

Chapter 1. Introduction 6

partially observable – rendering centralized robustness approaches impractical. In-

deed, environmental complexity is a frequent motivation for employing a MAS (Sycara

[1998]), as it allows a ‘divide and conquer’ approach reflecting the distribution of

knowledge in the environment. A decentralized, distributed approach becomes de-

sirable, allowing system-wide behaviour to be accomplished through structured local

behaviour. We suggest this be accomplished by making agents aware of obligations to,

and dependencies upon, other agents to perform tasks – enabling obligants to commu-

nicate the status of their obligations to dependants, and dependants to use that infor-

mation to identify whether they should maintain their corresponding dependant plan in

response.

An example of this behaviour occurs if Truck1 is unable to find a route to pick up

Cargo1 at A (e.g. if every possible route risks non-deterministic failure). Due to the

obligation accepted from Commander, Truck1 would inform that dependent agent that

it had a reduced chance of success, and had been unable to improve its local plan (i.e.

local maintenance had failed). Commander could then modify it’s dependant local

plan; such as to use a Helicopter agent not constrained by road conditions, or another

Truck in a position to form a less risky route.

This behaviour is intentionally analogous to repair of Hierarchical Task Network

(HTN) plans (Tate [1977]). HTN plan repair can be summarised as escalating (from

the most primitive level) re-refinement of abstract tasks, until a suitable refinement

is found. We view a distributed multiagent team in similar terms, where the plan

associated with an intended goal is analogous to a selected refinement for an abstract

task 1. Our desired system level behaviour is for repair to proceed in a similar manner,

with maintenance responsibility escalating up the hierarchy (from the lowest – i.e.

most specialized – agent) until an agent successfully modifies it’s plan, counteracting

the threat to the distributed intention.

Typical BDI implementations adopt a reactive approach, responding to activity fail-

ure with replanning or plan repair. Our motivation stems from where failure both can

arise from exogenous change after plan formation, and risks debilitative consequences

– hindering the effectiveness of reactive recovery. Agents could, intuitively, use con-

1In this context, selecting an obligant to perform a delegated activity can be viewed as selecting an
agent to refine that task.

Chapter 1. Introduction 7

tinuous replanning – forming a new plan (for the intended goal) after every activity

execution using the most current set of beliefs. However, this risks significant com-

putational cost due to frequent planning operations. Continuous replanning also risks

necessary material or agent resources not being reserved and consequently lost to con-

tention, or increased communications costs if they are; the agent can identify required

resources for the current intended plan, but these risk cancellation with subsequent

revision.

1.3 Research Objectives

The aim of this thesis is to identify and design an approach towards plan execution

robustness for BDI agents, based upon proactive modification of plans to avoid antic-

ipated (risk of) activity failure. This follows our hypothesis (Section 1.4) that activity

failure avoidance can offer robustness benefits, where reactive recovery is hindered by

debilitated states arising as a consequence of failure. Our research objectives were as

follows:

1. To determine knowledge requirements for agents to anticipate where an intended

activity risks failure, following exogenous change.

2. To provide BDI agents with behaviour to anticipate activity failure and avoid

resultant intention failure through proactive plan modification.

3. To provide agent team level behaviour that enables proactive robustness within

the context of distributed plan execution.

4. To show proactive plan modification can improve robustness over reactive ap-

proaches, within environments whose properties befit our motivation.

1.4 Hypothesis

We hypothesized that, in realistic environments where failure risks debilitative conse-

quences, a proactive approach of pre-emptive plan modification can improve robust-

ness over a purely reactive approach.

Drawing from our literature review, we defined robustness as the ability to achieve

Chapter 1. Introduction 8

system goals (i.e. of a hierarchically decomposing, multiagent team) despite environ-

mental perturbation.

Our consideration of pre-emptive behaviour, combined with support of longer term

planning, led to us to form several design hypotheses during our specification and

design:

• Agents can be embodied with capability knowledge to represent both activities

they can perform themselves, and those they can delegate to others.

• The resultant capability model can be used to determine when plan failure is

threatened, and to direct mitigation behaviour.

• Localized behaviour can be extended to perform decentralized, distributed main-

tenance through knowledge-sharing within, and communication of, dependency

contracts.

• Policies – sets of behavioural constraints, applied to sets of agent-capability pairs

– can be used to tailor agent maintenance behaviour during runtime, allowing

adaptation to changing knowledge of the agent and environment.

1.5 Contributions

This thesis contributes the design of the CAMP-BDI (Capability Aware, Maintaining

Plans) approach; an algorithm and supporting architecture for pre-emptive plan modi-

fication to avoid failure, described as an extension to the generic BDI reasoning cycle.

We can divide this contribution into the following parts, each representing a signif-

icant individual elements of our design;

• An algorithm for performing pre-emptive maintenance, based upon modifying

intended plans in response to exogenous change during execution.

• The capability meta-knowledge model, used to represent external capability and

dependency contract information in a multiagent team and facilitate our mainte-

nance algorithm.

• Description of structured messaging behaviour to extend individual agent main-

tenance behaviour into the distributed context of a plan-executing team.

• A policy based mechanism allowing runtime modification of key variables and

constraints used by the algorithm, allowing tailoring of maintenance behaviour

Chapter 1. Introduction 9

and providing a framework for potential extension to support generalization and

agent reuse across different environments.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 discusses existing domains, explaining our motivation and introducing

the Cargoworld domain used for description and evaluation of CAMP-BDI.

Chapter 3 overviews agent system concepts, including the BDI approach; this is

followed by discussion of approaches for agent robustness in Chapter 4.

The importance of plans in guiding BDI behaviour leads to consideration of auto-

mated planning in Chapter 5, to determine knowledge requirements for our intended

behaviour. Chapter 6 considers approaches for plan robustness under uncertainty,

which suggest conceptual mechanisms applicable to our work.

Chapter 7 specifies desired behaviour using the Cargoworld domain. The follow-

ing three chapters detail our primary contribution. Chapter 8 defines the supporting

architecture, employed by the core maintenance algorithms detailed in Chapter 9 –

with Chapter 10 describing extension to perform distributed maintenance.

Chapter 11 and Chapter 12 discuss our evaluation. Chapter 13 considers how

CAMP-BDI may be applied towards domains outside Cargoworld, before Chapter 14
concludes this thesis.

Chapter 2

Motivating Domain

Uhrmacher and Swartout [2003] noted that empirical investigation of a MAS requires a

suitable domain; this chapter discusses a number of domains and environments where

agents – and teams – could benefit from proactive failure mitigation. This leads to the

choice of domain for the current research.

2.1 Domain and Environment Properties

Russell and Norvig [2009] classify the operating environment for a multiagent system

along several axes;

• Accessible (Fully Observable) or Inaccessible (Partially Observable) – in an

accessible environment, the sensory apparatus can perceive the entire world state

when required; conversely, inaccessible environments require agents to preserve

knowledge of changes in world state for use in reasoning.

• Deterministic or Non-deterministic – in a deterministic environment the next

state of the environment is always determined by the current state and the next

action(s) of the agent(s) therein. In non-deterministic environments actions may

have multiple potential outcomes, with exogenous events also potentially alter-

ing world state. Deterministic but inaccessible environments may appear non-

deterministic to agents due to limited visibility of all action outcomes.

• Episodic or Non-episodic – in an episodic environment, agents experience dis-

crete ‘episodes’ of perception followed by action. Action quality depends solely

upon the current episode; any consequences will not persist into future episodes.

• Static or Dynamic – a dynamic environment is one where world state may

change over time, including while an agent reasons. In a static environment,

10

Chapter 2. Motivating Domain 11

conversely, time constraints are not a concern upon agent reasoning. An envi-

ronment is semi-dynamic if it does not change with time, but the performance

score of the agent does (e.g. if slow decision making is penalized).

• Discrete or Continuous – discrete domains contain a limited number of clearly

defined percepts and actions; continuous domain percepts cover continuous ranges

of values.

A realistic domain is inaccessible, non-deterministic (stochastic), non-episodic, dy-

namic and continuous. Our approach targets the non-episodic, non-deterministic and

dynamic characteristics – specifically where exogenous change occurs unpredictably

during plan execution. We assume the domain can be reduced to deterministic terms

in order to employ classical planning; but also that other world states – not significant

enough to represent in deterministic preconditions – can influence activity outcome

(i.e. increasing risk of failure). We also assume non-determinism through exogenous

change and potential debilitative failure consequences (which may not be sufficiently

known to model in deterministic terms), where non-episodic characteristics entail ac-

tivity effects – including any post-failure debilitation – may impact future activities.

2.2 Example IPC Domains

The International Planning Competition (IPC), organized within the International Con-

ference on Automated Planning and Scheduling (ICAPS)1, evaluates the performance

of planners in various domains using metrics including plan generation time, activity

or temporal cost, or achievement of optional (‘soft’) goals. Although IPC domains

are orientated towards testing planners rather than the robustness of plan executing

agents within that domain, they can still be related (Crosby et al. [2014]) to operating

environments of plan-using MASs and may provide useful guidance regarding plan

formation and execution scenarios. This section describes a number of domains from

IPC-4 (Edelkamp et al. [2011]) and IPC-5 (Dimopoulos et al. [2006]), which we infor-

mally classify into Space and Transport types, to consider how extension in a realistic

manner may introduce properties relevant to our motivation.

1http://www.icaps-conference.org

http://www.icaps-conference.org

Chapter 2. Motivating Domain 12

2.2.1 Space Domains

IPC-3 introduced the Satellite (later extended in IPC-4) and Rovers domains (Fox and

Long [2003]), both derived from NASA scenarios. The Satellites domain involves a

‘constellation’ of co-operating satellites with heterogeneous sensors, modelling their

fuel, data capacity and temperature properties. The planner must find an optimal route

for satellites to travel to observation targets, transmit data to earth-bound ground sta-

tions – either directly or via a cohort – within defined time bounds and avoiding over-

heating from direct sunlight. The Rovers domain depicts multiple autonomous rovers

exploring the surface of Mars. Again, the planner must form routes between way-

points to perform appropriate information gathering and to allow (line-of-sight) trans-

mission of resultant data to a lander. An extended metric version introduced power

constraints, where Rovers halt to recharge batteries and must co-ordinate to minimize

overall recharging time.

In both domains, we can envisage plausible extensions to include exogenous change

and debilitation cases where proactive behaviour would hold intuitive benefits – par-

ticularly as (given their location) it would be inherently difficult to send resources and

equipment to repair Satellites or Rovers following post-failure damage. For example,

a Satellite could suffer fuel loss from micro-meteor impact (or have less fuel than ex-

pected due to modelling errors), causing failure of an orbital manoeuvre and leaving

that Satellite at risk of further orbital degradation and destructive re-entry. Reactive

handling would occur after fuel had been expended to the point of failure, poten-

tially leaving that Satellite without sufficient remaining fuel to recover (and no suitable

agents near enough to assist). Proactive behaviour, conversely, could anticipate failure

risk and ensure the satellite refuelled in advance to mitigate that risk.

In another example, a Rover could discover an intended (planned) route is more

difficult than expected by sensing an area of softer sand than believed at route forma-

tion. Reactive failure would occur after reaching that location and failing – potentially

leaving the Rover stranded in soft ground and either expending excessive energy to

escape or depending upon (potentially unavailable) other Rovers to assist. Proactive

robustness mechanisms could modify plans to perform preventative behaviour, such

as by re-routing over harder ground, or recharging to ensure full batteries to (assist)

escape if stuck.

Chapter 2. Motivating Domain 13

2.2.2 Transport Domains

Transport or mobile problem type domains are commonly featured within IPC compe-

titions (Edelkamp et al. [2011]), and identified by Long and Fox [2000] as “a common

feature of planning problems, whether as a central or incidental component”. These

domains can be characterised as concerned with achieving some goal requiring correct

formation and traversal of a route plan (i.e. to arrive at that destination, deliver cargo,

or perform some other activity), and hold interesting properties in terms of both the

factors influencing activity success and the potential consequences of failure.

In the Trucks domain from IPC-5, planners must find a minimal cost plan to de-

liver packages to set locations using actions to move a truck, load a package onto a

truck, unload a package, or deliver a package (i.e. ‘consume’ that package to sat-

isfy a request). Trucks are constrained by their cargo storage space and delivery time

deadlines. The DriverLog domain is similar to Trucks, but introduces an additional

route-finding problem of guiding drivers to appropriate Trucks. This means plan effi-

ciency must also consider the use of Drivers to enable Truck movement (Gregory and

Lindsay [2007]), and suggests obvious similarities to multiagent domains requiring

co-operation between heterogeneous agents.

We can envisage common scenarios for both these domains where proactive be-

haviour – i.e. failure prevention – is beneficial. For example, trucks could accumulate

wear and tear through travel, with accompanying degradation of performance. A reac-

tive approach would only respond once degradation led to failure – but such a scenario

might see debilitation such as mechanical damage from over-fatigue, or skidding then

crashing. These consequences would increase the difficulty of recovery (if not ren-

dering it impossible) and potentially threaten future activity, by rendering that truck

useless until recovered and repaired. In contrast, a proactive approach could identify

the increasing risk from wear and tear (provided this can be sensed or inferred) and –

when a certain threshold is met – modify the plan appropriately to perform repairs or

delegate to an alternate truck.

Other scenarios may be envisaged; such as route modification to avoid roads ren-

dered dangerous by partial flooding or ice. A proactive approach could reduce back-

tracking costs by making earlier changes, compared to reactively responding upon

Chapter 2. Motivating Domain 14

reaching that road and being unable to execute the planned activity (or beginning exe-

cution and failing midway). In DriverLog, this can extend to scenarios where Drivers

cannot reach their assigned Truck in time. A reactive system would only respond

once that Driver had definitively failed to reach the truck; but a proactive system could

invoke compensatory behaviour once it was sufficiently unlikely the Driver would suc-

ceed – allowing earlier response to identify and assign an alternative. This could also

improve the ability to reassign the delayed Driver, if movement was aborted in a more

convenient (central) location for reaching other Trucks.

The Triangle-Tireworld domain (Little and Thibaux [2007]), featured in the prob-

abilistic track of IPC-4, presents an environment where cars move from a start to an

end location along unidirectional roads (Figure 2.1). Each location is associated with

a certain probability of a flat tyre occurring when travelled through; certain locations

hold a spare tyre that may be fitted to the car (extension in IPC-5 added a probability

of failure for fitting a spare) or stored for future use.

Figure 2.1: Triangle-Tileworld, from Little and Thibaux [2007]. Black circles represent

locations with a spare tyre, white locations without, and arrows unidirectional roads.

The planner must account for the possibility of a burst tyre by both travelling

through locations with spares, and loading spares for future use. Although not pre-

emptive behaviour – spare tyres only have utility after a burst tyre results in failure –

we draw interest from the generation of plans which prepare for possible failure by

Chapter 2. Motivating Domain 15

ensuring burst tyres can be replaced. The domain does not consider exogenous change

– for example, if another car can remove spare tyres from locations, modifying the

probability of success for plans formed based upon initial state tyre locations.

2.3 Example Multiagent Experimentation Domains

This section overviews example domains and environments from prior multiagent ex-

perimentation. Such domains may employ varying degrees of abstraction, from the

simplified Tileworld to realistic environments like Pacifica or Robocup Rescue.

2.3.1 Tileworld

The Tileworld domain (Pollack and Ringuette [1990]) presents a grid based environ-

ment, used as an abstract agent testbed (Figure 2.2). Agents hold goals to pick up and

move a set, variable number of tiles into holes in the environment; further constraints

(e.g. shape) may impact the utility of placing a particular tile in a given hole. Tileworld

has been revised over time with more realistic properties – such as resource levels or

multiagent activity (Ephrati et al. [1995])– and to vary in dynamism, uniformity of

tasks and movement speed. Although Hanks et al. [1993b] argue Tileworld is suffi-

ciently extensible to cover a variety of evaluation requirements, Lees [2002] observes

such modification may be overly driven by the specific agent or behaviour being tested

– reducing the applicability and generality of results.

Figure 2.2: Annotated diagram of a Tileworld environment, from Choy et al. [2004].

Chapter 2. Motivating Domain 16

There are numerous potential scenarios where proactive failure avoidance behaviour

could be advantageous in a Tileworld. For example, if holes appear and disappear ran-

domly, proactive behaviour would allow agents to modify intended plans if their cur-

rently intended route risks falling into a newly emerged hole. If agents incurred dam-

age through fatigue – risking further damage through fatigue driven failure – proactiv-

ity can be used to avoid activity by a damaged agent, instead driving that agent to (if

possible) self-repair or delegate the task to another.

2.3.2 Truckworld

Hanks et al. [1993a] define Truckworld as a simulator testbed for reactive planning,

modelling a world composed of locations connected by roads. Agents represent Trucks,

performing transport tasks (similar to the Truck domain in Section 2.2.2) and modelled

at a level of detail that includes their constituent components (i.e. fuel tanks, tyres,

loading arms and cargo bays). Locations are populated by objects of various types

and properties, including tyre chains that can be fitted to aid driving down wet roads,

or bombs which may explode and damage agents in the vicinity. Exogenous events

include weather changes, such as rainstorms altering road conditions; the probability of

such events may be modified based on various factors, such as time of day. Constraints

may be placed upon agent sensory ability – such as limiting perception of sound by

distance (Hanks et al. [1993b]).

The Truckworld presents an arguably more realistic environment than Tileworld,

albeit with a homogenous agent set limited to Truck types. There are obvious cases

where proactive failure mitigation may be of use. For example, rain may render a

road muddy – threatening failure of future travel, and risking agents becoming conse-

quently stuck or damaged. Proactive behaviour can allow earlier adaptation of plans,

potentially avoiding backtracking if the agent only reacted upon reaching that road, or

allowing agents to (plan to) fit chains in advance and reserve suitable resources earlier

(protecting against contention).

2.3.3 Pacifica / PRECiS

Pacifica / PRECiS (Planning, Reactive Execution and Constraint Satisfaction) was cre-

ated as an openly available testbed, offering scenarios within a fictional island geog-

Chapter 2. Motivating Domain 17

raphy (Figure 2.3). Pacifica provides uncertainty and dynamism within a realistic do-

main, with the geographic scale supporting heterogeneous multiagent activity, where

exogenous threats range from insurgent attacks to natural disasters. Pacifica has been

employed in experiments including distributed collaborative planning and scheduling

in NEOs (Non-combatant Evacuation Operations) (Reece et al. [1993]) and multiagent

emergency response (Komenda et al. [2009a]). These involved logistical scheduling

and disaster response tasks, such as evacuating civilians or transporting medical sup-

plies. Failure in plan activities when performing such tasks, if not recovered from, may

entail severe consequences (such as stranding of refugees or failure to resupply field

hospitals) – potentially including threatening human lives.

Figure 2.3: Sample Pacifica / PRECiS environment geography, from Reece et al. [1993]

These scenarios include cases where the situation may be unfolding, with changing

or unknown world state. Plans may be initially formed or selected with incomplete,

incorrect or subsequently contradicted state information2, as it may not be feasible for

2It does not strictly matter whether a state has changed or simply been discovered as different; our
plan robustness focus is concerned with recognizing whether the assumptions under which the plan was
formed were contradicted, and identifying if intended activities are at risk of failure.

Chapter 2. Motivating Domain 18

agents to delay activity until they have absolute certainty regarding the world state.

For example, a road believed passable and safe may subsequently become known as

blocked or dangerous. In the latter case, agents may still use that – still traversable

– road, but risk damage to the agent or their cargo or passengers. Reactive recov-

ery would incur any (potentially lasting) damage from failure, but proactive strategies

would avoid such failure – potentially offering greater flexibility in doing so, if threats

can be identified far enough in advance.

2.3.4 Blogohar

The Blogohar scenario (Figure 2.4) is designed around two human ‘players’; one rep-

resenting a military force combating a violent insurgency, the other a humanitarian

organization seeking to evacuate civilians (Sensoy et al. [2010]). Both must form col-

laborative plans to best achieve their individual goals, and are constrained by policies

derived from real world guidelines (for example, restrictions upon communication be-

tween military and humanitarian organizations).

Figure 2.4: Map of the Blogohar domain for both ‘players’, from Sensoy et al. [2010]

.

As with Pacifica, non-agent antagonists introduce debilitative and unpre-

dictable exogenous change — providing motivation for pre-emptive activity, partic-

ularly as hostile antagonists introduce the possibility of debilitation. These types of

scenario also suggest non-deterministic representation of risk should be considered,

for states not significant enough to represent in precondition terms yet still influenc-

ing the outcome of activities. For example, humanitarian agents could revise plans

upon awareness of nearby insurgent activity, to combat a consequently increased risk

of failure – such as changing route to use safer areas, or requesting military escorts.

Chapter 2. Motivating Domain 19

2.3.5 Robocup Rescue

The Robocup Rescue simulator (Figure 2.5) defines a scenario based upon the Kobe

earthquake of 1995 (deriving from the domain description in Kitano et al. [1999]).

This domain has been employed for investigation into multiagent planning and collab-

oration, including use of Partial Global Planning (Pereira et al. [2011]) and by Siebra

and Tate [2006] to extend the I-X mixed-initiative planning approach (Tate [2001])

through the I-Rescue application. Three types of physical agent are modelled (with

equivalent logical commander agents); Each physical type performs specific types of

task – Fire Brigades extinguish fires, Ambulances evacuate casualties and Police clear

blocked roads.

Figure 2.5: Screenshot of the Robocup Rescue environment during a simulated earth-

quake disaster; from http://www.robocuprescue.org/simleagues.html

The simulator models fire spread, building collapse and both agent and non-agent

(civilians requiring rescue) entity health – providing conditions for generating goal

tasks, and for representing threats to agent capability. Fire and building collapse may

damage agents (although graded loss of capability is not modelled); the latter can also

block roads. Whilst a reactive approach would respond to exogenous events only after

they cause activity failure (potentially damaging the acting agent), a proactive approach

would seek to avoid such failure and damage. This is arguably particularly important

given the relative homogeneity of agent types; if an agent is damaged or destroyed from

failing an activity, the typical response would be to find another instance of the same

http://www.robocuprescue.org/simleagues.html

Chapter 2. Motivating Domain 20

type to perform an equivalent activity. This makes it important to preserve individual

agents, as goals cannot be achieved through structured use of other agent types with

semantically differing abilities3.

Activity failure risk would (be anticipated as) increase with worsening building

conditions or fire spread; agents could compensate by bringing in supporting agents to

tackle severe fires, or re-routing away from buildings at risk of collapse. For example,

a Fire Brigade agent could determine an intended route is blocked, and pre-emptively

dispatch a Police agent to clear it; pre-emption can ensure support requirements are

identified and agents reserved earlier than if only responding to failure upon the Fire

Brigade agent reaching (and failing to use) the blocked road.

2.4 The Cargoworld

We require definition of a suitable environment to provide examples of our desired

behaviour, and as a basis for experimental evaluation. Whilst we have highlighted

existing experimental domains, there are several issues restricting their viability for our

experimentation. Firstly, as a somewhat abstracted environment, we judged extension

of the Tileworld as risking accidental bias (Lees [2002]). More real-world orientated

domains suffer from lack of available modern simulators (such as with Truckworld and

Pacifica), or lacked the configurability required for evaluation – such as to control rates

and probabilities of exogenous change, or for debilitative failure consequences.

Consequently, we define the Cargoworld – embodying a geographical model sim-

ilar to numerous domains (including those surveyed previously), with potential for ex-

ogenous change, and potential for debilitative failure consequences. Cargoworld is a

Transport-style domain deriving from the principle expressed by Tate et al. [1998] that

agents “go places, do things”; we argue this general concept can be abstracted to cover

a multitude of other domains4. System goals are concerned with movement of cargo

from an initial junction to a requesting destination, and require agent co-operation. The

domain features a variety of heterogeneous threats, agent types and avoidance or re-

covery responses – to avoid failure mitigation simply consisting of repeating the same

3The principal planning problem arguably becomes not which activities are required to achieve a
goal, but rather which instances of an agent type are most efficiently located.

4i.e. that in most domains, system activity is formed of processes of preparing for or enabling some
goal-required activity (“go places”), and of actually performing that activity (“do things”).

Chapter 2. Motivating Domain 21

activities using different instances of the same agent types.

Entities in Cargoworld are situated within a bi-directional graph structure, repre-

senting a road network; each node represents a location or junction (Figure 2.6). The

road connecting some junction A to B is given as A→ B 5. The system goal – or top

level goal, referencing its location in a decompositional team-goal hierarchy – is to

transport cargo to a specific destination (request junction), where it can be consumed.

Figure 2.6: An example geography for the Cargoworld

Roads in Cargoworld have several properties, potentially contributing to risk for

activities involving their use;

• Roads are either tarmac or mud, indicating surface composition.

• The road condition may be dry, slippery or flooded; this, in combination with

road surface and type of travelling vehicle, influences the risk of failure when

travelling along that road.

• Roads may be blocked by landslides or toxic due to chemical contamination

following cargo spillage, preventing travel.

It is possible for a road to be (for example) flooded, blocked and toxic - these states are

not mutually exclusive. However, a road can only have one surface composition, and

cannot be (for example) dry and slippery simultaneously.

5A→ B, B← A or B→ A all refer to the same bidirectional connection between A and B. However,
we will use the arrow to indicate direction of travel when referring to a road within the context of agent
movement

Chapter 2. Motivating Domain 22

2.4.1 Perturbation

Environmental perturbation is a key factor in considering robustness; we are concerned

with unpredictable, stochastic domains where exogenous change can impact the like-

lihood of activity success. This leads to a degree of non-determinism; the world state

after a successful activity is determined both by that activities effects and any exoge-

nous changes during execution.

Exogenous change can be characterised as any state change which occurs for a

reason outside of an agent’s planned activity. We define several types of unpredictable

exogenous change;

• Rain can fall on roads, causing transition from dry to slippery and, finally, flooded

states.

• Roads can dry out – transitioning from flooded to slippery and finally dry states.

• windy conditions can arise, increasing risk for flight activities.

• Landslips (or equivalent events) may render roads blocked (impassable).

• The Cargoworld is subject to insurgent activity, which can render junctions dan-

gerous; creating dangerZones at those locations. Agents (except APCs) cannot

successfully act in, or move through, any junction with a dangerZone present.

2.4.2 Entity types

Several types of entity are situated in, and can act within, the Cargoworld; these are

controlled by agents, which represent these physical entities within the MAS. In the

remainder of this thesis, we refer to agents and entities interchangeably due to this

proxy nature. However, it is important to distinguish that damage to a physical entity

does not impair the associated agent; instead, that agent is responsible for representing

and, where possible, handling the consequences of such damage within the context of

planning activity and team relationships. Each entity has a given health state, which

influences activity execution – there is a greater chance of activity failure if the acting

agent is damaged, and a mortally damaged agent cannot perform any activity. Damage

is a potential consequence of activity failure; health state gradually recovers over a

period of inactivity.

Vehicles are entities capable of performing a move activity – travelling from

a start to a destination junction. With the exception of helicopters, movement is con-

Chapter 2. Motivating Domain 23

strained to using roads; blocked, flooded, or – with the exception of an APC – slippery

mud or toxic (contaminated) roads cannot be used for movement. Failure of a move

activity may result in debilitative consequences that leave the acting entity ‘stuck‘ off-

road. Finally, failure of movement when loaded with cargo, or cargo loading or un-

loading, risks destruction of that cargo and spillage (if the cargo is of hazardous type

– e.g. nuclear or chemical waste) rendering roads toxic.

• Trucks are road vehicles which can load or unload cargo, and move along roads;

these represent the basic activities required to transport cargo between junctions.

• Helicopters are able to load and unload cargo, and travel directly between any

two junctions, but can only land or take off from those containing an airport.

Flight activities (takeOff, land, or fly) are threatened by windy conditions.

• Armoured Personnel Carriers (APCs) are able to secure dangerous areas – re-

moving a dangerZone. They are uniquely capable of moving along slippery mud

(with the same risk as for slippery tarmac) or contaminated roads.

• Bulldozers can unblock roads (remove blocked states).

• Hazmats (Hazardous Material handlers) can decontaminate roads (remove toxic

states).

This offers a fairly heterogeneous agent set compared to a domain such as Truckworld.

Entities either achieve the top-level goal of cargo delivery, or facilitate achievement by

others. This gives the MAS more options and flexibility (in both proactive and reactive

failure mitigation) beyond simply selecting an equivalent type agent to perform a task

(i.e. ‘fail-then-retry’). Some agent abilities – particularly movement – achieve the same

goals with different semantics – impacting their preconditions, (side) effects, and the

impact of various world states upon likelihood of success.

2.5 Summary

This chapter described extensions of example domains to show both how exogenous

change can impact plan execution and indicate how failure may have lasting negative

consequences which hinder reactive recovery. We also justified the choice of Car-

goworld as our evaluation domain; an example MAS in this domain is detailed in

Chapter 7, serving as a specification for experimental evaluation.

BDI systems typically employ a reactive approach towards failure mitigation (in

Chapter 2. Motivating Domain 24

the context of plan failure) – what Toyama and Hager [1997] define as post-failure

robustness, rather than ante-failure strategies. In our knowledge, the relative benefits

of proactivity and reactivity within realistic domains have not been directly compared.

Consequently, the existing domains discussed here are limited in their definition and

modelling of failure consequences, due to an assumption of, or desire to study, reactive

strategies.

We do not argue reactive approaches are disadvantageous; indeed, the obvious un-

certainty constraints upon any proactive approach will likely require complementary

reactive handling for where a failure is not anticipated (false negatives) or preventable.

Rather, we suggest the assumption of de-facto reactivity will bias domain definitions

against considering the possibility of irrecoverable failure, as such scenarios may not

be useful for evaluating post-failure recovery. However, we argue debilitative failure

can, and will, exist in real-world scenarios – and represents a valid motivation for our

approach.

Chapter 3

Agent Systems

We contribute an approach for robustness in the context of agent plan execution. This

chapter defines the concept of an agent, detailing the BDI reasoning approach and it’s

extension to a multiagent context – providing a background for our contribution and

discussion of agent robustness approaches in Chapter 4.

3.1 Agents and Multiagent Systems

Intelligent agents, as defined by Wooldridge [1999], are capable of ‘flexible autonomous

action’ through possessing three key characteristics;

• Reactivity: The ability to respond and adjust to changes in the environment.

• Pro-activity: The ability to autonomously adopt goals and perform consequent

goal-directed behaviour - i.e. to ‘take initiative’ in line with the agent’s design

objectives.

• Social ability: The ability to interact with other agents to achieve goals, includ-

ing structured interactions like contract formation and negotiation.

Rationality is a key component of intelligence. van der Hoek and Wooldridge

[2003] define a rational agent as one which acts “in it’s own best interests”; the agent,

given a set of possible outcomes, will direct its behaviour to favour the most desirable

outcome (where the calculation of desirability reflects the agent’s designed purpose).

Rational agents typically receive continuous input from their situated environment, re-

sponding with the selection of goals and the corresponding performance of actions to

affect that environment; they consequently will hold beliefs about the world, goals,

plans, and committed partial plans or intentions for response to external events or in-

ternal goals (Kinny et al. [1992]).

25

Chapter 3. Agent Systems 26

3.1.1 Multiagent Systems Approach

A Multiagent System (MAS) is composed of multiple interacting components (Wooldridge

[2002], where that system’s purpose is achieved through achievement of individual

goals by constituent agents (McArthur et al. [2007]). MASs have been employed

for domains including aerospace (Šišlák et al. [2010]), military (Sokolowski [2003]),

space exploration (Micalizio and Torasso [2008a]), power management (McArthur et

al. [2007], Santofimia et al. [2010]), coalition systems (Allsopp et al. [2002]) and

emergency response (Zhan and Chen [2008]). The latter includes simulation of fire

propagation (Han et al. [2010]), evacuation (Narzisi et al. [2007], Filippoupolitis et al.

[2009]), and disaster response (Schurr and Tambe [2008], Marecki et al. [2009], Wu

et al. [2008]).

Sycara [1998] states several motivations for adopting a MAS approach, including

whether the domain naturally lends itself to a distributed solution, and where a MAS

offers extensibility, flexibility or robustness benefits. Jennings [2000] argues MASs of-

fer significant advantages over ‘traditional’ methods for complex, distributed systems

– particularly in flexibility, as the autonomous nature of intelligent agents makes them

ideal for dynamic environments (Zwitserloot and Pantic [2005]). Hahn et al. [2003]

argue the componentized and modular nature of a MAS improves robustness through

providing abstraction and offering potential dynamic service composition or redun-

dancy – although Kumar and Cohen [2000a] note a requirement for fault tolerance and

recovery techniques specific to the Multiagent paradigm.

3.2 The Belief-Desire-Intention Approach

Our contribution focuses upon the Belief-Desire-Intention (BDI) approach to rational

agency. Derived from theories of human mental reasoning (Bratman [1999]), BDI

has become a de-facto standard for implementing intelligent agents (Wickler et al.

[2007]). Rationality is driven by processes of goal selection, plan identification and

plan execution – the latter being the focus of our contributed robustness behaviour.

3.2.1 BDI Mental States

BDI agent reasoning can be viewed as two parts; deliberation – choosing a goal to

pursue – and means-end reasoning – identifying a plan to achieve that goal – and is

Chapter 3. Agent Systems 27

driven by three mental state components;

• Beliefs; believed knowledge – i.e. about the environment and the agent itself.

• Desires; a set of potentially inconsistent goals, each considered desirable given

current Beliefs.

• Intentions; a consistent set of Desires the agent has committed to pursue – i.e.

what the agent intends to do.

The definition of an intention can be seen to vary within the literature, depending

upon the research focus and potentially the temporal context (i.e. within the reason-

ing cycle) under which intentions are considered. These differences can perhaps be

attributed to the concept expressed by Wooldridge [2002] that, for an agent to behave

rationally, adopting a goal will inherently lead to acting towards that goal – that form-

ing an intention entails commitment to both a goal and to execute some planned set

of activities. The specific definition of intention used within a particular work may

therefore be influenced by the specific aspects of agent reasoning under consideration

(i.e. can be context specific), and may also be further restricted by any assumptions

regarding implementation of practical systems.

Georgeff and Ingrand [1989], for example, define an intention within the Proce-

dural Reasoning System (PRS) – an early BDI framework – as a selected task to be

executed, with the I set as a corresponding hierarchy. The intentions held by an agent

can range from a committed goal (i.e. abstract task) to a specific executable activity,

with the former being refined into the latter through successive reasoning cycles. In

contrast, the BOID architecture (discussed in Section 3.3) is concerned with motiva-

tional sources for goal selection within agents employing BDI reasoning (including

influences from Obligations to others – hence the ‘O’), and consequently views In-

tentions as committed goals. Thangarajah et al. [2002] define intentions as selected

plans, and argue there exists a need for standard formal representations for mental

state concepts of Desires and selected Goals.

This thesis adopts the model of Simari and Parsons [2006], where an Intention

defines both a committed goal and associated plan. As we are concerned with preven-

tative modification, we require our reasoning to be able to consider both the current

plan and – to facilitate reconsideration upon threat to contained activity(s) – the goal

that plan is attempting to achieve. This also serves to state our assumption that if an

Chapter 3. Agent Systems 28

agent intends to perform some planned activity, it has some goal achievement reason

for doing so, and that if an abstract task (goal) is refined to specific activities, the former

can still be determined for (associated with) the latter. Finally, a goal:plan definition

can be seen as a simplification of a further assumption that if intentions do represent

decomposing task hierarchies both the original root goal and the current sequence of

planned activities (i.e. a plan) can be inferred (provided knowledge is retained of the

decomposition of intended tasks into subtasks).

3.2.2 Maintenance Goals

Braubach et al. [2006] define two types of goal driving agent proactivity; to achieve

some state, and to maintain it over a set time or under defined conditions. Duff et

al. [2006] distinguish reactive and proactive types of maintenance goals; the former

requires re-establishment of the goal state if violated, the latter constrain goal and

plan adoption to prevent violation. Reactive maintenance goals can be considered part

of the ‘background’ reasoning under which agents select desires and identify plans,

whilst proactive maintenance goals may motivate adoption of achievement goals to

re-establish violated states.

3.2.3 The BDI Agent Reasoning Cycle

An example of a generic BDI reasoning cycle (Rao and Georgeff [1995]) is given in

Algorithm 1. The reasoning cycle begins with the initialization mental state compo-

nents (i.e. B, D and I), followed by continuous iteration during the agent lifecycle.

The start of each reasoning cycle sees the agent update current Beliefs, including with

percepts of external events perceived at the end of the preceding cycle (represented in

the eventQueue). The optionGenerate uses these updates to identify potential Desires

(options), of which a consistent subset will be used to form Intentions for execution.

Here, B, D and I mental state components are globally accessible and implicitly up-

dated with execution of the constituent functions of the reasoning cycle.

Each Desire represents a potential intention, with a non-conflicting subset selected

by the deliberate function; these are then used to update the agent’s I set. The execute

step can be argued as necessarily vague to allow different implementation specifics. In

general, execute can be summarized as both performing intention refinement processes

and performing executable activities. For a model such as that used by PRS (described

Chapter 3. Agent Systems 29

in Section 3.2.1), where the I set is an effective hierarchy of committed tasks, this can

be seen to result in addition of new intentions corresponding to the refinement of in-

tended abstract tasks, and the execution of atomic intentions where a task corresponds

to a primitive activity. In the case of our adopted representation of an intention as com-

bining a goal and plan, the initial plan can represent an abstract goal-achievement task

– with the plan being refined and having any atomic activities executed (i.e. interleav-

ing planing and execution) during the reasoning cycle.

Algorithm 1: Generic reasoning cycle for a BDI agent (Rao and Georgeff [1995])

initializeState();

while agent is alive do
// Generate potential desires

options← optionGenerator(eventQueue);

// Select desire(s) to pursue

selectedOptions← deliberate(options);

// Form intentions from selected desires

selectedIntention← updateIntentions(selectedOptions);

// Form plans for intentions and execute atomic intentions

execute();

// Update event queue

getNewExternalEvents();

// Identify succeeded intentions

dropSuccessfulAttitudes();

// Identify impossible intentions

dropImpossibleAttitudes();

// Determine intentions/goal elements carried to the next

cycle

postIntentionStatus();

Intentions are progressed over multiple reasoning cycles; agents may interleave in-

tentions depending upon their deliberation strategy. At the end of each reasoning cycle,

sensing is performed to detect changes in the environment and identify the outcome of

activity execution; the current intention set is updated to progress partially executed

plans and remove those completed or now considered impossible.

Chapter 3. Agent Systems 30

3.2.4 Runtime Planning In BDI Agents

Due to reactive time constraints, BDI agent implementations – such as the Procedural

Reasoning System (PRS) (Ingrand et al. [1992]) or Jason framework (Bordini and

Hübner [2006]) – typically employ libraries of plan recipes, mapped to triggering

events and selection conditions. Use of plan libraries has led to criticism that BDI

agents cannot learn and adapt, and are restricted to scenarios envisaged during offline

plan formation. Singh et al. [2010] have suggested an approach for re-use of library

plans through learning new selection conditions for selection based upon historical suc-

cess rates under various execution contexts – although this did not account for where

multiple plans are attempted for the same goal, or automated repair or recovery.

Approaches have investigated integration of runtime planning in agent behaviour,

albeit with constraints upon invocation. CANPLAN (Sardina et al. [2006] – and the

later CANPLAN2 (Sardina and Padgham [2007] – extended Conceptual Agent Notation

(Winikoff et al. [2002]) to define declarative goal constructs, linking event triggered

goals to defined goal states, a program, and failure/unachievability conditions (for de-

commitment) – where that program could be a plan recipe or invocation of a runtime

HTN planner. Silva and Padgham [2005] also defined a framework where plan recipes

can explicitly invoke runtime planning, using the agent plan library to form an HTN

domain representation by mapping plans and goals to refinements and task definitions.

The Peleus system (Meneguzzi and Luck [2008]) similarly allowed the invocation of a

(classical) planner as an explicit activity within plan recipes. All of these approaches

give the programmer, rather than the agent, control over when runtime planning is used

on the basis of controlling computational cost; for example, to avoid the excess of an

agent attempting planning for an intractable goal. This does require the designer to

anticipate scenarios where runtime planning is required – potentially risking the same

disadvantages argued for plan recipes.

Runtime planning offers optimal flexibility for BDI agents, but with an associated

computational cost. The surveyed approaches support it’s viability, at least as a con-

strained special case behaviour – ongoing advances in automated planner optimization

should also improve the practicality of runtime planning. However, exogenous change

may still threaten activities during execution regardless of whether the intended plan

was formed at runtime or implementation time – meaning our motivation holds regard-

Chapter 3. Agent Systems 31

less of the method used to form intended plans.

For our robustness approach, use of runtime planning will offer greatest flexibility –

like invocation of runtime planning in these approaches, our robustness behaviour must

address scenarios not anticipated or predicted during the original plan formation. The

ability to map BDI plan libraries (if existing) to HTN domain concepts, given by Silva

and Padgham [2005], offers a means to support reasoning over whether agents posses

the plans required to meet as-yet unrefined goals (or subgoals within plans). However,

we cannot require runtime planning as an inherent requirement of our approach, as this

could restrict it’s applicability.

3.3 Mental States for Multiagent activity

The BDI approach models behaviour required for the first two properties of intelligence

defined by Wooldridge [1999]; reactivity (reconsideration of intentions and desires in

response to belief changes) and pro-activity (adoption of desires as intentions). How-

ever, with regard to social ability, BDI does not explicitly model multiagent behaviour.

As co-ordinated activity is a key motivator for a MAS approach, this section discusses

the mental state components employed (and, potentially, added) for various multiagent

activity models, which may similarly be employed by our own robustness approach.

These approaches are not necessarily specific to BDI agents, although they may use

similar terminology and concepts to BDI mental states.

Joint Intentions theory (Levesque et al. [1990]) models agent behaviour performing

co-operatively performing joint activity. Joint Intentions (JIs) are shared commitments

to perform an action, modelled using the same primitives as individual commitment –

(mutual and local) beliefs, goals, agents involved and plans. Agents pursue a JI so long

they mutually believe the associated joint goal still holds and is achievable; if this belief

no longer holds, agents adopt goals to inform other team members, re-establishing

mutual belief as part of performing group de-commitment. Mutual beliefs and joint

goals also constrain agent reasoning, to avoid local agent behaviour that would threaten

joint activity success. JI does not address recovery from loss of mutual belief; agents

could respond to decommitment by forming a new joint intention towards (retrying)

the decommitted goal, but this is not explicitly required.

Chapter 3. Agent Systems 32

Joint Responsibilities (JR) theory, by Jennings [1992], extends JI by modelling sep-

arate commitments to goals and plans – allowing the latter to be decommitted whilst

retaining commitment to the former. A responsibility is a commitment to the shared

plan which persists until either the goal is achieved, the plan completes without achiev-

ing the goal, or an activity fails. If a plan is believed no longer suitable by an agent

(i.e. due to failure or exogenous change), JR allows agents to suggest remedial actions

as part of mutual belief maintenance – allowing group commitment to a new plan that

restores mutual belief in achievement of (and avoiding decommitment from) the joint

goal. This permits (and indeed inspires) the proactive robustness behaviour we desire

– where agents modify plans, preserving commitment to an intended goal, rather than

aborting (or inevitably failing) if exogenous change renders that plan non-viable. JR

theory informs our treatment of intentions as combining a goal and associated plan –

allowing the latter to be mutable, and where the former denotes that plan’s purpose.

The communication requirements for both JI and JR may involve introspection to

determine whether plans are viable – whilst decommitment conditions can be specified,

meta-knowledge is likely to be required in order to define conditions where a commit-

ted plan is (believed) unable to achieve the goal. We can form a requirement that in our

approach agents must possess capability meta-knowledge to determine whether activi-

ties within individual or joint plans are threatened. We assume this information is also

shared between agents as part of distributed plan formation and execution.

Planned Team Activities (PTA) by Kinny et al. [1992] again uses a joint activity

model based upon extended local mental state concepts – i.e. joint beliefs, joint plans,

joint goals, and joint intentions (plans committed for execution). Advance reason-

ing over achievable goals and agent-activity assignments is supported by modelling

known skills (executable primitive activities) and pre-formed plan libraries. PTA plans

are acyclic graphs of activities, each corresponding to a required skill – successful ex-

ecution requires finding a path through the graph and generating a set of role-plans

that ensure all activities can (and will) be executed by appropriately skilled agents.

Reactive failure recovery is supported through back-tracking to find alternate paths or

alternate role-plans. PTA’s use of skills emphasises the utility of holding and sharing

capability meta-knowledge when supporting distributed activity.

A similar decoupling of goal from plan as in JR is found in the SharedPlans formal

Chapter 3. Agent Systems 33

model of collaborative planning (Grosz et al. [1999]). SharedPlans characterizes two

types of intention; to achieve some proposition (Int.Th) – i.e. goal – or to perform

some activity (Int.To). The latter type can arise through means-end reasoning for the

former. SharedPlans extends the mental state model of plans (Pollack [1990]) to the

distributed context – holding a plan requires both knowledge of how to perform the

requisite actions and an intention (i.e. Int.To) to do so. The SharedPlan – multiagent

plan – is formed through individual means-end reasoning by agents and may contain

both subsidiary SharedPlans (i.e. multi-level decomposition) or individual agent plans.

Reasoning about plans requires agents hold knowledge regarding primitive activities

(i.e. equivalent to skills in PTA) and plans for decomposed goals. Formation of a full

(complete) SharedPlan from an incomplete SharedPlan requires group belief that a full

plan can be formed; this knowledge requirement can be extended to cover awareness

of both an agent’s own capabilities and those of other team members.

The previous approaches and models are concerned with joint activity, but are not

explicitly defined for BDI agents. BOID (Broersen et al. [2001a]) and B-DOING

(Dignum et al. [2002]) extend BDI mental states to model goal selection under var-

ious motivation sources and constraints. BOID views Intentions as selected goals, with

Desire and Obligation sets respectively internally and externally motivated candidate

goals. BOID agents arbitrate between (external conflicts) and within (internal con-

flicts) their four mental states; e.g. conflict between B and I indicates the latter cannot

be achieved following environmental change (Broersen et al. [2001b]). Agents are

classified by the precedence ordering used to arbitrate internal conflicts – e.g. self-

ish agents prioritize Desires over Obligations, while social agents apply the converse

(Broersen et al. [2002]).

The B-DOING architecture models motivational sources when forming and main-

taining intentions; here, Intentions are committed plans to meet the selected goals

represented in a Goals set. Figure 3.1 depicts the Goal and Intention Maintenance

stages. Goal Maintenance arbitrates between the motivational components of Obliga-

tions, Desires and Norms to form a consistent set of Goals; Intention Maintenance uses

means-end reasoning to form plans according to selected Goals and current Beliefs. In-

tentions may be modified or cancelled to maintain the consistency of committed Goals

– or agents may modify their Goals to avoid dropping an intention they are strongly

committed to. B-DOING models several motivational components in addition to De-

Chapter 3. Agent Systems 34

sires. Norms, applied to either an entire system or group of agents, represent societal

desires and constraints upon behaviours and are an inherent requirement of operat-

ing within that agent society. Obligations, conversely, are formed with other agents

through teamwork (such as during contract formation) and entered into by choice.

Figure 3.1: Goal and Intention Maintenance stages in B-DOING (Dignum et al. [2002])

BOID and B-DOING both model internal and external motivations – i.e. whether

or not an intended goal and associated plan are driven by the agent itself or request by

another. We assume that, at minimum, Obligation information will be available to our

robustness approach. We also assume agents are aware of their dependencies upon

others (neither B-DOING or BOID model mental components to represent dependen-

cies, likely because these are not relevant as motivators for goal adoption), and that

they form contracts to establish dependant-obligant relationships. Our eventual design

assumes contracts are necessary to guard against contention over agent resource in the

types of domain we target, and also that they can facilitate communication of mutual

belief information (by defining delegation relationships).

3.4 Conclusion

This chapter discussed agents and multiagent systems (MASs), focusing upon the

Belief-Desire-Intention (BDI) approach and extension of BDI mental states for dis-

tributed activity. We formed a number of requirements and assumptions:

• We target BDI-based agents due to BDI’s status as a de-facto standard; our ap-

proach should employ BDI mental state concepts and be defined with reference

to the reasoning cycle given by Rao and Georgeff [1995].

Chapter 3. Agent Systems 35

• We address plan execution robustness due to the importance of plans in BDI

rationality.

• Previous work has shown the viability of runtime planning for BDI agents; as

we are concerned with robustness in unforeseen circumstances, it is desirable to

utilize runtime planning for improved flexibility.

• As agents may face computational constraints, we require our approach to not

rely upon specific runtime planning methods.

• Contract formation is assumed necessary to protect against agent resource con-

tention when delegating activity.

• To understand roles and communication responsibilities, agents are assumed to

model their obligations and dependencies for delegated activities.

• We require agents hold beliefs (meta-knowledge) regarding their capabilities,

to allow introspective reasoning and detection of threats to intended plans; this

knowledge is assumed to have a potential additional utility for mutual belief

maintenance – e.g. in Joint Intention (Levesque et al. [1990]) and Joint Respon-

sibilities (Jennings [1992]) theory.

• Our approach should provide behaviour defined in JR theory – i.e. detect and

counteract threats to planned activities, including communication to restore mu-

tual belief in achievement of the relevant joint (intended) goal.

• Agent capability knowledge must cover primitive and composite activities – both

the former (e.g. skills in PTA) and latter (e.g. plan knowledge in SharedPlans)

are relevant in defining how well an agent can achieve goals. This covers both

reasoning about specific, selected and intended plans, and which goals an agent

can achieve (and under what circumstances).

• Distributed plan formation requires agents reason over their ability to delegate

activities; our capability model must be communicable between agents, to sup-

port robustness reasoning where plans involve dependencies.

Chapter 4

Agent Robustness Strategies

MASs have been employed in domains where agents face unpredictable, partially ob-

servable and potentially dangerous environments. As domain difficulty increases, the

risk of failure and value of robustness methods also increase. This section describes a

number of such methods, which address different aspects of MAS robustness.

4.1 Defining Robustness

Burns and Wellings [1990] identify four causes of fault in a real time system – inade-

quate specification, design errors, processor failure, and communication error. Within

the MAS context, Hägg [1997] suggests the latter two represent run-time considera-

tions for designing fault-tolerance approaches. We similarly suggest three classes of

failure which may affect agents; total agent failure (‘death’), failure whilst remaining

able to inform others, and activity failure. For the latter, an activity may complete

execution successfully with different post-effects to those expected; whether this con-

stitutes failure depends on whether the plan goal was to have performed that activity,

or to have achieved a specific state.

Covrigaru and Lindsay [1991] state ‘robustness is required for self-sufficiency’,

arguing agents must be able to adapt and respond to situations beyond those easily

anticipated by a designer. Schillo et al. [2001] define robustness as the ability of a

system to meet ‘safety responsibilities‘ – defined by Wooldridge et al. [1999] as being

to prevent some undesirable condition – despite debilitation or failure. Hahn et al.

[2003] further define robustness as ‘graceful degradation of performance under per-

turbation’ – recognizing that if full recovery is impossible, sub-optimal performance is

36

Chapter 4. Agent Robustness Strategies 37

preferable to total loss of ability. Degradation may be expressed through reduced goal

achievement, or relaxation of constraints (e.g. extending deadlines or removing re-

source restrictions) to still achieve suboptimal versions of original goals. Hägg [1997]

suggests three levels of fault tolerance; full fault tolerance (performance and function-

ality are never significantly degraded), graceful degradation (operations continue with

some loss of functionality or performance) and fail-safe (specific vital functions are

preserved).

Our contribution focuses on plan execution robustness – with our perturbative con-

cern being the rate of exogenous change in the environment, combined with the proba-

bility of debilitative effects from activity failure. Our approach aims to prevent activity

failure on the basis that the latter – post-failure debilitation – can hinder post-hoc re-

covery. Although we can measure the efficacy of our specific approach in terms of

activity success rate, this is not suitable for comparison against reactive approaches

(which do not aim to prevent activity failure, but recover from it). Given the previous,

we will define and measure robustness in terms of (intended) goal achievement rate.

4.2 Failure Diagnosis

Agents may need to diagnose failures to enable recovery. Joint activity, for example,

may fail if team members hold inconsistent beliefs – individuals may view their own

behaviour as correct, yet the outcome may be negative from the perspective of the

team. Determining if and where such inconsistencies lie is therefore necessary for

their resolution.

In Socially Attentive Monitoring (Kaminka and Tambe [1998]), agents use social

diagnosis to diagnose team failures. SAM employs plan recognition to infer the men-

tal state of other agents based upon their (observable) actions, using model-sharing

(Tambe [1996]) – where team agents share operator models, which indicate their co-

horts expected behaviour and infer beliefs – to reduce communication requirements.

Failures are recognized by divergences between beliefs, goals or plans compared to

other team-members; upon detecting divergence in behaviour, the agent will backtrack

through it’s own beliefs to determine the exact difference. SAM does not address sit-

uations where perception is erroneous rather than incomplete – i.e. such as where an

agent’s sensor reports incorrect data.

Chapter 4. Agent Robustness Strategies 38

Model-Based Diagnosis utilises a system model – formed in terms of components,

their interrelations and behaviour – to establish the cause of malfunctions. Roos and

Witteveen [2005] propose an extension to agent-based plan diagnosis. Agent health

states are modelled as an explicit set that can be related to specific failures through

causal rules; the resulting causal diagnosis can be applied to explain observed errors,

and for prediction. However, this approach is single-agent only, and does not consider

failures from errors by other agents. It also does not consider failure response, although

modelling of health states may be useful for reactive recovery.

Micalizio and Torasso [2007b] describe a distributed approach for monitoring and

failure diagnosis of a multiagent plan (MAP) containing joint activities, by extend-

ing a model-based approach. The MAP is modelled in terms of activities, plus their

causal links and precedence constraints. Agents are assumed to co-operate in service

provision – i.e. agent i will provide some service for agent j – and distinguish dif-

ferent types of failure. Primary failure denotes failure of the agent’s own activity;

secondary failures represent consequent failures elsewhere in the MAP – i.e. where

primary failure by i leads to secondary failure of (some set of) j’s activities. This also

distinguishes plan and agent diagnosis; the former is concerned with identifying (pri-

mary or secondary) activity failure, the latter with explaining the source of failures as

some combination of functional faults.

Agents use a Plan Execution Monitoring (PEM) module (Section 6.1.4) to super-

vise activity execution; detecting failure where not all expected effects were achieved

(Micalizio and Torasso [2007a]) – this does not consider additional unexpected effects

as a source of failure and trigger for diagnosis and repair, however. Local activity

failure initiates diagnosis to identify the root cause and relate that failure to the MAP;

identification of secondary failures requires co-operation between members to com-

municate the details of their threatened local activities. Agent level diagnosis aims to

infer possible causes for failure, including identification of agent health state. Plan

diagnosis seeks to determine causal (violated causal links) or fault (sub-optimal health

state) threats to other activities in the MAP.

Eventually, a set of missing goals is formed, indicating those which cannot be

achieved due to the activity failure (of either threat type). In an approach given in Mi-

Chapter 4. Agent Robustness Strategies 39

calizio and Torasso [2009], agents first attempt local recovery – planning to restore

local state to a safe status (including releasing resource locks) such that other agents

are not threatened by the failure, before forming a recovery plan to address the missing

goals. If either phase fails, the agent aborts the plan and informs other team mem-

bers; informing them that the failed agent has released resource locks, and will not

(re)reserve those resources in future. In response, the other agents revise their plans to

account for the MAP changes arising from that agent’s failure.

The approaches surveyed in this section are not strictly defined in BDI terms, but

may be applied for detection of belief or intention inconsistencies between agents in-

volved in joint activity. They may detect the cause where failure has occurred, or pre-

dict it’s occurrence through identifying belief divergences which risk incorrect adop-

tion of intentions (and execution of activities). These approaches do not always define

a response mechanism for detected issues, although resultant information may be use-

ful for other handling mechanisms. Micalizio and Torasso [2007c] do diagnose both

failure and propose a recovery strategy. However, they define failure as failure to

achieve all expected effects – which does not account for exogenous change threaten-

ing subsequent activities, unless it removes a member of that effect set. As a reactive

method, their approach does not consider whether failure risks debilitation and will not

respond if expected effects were achieved but the agent was damaged during execution

(i.e. threatening subsequent activity).

Our robustness approach will assume any failure diagnosis implementations exist

as part of the general agent framework, outwith the BDI reasoning cycle, and can be re-

duced to mechanisms guarding against belief inconsistency. For example, detection of

unexpected effects (as from Micalizio and Torasso [2007c]) can trigger belief updates

and consequent revision of intentions (by our robustness-specific behaviour, or default

BDI reasoning). As we are concerned with plan execution robustness, we regard agent

diagnosis – i.e. detection of component failure, as described by Roos and Witteveen

[2005] – as outside the scope of our approach, although agent health state information

may lie within the Belief set accessible to our approach.

Chapter 4. Agent Robustness Strategies 40

4.3 Sentinel Monitoring and Exception Handling

Hägg [1997] introduces Sentinels; specialized ‘watchdog’ agents that act to prevent

undesirable states occurring or to preserve key functionality. A community of sen-

tinel agents can be employed as a control system layer in a MAS. Sentinels can use a

variety of information sources – communications monitoring, regular ‘heartbeat’ sig-

nals, or direct queries – to evaluate agent performance, detect belief inconsistencies

between agents, and detect (or even anticipate) failure. As sentinels incur computation

and communication costs, it is unrealistic to guard all functionality – instead, the sys-

tem designer must identify critical functionality and specify sentinels accordingly for

graceful degradation. The sentinel concept is a paradigm for implementing oversight

and response, but what the latter entails may be domain specific and is left for the

system designer to define.

A related approach to sentinels is generation and handling of exceptions. Klein

and Dellarocas [1999] define exceptions as generated upon any departure from desired

system behaviour; such as agent failure, communications problems or task execution

issues. A standard approach towards exception handling is to build specific behaviours

into individual agents – the survivalist approach. However, this risks increasingly com-

plex and inflexible agents, with the majority of their behaviour defined for exception

handling and recovery.

Klein et al. [2003] defines the citizen approach which, rather than giving indi-

vidual agents specific handling behaviours, uses an exception handling (EH) service.

The EH service holds knowledge of a set of generic exceptions, defined in terms of

generic state, comparable to specific situations during runtime, and associated with a

set of plan templates for responding to that fault. This serves as domain-independent,

generic response information – removing the need for more specific behaviour to be

provided for each individual. Agents joining the MAS provide the EH service with a

representation of their behaviour, to allow pattern-matching against generic exception

types. Depending upon the implementation, introduction of a new agent may lead the

EH service to generate a sentinel to monitor for occurrence of failure types identified

from the provided behaviour information. This sentinel may also transparently moni-

tor communications of that agent, identifying and correcting corruption (Parsons and

Klein [2004]).

Chapter 4. Agent Robustness Strategies 41

Souchon et al. [2004] define an approach to apply exception handling and propa-

gation concepts from programming languages (such as Java) to a MAS context. Here,

exceptions are either detected internally or – in the case of delegation – communicated

as messages to dependants. Agents are viewed in terms of providing services, with

role agents representing sets of agents which hold the same capability. Role agents

broadcast received service requests to their represented agents, and collect responses

or exceptions to be (respectively) aggregated into a collective response or concerted

exception. Exception handlers are associated with services, agents (i.e. covering all

service exceptions) or roles. Handlers either perform corrective action (e.g. restoring

state or sending partial results), propagate the exception (if it could not be handled),

or retry execution (potentially after acting to modify the execution context). Exception

handling searches for an appropriate handler for an exception; if a local handler cannot

be found, the agent will propagate the exception to any dependant. The search contin-

ues until an exception handler is identified or the top-level agent reached; meaning the

efficacy of this approach will rely upon appropriate provision of handlers.

Shah et al. [2006] describe an exception diagnosis process for market-based open

MASs. Their approach assigns sentinels to agents joining the MAS; the agents are

required to inform their sentinel about their goals, plans and mental state1. A hierar-

chical taxonomy of exceptions is modelled – upon detection of a fault, the diagnostic

process explores this hierarchy to find the specific exception class. Exceptions are

associated with abstract plans, instantiated and executed to confirm the correctness

of that diagnosis. If more than one exception is diagnosed, determining the specific

exception requires executing and considering the results of each possible exception di-

agnosis plans. This approach is concerned solely with diagnosis (using the exception

hierarchy) and does not define recovery mechanisms.

Snyder et al. [2004] describe use of sentinels for failure detection in the Cougaar

agent architecture, where failed agents are replaced with replicas (Section 4.5). Sen-

tinels sit at the top of a monitoring hierarchy (robustness community) partitioned into

node or Java Virtual Machine level monitors (which can restart failed sentinels), and

(below) individual agent level monitors. In an asynchronous agent system, agent fail-

1Although this is justified as a method for agents to preserve autonomy by preventing sentinel intro-
spection into their mental state, we note it still explicitly requires – ‘forces’ – information sharing.

Chapter 4. Agent Robustness Strategies 42

ure is detected through inactivity – requiring a potentially unbounded wait (Fischer et

al. [1985]). Cougaar employs unreliable failure detectors (Chandra and Toueg [1996]),

permitted to diagnose false positive failures, provided that errors will be ultimately de-

tected and corrected. Agent health monitoring is performed through a regular ‘heart-

beat’ signal, passed to sentinels via agent monitors. The wait period for diagnosing

failure is set based upon where the cost of ensuring correct diagnosis exceeds that of

correcting an erroneous one (where the heartbeat arrives after failure diagnosis).

Cakirlar et al. [2008] define an exception handling approach which classifies ex-

ceptions over three levels; plan level (i.e. from activity failure), agent level (including

system errors or unhandled plan exceptions), and finally multi-agent level (failures in

dependencies due to agent level exceptions). Agents dynamically add goals upon de-

tecting an exception; successful identification and execution of a plan for that inserted

goal (through regular agent reasoning) handles that exception. Three types of excep-

tion handling goals are given – each must be defined and explicitly associated with a

given goal;

• exceptional goals, if met, allow resumption of the original plan

• sameAs goals denote an equivalent goal to that met by the now-failed plan

• inverseOf goals ‘roll back’ post-execution failure state

This does entail a specification burden to define handling goals for each possible agent

goal. Goals are attempted in precedence order; if an agent cannot find a plan to achieve

an exceptional goal, it attempts to find a plan for the sameAs and then inverseOf goals

associated with the failed agent goal. If an agent cannot recover from an exception,

that exception is propagated to any dependant.

Sentinel monitoring is primarily a monitoring rather than response mechanism, and

may be considered proactive or reactive depending upon the specific implementation.

However, these approaches reduce agent autonomy by requiring the sharing of men-

tal states with sentinels (through communication or invasive introspection). We have

opted, for sake of generality, to assume any sentinel mechanisms are transparent (e.g.

as in Parsons and Klein [2004]) and that their outcome will – in the BDI reasoning

cycle – be reflected through receipt of Belief update events.

Chapter 4. Agent Robustness Strategies 43

Exceptions signify divergence from desired behaviour, and can facilitate reactive

robustness behaviour – although the work surveyed here has been primarily concerned

with representing and communicating notifications of erroneous behaviour. Cakirlar

et al. [2008] suggest a mechanism for adoption of responsibility within decomposi-

tional teams through propagation of exceptions of decreasing specificity (such as con-

certed exceptions in Souchon et al. [2004]) up the agent hierarchy. Our approach will

require a similar process, with higher level agents in a team responding through lo-

cal robustness behaviour when a lower level obligant is anticipated as unable to meet

their obligation (despite any attempts to resolve issues at their local level). This team-

level behaviour can intuitively be expressed through local agent level exception gen-

eration/handling, as opposed to using – likely infeasible – centralized approaches for

assigning responsibility.

We opt not to utilize exception handlers, as these require a meta-organization (in

the form of role agents) which may restrict the generality of our approach, and risk

being dependant upon the system designer’s anticipation of handler responses for un-

certain, stochastic environments. Additionally, an anticipated future activity failure –

as our proactive approach should address – is potentially less severe than the defini-

tive, current problems typically entailing an exception. Agents may also be required

to arbitrate between multiple anticipated threats, as their ‘time window’ of consider-

ation would ideally extend beyond the narrow immediacy of detected failures. Our

approach should allow the anticipation of multiple potential threats to planned activi-

ties, and provide agents with autonomy to prioritize their robustness response(s).

4.4 Role Filling Approaches

The behaviour expected of an agent can be defined by the roles it holds (Trzebiatowski

and Miinch [2001])2. The organization of a MAS can be designed in terms of agent

roles (required to achieve the system goal), their inter-relationships, and the conditions

(such as capability constraints) for mapping roles to agents (Xu et al. [2007]). Role

based approaches to robustness are concerned with reconfiguring agent-role assign-

ments when an agent is no longer suitable for, or capable of, it’s current role – such as

following debilitation.

2Roles themselves can be considered analogous to social concepts such as norms

Chapter 4. Agent Robustness Strategies 44

The Organizational Model for Adaptive Complex Systems (OMACS) by DeLoach

et al. [2007] combines a centralized monitor agent with a role-filling approach, where

a MAS of heterogeneous agents is defined in terms of goals and roles to be filled.

Domain specific functions are used by OMACS to score the quality of an individual

agent’s capabilities and it’s performance within given role. Reorganization of agent-

role assignments is triggered by any event impacting (adding, failing or achieving)

goals or agents (influencing quality of possessed capabilities), with a hill-climbing

algorithm used to find the optimal set of agent-role assignments (based upon the qual-

ity scoring functions). A single Organizational Master (OM), equivalent to a central-

ized sentinel, performs this process. The OM requires total organizational knowledge,

which – combined with it’s singleton nature – does risk it becoming a central point

of failure. OMACS relies upon fixed roles and utility functions – role-assignments

can be modified, but not actual roles; for example, there is no possibility of splitting

the responsibilities of an unmet role into new separate, individually assignable ones.

Additionally, OMACS does not handle scenarios where there are insufficient agent

resources to fulfil all roles.

Preisler and Renz [2012] propose another role-assignment approach, again based

upon agent capabilities. Where an agent is no longer capable of it’s assigned role – but

other agents are – a role-swapping process allows exchanging of role assignments. A

decentralized approach is employed, as multiple role swaps between agent pairs may

be required to ensure all roles are filled. The general robustness of the system is char-

acterised through the redundancy rate; i.e. the number of agents with the capability to

perform a particular role. A higher redundancy rate entails more agents can potentially

assume a role, and a greater chance of successful reconfiguration (e.g. a 10% rate for

a role indicates one tenth of system agents can fill it). However, this approach again

somewhat limits flexibility by treating roles as immutable.

Role-assignment approaches act to ensure a pre-specified (role-defined) organiza-

tion exists; they may be considered proactive or reactive depending upon the triggering

mechanism for re-organization (such as whether performed upon agent failure, or upon

anticipating suboptimal performance). The actual robustness effect depends upon both

the accuracy of role-assignment (correct assignment of roles to appropriate agents),

and the organizational structure itself. These approaches will not detect or correct

structural weaknesses in the MAS organization – such as central points of failure – or

Chapter 4. Agent Robustness Strategies 45

if insufficient agents exist to fill all defined roles. This contrasts with the flexibility we

seek through proactive plan modification – planned activities that require delegation

also inherently define execution roles that must be filled by some obligant.

A method is required to assess the utility of an agent for a given role – such as

quantitative scoring functions in OMACS (DeLoach et al. [2007]) or constraints re-

quiring possession of specific capabilities (Xu et al. [2007]). This corresponds to our

earlier requirement for agents to possess capability meta-knowledge to introspectively

reason over plan activities. Qualitative estimation (e.g. in OMACS) can indicate not

just whether agents can perform some assigned task – whether a role assignment or

delegated activity – but to what level of quality. We require our capability model (i.e.

to be used by our contributed approach) to include similar qualitative estimation – if

granular estimation is impossible, this can be abstracted to a boolean indicating capa-

bility possession.

4.5 Replication

One common, robustness approach for software systems is to provide redundancy,

allowing replacement of failed components with equivalents. This introduces costs in

providing redundant resource, and in analysing and determining how to provide those

resources within cost constraints. Redundant backups may be warm – brought online

and synchronized with the last known state after failure of the original component – or

hot – kept constantly synchronized.

Within agent systems, replication of agents can be used both for redundancy and

performance improvement (i.e. parallelization). Deters [2001] describe an approach

towards the latter in the form of the DICE multiagent framework, whilst observing that

replication can also potentially improve fault tolerance. Replica groups are formed

from a number of identically capable agents, or replicates; allowing redundancy and

parallel processing or load-balancing. In transparent replication, service users are un-

aware of duplication within the replicate group – i.e. perceiving it as a single agent

(resembling holons, defined by Schillo and Fischer [2003]). It can be difficult to iden-

tify replication requirements for dynamic, large scale systems in advance (Guessoum

et al. [2005]) – the logical nature of agents can allow dynamic replication, where both

identifying requirements for, and instantiation of, replicates are performed at runtime.

Chapter 4. Agent Robustness Strategies 46

In their work, Deters [2001] note that memory and computational resource constrain

scalability where, respectively, replicated agents are reactive (only act in response to

direct messages) or proactive (i.e. in terms of autonomous goal adoption, as with BDI).

Guerraoui and Schiper [1997] describe two replication techniques, with potential

for hybrid combinations. In primary backup replication, a single primary replica re-

ceives and handles client invocations. Other replicas are backups; the primary replica

forwards requests and responses between client agent and backup replicas. For active

replication, there is no centralized controller (i.e. no primary replica); client requests

are sent to all replicas, with the client waiting until either (depending on the specific

approach) it receives the first or all responses. In the active replication strategies, the

failure of any replica is transparent to a client; in the primary backup case, the client

is aware of failure of the primary replica, due to the resultant promotion of a backup

replica into the primary role.

Fedoruk and Deters [2002] describe replication as a robustness mechanism for

MASs. Replication may be either heterogeneous – replicates perform the same tasks,

but may vary in functional semantics – or homogeneous – replicates share identical

codebases, but risk sharing code faults. In both cases, creation of a replicate requires

activity to ensure consistent internal state with the replicated agent; this may be more

difficult in the heterogeneous case, if semantic differences lead to differences in data

requirements or representation. Proxies may transparently manage replica groups; re-

dundant replicates can be held in a dormant mode (potentially using a hot backup strat-

egy) and reactivated to compensate for replicate failure or to manage increased load.

Their experimentation observed that replica groups did incur a communications cost

overhead from proxy duplication when forwarding messages to and from replicates,

but concluded this cost was not excessive.

Kumar and Cohen [2000b] describe an approach considering teams of middle, or

broker, agents – these perform tasks including routing requests and responses (i.e. akin

to proxies), serving as service advertisers, or locating capable agents. In their Adaptive

Agent Architecture (AAA) approach, teams of middle agents hold a Joint Intention (JI)

to ensure broker functions are provided to some set of user agents. If connection is

lost between some team member and it’s user agents, the JI stimulates the other broker

team members to (attempt to) connect to the user agents that were being served. Bro-

Chapter 4. Agent Robustness Strategies 47

ker functionality will be consequently restored to user agents following an individual

broker failure, provided at least one member of the broker team remains functional.

This does risk computational or messaging overload on broker agents, if assuming the

responsibilities of a large number of debilitated cohorts. The JI may also be extended

to require a set number of brokers in the system at all times; upon loss of a broker

team-member, and if below that threshold, the remaining team-members attempt to

find another AAA agent – which can start a new replacement broker (assuming the

required infrastructure support exists).

Snyder et al. [2004] describe robustness within the Cougaar architecture, which

detects agent failure using sentinels. Failure requires the agent be replaced with a

replica; agents maintain collections of backup replicas using either an active or pas-

sive strategy. Active replication entails replica(s) state being synchronized with the

individual every time a task is performed, reducing the time to bring that replica on-

line. The active strategy is ideal for scenarios with high failure rates or tight time con-

straints upon recovery, but carries significant resource cost as the original agent must

synchronize replicas immediately after every activity. Passive replication uses check-

pointing, where the entire system state is periodically persisted to non-volatile storage.

Agent failure is addressed through restarting that agent (effectively re-initializing it)

and restoring mental state using the last stored checkpoint. Additional communication

may be performed to reconcile state inconsistencies between agents – for example,

where a partially executed delegated task has state changes not recorded in the last

checkpoint. As unreliable failure detectors are used to detect failure, incorrect replica-

tion cases (from incorrect failure diagnosis) must be detected and corrected.

Guessoum et al. [2005] define an approach for dynamic replication based upon

criticality. They focus upon the macro organization of the system which emerges

dynamically at runtime and cannot be anticipated in advance (i.e. to specify replica

groups). Under their approach, the agents to replicate (and how many times) are de-

termined based upon a combination of their criticality and available system resources.

Criticality derives from the volume and type of messages sent between agents, indi-

cating the dependencies upon that agent. Agents involved in more messaging activity

are judged as more critical – i.e. more system agents would be impacted by their loss.

Replication is performed by sentinels in response to agent failure, or as a preventative

measure (to create redundancy or provide additional load handling). One issue is that,

Chapter 4. Agent Robustness Strategies 48

particularly if revising the macro-organization graph at short intervals, criticality may

not correlate with messaging – for example, where an agent is prioritizing performing

a critical task ahead of messaging.

A dynamic replication approach is also suggested by de Luna Almeida et al. [2007],

who define criticality based upon the current plans of agents. Plans are modelled as

directed acyclic (AND/OR) graphs. Constituent activities have their criticality scored

through (a designer specified) absolute criticality function, which does not account

for the plans of other agents; this considers elements including the number of alter-

nate agents capable of that activity, resource requirements or further domain specific

factors. Relative criticality is also calculated for activities, this time considering other

agent’s plans, based upon the value their results hold for the system as a whole. Overall

plan criticality is calculated using the criticality of constituent activities. Determina-

tion of which set of agents to replicate is viewed as an optimization problem, solved

by identifying the set of replicated agents offering greatest global utility. Global utility

is calculated by combining individual replica utilities (determined by criticality of the

replicated agent combined with the probability of it failing). It is worth noting this ap-

proach fundamentally relies upon the criticality functions resulting in optimal replica

allocations – placing corresponding requirements upon analysis and specification by

the designer.

Replication can be proactive – by providing redundancy – or reactive – to replace

failed agents; it is also not solely robustness-centric, and may be employed to improve

performance through local balancing or parallelization (Deters [2001]). Replication

may complement role filling approaches – e.g. replicating agents to fill unoccupied

roles – and is similarly concerned with preserving the meta-organization for the overall

MAS, rather than ensuring correct individual behaviour or maximizing goal achieve-

ment. Redundancy is often constrained by resource availability; the replication ap-

proaches discussed here often focus upon dynamic provision (including replacement)

of agents to avoid the cost of (potentially unused) anticipatory provision. We opt to

assume replication or redundancy in the agent system exists at an organization level,

and will be transparent to the BDI reasoning cycle our approach focuses upon. We

have required agents to hold knowledge regarding their capabilities – this information

could also be employed by targeted replication.

Chapter 4. Agent Robustness Strategies 49

4.6 Conclusion

This chapter discussed a number of definitions for robustness. Drawing from Hägg

[1997], and through considering our focus upon avoiding plan (and activity) failure,

we opted to define robustness as maximizing goal achievement under perturbation.

A variety of approaches towards robustness were also described, some of which ad-

dress different aspects to our plan-centric contribution – allowing us to form assump-

tions regarding aspects of agent operations we specifically do not address3. These also

suggested mechanisms for adoption of responsibility for, or communicative require-

ments of, robustness in distributed systems.

We formed the following assumptions and requirements;

• The efficacy of our approach is to be measured through goal achievement rate

under perturbation; the latter defined as the rate of exogenous change.

• Our own approach as is assumed to lie within a general ‘ecosystem’ of robust-

ness methods; we restrict our focus to intended plan execution within the BDI

reasoning cycle.

• Approaches concerned with meta-organizational correctness, or handling sen-

sory or communication corruption, are assumed as outside the scope of our con-

sideration.

• Agent teams are assumed decompositional and hierarchical; we require an ap-

proach similar to exception propagation mechanisms to propagate responsibility

when threats to delegated activities cannot be addressed by obligants.

• Propagation of responsiblity requires aggregation of threats, where appropriate.

• Dynamic, goal-duration organizations arise from dependency relationships formed

for distributed plan execution; our approach must consider both obligant and de-

pendant roles within activity delegation.

• The cost of capability specification, both in boolean and qualitative terms, is

assumed to be partially justified through the utility of such information in other

robustness approaches.

3We do not assume existing methods guarantee perfect efficacy – only that their effectiveness lies
outside the scope of our contribution.

Chapter 5

Planning

Plans are critical in rational, goal-orientated behaviour. Although our approach is con-

cerned with plan execution, the information required to detect and address threats to

existing planned activities will likely mirror that required to select activities during

plan formation – this chapter discusses plan representation and formation, before the

following chapter considers methods for handling potential activity failures stemming

from environmental uncertainty.

5.1 Planning and Plan Execution

A plan is a set of steps that, when scheduled according to ordering constraints and

performed within a given initial state, achieve a particular goal. Figure 5.1 depicts

a generalized automated planning process, based around use of a deterministic world

model given by system ∑, where the next state is determined by the activities executed

and (if applicable) exogenous changes. The Planner produces a Plan based on some

initial state, objective (goal) and world model, which is scheduled and executed by

the Controller. The Controller observes activity outcomes and, in the case of online

planning, informs the Planner of Execution Status to allow plan revisal. Although the

simplest goal specification is a set of states, others are possible; i.e. avoiding particular

states, performing specific tasks, or optimizing some value (Nau [2007]).

Plan operators represent activities possible in the domain; typically defining pre-

conditions and effect sets – i.e. state constraints required to be met before, and state

changes resulting from, successful execution. The qualification problem (McCarthy

[1958]) states that, in a realistically complex environment, it is impossible to enumer-

50

Chapter 5. Planning 51

Figure 5.1: Generalized automated planning process from Nau et al. [2004]; ∑ repre-

sents a (necessarily abstracted) deterministic model of the world.

ate all state combinations that may prevent success – and that doing so would over-

constrain an operator to the point of unusability. In practical terms, preconditions

define – selected based on some degree of significance – states required to execute an

activity without guaranteed failure.

Determining the sequence of activities required – the planning problem – is sepa-

rate from the scheduling problem of determining when to execute each activity. Planned

activities may execute to completion without (detected) error but not achieve their

stated effects, if change can also occur through environmental events or the actions

of other entities. The following sections overview classical planning and hierarchical

planning approaches, in order to examine different types of plan structure and the in-

formation employed. We also describe multiagent planning approaches to consider the

additional information required to reason over delegated activities.

5.1.1 Classical Planning

Classical planning (plan formation) assumes a deterministic, static and finite domain,

with fixed goals and an implicit notion of time. Although classical planning is regarded

as domain independent, these assumptions restrict the set of plausible domains (Nau

[2007]). A deterministic state model consists of some finite set of activities A, finite

set of states S (where a state is some set of propositions defining the condition of

Chapter 5. Planning 52

the world), and a state transition function f . A Discrete Control Problem (DCP), as

defined by Bonet and Geffner [2001a], solved by finding the activities to move from

initial state s0 to a goal state G, is modelled through the following:

• The state space S – the possible world states

• Initial state s0 ∈ S

• Activities A(s)⊆ A, which can be performed in each s ∈ S

• A deterministic transition function f (s,a) defining the effect of executing a∈ A(s)

in s ∈ S (i.e. giving post-execution state s′)

• A function c(a,s)> 0 giving the cost of performing a in s, employed to identify

optimal solutions

• A set G of goal states, where G 6= /0 and G⊆ S

A DCP solution is an activity sequence a0, . . . ,an – i.e. a plan – that, when exe-

cuted, results in the state sequence s0,s1, . . . ,sn,sn+1 where G ⊆ sn+1. This requires ai

be performable in si (ai ∈ A(si)), with si+1 representing the outcome of executing ai in

si (given by f (si,ai)). An optimal solution achieves G with minimal cost (
n

∑
i=0

c(si,ai)).

Planning is essentially a search problem, where the planner traverses the search

space to find a plan executable in s0 and ending with achievement of G (Hendler et

al. [1990]). For example, state space search views the set of possible spaces as a

directed graph; each node represents a world state, with directional arcs between state

nodes representing the outcomes of performing particular activities in that state. A

plan represents a path – with actions defined by the traversed arcs – from root node s0

to the leaf node achieving G.

The Stanford Research Institute Problem Solver (STRIPS) (Fikes and Nilsson [1971])

has been widely used as a standard representation for classical planning problems.

STRIPS defines a planning problem P = 〈 F,O, I,G 〉, where:

• F is a set of boolean variables

• I gives the initial state (i.e. s0)

• G is the goal state (i.e. sG)

• O is the set of operators (i.e. A)

We focus on the information used to select activities during plan formation. Each

o ∈ O defines an activity type in terms of a signature and three sets of atoms from F :

• Preconditions Pre(a); required true to execute a

Chapter 5. Planning 53

• Add effects Add(a); added following execution of a

• Delete effects Del(a); removed following execution of a

McDermott et al. [1998] defines the Planning Domain Descriptor Language (PDDL),

which extends a STRIPS-like formalism with support for type definitions (i.e. for

world objects or to constrain operator parameters). Unlike STRIPS, PDDL opera-

tors can have negative preconditions or effects – respectively requiring a condition be

false, or causing it to be not true. Both preconditions and effects can have quantifiers

(expressed numerical conditions); effects may be conditional, i.e. depend upon ex-

ecution context. Later extensions of PDDL support numeric fluent values (Fox and

Long [2003]), allowing definition of plan metrics (e.g. to minimize cost or execution

time), and for durative effects in discrete (at the start, end or throughout execution) or

continuous form (e.g. gradually decreasing fuel during execution).

One issue with classical planning is time complexity; Bylander [1994] state form-

ing an optimal plan using STRIPS operators is NP-complete. Heuristic techniques can

improve common-case performance, albeit with potential inefficiencies for worst-case

scenarios. Heuristic functions estimate the (minimum cost) distance to the goal from a

given state (‘scoring’ desirability of potential expansions), which is then used to arbi-

trate between search options. Heuristics should be admissable – i.e. never overestimate

distance from the current search node to the goal (Pearl [1984]) – to generate optimal

plans.

A* pathfinding employs a domain specific heuristic, favouring movement to loca-

tions with lowest Manhattan distance to the destination. Domain-independent heuris-

tics solve a relaxed version of the problem to identify a lower bound cost estimate for

the unrelaxed domain; for example, Fast-Forward (FF) (Hoffmann [2001]) and Metric-

FF (Hoffmann [2003]) form the relaxed domain by removing operator delete effects

(Bonet and Geffner [2001b] employ a similar relaxation).

5.1.2 Hierarchical Task Network (HTN) Planning

Hierarchical Task Network (HTN) planning (Tate [1977]) is a domain configurable

planning method – i.e. using domain specific information to guide planning (Kandiyil

and Gao [2012]). HTN planners offer speed improvements over classical planners

through encoding domain-specific standard procedures as methods. This restricts the

Chapter 5. Planning 54

planning search space and captures procedural knowledge (Sohrabi et al. [2009]) – but

requires discovery and encoding of such knowledge.

Like classical planning, HTN planning represents activities as deterministic state

transitions (Nau et al. [2004]), with world states defined as sets of atoms – but rather

than achieve goal states, HTN planners aim to perform tasks. Erol et al. [1994] define

a goal task in the form achieve[l] (for some literal l); a solution is a primitive task net-

work with constraints influencing ordering and scheduling (i.e. a partial order plan),

resolvable to a total order plan, and formed through iterative decomposition. Nau et al.

[2004] define an HTN planning problem P = 〈 s0,w,O,M〉:
• s0 is the initial state

• w is the initial task network, to be refined to a set of primitive tasks

• O is a set of operators, M a set of methods (also referred to as expansions or

refinements), forming the domain D = (O,M)

• A solution to P is one that performs all tasks in w

M defines known (predefined) task decompositions. Each m ∈ M can be described

by m = 〈name(m), task(m),subtasks(m),constr(m)〉:
• name(m) defines a signature n(x1, . . . ,xk); n is a unique method symbol and

x1, . . . ,xk define variables which may appear in m

• task(m) is the non-primitive task decomposed by m

• A task network is a pair w = 〈U,C 〉:

– U defines which subtasks (subtasks(m)) need to be performed

– C defines constraints (constr(m)) upon U , such as for ordering, variable

instantiation, or defining literals required true before or after

A task t(r1, . . . ,rk) is primitive if t corresponds to an operator, and ground if all

terms r are ground. Similarly, a task network is ground if all tasks within ({tu u∈ U})
are ground. HTN planning algorithms use continuous selection and application of

refinement methods (Fig 5.2) to replace (decompose) every non-primitive task network

in a problem with a primitive task network; these primitive tasks can then be scheduled

and performed, with a plan being a sequence σ of ground primitive tasks. The resultant

plans are decompositional task hierarchies.

Chapter 5. Planning 55

Figure 5.2: Example of possible task decompositions, based upon Erol et al. [1994],

showing two possible refinements for the task to Go from X to Y .

The first true HTN planner, NOAH (Nets Of Action Hierarchy) (Sacerdoti

[1975]), committed to an abstract solution at the top level of the task hierarchy before

progressively decomposing successive levels. NONLIN (Tate [1977]) added the ability

to backtrack at all levels of planning; ‘retracing’ steps to consider alternate decomposi-

tions following a faulty choice or inability to find a solution. NONLIN was succeeded

by O-Plan (Tate et al. [1999]) and subsequently I-X (Tate [2001]), which supported

mixed-initiative planning – allowing use of human expert domain knowledge to add

constraints to the planning task and guide automated planning at key points.

These planners are notable for their practical use – the Optimum-AIV planner, based

on NONLIN and O-Plan, was used by the European Space Agency to provide auto-

mated planning support for spacecraft production (Drabble et al. [1997]). I-X has

also been used in domains including military coalitions (Allsopp et al. [2002]), small

army unit co-ordination (Tate et al. [2000]), disaster response/rescue (Siebra and Tate

[2006]) and non-combatant evacuation (Wickler et al. [2006]). The Simple Hierarchi-

cal Ordered Planner (SHOP) by Nau et al. [1999] and it’s successor, SHOP2 (Nau et al.

[2003]) represent further examples of HTN planners with widespread practical applica-

tion; including within domains such as evacuation planning, terrorist threat evaluation,

UAV control and manufacturing (Nau et al. [2005]).

5.2 Multiagent Planning

Distributed planning occurs when multiple agents participate in planning and/or plan

execution. Cox et al. [2005] defines multiagent plan as a tuple 〈 A,E,CL,CC,NC 〉;

• A is a set of activities to be executed

• E are precedence links, establishing ordering constraints between activities

• CL are causal links, describing where activity effects provide a state required by

another’s preconditions

Chapter 5. Planning 56

• CC and NC contain concurrency or non-concurrency constraints.

Each agent forms or holds a plan P for a task, and identifies the required A by

decomposing the root task into subtasks. The resultant A contains non-decomposable

(primitive) tasks; i.e. leaf tasks that can be scheduled (respecting constraints in E, CC

and NC) and executed – with CL information of use in supporting reactive plan repair.

Durfee [2001] describes distributed plan formation as a 5-step process, subse-

quently generalized by de Weerdt and Clement [2009];

1. Allocate goals to agent

2. Refine goals into subtasks

3. Schedule subtasks by adding resource allocation and timing steps

4. Communicate planning choices (of prior steps) and resolve any conflicts

5. Execute the plans

Distributed plans may be formed using a centralized or distributed approach; the

former may offer better plans by employing centralized global knowledge (including

use within heuristic functions), but risks becoming intractable due to the state-space

increase arising from reasoning over a large set of agents and associated activities (Jon-

sson and Rovatsos [2011], Nissim and Brafman [2012]), or infeasible due to the entire

processing burden of planning being placed upon a single agent (Nissim and Brafman

[2014]). A further disadvantage is that the centralized planner’s assignment of activi-

ties may impair individual agent autonomy, compared to allowing individuals to form

local plans (in a distributed planning process). Distributed planning and execution is

likely to be employed in complex and realistic environments, with agents using local

(specialised) knowledge to contribute parts of the distributed plan; this may also po-

tentially improve efficiency through parallelization (Ephrati and Rosenschein [1997]).

The following section discusses some specific approaches for distributed plan for-

mation. These approaches inform the capability meta-knowledge required for our ro-

bustness reasoning with regard to multiagent plans.

Chapter 5. Planning 57

5.2.1 Private/Public Actions

Brafman and Domshlak [2008] describe an approach for MAP using a public/private

action1 concept. Atoms are private or public – a private atom is neither required as a

precondition for, nor an effect of, any actions of another agent. The set of agent actions

is partitioned into private/internal and public action sets – public actions have precon-

ditions or effects containing public atoms, and consequently will require co-ordination.

This partitioning is used to form the agent-interaction graph IGΠ (similar to a causal

graph defined in Brafman and Domshlak [2006]). IGΠ shows agent relationships in

terms of their action’s abilities to supply or destroy states required by preconditions of

others, indicating coupling in the domain; they show worst case complexity of plan-

ning as associated with the degree of inter-agent activity coupling. It is assumed loose

coupling is a natural property of a MAS, where ‘substantially autonomous’ agents

execute more internal actions than coupled public ones.

Nissim et al. [2010] implement the MAP algorithm CSP+Planning, which splits

planning into public and private aspects. The public aspect is expressed as a Dis-

tributed Constraint Satisfaction Problem (DCSP), solved by finding a minimal length

sequence of public actions; this solution ensures all public atom preconditions are met

and the goal is achieved. The private aspect is performed by individual agents using a

local planner (FF by Hoffmann [2001]). That planner will identify sequences of inter-

nal actions, executed between public actions to establish private precondition atoms.

This provides local consistency for the public action plan, ensuring private and public

precondition atoms hold for the public actions.

5.2.2 Partial Global Planning

Partial Global Planning (PGP) is a framework for co-coordinating distributed problem

solving, focused upon scheduling (Durfee and Lesser [1991]). PGP adopts the prin-

ciple of ‘co-ordination through local reasoning’, where plan information sharing be-

tween agents during plan formation and execution allows co-ordination to arise from

local behaviour. Agents use shared information on their local plans to form Partial

Global plans – these represent the holding agent’s knowledge of the collective plan-

1Although we primarily use ‘activity’ in this thesis, ‘action’ is employed where necessary to main-
tain consistency with Brafman and Domshlak [2008] or if used by others employing or extending a
public/private action model

Chapter 5. Planning 58

ning process for a given goal, and indicate which agents should be informed of the

results of local plan execution. PGP changes may trigger local plan changes to ac-

count for co-ordination requirements (Decker and Lesser [1992]). The exchange of

PGPs, combined with proposal based negotiation to resolve conflicts, allows grad-

ual convergence upon a shared plan. PGP has optimal performance and non-optimal

but adequate performance in dynamic environments. It offers coordinated behaviour

through designed local behaviour of agents; showing neither centralized control nor

total global knowledge are essential for distributed planning.

5.2.3 Generalized PGP and TÆMs

PGP was designed around sensor systems formed of homogeneous agents (Durfee and

Lesser [1987]); Generalized Partial Global Planning (GPGP) views agent coordination

as a distributed search of a dynamically evolving goal tree (Lesser et al. [2004]). GPGP

aims to maximise overall quality attained by agent groups, accrued by achieving high

level goals within time constraints – higher degrees of coordination lead to better over-

all quality and shorter execution time. GPGP was extended by SHAC (SHared Activity

Coordination), which separated modelling and implementation of coordination mech-

anisms from the planning problem and algorithm (Clement and Barrett [2003]).

Task structures in GPGP are modelled using the TÆMS (Task Analysis, Environment

Modelling, Simulation) language (Decker and Lesser [1993]). TÆMS represents task-

subtask (or goal to sub-goal) decompositions, similar to HTN representations (Vincent

et al. [2000]), but annotates a continuous quality accumulation function (qaf) rather

than AND/OR types. The qaf function defines task quality through combining quality

of associated sub-tasks; for example, q min defines the quality as minimum associated

subtask quality – equivalent to an AND relationship. Alternatively, q max is equiva-

lent to an OR relationship, defining quality as the maximum of an associated individual

subtask (Lesser et al. [2004]). TÆMS also models enables and facilitates relationships

(plus converse equivalents) between tasks, defining ordering constraints. Tasks have

durations and optional deadline constraints, which can be employed towards calculat-

ing their quality.

Each system goal has an associated TÆMS tree, indicating alternative methods

(disjunctive decompositions) of achieving that goal; the qaf score can be used in select-

Chapter 5. Planning 59

ing between multiple options. Agents use a TÆMS representation (initially) of their

local activities; this evolves to include the activities (and resultant task relationships)

of other agents upon receipt of information from them. The representation provides a

partial global model of activities in the system (partial, as it will almost certainly only

capture a subset of the global task tree). Coordination requires agents identify which

sub-goals to pursue, when, and with what degree of effort; more than one agent may

be assigned to a particular leaf node in the task structure.

5.3 Conclusion

This chapter covered automated planning in both a local and multiagent context. Plan-

ning and later modification both intuitively involve reasoning over the appropriateness

of activities for some expected execution context, and identification (or formation) of

causal link relationships. We formed the following assumptions and requirements:

• We assume use of deterministic plans, with activities modelled as state transi-

tions.

• We do not assume or require a specific approach for plan generation in inten-

tion formation or our robustness behaviour, beyond noting heuristic and HTN

approaches can improve the speed and viability of runtime planning for such.

• Our capability meta-knowledge model requires information equivalent to a STRIPS

operator, to anticipate precondition violation and estimate the execution context

for subsequent activities – similar to as used in plan formation.

• We require our capability model to provide quantitative estimation of activity

quality, which can be applied to counteract the qualification problem – i.e. to

indicate where preconditions hold yet activity success is not certain.

• Our capability model should also allow reasoning over whether as-yet undecom-

posed goals or subgoals can be achieved; this requires modelling similar to that

of HTN refinements.

• An aggregation approach similar to that of TÆMS’ qaf is required for qualitative

estimation where capabilities represent plan options.

• To cover multiagent plans, our capability meta-knowledge model must represent

capabilities accessible via dependencies upon others.

Chapter 5. Planning 60

• We assume contracts arise from activity delegation; these must convey sufficient

information to allow introspective reasoning about that activity by the dependant,

similar to information sharing during multiagent plan formation.

• A decentralized robustness approach is necessary due to excessive knowledge

and communication requirements for centralized approaches in realistic domains

– we require co-ordination through local reasoning, as expressed by Durfee and

Lesser [1991] for PGP.

Chapter 6

Plan Robustness under Uncertainty

Our contribution is motivated by the risk of activity failure – and associated debilitative

consequences – due to exogenous change in realistic domains. This chapter discusses

approaches for preventing or recovering from plan activity failure.

6.1 Preventing Failure in Uncertain Environments

This section focuses upon approaches to avoid plan activity failure in uncertain envi-

ronments – whether by attempting to handle all possibilities within the formed plan, or

using mechanisms that defer commitment to specific activities until execution.

6.1.1 Conformant Planning

Smith and Weld [1998] define conformant planning as finding a linear plan (activ-

ity sequence) to achieve a goal regardless of world state – i.e. covering both uncer-

tainty over activity outcome and lack of sensory ability. Rather than attempting to

resolve uncertainty through sensing, the planner seeks to ‘force’ the world into a cer-

tain state. The planner must account for any possible outcome (including side-effects)

modelled in the operator specifications, and form plans applicable for any possible ini-

tial state. Palacios and Geffner [2006] describe an example conformant plan, where a

robot in a n width grid is assured to reach the rightmost side by performing n moves

right. Although we regard conformant planning as primarily concerned with managing

uncertainty, this approach can improve robustness through avoiding the plan failures

stemming from such - and thus aiding goal achievement by plan-executing agents.

61

Chapter 6. Plan Robustness under Uncertainty 62

Conformant planning can be modelled by extending the DCP model (Section 5.1.1)

to reason over the space of possible belief states; where the initial state is no longer

assumed known and activity outcomes may be non-deterministic. The initial state s0

is extended to cover a set S0 of possible initial states; f (a,s) is similarly replaced by

F(a,s), which maps to a set of possible effects of a (i.e. s′ ∈ F(a,s)). A solution to

a conformant planning problem is a plan that achieves, with certainty, the goal for any

s ∈ S0 and for any possible F(a,s).

As conformant planning considers a multitude of possible states, it is significantly

more difficult than classical planning – Turner [2002] show conformant planning as

∑
P
3 -complete for plans of polynomially-bounded length, dropping to ∑

P
2 -complete if

activities are deterministic and executable. Son et al. [2005] suggest one approach

for reducing complexity to NP-complete by approximating a single initial state using

0-approximation (Baral and Son [1997]) to determine initial state beliefs based upon

where a given state is constantly true (or false) in all possible initial states (beliefs only

true in some initial state possibilities are treated as unknown). However, this approach

is unable to capture non-trivial disjunctive inference (Son and Tu [2006]).

Palacios and Geffner [2006] describe a method for solving some non-trivial con-

formant problems through forming equivalent classical problems, to be solved by a

classical planner. Atoms are introduced to represent conditional beliefs; L / X rep-

resents that if X holds, then (given certain invariants) L must hold (X can represent a

disjunction, e.g. if X1 ∨ . . .∨ Xn ⊂ L and Xn ⊂ L, L holds). This allows the plan-

ner, given knowledge of Xi, to conclude whether L holds. Their approach is, however,

not applicable to all conformant problems and assumes activities are deterministic –

meaning uncertainty must lie only in the initial state – excluding where environmental

uncertainty includes exogenous change during plan execution.

The increased possible state space arising from exogenous change during execu-

tion significantly complicates conformant planning, and – combined with the general

complexity of such planning approaches – likely renders this type of approach infeasi-

ble for failure avoidance in realistically complex environments. One further risk is that

it may simply be impossible to form a conformant plan in certain domains; to extend

the earlier example of Palacios and Geffner [2006], a robot may ensure it is rightmost

by executing n moves right on an n width grid – but this is not practical if moving right

Chapter 6. Plan Robustness under Uncertainty 63

too many times risks damage from hitting a boundary wall.

6.1.2 Contingent Planning

Contingent or conditional planning handles uncertainty and partial observability by

inserting conditional branches into the plan. Decisions on which branch to execute

are deferred until execution, after any sensing activity, to employ more accurate infor-

mation than available at planning time. Bonet and Geffner [2000] define contingent

planning as a non-deterministic control problem. A solution (a contingent plan) is a

graph where nodes equate to some belief state b, arcs denote the state transition for

a performed in b (a(b)), and each node has a successor bo
a corresponding to the be-

liefs resulting from a(b) – where a path can be found to achieve G, accounting for

uncertainty through sensing activities and selection of conditional branches.

In one example, Cassandra (Pryor and Collins [1996]), forms partial-order plans

including distinct information gathering activities. Cassandra distinguishes precondi-

tions for validity and conditions for selection; defining when an activity is possible

versus when it is necessary. Exogenous events are assumed not to occur; sources of

uncertainty are also assumed as known.

A balance has to be struck regarding plan branches – too few restrict flexibility, but

too many risk execution time being dominated by branching and sensing. Dearden et

al. [2002] implemented a utility function to determine branch placement based upon

(probabilistically estimated) likely failure points. Albore et al. [2007] observe contin-

gent plans risk exponential growth with the number of possible observations (sensed

effects) following activity execution. They partially address this issue using successive

relaxations to a conditional problem to form a conformant and then classical problem,

but solely determines the next activity to perform rather than forming an entire plan

– meaning this is not viable if advance identification and reservation of resources is

required.

Conditional planning allows a degree of fault prevention to be built into plans;

but the extent of that robustness depends upon sufficient branch coverage for possible

failure cases. A further issue arises if enumerating all conditions is intractable, or

where the planner lacks this knowledge.

Chapter 6. Plan Robustness under Uncertainty 64

6.1.3 Markov Decision Processes

Markov Decision Processes (MDPs) model activity in stochastic domains, and can

be used to form policies guiding agent behaviour. An MDP can be modelled as

〈 S,A,P,R,C,γ 〉, where;

• S defines the state space – a finite set of possible states

• A gives the (finite) set of activities

• P gives a transition probability P(s,a,s′)→R indicating the likelihood of reach-

ing state s′ by executing a in state s; these represent the Markov Assumption that

the next state derives solely from s and a

• R is a reward function R(s)→ R, giving the utility for being in s

• C is a cost function C(a,s)→ R indicating the cost of performing a in s1

• γ is a discount function γ→[0:1]

An MDP solution is a policy π, where π(s)→ a gives the optimal activity a to

be executed in state s. Policies are generated using a function defining the utility of

performing a in s; V (s,a) = R(s)−C(s,a). The history h gives the sequence of activ-

ities executed prior to s through following π, allowing determination of the policies’

cumulative value;

V (h|π) = ∑
i≥ 0

γ
iR(si)−C(si,π(si))

A solution to an MDP is an optimal policy, i.e. giving maximum utility over all other

possible policies. When translating a classical planning problem into an MDP rep-

resentation, goal and non-goal states can be given non-zero and zero rewards respec-

tively. The discount function γ reduces rewards associated with later states, bounding

the maximum total activity cost for following π.

MDPs assume complete knowledge – that the world is fully observable and states

known. This assumption is removed by Partially Observable MDPs (POMDPS), which

reason over observations rather than states. Observations indicate current state; O de-

fines a finite set of observations, and Pa(o|s) the probability of observing o ∈ O when

state s is reached from activity a. Decision making uses the history of previous ob-

servations to form a probability map, allowing the actual state to be inferred and a

solvable MDP defined.
1In some formalizations, an MDP definition may have only an R or C function determining utility;

we have opted to define both in line with Nau et al. [2004]

Chapter 6. Plan Robustness under Uncertainty 65

Boutilier [1996] suggests a method for Multiagent MDP (MMDP) based planning.

He suggests that, given a common reward function, agents will form the same individ-

ual policies. Co-ordination can be reduced to be only being required where agents have

multiple optimal joint activities in a given state, and is viewed as an n-player game aim-

ing to converge on a Nash equilibrium – such that all agents select the same, optimal,

joint activity. Convergence may be achieved through use of conventions – manually

specified or identified through reinforcement learning – to identify the policies of in-

volved agents. This simplifies planning, as agents only need to consider a subset of

co-ordination ‘games’ rather than compute a global coordination policy covering the

whole MMDP. However, their assumption of full observability – of agents involved in

a problem and their possible activities – may not be feasible for realistic environments.

While policies can offer optimal behaviour, complexity issues render identifying

them intractable as state space increases. This is exacerbated for POMDPs, where state

space is further expanded due to the probabilistic nature of observations. In contrast,

Schut et al. [2002] show BDI agents are able to handle domains that are relatively

simple yet intractable for MDPs, and with approximate performance to MDP (albeit

depending on the time costs of runtime planning).

Attempts to improve MDP tractability typically involve abstraction – simplifying

state spaces at cost of policy optimality (Boutilier and Dearden [1994]) – or deter-

minization to employ classical planning within the policy generation process. Guestrin

et al. [2001] developed an approach using factored MDPs – representing the MDP as

a dynamic Bayesian Graph – for multiagent planning; they suggest this approach re-

duces computational complexity to tree-graph width (of a co-ordination graph used for

inter-agent negotiation) from the exponential complexity of MDP approaches. The Re-

TrASE (Regressing Trajectories for Approximate State Evaluation) MDP solver uses

determinization to support state space aggregation, and was shown to have superior

performance to leading planners on several IPPC (International Probabilistic Planning

Competition) domains, although incomplete Probabalistic PDDL support prevented

evaluation in all domains (Kolobov et al. [2009]).

Work has sought to reconcile both MDP and BDI approaches. Simari and Parsons

[2006] suggest mapping between policies and intended plans, extracting the latter by

Chapter 6. Plan Robustness under Uncertainty 66

projecting future activities selected through a policy (assuming the maximum probabil-

ity state transition occurs). They also present a converse method for forming policies

from existing deterministic plans, for where the state search space is too large for MDP

solution. Pereira et al. [2008] further extend this with an approach to form determinis-

tic plans from offline-formed POMDP policies.

Aside from tractability issues, MDP approaches risk transition probability infor-

mation being unavailable or impractical to learn. MDP specifications are also non-

intuitive, restricting their practical usability. Meneguzzi et al. [2011] suggest a method

to map more intelligible HTN domains onto MDPs – although this defines probabilities

based upon state presence within operator preconditions, rather than probabilities in

the environment. We argue MDP approaches are unlikely to be feasible in the complex

realistic environments our contribution targets. Although tractability issues associated

with MDP and POMDP approaches can potentially be addressed with abstraction or

approximation techniques, we assume the degree of abstraction required for a realis-

tic, complex domain would overly compromise the optimality of any generated policy,

making the outcome no more ideal than deterministic planning (if not worse).

6.1.4 Continual Planning

Continual planning treats plan revision as a continual process by interleaving planning,

execution and monitoring. In the most extreme case this extends to reactive or dynamic

planning, where only a single next activity to execute is determined in each given in-

stant. For example, Schoppers [1987] describes synthesis of universal plans that define

conditional rules for selecting which activity a robot should perform for any given sit-

uation. This resembles the use of MDP Policies, with similar difficulties stemming

from enumerating all possible states (in universal plans) or the cost of determining the

next activity after every execution.

desJardins et al. [1999] suggest agents employ continual planning in dynamic and

partially observable environments, where time constraints prevent formation of a com-

plete plan, or where goals may change over time. Intended plans can be incrementally

extended during execution, potentially including sensory activity, until the intended

goal is achieved, invalid or impossible. For example, Pellier et al. [2014] suggest an

approach based upon Moving Target Search (MTS) algorithms. MTS algorithms are

Chapter 6. Plan Robustness under Uncertainty 67

employed in domains such as where an agent follows some moving entity – requiring

constant plan modification to account for the target’s unpredictable movement.

A typical approach is to define plans containing abstract activities or subgoals,

refined during execution; such as within the Procedural Reasoning System (PRS) (In-

grand et al. [1992]) and Jason (Bordini and Hübner [2006]) agent framework. These

systems ultimately use hierarchical plan structures; the initial plan is an upper ‘layer’

of abstract steps, with specific decomposition during execution (and using more current

knowledge). Continual planning approaches risk shorter term refinements introducing

effects that inadvertently stymie the longer term goal; Clement and Durfee [1999] state

any abstract plan must still be specific enough to avoid (the majority of) conflicts be-

tween refinements. A secondary risk is the loss of necessary resources to contention,

due to failing to identify and reserve them in advance.

Brenner and Nebel [2009] present an approach postponing ‘unknown’ parts of the

planning operation, allowing execution to begin without a complete plan. Their Multi-

agent Planning Language (MAPL) models the presence or absence of knowledge; op-

erator definitions can represent knowledge requirement preconditions and the knowl-

edge gathering effects of sensing activities. Active information gathering – planned

sensing – allows planning to be resumed once required information is known. The

postponement of planning decisions does risk agents being caught in computational or

logical ‘dead-ends’; they argue the alternative is failing to act entirely or facing (com-

putationally intractable) contingent planning to cover all possible circumstances. Their

continual planning algorithm iterates through three phases; (re)planning for goals from

the current state, executing plans, and perceiving world state changes.

MAPL defines Assertions – representing goals or composite activities that cannot

be currently refined, combined with replanning conditions2 that define knowledge re-

quired to perform that refinement. This allows the planner to both form plans with

abstract future activities, and plan to gather the information required to refine them.

Plan monitoring is used to determine if the plan has become obsolete due to the effects

of an assertion expansion or world state changes; appropriate plan repair or replanning

can then be employed using current knowledge.

2In this context, ‘replanning’ refers to the performance of further planning options to refine that
assertion.

Chapter 6. Plan Robustness under Uncertainty 68

Continual planning risks shorter-term decisions stymieing the longer term goal;

including failure to identify and secure required resources. This can be partially mit-

igated against in approaches such as used by the Jason BDI framework (Bordini and

Hübner [2006]). Jason agents use libraries of pre-defined plan recipes, which can in-

clude subgoals which are only refined upon execution based upon the agent’s beliefs

at that time. Such approaches allow resource reservation by intermixing specific and

abstract activities within intended plans; our robustness approach should should allow

reasoning over as-yet undecomposed composite activities or subgoals, particularly as

use of this type of plan model within Jason evidences it’s viability.

6.2 Handling Plan Activity Failure

It is unlikely to be feasible or tractable to form plans that entirely prevent failure in

realistically complex and uncertain environments. This leads to a likely requirement

for agents to handle plan failure; this section describes several recovery techniques.

6.2.1 Reactive Plan Repair and Replanning

Activity failure can mean preconditions of subsequent activities in the same plan are

no longer met, or that goal states are not established as expected. In the literature, the

term ‘replanning’ has varied meaning and usage. Talamadupula et al. [2013] defines

replanning as restart to cover generation of an entirely new plan from the point of

failure, and replanning to reduce computation as a minimal modification of an existing

plan. For simplicity, we use replanning to refer to the former, and plan repair for the

latter – reflecting terminology used by Fox et al. [2006] and van der Krogt and de

Weerdt [2004]. van der Krogt and de Weerdt [2004] describe plan repair as having

two aspects, refinement and unrefinement, corresponding to addition (plan extension)

or removal of activities – where only the former applies to replanning. In our BDI

context, we use replanning to refer to formation of a new plani for a goali in a post-

failure state, and repair as modification of an existing plani.

According to Fox et al. [2006], plan repair offers greater efficiency and stability

in terms of information retention than replanning. Greater stability reduces both un-

necessary reservation of resource (i.e. those released from use following total replan-

Chapter 6. Plan Robustness under Uncertainty 69

ning) and the overhead for communicating information regarding plan modifications

(Komenda et al. [2012]). However, Nebel and Koehler [1992] argue that experimental

results showing superior computational efficiency for plan repair do not hold in the-

oretical worst case scenarios, if there is an explicit goal to retain a maximum part of

the original plan. Selection between plan repair or replanning approaches to cover dis-

tributed intentions may be driven by considering responsiveness (time spent to modify

or replan) against communications costs (increasing inversely to stability).

Plan causal structure information describes causal links between planned activity,

denoting where effects of some activity contribute states required by preconditions of

some subsequent plan activity – allowing distinction between side-effects and those

relevant to ongoing execution (states may have multiple contributors, i.e. be estab-

lished by multiple activities). Reece and Tate [1994] describe use of this information

to synthesize protection monitors, which detect where required causal effects have not

been established following activity execution (and no alternate contributor activities

exist) – allowing invocation of repair. A parallel causal structure represents causal

links established by prior activity and required by future activity, and is used to avoid

or address interference with preserved parts during plan repair.

Drabble et al. [1997] describe an approach for plan repair within O-Plan (Tate et

al. [1999]), where two tables store causal link information. The Table Of Multiple

Effects (TOME) records the effects of activities, which may occur at the start or end

of execution. The Goal Structure Table (GOST) records causal dependencies between

activities. Finally, the TOME and GOST Manager (TGM) invokes plan repair where a

causal link does not hold. Failure of an activity to establish an effect does not neces-

sarily require repair, if multiple contributors exist (Tate [1977]).

Their repair algorithm is specified in three parts. First, ‘necking’ the plan estab-

lishes where the last activities completed and inserts a neck point – a dummy activity

denoting the insertion point for repairs. This also identifies activities scheduled for

next execution; the execution fringe. If repair was triggered by activity failure, miss-

ing effects required by casual links are identified using the GOST; if no alternative

contributors exist, a restorative plan is generated and inserted after the neck point.

Alternatively, if planning was triggered by exogenous change, a world event activity

representing that change is inserted into the plan after the last executed activity. That

Chapter 6. Plan Robustness under Uncertainty 70

change is consequently represented in the TOME, allowing – with the GOST – de-

termination of any impact and repair requirements. Even if the plan is not affected,

persistence of that event within the TOME allows detection of any subsequent impact.

If a repair plan is required, the end of the world event activity serves as the neck point.

van der Krogt and de Weerdt [2005] suggest an approach utilizing individual plan

repair to form multiagent plans between self-interested agents. Here, agents plan for

a particular individual goal, delegating sub-tasks they cannot achieve locally using a

blackboard-style auction (and requiring agents to share their capabilities). Plan repair

is used to adapt local plans, followed by necessary auctions for added tasks, repeating

until a complete plan is formed. This does not assume agents are collaborative, but re-

lies solely upon local repair. Collaboration can still occur through the auction approach

– there may be social benefits for self-interested agents (i.e. reciprocal aid when that

agent requires assistance) to counteract the costs of performing some subtask for an-

other. Their experimental results, evaluated in a logistics domain, suggest efficiency

gains in plan repair over replanning3 and, significantly, reduced decommitment costs

due to more limited change to intra-agent dependencies.

Boella and Damiano [2002] describe a plan repair algorithm for BDI agents in

environments where exogenous change or non-deterministic (unexpected) activity ef-

fects can contradict intended plans. Agents monitor for differences between expected

and actual world state, invoking repair where utility is reduced in the latter. The re-

pair algorithm, based on a refinement planning principle, traverses up the abstraction

hierarchy of the original plan from the activity with violated preconditions. Refine-

ments are ‘retracted’ until a new (re)refinement with acceptable utility is found or no

acceptable refinement is found for any level.

Fritz and McIlraith [2007] annotate plan activities with information gathered dur-

ing refinement planning. These annotations are used to determine whether the current

plan remains both valid (preconditions hold) and optimal (no better plan can be found

given current state) following exogenous change or failure. Replanning occurs only if

and when a more optimal plan can exist – reducing the computational cost of (their

described alternative) replanning upon every divergence between expected and actual

3This contradicts Nebel and Koehler [1992], who focused upon worst-case analysis rather than ex-
perimental results.

Chapter 6. Plan Robustness under Uncertainty 71

state. Although aimed at improving replanning efficiency, this method is also applica-

ble for repair; the focus is upon triggering remedial behaviour rather than the specific

method of performing it.

Talamadupula et al. [2013] describe replanning for multi-agent scenarios, where

replanning or repair operations are constrained by commitments to others; e.g. to main-

tain or establish states (such as safety responsibilities) or observe time/cost restrictions.

They suggest representation of such constraints as soft goals – i.e. non-mandatory for

success, but with associated rewards for achievement (and converse costs). The failure

or exogenous change stimulating repair may render commitments to mandatory ‘hard’

goals as impossible to meet; soft goals allow MAP replanning/repair to focus on meet-

ing as many constraints as possible (i.e. maximize net reward), without being overly

constrained by being required to meet all.

Komenda et al. [2012] define, and subsequently evaluate (Komenda et al. [2013]),

a notable MAP repair approach. Their algorithm focuses upon definition of planning

problems and insertion of generated plans (using MA-PLAN by Nissim et al. [2010],

which employs the public/private approach of Brafman and Domshlak [2008]) to re-

pair a MAP. Three approaches were detailed (here, P[0, ..,k] denotes the failed plan

consisting of activities a0 to ak, with the failed activity being some interim activity ai);

• Back on track repair – forms a repair plan Pback that establishes the ‘missing’

effects associated with the failed activity. This is inserted as a prefix to the

remaining plan activities, giving repaired plan P′ = Pback • P[i, . . . ,∞] (where

P[i, . . . ,∞] 6= /0).

• Lazy Repair (LR) – attempts to execute the remaining original plan activities fol-

lowing the failed activity, where the executable remainder is denoted as P[k . . .∞]

(ak is the activity following the failed activity), before forming a new suffix plan

(Plazy) to achieve any missing goal states; i.e. P′ = P[k . . .∞]• Plazy

• Repeated Lazy Repair (RL) recognizes that LR may see, with repeat failures,

repeated concatenation of a repair plan. RL drops any existing repair suffixes

before appending a new repair suffix. For example, failure at ak1 and sub-

sequently ak2 would see the repaired plan evolve from P[k1 . . .∞] • Plazy−1 to

P[k2 . . .∞] • Plazy−1 • Plazy−2. RL instead would drop the previous P1 repair,

giving repaired plan P[k2 . . .∞]• P′2 – on the basis P′2 would be shorter than the

combined P1 • P2.

Chapter 6. Plan Robustness under Uncertainty 72

Evaluation in a number of domains shown that plan repair offered reduced commu-

nications overhead over replanning in more tightly coupled domains. All three repair

algorithms had superior execution length (executed less joint actions) over replanning,

with Repeated Lazy Repair showing best performance.

This thesis focuses on BDI agents which we assume to co-operate in multiagent

plan execution. This motivates adoption of plan repair over replanning due to lower

associated communications costs. While Nebel and Koehler [1992] argue against the

computational efficiency of plan repair, they do so from the basis of an explicit goal to

maximize plan retention, and for the worst case – this may not hold for most common

case scenarios (such as indicated by experimental results, such as by Fox et al. [2006]),

or if there is flexibility over the required plan stability.

The approaches reviewed here are defined from a reactive standpoint – i.e. fol-

lowing detected failure, typically defined as where expected activity effects have not

arisen, and are vulnerable to where the debilitative consequences of that failure hinder

recovery. Approaches such as given by Reece and Tate [1994], Boella and Damiano

[2002] and Fritz and McIlraith [2007] can be seen as proactive due to detecting plan

invalidity from violated preconditions prior to activity execution – a situation that may

occur from activity failure or parallel exogenous change. We can adopt similar meth-

ods for our proactive approach – i.e. detecting if preconditions of activities within the

intended plans of a BDI agent are likely to fail, and responding accordingly.

We have also previously required qualitative evaluation functions within our ca-

pability meta-knowledge model, to determine where the utility of selected activities

has been reduced. Our requirements therefore exceed the boolean model of these ap-

proaches, which only consider whether an activity has failed or not, to consider where

risk of failure increases – and requiring an associated mechanism to indicate when

such risk merits pre-emptive plan repair.

Having adopted a plan repair approach, HTN plan repair methods can provide a

model for our desired multiagent behaviour. Hierarchical Task Networks resemble

the decompositions arising from activity delegation within hierarchical agent teams

(Wickler et al. [2009]). We view local modification of plans by obligants as similar to

re-refinement HTN plan repair; suggesting a distributed plan repair approach based on

Chapter 6. Plan Robustness under Uncertainty 73

this local behaviour. Exception propagation (Section 4.5) style mechanisms can con-

trol when agents in a decomposing hierarchical team perform plan changes, to restrict

distributed plan changes to some minimal subset.

6.2.2 Plan Execution Monitoring

Plan Execution Monitoring (PEM) detects and responds to divergence between the ac-

tual world state during execution and that assumed by (i.e. during the formation of) a

plan. PEM approaches may incorporate plan repair or replanning, and have been em-

ployed in partially observable, highly dynamic domains such as robot football (Men-

doza et al. [2015]) or disaster scenarios (Jarraya et al. [2013]).

Wilkins [1985] describes a replanning module employed within the System for

Interactive Planning and Execution monitoring (SIPE). Given a plan, world state and

some unanticipated situation SIPE seeks to transform a threatened plan into an ex-

ecutable one with minimal changes4. SIPE first discovers the current situation and

identifies resultant problems – such as missing knowledge or violated casual links –

with detected problems then addressed through selection of a replanning action. This

action may re-instantiate an activity with alternate variable values, insert a conditional

branch, or replace a threatened activity with a new subgoal (stimulating planning to

form and insert a new (sub)plan).

IPEM - Integrated Planning, Execution and Monitoring - interleaves planning and

execution, responding where activity preconditions are violated by failure or exoge-

nous change (Ambros-Ingerson and Steel [1988]). IPEM utilizes continuous planning

to support problems otherwise unsolvable due to partial (initial) knowledge; an ini-

tial partial plan is refined using IF-THEN rules that define transformations for detected

flaws. Flaw types include false preconditions, conflicts between potentially parallel ac-

tions or unexpanded/non-primitive actions; responses include inserting or re-ordering

actions, or insertion of sub-plans. The IPEM scheduler uses a priority ordered queue

(agenda) of tasks to resolve potential conflicts between fixes – each task consists of a

flaw and set of candidate fixes, both ordered using a domain specific heuristic. If a flaw

cannot be addressed, IPEM iteratively backtracks using a stored history of planning

decisions; if necessary, resulting in complete re-planning. Like SIPE, IPEM utilizes

4Although described as a replanning module, this minimal change approach matches our earlier
distinction for plan repair

Chapter 6. Plan Robustness under Uncertainty 74

hierarchical decomposition to facilitate local repair.

The Continuous Planning and Execution Framework, or CPEF (Myers [1999]),

uses monitors that, when triggered, evoke responses ranging from user alerts, to plan

repair or invocation of standard operating procedures. Various monitor types exist –

failure monitors define responses to activity failures5, knowledge monitors detect the

absence of required information, and assumption monitors detect differences between

observed world state and that assumed by plans. Assumption monitors are similar to

protection monitors in Reece and Tate [1994] and, similarly, can be synthesized.

CPEF models various types of failure. Precondition and action failure respectively

occur due to absence of some precondition state(s) before execution, and absence of

a stated effect afterwards. Unattributable failures occur where some (automated or

manual) assessment deems the current plan unacceptable, even if no failure occurs. As

some domains permit individual failures to occur, such as due to inbuilt redundancies,

Aggregate failures types capture where a combination of failures constitutes a more

significant event. Plan repair is employed by CPEF, when triggered by monitors, using

a principle of minimal modification and maximum stability – as CPEF uses hierarchi-

cal plans (using the SIPE-2 planner by Wilkins [1991]), backtracking re-refinement is

used, terminating when parents of failed plan nodes are successfully re-refined.

The PKS (Planning with Knowledge and Sensing) system uses a knowledge based

approach to planning, where the planner considers how knowledge state – rather than

possible environment state – is changed through activities. PKS models activities in

terms of knowledge requirements (with preconditions equating to queries) and ef-

fects (what is known after execution). This entails storage of information in five

databases (Petrick and Bacchus [2002]); conveying facts which are known (of boolean

or continuous types), which will become known (i.e. sensed) during execution, those

whose values are unknown but are known to come from a disjunctive set (allowing in-

ference of conditional branches), and of Local Closed World knowledge (Etzioni et al.

[1994]) – where sensing can return exhaustive information, even when the open world

assumption applies in general).

5CPEF supports both direct and indirect execution – the latter being observation of some other
system executing the plan.

Chapter 6. Plan Robustness under Uncertainty 75

Goals are represented through information queries. PKS generates conditional

plans to account for potential knowledge cases – for example, branching to cover both

cases where a variable is (discovered as) true or false. These can be linearized into ex-

ecution paths with conditional rules applied to perform both backwards and forwards

inference (Petrick and Bacchus [2003]), allowing definition of temporal constraints

(e.g. that some state should hold at the end or over the duration of a plan). In one

example, PKS was used in controlling a bartender robot (Petrick and Foster [2012]).

This facilitated social dialogue, as representation of activities as knowledge transitions

allowed interaction between the human customer and bartender robot to be modelled

in planning terms. The robot responded to missing information by reforming its plan

to include knowledge gathering; e.g. repeating a drinks order request if unable to un-

derstand the customer’s response.

Another example of PEM is found in I-Globe (Komenda et al. [2009a]), which in-

tegrated I-X mixed-initiative planning (Tate [2001]) with the A-Globe agent platform

(Šišlák et al. [2005]) and the AGENTFLY multiagent UAV control system (Sislak et al.

[2012]). The experimental domain (Fig 6.1) presented a dynamic environment where

I-Globe agents hunted terrorists (using police and intelligence gathering UAV agents)

and responded to attacks (using ambulance and fire brigade agents). Failure in activity

could lead to potentially severe costs – i.e. failing to intercept a terrorist could lead

to subsequent attacks and loss of life – meaning a strictly reactive approach offered

insufficient efficacy. I-Globe supported real-time replanning through decommitment

rules associated with obligations, which defined conditions for an agent dropping an

intention and adopting an alternative plan instead (Wickler et al. [2009]). A notion

of capability was defined, giving agents knowledge of activity preconditions, with de-

commitment rules (similar in effect to protection monitors) linking violation of pre-

conditions to the triggering of recovery plans.

Whilst plan repair can change plans in response to threat – whether in reaction

to activity failure, or proactively where preconditions are detected as violated before

execution – plan execution maintenance offers a method for invoking such behaviour.

The PEM approaches described are concerned with post execution states, placing them

as more of a reactive approach. They can also be considered proactive, when detecting

violation of activity preconditions prior to execution. However, this risks drawbacks

similar to continuous planning due to the immediacy of required activity – being able to

Chapter 6. Plan Robustness under Uncertainty 76

detect and address threats further in advance may offer greater flexibility and options,

and is a motivator of our focus upon an explicitly proactive approach.

Figure 6.1: Screenshot of an I-Globe scenario (Komenda et al. [2009b]).

Our approach requires PEM behaviour, with a proactive focus, and defined within

the context of BDI agent and multiagent reasoning – i.e. using agent mental state

components, as a specific part of reasoning, and also covering joint activity. We can

also adopt aspects of the surveyed approaches which naturally extend to our multiagent

context and previously identified requirements. Detection of precondition violation is

requisite (such as by SIPE, IPEM or through CPEF assumption monitors), although

we also wish to employ qualitative reasoning to account for the qualification problem.

The concepts of aggregation in CPEF, or agenda formation in IPEM, may be of

value in allowing categorisation and prioritization of threats in our approach. As we are

considering anticipation rather than reaction, there is a possibility of plans containing

multiple activities at risk of failure over the longer (non-immediate) time period. This

Chapter 6. Plan Robustness under Uncertainty 77

is similar to re-refinement plan repair or propagation of exceptions (Section 4.3), in that

multiple threats in a subplan can represent a singular combined threat to the associated

subgoal or composite activity.

6.2.3 Determinization with Replanning

Determinization approaches form a classical problem from a non-deterministic domain

specification (i.e. where operators have non-deterministic effects); the determinized

planning problem is solved using a classical planner – taking advantage of classical

planning optimizations – with the resultant plan translated back to probabilistic opera-

tors for execution. These planners recognize that determinizations will be inexact, and

compensate by replanning where the actual effects following execution diverge from

those expected (i.e. by the determinized domain).

FF-Replan (Yoon et al. [2007]) is one such example; this planner won the IPPC-

2004 competition, and – although not formally entered – outscored the winners of

IPPC-2006 in a significant number of domains. FF-Replan maps probabilistic opera-

tors to deterministic operator specifications, before employing the FF planner (Hoff-

mann [2001]) to solve the determinized problem. The initial version of FF-Replan

utilized single-outcome determinization, where the highest probability outcome was

selected as the effects specification of an equivalent deterministic operator; latter ver-

sions adopted all-outcomes determinization (i.e. treating all possible probabilistic out-

comes as equal), forming a deterministic operator to represent every possible outcome

combination. FF-Replan monitors state during execution, replanning upon any diver-

gence between actual and expected post-execution state.

FF-Replan was later extended by FF-Hindsight (Yoon et al. [2008]) to employ

hindsight optimization (Chong et al. [2000]) for determinization. FF-Replan’s single-

outcome determination assumes the most likely outcome occurs – if a less probable

outcome occurs (resulting in replanning), it may render it costly to achieve the goal.

FF-Hindsight instead forms multiple determinizations to consider alternate potential

outcomes, selecting activities that with hindsight (from the plans formed using these

determinizations) provides a starting point to reach the goal cheaply. FF-Hindsight

offered improved performance over FF-Replan in IPPC-04 and 06 domains, and in

‘probabilistically interesting’ domains suggested by Little and Thibaux [2007] in ear-

Chapter 6. Plan Robustness under Uncertainty 78

lier criticism of FF-Replan. This approach had high computational expense, scaling

with the state-space size and applicable action set, although Yoon et al. [2010] identi-

fied further enhancements aimed at improving scalability.

PAC-PLAN (ProbabilitiesAreCosts-Plan) offers another example of determiniza-

tion (Jiménez et al. [2006a]). Here, all-outcomes determinization is used to form de-

terministic alias actions (plans can be converted back from alias actions to the original

probabilistic actions). Each alias action has a cost equating to risk of failure, given

as riski = −log(probi), where probi gives the probabilistic likelihood of that opera-

tor’s specific effects. The deterministic planner (in their evaluation, LPG-TD-1.0 by

Gerevini and Serina [2002]) employs metric-minimization based upon this risk value,

corresponding to minimizing risk of failure.

Determinization and replanning both attempt to handle uncertainty (by consider-

ing probabilistic operators) and incorporate plan execution monitoring (i.e. to trigger

replanning under unexpected effects in FF-Replan). However, these approaches focus

upon the possible outcomes of successful execution; i.e. where preconditions hold and

the activity succeeds, but with effects of varying probabilities. For a determinization

approach to account for the possibility of failure, the resultant consequences would

need to be known and provided as determinized effects; this would require an all-

outcomes approach, as the most probable outcome of preconditions holding (as per the

qualifications problem) is success, meaning any single-outcome approach would omit

failure case effects when forming determinized operators.

Representing the failure case in an all-outcomes or weighted operator (as in PAC-

Plan) is counter-intuitive, as such operator representations effectively mean planning

for failure – whilst failing to capture that the activity preconditions are associated with

a significantly lower probability of failure than where they do not hold. Finally, any

determinization approach attempting to handle both failure and success outcomes of

activities is arguably entering the realm of conformant planning, and facing the same

issue of intractability. This means these types of approaches, whilst able to handle un-

certainty in the form of unexpected effects, cannot be seen as strictly concerned with

failure recovery. Additionally, planning for such uncertainty may be less effective if

post-execution state is strongly influenced by exogenous change.

Chapter 6. Plan Robustness under Uncertainty 79

However, PACPlan does suggest a method for weighting – through metric val-

ues – deterministic operators to account for the probability of success. This pro-

vides a viable method to incorporate quantitative quality estimations from capability

meta-knowledge into our proposed approach, if using a capable runtime planner. Ap-

proaches such as FF-Replan evidence the need to consider divergence from assumed

state when executing deterministic plans in realistic, uncertain environments; reinforc-

ing our motivation to proactively avoid failures caused by such divergence.

6.3 Conclusion

This chapter described techniques for avoiding or reacting to failure in uncertain en-

vironments, where activities may lead to unexpected post-execution states (including

from exogenous change). We first surveyed various approaches that attempt to pre-

vent failure by accounting for uncertainty to avert unexpected circumstances (in the

MDP or conformant planning case), or by generating plans offering adaptive flexibil-

ity (through conditional branching, or deferring decisions). All of these approaches,

however, face issues limiting their viability in realistic environments.

MDP and conformant planning methods become intractable in such environments,

particularly with the possibility of exogenous change; abstraction can improve MDP

tractability, but reduces policy optimality. Contingent planning is similarly likely to

become intractable in the event of complex environments, due to a combinatorial ex-

plosion in the number of branches required to account for possible exogenous change

before, during, or after activity execution. Finally, continual planning can ward against

uncertainty by deferring decisions – but risks inadvertent long term failure.

In general, we form assumptions that:

• Agents in a realistic environment cannot form intended plans which entirely pre-

vent threats from unexpected execution contexts.

• Robust agents must counteract divergences between planning-time (i.e. assumed)

and execution-time activity execution context.

The second section of this chapter considered response to failure; including per-

forming replanning or plan repair, use of plan execution monitoring to trigger such

behaviour, and the combination of both in determinization approaches such as FF-

Chapter 6. Plan Robustness under Uncertainty 80

Replan. Our approach will be required to provide similar behaviour, but within BDI

agent reasoning in an explicitly proactive manner.

Plan repair is preferable to replanning in a distributed context due to reduced com-

munications cost. We noted a relative lack of existing work specifically covering mul-

tiagent plan repair, with the exception of Komenda et al. [2012]. Existing techniques

such as HTN plan repair and exception propagation may be applicable towards such

behaviour, as identified through our previous requirements. This supports the value of

our contribution, which should provide proactive, pre-emptive (of failure) plan modi-

fication – i.e. plan repair – in a MAS.

We can form the following requirements and assumptions from our discussion of

plan robustness techniques:

• We require agents to monitor plan execution, detecting where exogenous change

threatens the next activity to execute or it’s successors in the intended plan.

• Our approach must identify and respond to both violation of preconditions and

loss of quality.

• A plan repair approach is required for local (agent level) plan repair, based upon

reduced communications overhead over replanning.

• We require minimal plan modifications as a soft goal, allowing flexibility to re-

duce computational cost (i.e. to mitigate the relative inefficiency stated by Nebel

and Koehler [1992] when maximum retention is an explicit, hard goal), whilst

attempting to provide the communications cost benefits of greater stability.

• We assume the distributed plan executed by a decompositional hierarchical team

can be equated to a Hierarchical Task Network, where delegation of activities

to plan forming agents is effectively equivalent to HTN task refinement, and

wish to replicate HTN re-refinement plan repair through distributed robustness

behaviour.

Chapter 7

Behavioural Design

In this chapter, we first detail the Cargoworld domain serving as our detailed moti-

vating example. This is subsequently used to describe our behavioural design require-

ments – firstly the assumed MAS behaviour in non-failure circumstances, and secondly

the desired response when intended plans are threatened by exogenous change.

7.1 The Cargoworld environment

Chapter 2 introduced the Cargoworld domain. Before specifying desired behaviour,

we detail Cargoworld to provide specific motivating examples – including defining

world states, possible activities and agents within the MAS.

7.1.1 Domain Predicates and Operations

We list predicates for Cargoworld in Figure 7.1, defining potential worlds states and,

ergo, information potentially held in agent beliefs. Contradictory states are assumed

mutually exclusive; e.g. Truck1 cannot have percepts indicating it is both healthy

and mortal, or be simultaneously at multiple junctions. Entities in the environment

have associated percepts identifying their type; for example, Trucks will be identified

as present through percepts Truck(Truck1), Truck(Truck2), and soforth. This allows

representation of specific entities, and their type(s), within planning operators.

81

Chapter 7. Behavioural Design 82

Predicate Variables Meaning

busy ag – agent ag is currently performing some activity

healthy ag – agent ag is at optimum health

damaged ag – agent ag has suffered debilitation but remains functional (with

reduced activity quality)

mortal ag – agent ag is mortally damaged and unable to act

atJ ag – agent

j – junction

ag is located at j

onR ag – agent

r – road

ag is currently at some point along r (between r’s end-

points)

overJ ag – agent

j – junction

ag is currently flying above j

flying ag – agent ag is currently (flying) in the air

airport j – junction Indicates there is an airport at j

loaded ag – agent

c – cargo

ag is carrying c

carryingCargo ag – agent ag is carrying a cargo item

cargoNeeded j – junction Request for cargo to be delivered to j

cargo c – name Defines an item of cargo exists with identifier c

cargoAt c – cargo

j – junction

c is currently located at j

stuck ag – agent ag is stuck in it’s current location (i.e. skidded off-road)

and cannot move until it frees itself

resting ag – agent Corrolary to the stuck percept; ag cannot free itself

whilst in a resting state. When an agent becomes stuck,

it must rest for a period of time before recovery. This

prevents stuck being a zero-consequence state which

can be immediately recovered from using a free activity.

toxic j1 – junction

j2 – junction

The road connecting j1 and j2 has been contaminated

with toxic substance(s)

toxicRd r – road Identifies a toxic road by id r

dangerZone j – junction j is dangerous and cannot be used by non-APC agents

blocked j1 – junction

j2 – junction

The road between j1 and j2 has been rendered unusable

until cleared

blockedRd r – road Counterpart to blocked, defining the specific road iden-

tifier r

windy Indicates environmental conditions are currently windy,

impacting flight activities

Figure 7.1: Environmental State atoms within Cargoworld

Chapter 7. Behavioural Design 83

Numerous activities can be performed, each corresponding to the use of an entity

effector and representing a directed state change (Figure 7.2). We prepend an addi-

tional argument to indicate the performer(s) for a delegated activity within agent plans

– i.e. move(Truck1, A, B) indicates a move(A, B) is delegated to Truck1 – this is given

for readability and does not represent an implementation requirement.

7.1.2 Failure Sources

We define three generalized types of activity failure which may occur in a stochastic

dynamic environment, and give examples within a Cargoworld environment. These

definitions do not consider programmatic failures due to incorrect implementation, or

misspecification of plans or planning domains.

• Preconditions failure refers to failures stemming from preconditions not hold-

ing; i.e. where exogenous change between plan formation and execution pro-

hibits success of an activity. For example, if Truck1 intends to move(a, b), but

a→ b becomes blocked by a landslip.

• Non-deterministic failure refers to where the world state did not prohibit suc-

cess (i.e. preconditions held), but introduced additional risk that lead to failure.

For example, road a→ b may become slippery from rainfall – although still

nominally traversable, the more hazardous conditions lead to Truck1 sliding off

of the road and failing to move(a,b). This type reflects scenarios where failure is

possible but not certain – reflecting the ‘hidden’ uncertainties within a realistic

domain reduced to deterministic terms.

• Exogenous (change) failure is where an exogenous event during execution

causes immediate failure – e.g. Truck1’s engine explodes, forcing it to stop.

Preconditions and Non-deterministic types represent preventable failure – we ar-

gue these risks can anticipated using (actual or predicted) execution context knowl-

edge, combined with agent meta-knowledge regarding their activity execution capa-

bilities. Exogenous failure represents cases which cannot be readily anticipated in

advance; although this type of failure is an inevitable risk in continuous, stochastic

environments, we argue there remains value in anticipating and preventing the for-

mer types. Our motivation assumes non-exogenous failure scenarios are sufficiently

frequent to justify pre-emptive measures; our eventual design should also allow com-

plementary reactive measures (which can respond to exogenous failure).

Chapter 7. Behavioural Design 84

Signature Arguments Purpose

move ag – agent

r – road

o – junction

j – junction

ag moves along r, from o to j. o and j must be connected by

r, and ag must be either at o or be located at some point on

r. This activity is performable by any road vehicle, although

specific preconditions may vary.

load ag – agent

c – cargo

j – junction

The agent ag loads (picks up and holds) c; both c and ag must

be co-located at j. Helicopters cannot load (or unload) cargo

whilst flying.

unload ag – agent

c – cargo

j – junction

ag unloads c and deposits it at j; ag must be carrying c and at

j.

takeOff ag – agent

j – junction

Helicopter ag, landed at j – which must hold an airport –

becomes airborne over j.

land ag – agent

j – junction

Helicopter ag, which must be airborne over j and where j

must hold an airport, lands at j.

fly ag – helicopter

o – junction

j – junction

Helicopter ag flies directly from o to j; ag must already be

airborne.

secureArea ag – APC

j – junction

The APC agent ag removes the dangerZone at j; ag must

already be present at j.

unblock ag – bulldozer

r – road

o – junction

j – junction

ag clears the blocked r (which must connect o and j), moving

from o to j. r must not be flooded or toxic, and o and j must

not have associated dangerZones.

decontaminate ag – Hazmat

r – road

o – junction

j – junction

ag moves from o to j, decontaminating (the connecting road)

r in the process. r must not be flooded and blocked, and

neither o or j can have dangerZones. ag must also be initially

located at o.

consume ag – agent

j – junction

c – cargo

ag informs j it can consume c in order to satisfy an existing

request.

free ag – agent

r – road

o – junction

j – junction

ag frees itself from being stuck on r, connecting o and j. ag

must not be resting, and r itself must be traversable by that

agent. The preconditions for free allow definition of planning

goals to establish required conditions and free agents from

being stuck.

Figure 7.2: Possible operations within Cargoworld

Chapter 7. Behavioural Design 85

7.2 Agents within a Cargoworld MAS

We define two classes of agent. Physical agents correspond to, and control, entities

within the environment which can directly influence environment state. Logical agents

do not have this association, and achieve goals through dependencies upon other agents

(which directly or indirectly lead to activities by physical agents). In our Cargoworld

example, each world entity (Section 2.4.2) has an associated physical agent represent-

ing it within the MAS.

We first describe logical agents and their potential interactions with others:

• The LogisticsHQ provides ‘top level’ (strategic) control; receiving cargo re-

quests, identifying cargo, and then selecting a capable agent to deliver that cargo.

Physical agents do not have peer-to-peer visibility; consequently, the Logistic-

sHQ also serves as a broker to ‘expose’ functionality to others. For example, a

Truck wishing to clear a road will form an unblock dependency upon the Logis-

ticsHQ – which, in turn, selects and dispatches an appropriate Bulldozer.

• MilitaryHQ acts as a tactical level controller, serving as a broker for use of

APC and Hazmat agent types by LogisticsHQ and vice-versa. In the former

case, MilitaryHQ is responsible for forming dependencies upon APC or Hazmat

agents (as appropriate) to secure a given junction or decontaminate a given road,

including performing of a specific physical agent. In the latter, MilitaryHQ acts

as a proxy; APC or Hazmat agents form dependencies upon MilitaryHQ, which

forms an equivalent dependency upon LogisticsHQ. For example, if an APC

needs to clear a road for travel the resultant dependency chain would be APC

→ MilitaryHQ→ LogisticsHQ→ Bulldozer 1.

Our design will not assume any authority structure; we are concerned with the

team meta-organizations arising from dependency relationships, rather than constraints

upon their formation. However, realistic systems frequently utilize organizational hi-

erarchies such as Strategic-Tactical-Operational layers (described in Killion [2000]),

as these represent a proven method for decomposing and organizing solutions to com-

plex problems. We represent this in our example MAS by visibility constraints upon

capabilities, restricting the possible dependency relationships an agent can form (Fig-

1We refer to cases such as this as indirect dependencies, i.e. APC indirectly depends on Bulldozer.

Chapter 7. Behavioural Design 86

ure 7.32). For example, Truck1 cannot delegate to Bulldozer1, and must use Logistic-

sHQ to unblock a road. Truck1 would not know the identity (or type) of any further

agent(s) used – this semantic knowledge restricted to LogisticsHQ.

Figure 7.3: Example multiagent hierarchy; arrows indicate an agent can form depen-

dencies upon another.

The heterogenity in Cargoworld is simple enough that a fully peer-to-peer

agent system (with no capability visibility constraints) could be employed. We spec-

ify an effective hierarchy to serve several purposes. Separation of knowledge (of both

delegation structures and semantic details) and responsibility reflects both real world

command-chain concepts and agent-knowledge specialisation that exists and which of-

ten motivates a multiagent approach (Sycara [1998]). The relationships between agents

are also more complex due to restriction of semantic knowledge to specific agents; this

mandates dependency formation, mirroring the likely necessity of dependency forma-

tion in real world scenarios.

7.3 CAMP-BDI Behaviour

This section describes generalized behaviour examples of a CAMP-BDI MAS within a

Cargoworld environment, extending from fault free execution to the desired proactive

behaviour for potential failure cases.

7.3.1 Normal Agent Behaviour

Before considering maintenance behaviour, we describe multiagent activity covering

successful delivery of cargo without requiring failure mitigation. We reference the

geography previously defined in figure 2.6, where a cargo request has been generated

2Where required, we refer to specific individuals as numbered instances; i.e. Truck1 and Truck2
are Truck type agents. The numerical designation is dropped where we only need to refer to a single
instance of that type, or that type in general.

Chapter 7. Behavioural Design 87

at E, and a cargo object (cargo1) exists at K. Truck1 and Truck2 are at A and M,

respectively.

We now discuss typical multiagent activity, starting with adoption of a deliver-

Cargo(E) goal by LogisticsHQ. This requires dependency formation between agents,

allowing task delegation. We use the terminology dependant to refer to the agent del-

egating a task, and obligant to refer to the agents performing it.

The following sequence summarizes our assumed behavioural model for a MAS

performing this delivery task in Cargoworld;

1 LogisticsHQ forms an intention to perform a plan achieving deliverCargo(E);

this goal is satisfied by removal of the state cargoNeeded(E).

Truck1 and Cargo1 are selected as task-performing obligant and the utilized

cargo resource (we define intentions in the form goal:plan) :

deliverCargo(E): moveTo(Truck1, A, K), load(Truck1, Cargo1, K), moveTo(Truck1,

K, E), unload(Truck1, Cargo1, E), consume(Cargo1, E)

2 A dependency is formed upon Truck1 to perform moveTo(Truck1, A, K). Truck1

forms a route plan to reach K from it’s current location, to be executed upon the

dependant’s request;

moveTo(Truck1, A, K):move(A, G), move(G, J), move(J, K)

3 Acceptance of further dependency requests from LogisticsHQ results in the fol-

lowing goal:plan pairs being formed by Truck1, executed (adopted as intentions)

upon the dependant’s request;

load(Truck1, Cargo1, K):load(Cargo1, K)

moveTo(Truck1, K, E):move(K, L), move(L, I), move(I, E)

unload(Truck1, Cargo1, E):unload(Cargo1, E)

4 LogisticsHQ executes its plan for deliverCargo(E), requesting Truck1 perform

each delegated activity in turn. LogisticsHQ waits for each dependency (dele-

gated activity) to complete; once Truck1 confirms successful execution, Logis-

ticsHQ progresses it’s (dependant) intended plan onto the next activity.

5 LogisticsHQ completes by using consume(E, Cargo1), which uses cargo1 to

satisfy the request from E.

Chapter 7. Behavioural Design 88

The following series of atomic activities are consequently performed:

1 move(Truck1, A, G)

2 move(Truck1, G, J)

3 move(Truck1, J, K)

4 load(Truck1, Cargo1, K)

5 move(Truck1, K, L)

6 move(Truck1, L, I)

7 move(Truck1, I, E)

8 unload(Truck1, Cargo1, E)

9 consume(LogisticsHQ, Cargo1, E)

We assume multiagent activity requires advance formation of dependency con-

tracts. This is not an inherent requirement of the BDI approach, but we argue a logical

requirement for distributed activity – to protect against agent or resource contention

and facilitate information sharing (such as when establishing mutual beliefs). Our ap-

proach – discussed in the following chapters – extends this assumption to communicate

maintenance-relevant information.

This section described the (assumed) MAS behaviour under normal conditions; we

will next describe the desired behaviour under potential failure scenarios.

7.3.2 Behaviour to prevent Preconditions Failure

Truck1 is currently on road A→ G (Figure 2.6), travelling route A→ G→ J→ K to

load cargo1 at K. J→ K becomes blocked by a landslip, violating preconditions for

travel along J→ K. Upon arriving at G (and beginning its next reasoning cycle) Truck1

should detect likely failure of the planned future move(Truck1, J, K) and identify this

as being due to a violated precondition.

Truck1 should consequently modify the intended plan. For example, Truck1 can

form a dependency upon LogisticsHQ to unblock J→ K; LogisticsHQ subsequently

selects and delegates this task to Bulldozer1. Execution restores precondition states for

using J→ K, before Truck1 reaches J, avoiding this anticipated failure (Figure 7.4).

Chapter 7. Behavioural Design 89

Figure 7.4: Plan modification to prevent preconditions failure; unblock is inserted to

re-enable the planned move, after an exogenous event blocks J→ K.

7.3.3 Behaviour to prevent Non-deterministic Failure

In these scenarios, changes (compared to original assumptions at intention forma-

tion / plan selection) in the anticipated execution context of an activity render it sub-

optimal. For example, Truck1 is carrying cargo from K to E, along route K→ L→ I→ E,

when a rainstorm results in I → E becoming slippery. This does not prohibit travel

down that road, but does increase the risk of failure when doing so; instead, Truck1

forms an alternate path K→ H→ C→ D→ E, using only dry roads (Figure 7.5).

Figure 7.5: Modified route adopted by Truck1 (solid arrows), located at K, to pre-

emptively avoid slippery I→ E. The original planned route is shown in dashed arrows.

This does incur additional cost through extra movement – maintenance must ideally

balance extent of risk against the costs of changing plans (both in terms of activities and

Chapter 7. Behavioural Design 90

computational resource). Avoiding failure earlier may also have some efficiency ben-

efits over recovery; in this example, Truck1 would incur additional costs backtracking

to H if it delayed maintenance until set to execute move(Truck1, I, E).

We can extend this behaviour to scenarios where an agent is unable to prevent

preconditions failure; if an agent cannot re-establish preconditions for an activity, it

should instead replace that activity with one (or more) whose preconditions can be es-

tablished. In certain cases it may even be preferable to replace an activity regardless

rather than insert prior precondition-establishing activities – the latter can lead to con-

tinual and incremental growth of plan length and complexity, purely to enable a single

activity which may actually only hold limited significance towards the intended goal.

7.3.4 Distributed Maintenance Behaviour

We also consider behaviour of an agent team, performing a distributed plan, where

an individual member is unable to perform adequate maintenance. One such example

arises where Truck1 is carrying cargo along the route K → L→ I→ E, but suffers

partial damage en-route to K – increasing failure risk for the future move(Truck1, L, I).

Truck1 cannot recover independently by repairing itself. At this point, the depen-

dant LogisticsHQ should be made aware Truck1 is at risk of failure for its obligation to

moveTo(Truck1, K, E) – and that Truck1 has attempted and failed to mitigate that risk.

This requires LogisticsHQ to reconsider the (dependant) intended plan.

The moveTo(Truck1, K, E) activity cannot be directly substituted due to an inherent

reliance upon the debilitated Truck1 for that goal. This also threatens unload(Truck1,

cargo1, E), whose preconditions require Truck1 to have moved to E. LogisticsHQ is

required to adapt its intended plan with consideration of the associated goal, abort-

ing moveTo(Truck1, K, E) and subsequent activities before forming a new plan and

dependencies such that:

1 Truck2 moves from M to K to rendezvous with Truck1:

moveTo(M,K)

2 Truck1 unloads Cargo1 at K:

unload(Truck1,Cargo1,K)

Chapter 7. Behavioural Design 91

3 Truck2 loads Cargo1 at K:

load(Truck2,Cargo1,K)

4 Truck2 travels to the delivery destination:

moveTo(Truck2,K,E)

5 Truck2 unloads cargo at E:

unload(Truck2,Cargo1,E)

6 The cargo is released for use (delivered) at E:

consume(Cargo1,E)

This places additional requirements beyond the localized, individual agent mainte-

nance case. Obligants must communicate information allowing dependants to identify

where delegated activities are threatened, and adopt responsibility if obligant main-

tenance was unable to address that threat. This requires synchronization to ensure

individual maintenance is first attempted at lower levels of a dependency hierarchy, to

minimize disruption to a distributed plan. It is desirable to avoid centralized control(s),

as information and computation requirements in large, realistic systems typically ren-

der these infeasible.

7.4 Summary

This chapter described the Cargoworld domain introduced in Chapter 2, to detail do-

main predicates, entities and activities. We also described an example MAS for op-

erating within this domain. Cargoworld uses a transport paradigm to provide a com-

prehensible motivator for agent behaviour which can be related to real-world practical

applicability. Agent heterogeneity provides increased options for failure mitigation and

planning (making such decisions non-trivial), and allows more detailed consideration

of multiagent plan execution.

We used Cargoworld to first describe assumptions about MAS behaviour, and then

desired maintenance behaviour; the latter covering both preconditions violation and

loss of planned activity quality (expressed as an increase in the risk of failure, as is

relevant to our robustness concern) due to exogenous change after a plan is intended.

This provides a generalized, abstracted view of the maintenance process, and defines a

number of requirements for out subsequent design:

• Agents must perform introspective reasoning to identify threats to planned ac-

Chapter 7. Behavioural Design 92

tivity, identify appropriate plan modifications, and ultimately avoid anticipated

failure.

• A method is required for communication of necessary information to support

introspective reasoning, building upon dependency contract formation.

• Due to realistic scenarios requiring distribution of knowledge and ability across

various agents, a decentralized approach to distributed maintenance is necessary

– including communication of information between the obligant(s) and depen-

dant to support adoption of responsibility by the latter.

• Proactive maintenance may carry greater computational cost than reactive be-

haviour, due to its anticipatory nature. The frequency of maintenance should be

able to be balanced against the consequences of failure for particular activities,

particularly in non-deterministic failure cases.

• Finally, we can intuit it is desirable to support flexible modification of mainte-

nance behaviour during runtime, to adapt to observations of maintenance effi-

cacy.

Chapter 8

CAMP-BDI Supporting Architecture

This chapter contributes our supporting architecture; special case Beliefs used to sup-

port introspection and later plan modification by our algorithms, and which also pro-

vide representation models for communication during distributed activity. We use this

architecture to support our subsequently designed behaviour for CAMP-BDI agents –

BDI agents which are Capability Aware, and which use that capability knowledge to

Maintain Plans.

8.1 Mental State Components within the BDI agent Model

We first define the standard mental state components of Beliefs, Desires and Intentions.

Beliefs represent assumed knowledge of an agent regarding itself and the environment,

and can be defined as a set of positive and negative state atoms;

B = B+ ∪ B−

The CAMP-BDI supporting architecture provides a subset of B used to support our

algorithms. In this thesis we refer to these components independently due to their

specific purposes within our approach.

Desires are a set of potentially conflicting goals, individually valid given current

beliefs, from which the agent selects intended goals.

∀d ∈ D: d={ g1, . . ., gn }

93

Chapter 8. CAMP-BDI Supporting Architecture 94

Each individual d represents states to be achieved or removed, defined as being

either explicitly positive, explicitly negative, or implicitly negative1. We refer to a

desire as as to achieve a goal g=g+ ∪ g−; g+ defines literals required to be present in

B to achieve g, and g− those required absent. For example, a goal for Truck1 to move

from A to B, and not be mortally damaged at the end, gives g+ = {atJ(Truck1,B)} and

g− = {atJ(Truck1, A), mortal(Truck1)}. The individual desire is met when g+ ⊆ B

and g− 6⊆ B.

Desires are active achieve goals, as defined by Braubach et al. [2005]. An agent

may hold a goal set covering multiple types (including maintain goals described by

Dastani et al. [2011]), used by standard BDI reasoning. If reactive maintenance goals

exist, we regard them as stimulating desires to (re)achieve protected propositional

states when necessary. Proactive maintenance goals (Duff et al. [2006]) prohibit cer-

tain states being established – responsibility for respecting them will lie within the

plan identification mechanism used for intention formation and, in our design, later

co-opted for maintenance planning.

The Intentions of an agent are defined by a selected, non-conflicting, subset of

Desires - conceptually, I ⊆ D. The exact definition of an intention varies within the

literature; this thesis adopts the definition employed by Simari and Parsons [2006],

where an intention combines both goal and plan;

∀i ∈ I : i = {goali,plani}

The goali corresponds to a selected desire; plani represents the plan (to be used) to

achieve goali. This explicit association allows agents to reconsider how they achieve

goals, when those goals remain valid despite threats to a specific means. The Norma-

tive Agent Architecture (NoA) (Kollingbaum and Norman [2003]) and the B-DOING

architecture (Dignum et al. [2002]) similarly distinguish selected goals within agent

mental state, albeit focusing upon the various influences upon rational reasoning.

We define a plan p as a linear sequence of n activities;

p = {a1, . . ., an}
1We make a closed world assumption where the absence of a positive atom within B can be treated

as that atom being implicitly negative. For example, a vehicle agent does not require the explicit belief
¬at(A) ∈ B if at(A)6∈ B.

Chapter 8. CAMP-BDI Supporting Architecture 95

Activity a represents a state transition F(a,s)=s′; s′ is the outcome of successfully ex-

ecuting a in state s. An activity can represent either an atomic action – i.e. use of an

agent effector – or a goal performed through decomposition to an executable sub-plan

(i.e. as in hierarchical task networks). A p as a primitive plan if every a ∈ p is atomic.

Where a ∈ plani, we refer to goali as the parent goal of a.

We assume all activities can be captured by deterministic STRIPS planning opera-

tors (Fikes and Nilsson [1971]). However, we do not assume all factors influencing the

success of a are represented through deterministic preconditions, but rather the most

significant prohibitory ones (McCarthy [1958]).

Finally, we refer to the set of obligations held by an agent (to perform some activity

upon request) as Ob, and the dependencies as Dp. These are more fully detailed in

section 8.4, but also referenced in preceding sections as information sources.

8.2 Capabilities

Our approach is founded upon pre-emptive behaviour – that agents respond to ex-

ogenous change by identifying whether intended plans are negatively impacted, and

modifying those plans – if necessary – to compensate. This requires introspection

by agents regarding their ability to perform activities. The capability model provides

meta-knowledge to both assess viability of an activity in a given world state, and to

modify plans in recompense. A common model is employed for capabilities (discussed

subsequently), encapsulating semantic knowledge requirements within the implemen-

tation – this aids generality, communicability and re-usability.

8.2.1 Existing Approaches towards Capability Modelling

Self-awareness is an important aspect in design and implementation of an intelligent

agent; including representation of agent ability, and its impact upon which goals can

be achieved – Xuan [2006] suggests rational agents must be able to reason over ac-

tivity utilities. Morgenstern [1986] describes planning and acting agents as requiring

knowledge of their possible activities and achievable goals; an agent has know-how-to-

perform an activity if it is aware of the constraints allowing or prohibiting execution,

can-perform an activity if it can be executed in the current situation, and has know-how-

Chapter 8. CAMP-BDI Supporting Architecture 96

to-achieve for a goal where it can-perform an activity achieving the required effects.

These concepts are extended into planning in terms of can-execute a plan, and where an

agent can-plan to achieve a goal (by executing the activities itself and/or delegation).

Singh [1999] defines similar concepts of know-how as determining what goals can

be achieved;

An intention can lead to success when it is held long enough, is acted
upon, and when the agent has the requisite know how.

Two types of action describe the know-how of an agent. Basic actions are primitive,

atomic activities. High level actions represent procedural knowledge – sequences of

lower-level actions that can be performed, where constituent actions may be high level

(i.e. subgoals) or basic. High level actions must eventually resolve to a set of basic

actions; i.e. plans must eventually resolve to some set of effectors for an agent to be

deemed capable.

One predominant focus of existing work lies upon modular, reusable capabilities, to

allow composition of agents from encapsulated capability objects. Busetta et al. [2000]

define resuable capability models serving as ‘building blocks’ for creating agents; each

capability defines a subset of relevant beliefs, plans and handled triggering events for

the plans. These may be composed of further sub-capabilities; agents are viewed as

defined by graph-like capability structures rather than sets of plans and beliefs. Nunes

[2014] suggests three types of relationships between such modular capabilities; as-

sociation (directional or bidirectional dependencies between capabilities), composi-

tion (knowledge is shared, such that a capability is aware of beliefs and/or achievable

goals within another), and inheritance (a capability reusing and extending anothers

constituent components).

Braubach et al. [2006] extend the modular model of Busetta et al. [2000] to address

a number of perceived issues. They use inclusion of initial beliefs to parameterize capa-

bility instances, and suggest an approach for dynamic modification of agent capability

sets. Capability loss is treated as unpreventable and irreversible – limiting response to

deciding whether to abort intended plans or reactively handle resultant failure. Simi-

larly, Padgham and Lambrix [2005] offer a model focused upon modular reuse, which

limits failure handling to predefined recovery plans or dropping intentions entirely.

Chapter 8. CAMP-BDI Supporting Architecture 97

Padgham and Lambrix [2005] extend the concept of accessible worlds (Rao and

Georgeff [1995]) to include capability-accessible worlds – where desires and inten-

tions are restricted to the goals an agent is capable of achieving. A somewhat analo-

gous approach (if we view capabilities as representing plan information) is suggested

by Waters et al. [2014]; although they do not explicitly define a capability concept, they

suggest an intention selection mechanism where agents favour execution of intended

plans with least coverage2. Agents maximize overall intention throughput, by select-

ing the lowest coverage intention in each reasoning cycle – recognizing such intentions

are less likely to be executable in future circumstances.

8.2.2 Capability Model

A capability c, for activity a, is defined with the following fields;

c = < ag, s, g(a), pre(a), eff (a), conf (a, Ba)>

• ag: identifies the agent that performs a – this may be different from the agent

holding the capability object.

• s: a signature with name n and t parameters (s = n(v1, . . ., vt)); the combination

of s X ag can be used to uniquely identify a given c. For example, an activity to

move along road A→ B would correspond to s=move(?from, ?to), where ?from

and ?to denote variable names ground to become A and B.

• g(a): the goal achieved by (succesfully) performing a, whose terms can be

ground by s, defined as the sets of states which must be added (g+(a)) and re-

moved (g−(a))for g(a) to be achieved. Goal states are used to disambiguate the

defined purpose of an activity; i.e. performing move(A, B) always adds state

at(B), but with varying side-effects depending on whether ag is a road or aerial

vehicle. We assume multiple capabilities with the same s share a common g(a);

meaning s can be used to determine the purpose of an activity.

• pre(a): a set of preconditions (belief atoms), ground to a, that define the condi-

tions under which a can be achieved – use of c to perform a is not guaranteed to

fail iff pre(a)∈ Ba (where Ba provides the – believed – execution context of a).

• eff (a): the complete set of post-effects of successfully using c to perform a,

ground using s. This can be considered equivalent to the combined set of add

2Thangarajah et al. [2012] defines the concept of coverage as representing the breadth of situations
in which a plan can be executed; a plan with high coverage has less constraints (i.e. ‘covers’ more
scenarios) than one with low coverage.

Chapter 8. CAMP-BDI Supporting Architecture 98

and delete effects of a STRIPS operator – we refer to states added as eff+(a) and

eff−(a) respectively. As g(a) ⊆eff (a),the side-effects3 of c are eff (a) \ g(a).

• conf (a, Ba): a X Ba→ [0:1]; a “confidence” function estimating the scalar qual-

ity for performing a through use of c, in execution context Ba. This allows

reasoning whether exogenous change has decreased optimality of a, but without

violating preconditions – E.g. confidence for move(A, B) (where A→ B is a

road) is less where Ba 3 slippery(A, B) than where Ba 3 dry(A, B).

A capability can be generalized as stating that, for a executed in Ba, ag can

achieve g(a) with some level of quality – indicating likelihood of success – estimated

by conf (a,Ba), provided pre(a) holds in Ba, with post-effects as defined by eff (a)

8.2.3 Typology

We define the type of a capability using two overlapping categories – locality and

complexity.

8.2.3.1 Locality

Capabilities are internal or external depending upon whether the capability represents

knowledge of ag’s ability to perform an activity itself, or of some other agent that can

perform it.

8.2.3.1.1 Internal Capabilities A capability is internal where ag is the same agent

as that holding the capability object; i.e. the agent can alter world state itself. For

example, a Truck agent may have internal capabilities concerned with travelling down

a road or loading cargo.

8.2.3.1.2 External Capabilities External capabilities represent where ag is another

agent – i.e. providing meta-knowledge regarding achievement of g(a) through dele-

gation to ag. The need to utilise other agents to achieve goals frequently motivates

adoption of an MAS approach, and entails dependencies between agents. We assume

agents advertise their internal capabilities appropriately, to allow their use by other

agents4.

3We assume activities are selected based upon their associated g(a) states
4We do not assume any specific mechanism for transmitting or the contents of advertisements, be-

yond that they minimally will contain the information of the external capability representation

Chapter 8. CAMP-BDI Supporting Architecture 99

An external capability object represents a capability advertised by another. Using

the same representational fields as internal capabilities allows maintenance reasoning

to regard these externally performed activities in the same manner as internally per-

formed. We assume advertised information is understandable by recipients; i.e. that

preconditions and effects refer to states which can be sensed by the recipient. We ar-

gue it is intuitive that agents would only use advertised capabilities where they could

understand such information – as this is required to identify what a delegated activity

would achieve, and under which conditions.

However, some additional constraints do exist upon use of external capabilities, as

the more detailed semantics of performing that activity may only be locally known.

Although our approach does not mandate a specific planning approach, including for

distributed planning, external capability preconditions and effects may exclude private

state atoms (Brafman and Domshlak [2008]) – i.e. limiting communicated information

to the states required to be provided by, or which can be provided to, other agents (as-

suming that goal-required atoms are themselves always public). Confidence estimation

will also likely require more specific and detailed semantic knowledge than might be

readily communicated (Section 8.2.5). External capabilities consequently only repre-

sent general case ability of the advertiser for a given activity; although more specific

information can be provided using contracts (discussed in Section 8.4).

8.2.3.2 Activity Complexity

We define primitive capability knowledge as equivalent to know-how of basic actions,

and composite to higher level know how (as defined by Singh [1999]). An example

of a primitive capability is to move down some road; an example composite being

knowledge to travel along some particular route (potentially entailing multiple move

activities).

Our capability model is polymorphic; the semantics of how an activity is performed

(or goals met) are encapsulated within the capability object to allow generalized main-

tenance reasoning. However, it is still necessary to provide some semantic indicators

for certain reasoning cases – e.g to prioritize primitive internal capabilities over com-

posite or external ones, to minimize complexity of agent activity and interdependency.

Chapter 8. CAMP-BDI Supporting Architecture 100

8.2.3.2.1 Primitive Capabilities

A capability is primitive if ag achieves g(a) through a single atomic activity. All plans

executed by an agent will eventually entail use of primitive capabilities, in order to

actually change the world. Agent plans – both on the individual and distributed level –

result in an acyclic graph, terminating in leaf nodes corresponding to either primitive

activities (a change to the world directly performed by the agent) or use of an exter-

nal capability (i.e. a dependency upon some other obligant). We do not require the

dependant know what type of capability the obligant actually uses to perform a dele-

gated activity (obligation) – i.e. the activity is indivisible from the perspective of the

dependant, reducing the semantic knowledge to be communicated between agents.

This views plans as having HTN-like decompositional structures, potentially across

multiple delegation relationships; the SharedPlans (Grosz et al. [1999]) and Planned

Team Activities (Kinny et al. [1992]) models for distributed planning and execution

both adopt similar viewd of distributed plans as acyclic graphs based upon agent de-

composition. The TÆMS (Task Analysis, Environment Modelling, Simulation) mod-

elling language (used in Generalized Partial Global Planning by Decker and Lesser

[1993]) also holds a tree-structured view of distributed plans, noted by Lesser et al.

[2004] as similar to the HTN model.

8.2.3.2.2 Composite Capabilities

BDI agents employ plans to achieve their selected desires, typically through use of a

plan library. Composite capabilities represent the plan options ag has for achieving

g(a). Plans represented in a library are assumed to have associated selection pre-

conditions and defined (achieved) goals, used to guide plan selection when forming

intentions .

Each plan in an agent’s plan library will be associated with exactly one composite

capability. Each composite capability is associated with at least one plan – meaning a

composite represents the set of options for g(a)5. Composite capability preconditions

are the disjunction of selection preconditions for all represented plans – defining condi-

tions where at least one known and selectable plan exists. The effects field is restricted

to represent the goal state to be achieved – exact side-effects will only be known when

a specific plan is selected for execution. Once a specific plan is selected, maintenance

5i.e. n:1 multiplicity for plan:capability mapping, where n>0

Chapter 8. CAMP-BDI Supporting Architecture 101

logic can identify exact effects through the capability (effects) knowledge associated

with that activity sequence.

This description of composite capabilities is based upon use of predefined plan

libraries, as is common in many existing BDI frameworks. Composite capabilities can

also represent the ability to form a plan, but require domain-specific implementation of

preconditions and confidence functions to represent constraints upon plan formation.

Finally, we regard composite capabilities as mutable in response to addition, deletion

or modification of (relevant) plans within the plan library.

8.2.3.3 Denoting Agent Type by held Capabilities

We refer to agents as one of two types based upon their capability set. A primitive

agent has at least one internal primitive capability; logical agents can only achieve

world state changes through delegation (using external capabilities). This distinction

indicates whether an agent corresponds to (controls) some entity situated in the oper-

ating environment, or is purely organizational.

8.2.4 Matching capabilities to activities

In order to perform reasoning regarding an activity, CAMP-BDI agents must iden-

tify the appropriate capability; this section describes that process, performed by the

getCapability function. The capabilities held by an agent (C) can be subdivided into

primitive, composite and external type sets; i.e. C = Cinternal ∪Cexternal (Cinternal =

Cprimitive ∪Ccomposite). The capability mapped to an activity is that which offers the

most specific and relevant information about performing that activity (Algorithm 2).

If the activity is delegated, and ambiguity exists over the obligant(s), then the external

capabilities associated with the most likely obligant(s) are returned.

Where an activity is delegated and has an existing dependency contract, the external

capability is retrieved directly from that contract (section 8.4); otherwise, the ‘best

fit’ capability is determined. Capabilities are first matched by locality, with agents

assumed to favour internal capabilities to avoid communications cost and uncertainty

over the success of dependency formation. The algorithm first attempts to identify a

matching capability from Cprimitive or Ccomposite – an activity cannot be associated with

both types of capability.

Chapter 8. CAMP-BDI Supporting Architecture 102

Algorithm 2: The getCapability function; we assume agents cannot intend to

perform an a they do not possess capability knowledge for.
Data: a – an activity, which may correspond to achievement of a goal

Ba – the estimated execution context for a

Result: The capability for performing a, or null if the agent is incapable

Cprimitive← set of internal, primitive capabilities held by the agent;

Ccomposite← set of internal, composite capabilities held by the agent;

Cexternal← set of external capabilities held by the agent;

if a ∈ Dependencies then
// Assumes dependency contracts are only formed if the agent

has no local capability for a

contracta← contract for a in Dependencies ;

return contracta.externalCapability;

else if (a /∈ Dependencies) & (a ∈ Cinternal) then
// Matches an internal capability

return c ∈ Cinternal where c.s = a and c.ag =this agent;

else if (a /∈ Dependencies) & (a ∈ Cexternal) then
// External capability is required

if a has a defined obligant then
// a defines a specific intended obligant - referred to

as agobl - so can match to a specific capability

return c ∈ Cexternal where c.s = a andc.ag = agobl;

else
// Otherwise, assumes the best possible obligant would

be employed to execute a

return getBestExternalCapability(a, Ba);

Chapter 8. CAMP-BDI Supporting Architecture 103

If an agent does not hold internal capabilities for a, it must delegate that task. If

an obligant has been previously identified (but a dependency contract not yet formed),

the obligant name allows identification of a corresponding external capability. If no

obligant is specified, getBestExternalCapability (Algorithm 3) iterates through all ex-

ternal capabilities with an s matching a, returning that offering the best estimated con-

fidence (matching assumed obligant selection criteria). If a is a joint obligation –

requires use of multiple agents – a new external capability is formed, representing the

combination of most capable obligants. If no capability can be found, or insufficient

obligants exist, an ‘artificial’ capability is generated which indicates that activity can-

not be performed (i.e. with preconditions as false, conf as 0, and effects as /0). This

aims to reflect the constraints and confidence associated with forming a team to exe-

cute that delegated task.

The mergeCapabilities (Algorithm 4) function merges a set of multiple capabilities(C)

– into a single ‘synthesized’ capability; mergeCapabilities(C)→ cmerged. The s and

g(a) parts of cmerged can be taken from (will be common across) any member of C.

Preconditions are formed as the intersection of all preconditions from members of C,

and effects as the union of all effects – i.e. all obligants must have their individual

preconditions met to perform a joint activity, and all obligant effects are expected to be

achieved upon successful completion.

The conf function represents a more complicated case, as semantics of the individ-

ual capabilities in C may vary. We treat the merged capability as holding a reference to

the individual joint obligant capabilities; when a call is made to cmerged.conf , sub-calls

are made to the conf functions of each c ∈ C. The resultant individual values can be

aggregated to return a single value; the exact aggregation function will match that of

plan confidence estimation (Section 8.2.6) – effectively treating a joint obligation as a

‘plan’ where the constituent activities execute in parallel.

Chapter 8. CAMP-BDI Supporting Architecture 104

Algorithm 3: The getBestExternalCapability function
Data: a – an activity or goal

Ba – an estimated execution context for a

Result: The highest confidence external capability for a, or null if none found

n← number of obligants required for a;

Cexternal← set of all external capabilities;

/* Let Ca be a list of capabilities, ordered by ascending

confidence */

Ca← /0;

for each cexternal ∈ Cexternal do
conf ← cexternal.confidence(a, Ba);

Add cexternal into Ca, in confidence order using conf ;

if Size of Ca<n ‖ /0 then
// Create capability indicating a is impossible

cimpossible = new Capability();

cimpossible.s = a;

cimpossible.ag = /0;

cimpossible.pre = false;

cimpossible.eff = /0;

cimpossible.conf = 0;

return cimpossible;

else if n = 1 then
return top entry in Ca;

else
CtopSet← top n entries in Ca;

return mergeCapabilities(CtopSet);

Chapter 8. CAMP-BDI Supporting Architecture 105

Algorithm 4: The mergeCapabilities function
Data: C – a set of capabilities, ordered by generalized confidence

Result: A capability formed by merging all members of C

cmerged← new (blank) Capability;

cmerged.s← c.s for any c ∈ C;

cmerged.g(a)← c.g(a) for any c ∈ C;

for each c ∈ cmerged do
cmerged.pre(a)← cmerged.pre(a)∩ c.pre(a);

cmerged.eff (a)← cmerged.eff (a)∪c.eff (a);

cmerged.conf (a, Ba)← function referencing all c.con f (a, Ba) for all c ∈ C;

return cmerged;

8.2.5 Confidence estimation

The qualification problem (McCarthy [1958]) argues that, to avoid over-constraining

an operator to the extent of being unusable, deterministic preconditions can only rep-

resent the most significant states constraining an activity. Some states may not have

significant enough effect to justify representation as preconditions, yet still influence

the outcome. Confidence estimation provides a scalar representation of activity quality

(in the range 0 to 1), intended to account for where the execution state decreases the

likelihood of success, without being significant enough to represent as preconditions.

This is somewhat similar to the use of qualitative scoring for optimal scheduling by He

and Ioerger [2003], or quality scoring functions within OMACs (DeLoach [2009]).

The confidence function considers all states known to impact execution, including

those of lower significance. This information is encapsulated within the function, ab-

stracting away any need for the maintenance algorithm to consider precise semantics

(knowledge is local to the capability, rather than the agent). An intuitive implemen-

tation is probabilistic estimation, but such granularity is not necessary; the function

simply has to provide a comparable, representative result – allowing abstraction or

generalization if necessary due to knowledge limitations.

Use of a numerical value also supports simplified, enumerated states – e.g. defi-

nitely failing = 0, probably failing = 0.35, risk of failure 0.75, definite success = 1 –

and comparison between different capabilities, without requiring knowledge of capa-

Chapter 8. CAMP-BDI Supporting Architecture 106

bility semantics. This particularly applies when considering external capabilities – e.g.

Truck and Helicopter agents move in semantically different ways, but their quality can

be compared through their advertised confidence.

Two classes of confidence estimation are described; generic and specific. Generic

estimation is used if a is unground, and provides a generalized estimation of ability

for performing that type of activity. Specific estimation uses a ground a to allow more

detailed semantic reasoning, giving more accurate estimation for that specific activity.

This also allows estimation to account for where certain states only impact specific ac-

tivities. For example, a Truck can have a general confidence in move(?from, ?to) based

upon current health, location, and/or weather condition states – but the confidence for

move(A,B) is significantly influenced by the current state of road A→ B. We next

discuss approaches for estimation, which vary with capability type.

8.2.5.1 Primitive Capability Estimation

Primitive capability confidence estimation is domain and agent dependent, as use of

these capabilities equates to directly manipulating the environment. For example, a

Truck agent controls a Truck vehicle situated within the environment, with primitive

capability confidence deriving from the physical condition of that entity and world. As

confidence for plans and external capabilities ultimately originates from the confidence

of primitive, internal capabilities, this does render efficacy of confidence estimation

dependent upon the designer.

Primitive capability confidence will be specific to the environment, capability and/or

holding agent type; one example approach is to use conditional rules (such as if slip-

pery(?from, ?to), then confidence = 0.7), or arithmetical operations based upon indi-

vidual confidence effects associated with various states. Another more generalized

method is to use (time-weighted) historical results. Singh et al. [2010], Haigh and

Veloso [1998] and Jiménez et al. [2006b] all used approaches of probabilistic estima-

tion derived from historical records, for respective purposes of learning plan selection

(context) conditions, forming control rules for robot behaviour, and guiding variable

instantiation(s). However, this would require failure to occur in order to infer negative

states – contradicting our desire to prevent failure in the first place.

Chapter 8. CAMP-BDI Supporting Architecture 107

8.2.5.2 External Capability Estimation

Confidence estimation for external capabilities uses a fixed value, received in the most

recent advertisement for that capability (i.e. from ag as defined by the capability). As

estimation employs agent beliefs, and as knowledge is often decentralized in a MAS,

the recipients of advertisements would likely be unable to for the necessary beliefs

if advertisements did contain detailed calculation information. Restriction to a fixed

value allows semantic knowledge requirements to be limited to the advertiser alone,

reducing overall knowledge requirements across the system.

This approach effectively involves a ‘push’ approach – external confidence values

must be generalized, as the advertiser cannot be aware of how and when potential de-

pendants would use that external capability (i.e. assume the activity instantiations or

execution contexts for future obligations upon them). External capability holders could

alternatively form query requests for specific confidence estimates; we have assumed

this would entail excessive communications costs, although such a request approach

could still be implemented if necessary for a particular domain.

Specific values can be provided within established dependency contracts as the

precise execution context of activities becomes known (Section 8.4). This offers some

mitigation against the generality of advertisements, as well as reinforcing the desir-

ability of forming contractual dependencies as early as possible (to aid maintenance

reasoning as well as reserve agent resource).

8.2.5.3 Composite Capability Estimation

In composite capabilities, the confidence value represents the quality of available plans

for a in execution context Ba. The estimation function (Algorithm 5) iterates through

plans represented by the capability and estimates their individual confidence through

the calculatePlanConfidence function. General and specific cases are similar, although

the latter is able to ground plan (selection) preconditions with the arguments of a to

filter out unselectable plans.

A specific implementation is required where composites represent runtime plan

formation, to estimate the confidence for any plans the agent can generate to achieve a

given the initial state Ba. Simply performing planning and evaluating results upon each

Chapter 8. CAMP-BDI Supporting Architecture 108

confidence call (with formed plans being cached or discarded) would be too computa-

tionally expensive to justify, although there may be some utility from forming relaxed

plans for such a purpose, similar to within domain-independent heuristic planners. The

overall capability confidence is the highest individual plan confidence; we assume the

agent uses a similar rationale for plan selection.

Algorithm 5: The confidence function for a composite capability
Data: a – the goal achieved by the plans represented in this capability

Ba – the execution context for a

Result: [0..1] – a scalar indicator of quality

conf ← 0;

P← set of all Plans represented by this capability;

if a is ground then
// Filter by preconditions

for every p ∈ P do
if (preconditions+ of p 6⊆ Ba) ‖ (preconditions− of p ⊆ Ba) then

// Remove from consideration

P← P\ p;

// Find the best plan’s confidence

for every p ∈ P do
confp← calculatePlanConfidence(p, Ba);

if conf < confp then
conf ← confp;

return conf ;

8.2.6 Calculating Plan Confidence

Our concern lies primarily with use of estimated confidence values, rather than their

calculation (which may vary with domain properties and plan libraries). Regardless, it

is useful to outline a number of potential approaches for the calculatePlanConfidence

function; conf (p,B), where p is a plan and B represents the execution context of the

first activity.

These approaches share a commonality in that their result ultimately stems from

confidence in either primitive or external capabilities (with estimation general or spe-

Chapter 8. CAMP-BDI Supporting Architecture 109

cific depending upon whether the evaluated plan is ground). As these approaches in-

volve iterating – in execution order – through every a ∈ p, capability knowledge is

required both to estimate confidence in a and determine it’s effects. In the latter case,

the effects of an are applied to Ban (execution context of an), to estimate the execution

context (Ban+1) of the following an+1.

8.2.6.1 Calculate by minimum activity confidence

One approach is to use minimum activity confidence;

conf min(p,B) = mina∈p conf (a,Ba)

This defines plan confidence (Algorithm 6) through the worst individual activity (sim-

ilarly to the q min quality metric of TÆMS). This also reflects our maintenance ap-

proach (discussed in the following chapter), where plans are maintained based on indi-

vidual confidence of their constituent activities – meaning the confidence value directly

indicates if p contains at least one threatened activity. Finally, if estimating confidence

to evaluate against a minimum threshold, α–β pruning can be used; returning imme-

diately upon ensuring confidence will be below that threshold. This offers potential

optimisation, depending where the first terminating low-confidence activity lies in p,

for certain operations such as filtering out low-confidence plans.

Chapter 8. CAMP-BDI Supporting Architecture 110

Algorithm 6: The calculatePlanConfidence function, using minimum con-

stituent activity confidence
Data: p – A plan of n activities; p = {a1, ... , an}

Ba – The estimated execution context for a1

Result: [0..1] – a scalar indicator of quality

Ba – Updated with the effects of executing p

confp =1.1;

for each a ∈ p do
Capability ca← getCapability(a);

confa← ca.confidence(a, Ba);

if confa < confp then
confp← confa;

// Update execution context for the next activity

Ba← Ba∪ ca.effects+(a);

Ba← Ba \ ca.effects−(a);

if confp = 1.1 then
// If cannot find any capabilities, assumes zero confidence

return 0, Ba;

return confp, Ba;

8.2.6.2 Calculate by averaged activity confidence

Calculated confidence by minimum activity allows determination of whether or not a

plan would require maintenance. However, it can be argued as less representative when

comparing plans – a plan with a single, slightly more significant, activity at risk would

be regarded as inferior to one with multiple individual points of slightly lower risk. An

alternate option is to use an averaged value (Algorithm 7);

confaverage(p,B) =

n
∑

i=1
conf (ai,Bai)

n where p = {a1, . . . ,an}

Unlike conf min, α–β pruning cannot be used for optimization within confaverage. One

further concern with an averaged approach arises is that it does not account for the

length of plans. Although this principle fits with our desire for semantic independence

(that using a confidence value shouldn’t require knowledge of capability semantics,

including the length of plans represented by a composite), an average value does not

Chapter 8. CAMP-BDI Supporting Architecture 111

capture how many individual activities are at risk. We can partially mitigate this using

a maximum limit on the number of activities assessed from the plan – albeit this would

not prevent issues where plans had less activities than that threshold.

Algorithm 7: calculatePlanConfidence based upon average activity confidence
Data: p – A plan of n activities; p = {a1, . . . ,an}

Ba – The estimated execution context for a1

Result: [0..1] – a scalar indicator of quality

Ba – Updated with the effects of executing p

confp← 0;

count← 0;

for each a ∈ p do
Capability ca← getCapability(a);

confa← ca.confidence(a, Ba);

confp← confp + confa;

count← count+1;

// Update execution context for the next activity

Ba← Ba∪ ca.effects+(a);

Ba← Ba \ ca.effects−(a);

if count = 0 then
// No activities, no possible failure

return 1, Ba;

return (confp
count), Ba;

One potential risk with an averaged approach lies where the impact of a single,

very low confidence activity is ’diluted’ by multiple higher confidence activities –

meaning the calculated value fails to represent near-certain failure stemming from a

single threatened activity. This is addressed by use of a minimal activity approach (i.e.

confmin) – another approach may be to use a weighted average, giving more immediate

activities greater significance;

confweighted(p,B) =

 n
∑

i=1
conf (ai,Bai)×wi

n
∑

i=1
wi

, where p = {a1, . . . ,an}

Chapter 8. CAMP-BDI Supporting Architecture 112

The weight given to each activity confidence decreases further into the plan; for exam-

ple, wi =
n−i
1+i for a p of n activities, with i denoting the currently evaluated activities

position. This means confidence more effectively represents whether a plan will ini-

tially require maintenance, although it also increases the risk of failing to represent

later activities at risk of failure.

We can argue this is less of an issue with longer plans, or higher frequencies of

exogenous change. It is more likely the estimated execution context of later activities

will be invalid at execution, reducing the accuracy of estimated confidence values using

that assumed context. A weighted approach offers one method to focus estimation

upon these earlier activities with greater certainty over their execution context.

8.2.6.3 Analysis

The most appropriate calculation method will itself depend upon the exact planning

approach, and how tightly the formation of maintenance plans is constrained (with

regards to confidence). The confmin approach is suited to strict planning constraints

prohibiting any low-confidence activity. However, confmin may not be appropriate if

this constraint is unrealistic, and some use of lower confidence activities is inevitably

necessary; in that case, either confaverage or confweighted are more appropriate, as these

offer methods to judge whether a generated maintenance plan provides an overall con-

fidence increase.

Confidence estimation entails knowledge requirements, particularly for primitive

capabilities. We argue these can be subsumed within domain modelling, as forming a

planning domain or plan library requires identification of states and their impact upon

activity success, to define suitable activity preconditions. This consideration does have

to be weighted against the reality that confidence estimation will have greater accuracy

when using more specific and detailed information about the impact of states upon

success than might be necessary for a purely deterministic domain model.

Primitive capability estimation requires domain specific implementation, meaning

responsibility lies with the system designer to ensure efficiency and termination. Ex-

ternal capability estimation simply returns a fixed, advertised value, making it of trivial

complexity – complexity is offset to the internal capabilities of the advertiser (generat-

Chapter 8. CAMP-BDI Supporting Architecture 113

ing the advertised estimate).

Composite estimation is more complex, as composites represent multiple plans.

Estimation effectively results in a branching tree structure, where the final leaf nodes

correspond to the potential primitive plans (Figure 8.1)6. Confidence estimation be-

comes essentially a tree-traversal operation, with complexity O(nplans× nactivities) –

nplans is the maximum number of complete primitive plans, and nactivities the maximum

size (number of activities) of any individual primitive plan.

Figure 8.1: An example of progressively branching confidence estimation calls, where

a composite capability contain plans which themselves contain composite activities.

Ultimately, this ‘tree’ of calls resolves to confidence estimation for leaf activities.

Composite confidence estimation requires each activity have an associated, esti-

mated, execution context; requiring duplication of the current belief set in memory.

In the worst case, effects of an activity an are the complete inversion of its execution

context Ban , meaning Ban+1 cannot be more efficiently stored through reduction to only

the individual state transformations required to reach Ban+1 from the initial Ba0 .

Our estimation algorithm assumes cyclical references do not occur, or are detected

6A primitive plan is one composed only of ordered primitive activities, as results from the sequential
decomposition or refinement processes of approaches such as HTN planning

Chapter 8. CAMP-BDI Supporting Architecture 114

and prevented, such that infinite referential loops do not occur (i.e. where capability

ca uses estimation for cb, which has plans containing activities matching ca, etc). If

this assumption holds, composite confidence estimation terminates so long as prim-

itive and external confidence estimation terminates for leaf activity nodes. Avoiding

cyclical loop circumstances is simplified by defining external capabilities through fixed

values, reducing calculation scope to the local (advertising) agent. Finally, domain and

implementation dependent optimizations may exist to reduce complexity.

A copy of Ba has to be kept for every instance where a is met by a composite

capability, to provide the execution context for each evaluated plan. The number of

copies – the extent of memory usage – will scale linearly with the number of primitive

plans (i.e O(nplans)), as each plan requires an associated B to provide (progressively

estimated) execution contexts for it’s constituent activities.

This memory use may be a concern with tightly bounded agent memory resources;

one alternative is to use a two-stage approach, where the agent forms the complete set

of potential primitive plans before evaluating each in turn – restricting memory require-

ments to two copies of Ba (a ‘backup’ of the initial execution context, and one for the

currently evaluated plan). This would, however, entail either the composite estimation

process be entirely defined by that top-level capability, or agents implement some form

of semantic knowledge sharing between capabilities to correctly identify the entire set

of possible primitive plans (as multiple decomposition options, at multiple levels, may

exist). Our tree-based approach to plan confidence calculation – where composites

only know the confidence of a plan activity, not how that estimate was generated –

decouples and encapsulates such knowledge, allowing potential capability-specific op-

timisations.

8.3 Maintenance Policies

Policies provide a mechanism for dynamic regulation of system behaviour without

requiring modification of the underlying implementation (Tonti et al. [2003]) – for

example, to specify constraints and/or relaxations upon (fixed, inviolate) planning op-

erators or agent goals7. Wark et al. [2003] describes policies applied to individual

agents, system components, or larger sets of either. Both policy contents and their ap-

7This type and use of policy is entirely separate from those formed as a solution to MDPs

Chapter 8. CAMP-BDI Supporting Architecture 115

plied scope can be altered during runtime, allowing dynamic modification of system

behaviour over varying levels of specificity.

An example of policy application is found in the Coalition Search and Rescue Task

Support (CoSAR-TS) experiment (Uszok et al. [2004], Tate et al. [2004]). CoSAR-TS

examined team planning and execution operations within a search-and-rescue (SAR)

environment, consisting of a realistic geography formed of several (fictional) coun-

tries (Arabello, Agadez, Binni and Gao). Policies were implemented using the KAoS

(Knowledgable Agent-orientated System) ontology (Bradshaw et al. [1997]) and em-

ployed for dynamic adaptation of planning goals and operators by the I-X/I-Plan plan-

ning and execution system (Dalton et al. [2006]).

For example, Arabello possessed superior hospitals, but denied access to it’s airspace

for helicopters originating from Gao – constraining vehicle selection. Dalton et al.

[2006] describe application of policies to add such constraints dynamically, allowing

easy modification if Arabello (or other countries) subsequently altered flight restric-

tions. Policies both added flexibility to, and facilitated reuse of, agents by allowing the

addition of agent, environment and situation specific constraints to generalized plan-

ning domains as required.

CAMP-BDI uses policies to define variables whose values influence agent mainte-

nance behaviour, with their application ranging from specific agent-capability pairs to

the entire system. Policy values can be used to tailor sensitivity of maintenance trigger

conditions (and corresponding overall frequency of maintenance activity) against the

severity of failure consequences, or to account for computational and time constraints

upon agents. They can also be updated if knowledge about agent capabilities and the

environment changes over time.

8.3.1 Contents

A maintenance policy φ contains the following fields;

• Threshold (Th): value (where 0≤ Th <1) defining minimum acceptable confi-

dence for an activity a; a is regarded as threatened if φ.Th <ca.conf(a,Ba).

• TriggerConditions (TC): a set of state atoms, including absence conditions

(i.e. TC = TCpres∪TCabs; where TCpres is the set of positive or negative states

Chapter 8. CAMP-BDI Supporting Architecture 116

which should hold, and TCabs the positive or negative states which should be ab-

sent),serving as additional explicit maintenance trigger conditions. Regardless of

confidence, a will be regarded as threatened if TCpres ⊆ Ba and (TCabs \Ba) =

TCabs. This field specifies states which always entail maintenance; either as

an optimisation to avoid confidence calculation, or in response to knowledge

learned during runtime.

• Priority (Pr): value used to prioritise addressing of threatened activities (taking

precedence over plan ordering). This allows focus upon certain activity types

(when mapping the policy to their associated capability). Prioritisation can be

applied if it is advantageous to address threats to a particular type of activity ear-

lier, such as where resources are likely to required (i.e. for advance reservation).

• DropConditions (DC): state atoms, defined as for TC. Maintenance planning

is treated as intractable for correcting a threat to a if DC ⊆ Ba (for example,

if Truck is mortally damaged, it cannot address a threat to a). This forces the

maintenance algorithm to maintain the parent of a – effectively generalizing

the problem whilst avoiding execution costs for futile lower scope (a-specific)

maintenance behaviour.

Although we define both TC and DC as sets of atoms – effectively disjunctive

statements – future work may expand representation to improve flexibility, with one

possible approach being to define these fields using conditional rules, applied only for

specific activity instances.

8.3.2 Matching to Activities

When maintaining an activity a, the agent must identify the applicable maintenance

policy φa. We assume an advertising and receipt mechanism exists to distribute policy

information, such that agent ag has a set of known policies ag.Φ (including knowledge

of which capabilities and/or agents any φ ∈ ag.Φ is associated with). Algorithm 8

defines the getPolicy function, used to retrieve φa, which employs a precedence order

when multiple policies can apply to a.

Policies can be associated with specific activity types (i.e. matched to capability);

we also assume a default maintenance policy φde f ault exists. For intentions, where a ∈
plani, both a and the associated goali may have different policies associated with them.

This risks inconsistencies in policy field values, and scenarios where maintenance can

Chapter 8. CAMP-BDI Supporting Architecture 117

Algorithm 8: The getPolicy function
Data: a – an activity / goal

Result: The policy φa associated with a

if a ∈ Dp then
// A contract was formed with an obligant to perform a

contracta← dependency contract for a ∈ Dp;

φa← contracta.φ;

goali← goal for plani, where a ∈ plani;

φgoal← getPolicy(goali);

return merged(φa, φgoal);

else if a ∈ Ob then
// a is an obligation

contracta← obligation contract for a ∈ Ob;

return contracta.φ;

else
// Locally performed a

if 6 ∃φ ∈Φ where φ applies to a then
/* No policy exists for a in the set of known policies,

identify if there is a plan containing a and if that

has an associated goal */

if ∃plan where a ∈ plan then
goal← goal met by plan;

return getPolicy(goal);

else
return φde f ault ;

else
φa← most recent applicable φ ∈Φ;

if ∃plan where a ∈ plan then
goal← goal met by plan;

φgoal← getPolicy(goal);

return merge(φa, φgoal);

else
return φa;

Chapter 8. CAMP-BDI Supporting Architecture 118

restore confidence to meet the threshold defined in a’s maintenance policy threshold,

but that in goali’s maintenance policy.

To counter any potential inconsistencies, the maintenance policy returned by get-

Policy uses merge (Section 8.3.3) to combine the policy mapped to a with that mapped

to a’s goal (either goali, or the subgoal met by the plan containing a). In hierarchical

plans, recursion is used to merge together policies for the chain of decomposed activi-

ties, eventually forming a policy which combines that of a and every parent (sub)goal

up to and including goali.

Priority is given to policies originating from obligation or dependency contracts; as

these may contain more-specific values defined during contract formation. Otherwise,

policies are associated with capabilities; if multiple policies apply, the most recent is

used. We assume any policy overlap will stem from failure to review older policies or

assignments during policy addition or modification – the most recent policy will likely

reflect the most accurate knowledge.

8.3.3 Merging Policies

The merge function (Algorithm 9) combines n individual policies into a single merged

policy (φmerged). φmerged disjunctively combines the input policy set, representing a

most constrained policy. Where the input φ set represents the maintenance policy for

a and those for a’s hierarchical parent activities (subgoals), φmerged is defined such that

any condition requiring maintenance (triggering conditions) of a parent activity will

also trigger maintenance of a.

Algorithm 9: The merge function
Data: φ1, . . ., φn – n policies, to be merged into one

Result: The merged policy φmerged

φmerged ← new empty policy;

φmerged.T h←minx=1...n(φx.T h);

φmerged.TC← φ1.TC∪ . . .∪φn.TC;

φmerged.Pr←maxx=0...n(φx.Pr);

φmerged.DC← φ1.DC∩ . . .∩φn.DC;

return φmerged;

Chapter 8. CAMP-BDI Supporting Architecture 119

The confidence threshold of φmerged is the lowest value for policies φ1 to φn;

priority the highest. φmerged .TC is the disjunction of all trigger conditions in the passed

in policies; i.e. if TC holds for any one of the input policies, it should also hold for

φmerged . φmerged .DC is the intersection of all DC fields – i.e. for φmerged to denote

the associated a cannot be maintained, no parent goals (where these ‘contribute’ input

policies to merge) must be able to be.

8.4 Contracts

We assume agents co-operate to achieve goals, with long-term planning required to

identify and reserve access to necessary agent capabilities and material resources.

Broersen et al. [2002] define desires (and, by extension, resultant intentions) as in-

ternally or externally motivated, based upon whether they originate from the agent

or another (dependant). We will refer to an intention as externally motivated if goali
corresponds to an accepted obligation.

Joint activity requires agents to share relevant information regarding their beliefs

and plans – such as within Joint Intentions (Levesque et al. [1990]) and Joint Responsi-

bilities (Jennings [1992]) theory. This often requires agents form agreements between

each other, to represent information regarding joint activities and mutual beliefs; we

refer to these as contracts.

CAMP-BDI assumes contracts are formed between obligants and dependents; we

use these to convey information about specific activities beyond that in generalized

capability advertisements or policy definitions. Contracts are viewed as formed as far

in advance as possible once a plan is known; to both protect against contention and

allows proactive use of the information within. We refer to the sets of obligation and

dependency contracts held by a CAMP-BDI agent as Ob and Dp respectively; these

can be viewed as a subset of B.

Chapter 8. CAMP-BDI Supporting Architecture 120

8.4.1 CAMP-BDI specific fields

CAMP-BDI maintenance behaviour requires dependency contract contract to contain

the following fields8;

• The (ground) activity to be performed (contract.α). The obligant(s) must hold

a corresponding internal capability, the dependants a corresponding external ca-

pability (used to identify obligants). For brevity, we refer to the contract where

α=a as contracta.

• A set of casual links (contract.CL); add and delete sets (CL = CL+ ∪ CL−)

representing the cumulative effects of prior activities (to be) performed in the

dependant plani. Obligants can estimate the execution context Bα for α by com-

bining this information with current beliefs; i.e. Bα = (B∪CL+) ∩ (B\CL−).

• An external capability (contract.cα); a instance of the capability model from

Section 8.2.2, with field values being set by the obligants(s) to reflect how they

intend to perform α, and using a Bα estimated with the contents of CL. Whilst

cα’s confidence function utilises a static value, this can be set by the obligant(s)

as the result of specific estimation using internal capability knowledge.

• A maintenance policy (contract.φ) reconciling the potentially differing policies

of the involved parties in the joint activity. This can be formed by merging

dependant and obligant policies using the merge function (Section 8.3.3).

The dependant defines the contents of a,and CL in contract. Both dependants and

obligants contribute to the formation of φ. The cα field originates from the obligant(s)

performing α; if α is a joint activity (performed by multiple agents), contract.cα com-

bines their individual capability specifications. Where n agents contribute capabilities

cα1 . . .cαn , cα is formed such that;

• ag represents a set (i.e. team) of obligants. This resembles a holon (Schillo and

Fischer [2003]), where the obligant team is treated as a single, unified, agent

performing α.

• Both s and g(α) should be common across all dependants and obligants.

• pre(α) is the intersection of all preconditions, cα1.pre(α)∩ . . .∩ cαn .pre(α); i.e.

the relevant internal capability preconditions must hold for all obligants in order

to perform α.

8We define the fields required by our maintenance algorithms here, although the complete set of
contractual information may vary with specific implementations.

Chapter 8. CAMP-BDI Supporting Architecture 121

• eff (α) is the union of all effects, cα1.eff (α)∪ . . .∪ cαn.eff (α) - the combined

effects of all obligants.

• conf (a, Bα) is a fixed value, formed from cαx .conf (α, Bα) for x = 0, . . . ,n using

the same approach as plan confidence estimation (Section 8.2.5).

All agents involved in performing α hold the same contract, with contractα stored

(as appropriate) in their Ob or Dp set. Similarly, α must be met by an internal or

external capability of that agent, respectively depending on whether it is an obligant

or dependant. For generality, we do not mandate specific methods for establishing

dependencies – provided resultant contracts define these fields.

8.4.2 Usage and Execution

Obligants are expected to form a plan for α in advance; this can be stored for exe-

cution upon request, and is referred to here as a suspended intention (with goali the

– externally motivated – goal to perform α). Although generalized reasoning can be

performed using the relevant composite capability, pre-emptively forming plani al-

lows obligants to both form their required dependencies and perform maintenance in

response to exogenous change even before α begins execution.

This permits multilevel distributed plans, as obligants establish dependencies for

their cached plans (and so forth, for sub-obligants). It also allows obligants to con-

tinually act to ensure mutual belief in their ability to perform α, whilst updating the

external capability within the contract. However, there is an additional communica-

tions cost of sending contract updates upon maintenance changes to a suspended plan

– we argue this to be a justifiable trade-off as required resources can identified and

reserved further in advance, and more accurate information can be employed in depen-

dant maintenance.

The dependant is quiescent during execution of α, waiting for obligants to complete

before continuing the dependant plani. As we wish to minimize semantic knowledge

requirements upon dependants, obligants do not share their specific plani for perform-

ing α. This reduces the information communicated (particularly for dependency hier-

archies), but means dependants are not aware of any fluent states during execution of

individual activities within obligant plans. This restricts agents from executing depen-

dencies in parallel, as maintenance cannot account all potential interactions between

Chapter 8. CAMP-BDI Supporting Architecture 122

multiple simultaneous delegated activities without such knowledge. Examining ways

to support maintenance reasoning with parallel activities, without requiring detailed

semantic knowledge about fluent states, is an area for future investigation.

8.4.3 Contract Policies

Formation of a dependency contract sees the dependant hold α within plani, and the

obligant(s) form (to execute on request) an intention where goali corresponds to α.

As policies can be associated on an agent basis, with a risk of ambiguity if the agents

involved have different applicable policies, the contract.φ field is formed by using

merge (Algorithm 9) to combine all dependant and obligant(s) policies. This process,

including exchanging of relevant policy information between agents, is assumed to lie

within the specific implemented contract formation protocol.

The contract policy ensures consistency of maintenance behaviour. If the depen-

dant receives updated confidence for α (assuming maintenance always occurs before

any contract EC updates are communicated), the obligant(s) must have already iden-

tified and attempted to handle maintenance tasks at their own plani level, due to their

shared Th values. This ensures maintenance changes impact a minimal subset of a dis-

tributed plan, as higher hierarchical level maintenance changes will only occur if the –

more specific – obligants are unable to restore preconditions and confidence about that

shared Th. The distributed maintenance process is detailed in Chapter 10, including

adoption of maintenance responsibility by agents.

8.5 Conclusion

This chapter contributes a supporting architecture, to provide the information required

for our maintenance reasoning. These data objects are regarded as a subset of the

Beliefs of a CAMP-BDI agent; although our focus (and specification) lies upon use

of such information to improve robustness of selected intentions, future work may

investigate how such information (with particular regard to capabilities) could also aid

desire and intention selection.

Three knowledge components are provided; capability objects, contracts, and poli-

cies. Capabilities provide agents with knowledge to both support introspective reason-

Chapter 8. CAMP-BDI Supporting Architecture 123

ing about intended plans and form planning goals when performing proactive main-

tenance. Contracts, assumed to be a pre-existing requirement for multiagent depen-

dency formation and execution, convey capability-formatted dependency information

from obligant(s) to a dependant. This allows the latter to use the same capability-

driven introspective reasoning for delegated activities, but offsets semantic knowledge

requirements to the obligant (as part of the latter’s provision of the external capability

field).

Finally, Maintenance Policies aids flexibility by allowing runtime modification of

maintenance behaviour-driving variables. These allow reaction to observed mainte-

nance behaviour (such as reducing sensitivity in the event of excessive planning) or

following changes in environmental knowledge. Policies, combined with a merging

process and their specification in contracts, also serve a purpose in guiding distributed

maintenance as a decentralized process – discussed in Chapter 10.

Chapter 9

The CAMP-BDI Maintenance Algorithm

The previous chapters described desired maintenance behaviour and defined a sup-

porting architecture. This chapter describes our core contribution; the maintenance

algorithm used by agents to anticipate threats to planned activity and perform correc-

tive plan modification. We refer to agents employing this algorithm, and utilizing the

previously described supporting architecture, as CAMP-BDI agents.

9.1 CAMP-BDI Agent Reasoning Cycle

We define the reasoning cycle of a CAMP-BDI agent in Algorithm 10 by extending

the generic BDI algorithm given by Rao and Georgeff [1992]. Explicit maintenance,

contract formation and contract update steps are inserted; the latter two reflecting as-

sumptions over contract-driven multiagent behaviour whilst also facilitating distributed

maintenance (discussed in Chapter 10). Contract formation is defined within the rea-

soning cycle to delineate its temporal relationship to maintenance.

We refer to maintaining an intention i as the process of first identifying activities

under threat in plani, followed by addressing those threats through modifications to

plani (aimed at ensuring achievement of the associated goali). The maintenance pro-

cess is formed of an initial agenda formation step (defining a set of identified threats,

or maintenance tasks), followed by task handling; these two steps are combined into

the maintain function. This division into discrete steps supports the potential and sep-

arate future examination of different approaches to diagnosis (agenda formation) and

handling (addressing agenda contents).

124

Chapter 9. The CAMP-BDI Maintenance Algorithm 125

Algorithm 10: The CAMP-BDI reasoning cycle, with changes from the generic

algorithm (Rao and Georgeff [1992]) in black text. Those relevant to local main-

tenance behaviour are underlined; others are relevant to the distributed case and

described in Chapter 10.

initializeState();

while agent is alive do
msgOb← extractObligationMaintainedMessages(eventQueue);

B← updateBeliefs(eventQueue, B);

D← optionGenerator(eventQueue, I, B);

I ← deliberate(D, I, B);

i← updateIntentions(D, I, B);

if i 6= null & i not waiting on a dependency to complete then
maintain(i, B);
formAndUpdateContracts(i, B);

execute();

else if (Dps 6= /0) & (msgOb 6= /0) then
maintainDependencies(msgOb);

else if Obs 6= /0 then
maintainObligations(B, Obs);

getNewExternalEvents();

I← dropSuccessfulAttitudes();

I← dropImpossibleAttitudes();

I← postIntentionStatus();

The maintenance process occurs after the agent selects an intention (i) – i.e. af-

ter beliefs have been updated. This avoids maintaining all possible intentions before

selecting i, which has obvious computational overhead (particularly for large sets of

potential intentions). Maintenance changes to unselected intentions also risk becoming

redundant – or suboptimal – due to execution post-effects of the selected i. We assume

selection of i is driven by the desirability of goali, and that maintenance modifications

– even if plani complexity increases – will never invalidate the decision to select i.

Chapter 9. The CAMP-BDI Maintenance Algorithm 126

A further assumption is that agents generally will pursue intentions to completion.

Interleaving independent (separately motivated1) intentions make it more difficult to

anticipate future activity threats, as the execution context for future activities is defined

less by the effects of predecessors in the same plani than by those of other intended

plan’s activities. We do not prohibit such interleaving, but frequent interleaving will

reduce the utility of maintenance – particularly with more temporally distant activities,

due to increasing uncertainty over exactly which plans and activities will be executed

(and which post-effects will occur to create future execution contexts).

The maintain function, given intention i, examines threats to activities in the as-

sociated plani based upon current beliefs (including regarding agent capabilities). If

threats exist to activity success, maintain (attempts to) modifies plani in mitigation.

There are several conditions for attempting maintenance; selection of an intention,

receipt of a post-maintenance message from an obligant (dependency triggered main-

tenance), or – if no intention was selected – the existence of suspended intentions used

to meet obligations. We address the first scenario in this chapter, and the remainder

in the following chapter. Maintenance (Algorithm 11) first forms an agenda – a prior-

ity ordered list of maintenance tasks, where each task identifies an activity in plani at

risk of (potential) failure. For simplicity of reference, we assume plani contains only

activities still to be executed, rather than preserving those already executed.

Algorithm 11: The maintain function
Data: i – An intention, formed from a goal and plan (goali, plani)

B – The (estimated) execution context for the first a ∈ plani

Result: True if i’s plani was modified

handled← false;

MT ← /0;

MT ← formAgenda(goali, plani, B, MT);

while ¬handled&¬MT = /0 do
mt ← remove highest priority member of MT ;

handled← handleTask(mt, i);

return handled;

1Rather than where a dependent intention has an indirect dependency upon another intention it holds
(or has committed to perform in future). For example, LogisticsHQ may form a dependency upon Truck1
to deliver cargo, with Truck1 forming a sub-dependency upon LogisticsHQ to clear a required road.

Chapter 9. The CAMP-BDI Maintenance Algorithm 127

If a non-empty agenda is formed, maintain will iterate through it in priority

order; terminating when a maintenance task is successfully handled or none can be.

Handling a task entails modification of plani through identification and insertion of an

appropriate subplan (maintenance planning); this potentially invalidates other tasks in

the agenda (i.e. if the inserted activities’ effects remove threat conditions, or if the

threatened activity is removed) – hence the termination. If further activities in plani

remain under threat, these will be handled in subsequent execution cycles; agenda pri-

oritization attempts to ensure the most urgent threats are handled immediately, with

lower priority tasks regarded as deferrable. This provides a specific termination con-

dition, restricting maximum iterations to the agenda size (itself bounded to plan size).

An alternative approach could continuously iterate through agenda formation and task

handling until no tasks are identified (or maximum iteration limit reached) could be

employed. This would risk significant computational cost, potentially delaying activ-

ity execution to the extent of risking exogenous change during those iterations.

The following sections detail maintenance tasks, followed by the task identifica-

tion and handling algorithms. For externally motivated intentions (obligations), the

dependant must be messaged after maintenance with updated information; this process

is detailed in the following chapter.

9.2 Maintenance Tasks

Maintenance Tasks hold key information regarding threatened activities, used to de-

termine requirements for appropriate handling. A maintenance task mta, concerning

threatened activity a, is represented by the following:

mta = 〈type,a,Ba,confa〉

The type field guides goal specification for maintenance planning, and the insertion

of the generated maintenance plan. We define three types, derived from considering

activities in terms of STRIPS operators (Fikes and Nilsson [1971]):

• Preconditions tasks indicate anticipated preconditions failure; maintenance should

seek to preserve a by inserting a maintenance plan that re-establishes required

states before execution of a.

• Effects tasks denote the agent has unacceptably low confidence in a.

Chapter 9. The CAMP-BDI Maintenance Algorithm 128

• Effects for pre tasks are a special subclass of effects task, indicating precondi-

tions of a do not hold, maintenance has failed in previous attempts to restore

those preconditions, and that a is due for imminent execution. This permits re-

laxation of confidence constraints upon maintenance planning, to (attempt to)

avoid definite failure at the cost of accepting weaker maintenance plans. We

assume potential non-deterministic failure of maintenance plan activities does

not carry more severe consequences than definite preconditions failure – if not,

failure could be permitted where reactive recovery methods are available.

The other fields provide information applied in plan formation. Ba provides the

execution context for a, providing an initial state specification for maintenance plan-

ning; confa provides the previously estimated confidence for a, allowing comparison

against generated maintenance plans.

The maintenance task object does incur an additional memory cost due to the dupli-

cation of an agent belief base in Ba. This can be an issue where agents have restricted

memory resources, particularly for large agendas. Here, we focus upon the use of Ba

in maintenance, and leave the semantics of storage or generation for further domain

specific research. We can, however, suggest two possible methods to address this issue

in a practical implementation. Firstly, if sufficient computational capacity exists, the

agent can simply re-calculate Ba upon demand using sandbox simulation to progress

the current B – walking through preceding plan steps (to a) in execution order and

adding effects appropriately. Alternatively, mt could be limited to the set of changes

(4 Ba) – i.e. the execution-ordered effects of preceding activities. This would allow

Ba to be formed by applying4Ba to the current B. This reduces memory requirements,

provided4Ba is smaller – contains less literals – than the resultant Ba. Use of such an

approach would, however, need to consider the computational overhead of calculating

and subsequently applying4Ba.

9.3 Agenda Formation

The formAgenda function (Algorithm 12) performs the diagnostic stage of mainte-

nance; i.e. formAgenda(plani,Bi)→ MT , where MT is the agenda (maintenance tasks)

for plani, and Bi is the execution context for the first activity in plani.

Chapter 9. The CAMP-BDI Maintenance Algorithm 129

Algorithm 12: The formAgenda function
Data: g – a set of goal states

p – a plan of n activities for achieving g

Ba – estimated execution context of the first activity in p

agenda – priority ordered list of maintenance tasks; passed in empty in the

initial (top-level) call

Result: agenda updated with maintenance tasks for p

Ba updated with post-effects of p (used by recursion)

Bstart ← copy of Ba;

for each activity a ∈ p do
if a is abstract then

return agenda;

ca← getCapability(a);

if ca = null then
agenda = agenda∪ new MaintenanceTask(effects, a, Ba, 0);

Update Ba with effects of goal a;

else if (ca primitive ‖ ca external ‖ (ca composite &¬decomposed)) then
existingDependencies← f alse;

if a or any subsequent activity ∈ Dp then
existingDependencies← true;

agenda← identifyLeafTask(g, a, Ba, agenda, existingDependencies);

Update Ba with ca.effects(a);

else if ca composite & decomposed then
pa← subplan decomposing a;

agenda, Ba← formAgenda(g, pa, Ba, agenda);

agenda← consolidate(g, p, agenda, Bstart);

return agenda, Ba;

Chapter 9. The CAMP-BDI Maintenance Algorithm 130

Agenda formation uses sandbox simulation; the algorithm takes a copy of initial

beliefs B and iterates through the leaf activities of plani in execution order (a leaf is

any activity not currently refined by a subplan – including undecomposed composite

activities in continually planning agents). For each leaf activity, capability knowledge

is used to determine if that activity is at threat – inserting a corresponding maintenance

task if so – and (by applying capability-defined effects) estimate the execution context

for the following activity. Each call of formAgenda returns both the agenda for a given

plan – with any new tasks inserted – and Ba representing the post-execution state fol-

lowing the last activity. The latter is not used when called initially from maintain, but

provides subsequent activity execution context when recursive calls are being made.

The identifyLeafTask function(Algorithm 13) is called to evaluate leaf activities:

identifyLeafTask(Ban , an, MT , existingDependencies)→ MT ′, Ban+1

i.e. for leaf activity an, execution context Ban , identifyLeafTask returns MT modi-

fied to include any maintenance task for an and estimates – using capability knowledge

for an – the execution context Ban+1 for any following activity.

The function getCapability (Section 8.2.4) identifies the capability associated with

an. The resultant ca is used to identify threats to the successful execution of an, ei-

ther due to violated preconditions or lack of quality (denoted by confidence). The

existingDependencies boolean is true if an or any subsequent an+x ∈ plani has an as-

sociated existing dependency contract; indicating modifications replacing an and fol-

lowing activities would entail cancellation of existing contracts.

Preconditions tasks are generated where preconditions failure of a is anticipated

and a achieves part of goali, or a or some following leaf activity(s) in the current sub-

plan represent an existing dependency. These conditions seek to preserve a due to

a being (potentially) necessary to achieve goali, or to avoid potential agent resource

availability issues (if a cancelled dependency later turns out as still required). Precon-

ditions tasks will never be generated if a has already begun execution, as preconditions

must have already been satisfied.

Chapter 9. The CAMP-BDI Maintenance Algorithm 131

Algorithm 13: The identifyLeafTask function
Data: a – an activity

Ba – estimated execution context of a

g – the goali achieved by the plani containing a

agenda – the current agenda of maintenance tasks

dependencies – true if a or successors in the source plani corresponds to a

dependency contract

Result: agenda updated with maintenance task for a, if identified

Ba updated with post-effects of a

ca← getCapability(a);

φa← getPolicy(a);

contributesToGoal← (((ca.g+(a) ∩g+) ∪ (ca.g−(a) ∩g−)) 6= /0);

preconditionsHold← (ca.pre+(a)∈ Ba) & (ca.pre+−(a)6∈ Ba);

if ¬preconditionsHold & ¬ currently executing &

(contributesToGoal ‖ dependencies) then
agenda = agenda∪ new MaintenanceTask(effects, a, Ba, φa, 0));

else
confa← ca.conf (a, Ba);

triggerConditionsMet← (φa.TCpres ⊂ Ba) & ((φa.TCabs \Ba) = φa.TCabs);

if ¬preconditionsHold then
agenda = agenda∪ new MaintenanceTask(effects for pre, a, Ba, 0));

else if (con fa < φa.Th) ‖ triggerConditionsMet then
agenda = agenda∪ new MaintenanceTask(effects, a, Ba, confa));

else if ca.type = external & a 6∈ Dp & contract formation has been

attempted and failed for a & Ba = B then
agenda = agenda∪ new MaintenanceTask(effects, a, Ba, 0));

Ba← Ba∪ ca.eff+(a);

Ba← Ba \ ca.eff−a;

return agenda, Ba;

Chapter 9. The CAMP-BDI Maintenance Algorithm 132

As handling preconditions tasks is additive to plani – through insertion of activi-

ties to re-establish required states – conditions for their generation are relatively con-

strained, to avoid continual iterative expansion of plan length where it may be simpler

to instead insert a substitute. For example, if following route A→ G→ J → K where

A, G, and J are dangerous, it is likely more efficient for Truck1 to form an alternate

route to K rather than insert secureArea activities for each dangerous location (which

would increase distributed plan complexity as well as local plani length).

Effects tasks are generated by using the maintenance policy (φa) mapped to a. An

effects type maintenance task is generated if confidence in a (estimated by ca.conf (a,Ba),

where Ba is the – estimated – execution context of a) is below φa.TH, trigger condi-

tions φa.TC hold in Ba, or preconditions do not hold (i.e. zero confidence) but it is not

necessary to preserve a. These tasks are also generated where the agent has been un-

able to form a dependency contract for a, and a is next to execute. We assume attempts

to execute a delegation-requiring task without an existing contract lead to immediate

rejection and failure; the effects task, when handled, acts to trigger reconsideration of

the plan such that it can be evaluated whether a is necessary and (based upon external

capability knowledge) considered a valid dependency option. Finally, effects for pre
tasks are generated if preconditions do not hold, previous maintenance attempts have

failed and a is about to execute (i.e. will fail).

Generated tasks are added in the agenda MT. MT is ordered first by task priority

(i.e. φa.Pr), then by precedence in the plan – if no high priority task is defined in

MT, the first task will correspond to the activity closest to execution. We allow (policy

defined) out-of-order prioritisation to consider activities where successful maintenance

change is likely to have temporal restrictions – for example, if maintenance changes for

a particular activity type are (believed) likely to introduce dependency requirements, it

may be preferable to form necessary contracts earlier to avoid contention.

9.3.1 Task Consolidation

A plan or subplan may have multiple threatened activities, resulting in multiple main-

tenance tasks. As the algorithm terminates upon successful task handling, unresolved

issues may not be addressed until subsequent maintenance. The consolidate function

(Algorithm 14) compensates by aggregating multiple tasks into a single task, allowing

Chapter 9. The CAMP-BDI Maintenance Algorithm 133

them to be addressed through a single handling call rather than over multiple main-

tenance iterations (albeit with reduced task specificity, as unthreatened parts will be

effectively aggregated with those in the subplan that are threatened).

Algorithm 14: The consolidate function
Data: g – The goal for the p

B – estimated execution context of a1 ∈ p

agenda – priority ordered list of maintenance tasks for this level

Result: agenda updated with consolidated maintenance tasks

if agenda contains ≤ 1 task then
return agenda;

confmin← 1;

for each mt ∈ agenda do
if mt.type = preconditions ‖ mt.type = effects for pre then

type← effects for pre;

confmin← 0;

else if mt.con f < con fmin then
confmin← mt.conf ;

φg← getPolicy(g);

consolidatedTask← new MaintenanceTask(effects, g, B, φg, con fmin);

agenda← /0;

agenda← agenda∪ consolidatedTask;

return agenda;

The consolidate function is called following each recursive formAgenda call for a

subplan:

consolidate(goal,B,agenda)→ agenda′

A modified agenda′ contains (if appropriate) the results of aggregating tasks within

agenda into a single maintenance task. The goal represents the hierarchical parent

goal met by a plan or subplan (a composite activity or, at the top level, goali) and B it’s

execution context; these are used to form the merged maintenance task.

Chapter 9. The CAMP-BDI Maintenance Algorithm 134

We reason it is preferable to replace a subplan entirely in a single maintenance

operation than perform multiple changes over iterative maintenance loops. This re-

duces the number of individual disruptions (if not necessarily the overall scope) to a

distributed plan compared to multiple iterative calls. Consolidation also acts to aggre-

gate the cost of individual maintenance planning operations into the handling of the

single consolidated activity. It would be possible to adopt a rule where multiple tasks

result in replanning the entire plani – but this would cause unnecessary disruption if

threatened activities lay solely within an isolated sub-part of the complete (hierarchi-

cal) plan.

Consolidation does increase the likelihood of dependency cancellation(s) from sub-

plan replacement. Whilst this suggests additional communications costs from can-

celling existing – and potentially forming new – dependencies, iterative revision of

a subplan from handling multiple agenda tasks would also require communication of

updated contract information. In our algorithm design, we opt to view it as better

to risk this initial communications cost and limit disruption of distributed plans to as

few iterations as possible, rather than face multiple lesser changes (and communicated

contract updates) over sequential reasoning cycles.

9.4 Task Handling

Given a maintenance task mt handleTask (Algorithm 15) performs preventative modifi-

cations to the plani containing mt.a, returning true if plani was changed (mt addressed):

handleTask(mt, i)→ boolean

The exact semantics for handling mt depend on type, and are defined within Sec-

tions 9.5 and 9.6. The most significant element of behaviour in this function is han-

dling of preconditions type tasks; if preconditions cannot be established for mt.a, an

equivalent effects task is generated and (attempted) handled. This allows potential sub-

stitution of mt.a, recognizing that preconditions maintenance is more constrained due

to the (likely) high specificity of precondition definition and at higher risk of failing in

plan modification than effects equivalents.

Chapter 9. The CAMP-BDI Maintenance Algorithm 135

Algorithm 15: The handleTask function
Data: mt – A maintenance task

i – The intention requiring maintenance; i = {goali,plani}
Result: boolean – true if plani is modified and mt addressed.

handled← false;

if mt.type = preconditions then
handled← handlePreconditionsTask(mt, i);

if ¬handled then
mt← new MaintenanceTask(effects, mt.a,mt.Ba,mt.confa);

else
return handled;

return handleEffectsTask(mt, i);

9.4.1 Forming Planning Operator Sets From Capabilities

Both handlePreconditionsTask and handleEffectsTask functions attempt to generate a

maintenance plan. This requires specification of a planning problem. We define a

planning problem pp = 〈 O, I,G〉; where O is a set of operators, I an initial state and

G a goal (a set of atoms)2. A plan solves pp if it can achieve all states in G, using the

activities defined by O, and starting in state I.

The formOperators function (Algorithm 16), given initial state Binit, forms a set

of capabilities which can be used to form O. Binit is used in filtering the returned

capability set; only capabilities with general confidence in Binit above the Th value

of their associated maintenance policy will be returned. This helps prevent, albeit

without guaranteeing prevention of, generation of low confidence plans – as activities

in a formed plan may still have unacceptable specific confidence, which will depend

upon plan semantics and the execution context for each activity.

This filtering is most effective where general confidence estimation provides a min-

imum value – i.e. any specific activity cannot have lower confidence. This is most

viable where confidence is more dependent upon generalized agent state than specific

2Following the STRIPS planning problem definition given by Fikes and Nilsson [1971] as
〈 F,O, I,G〉, where F is a set of boolean variables. We omit F as this is assumed constant for – and
consequently common to – all pps formed by our maintenance algorithms.

Chapter 9. The CAMP-BDI Maintenance Algorithm 136

Algorithm 16: The formOperators function
Data: Binit – the initial state for planning, expessed as a Belief set.

threshold – a minimum confidence threshold.

Result: Cop – forms a set of capabilities which can be employed as (to define)

an operator specification.

Cop← /0;

for c ∈C do
if c.confidence(c.s,Binit)< threshold then

Cop←Cop∪ c;

return Cop;

activity semantics. However, this ‘minima’ approach could risk over-constraining the

capability set when forming operators; for example, the confidence for a move activity

would stem from the worst-case road (lowest-confidence possible instantiation) in the

environment – possibly leading to rejection of the capability as an operator source on

the basis of a single negative state road (whose use might not be required, or easily

avoided, by any eventual plan).

Filtering by a minima general confidence guarantees resultant plans will have suf-

ficient confidence – but risks missing plans where activities can have sufficient specific

confidence, regardless of their general confidence estimate. Requiring a definitive min-

imal value also complicates implementation, by requiring total knowledge of possible

execution contexts and instantiations to identify that worst case. Consequently, we re-

gard general estimation as indicative; it does not guarantee specific confidence below

a set threshold, but does help guard against it. The formOperators operation is thus re-

garded as helping guide maintenance planning by removing some infeasible operators.

This represents a middle ground between not filtering operators (risking generation of

deterministically ‘legal’ plans with nonetheless low confidence), and excessive filter-

ing (where the capability set is too restricted for any plans to be found).

This requires generated maintenance plans to be evaluated and potentially rejected

– entailing costs of confidence estimation and (retrospectively) of generating a rejected

plan. One benefit of introducing acceptance criteria is allowing decoupling of planner

semantics from agent implementation. As maintenance behaviour evaluates generated

Chapter 9. The CAMP-BDI Maintenance Algorithm 137

plans (and selecting operators), the chosen planning method is not required to hold

responsibility for, or knowledge of, agent capabilities or plan confidence constraints

beyond those required and specified in the planning problem.

As no specific method is mandated for planning, we do not define a specific ap-

proach for forming operator specifications from capabilities. It is intuitive, though,

that capability preconditions and effects knowledge can be translated to STRIPS-style

(Fikes and Nilsson [1971]) equivalents (with composite capabilities comparable to re-

finements in HTN planning). However, filtering is of reduced utility if the planner is

probabilistic, as this may be able to directly model confidence as denoting the prob-

abilistic chance of achieving the defined effects states. The exact implementation of

formOperators cannot be entirely divorced from the specific planning implementation;

this section primarily illustrates it’s general viability through an example design.

9.4.2 The Maintenance Planner Component

Handling a maintenance task mt entails identification and insertion of a maintenance

plan into the plani containing mt.a. The formPlan function generates this maintenance

plan (ppp):

formPlan(pp)→ ppp

Here, pp defines a planning problem pp = {ppoperators,ppinit,ppgoal}, where:

• ppoperators is a set of capabilities, as returned by the formOperators function

described in the previous section.

• ppinit specifies an initial state, using the same representation model as agent Be-

liefs.

• ppgoal is a goal specification, again employing the same state representation

model as Beliefs.

The values of these fields are specified as part of maintenance task handling, as de-

scribed in Section 9.5 and Section 9.6, and can be seen to generally follow the planning

problem definition of classical STRIPS planning.

The resultant ppp, if found, is a plan (linear sequence of n activities; ppp = {a1, . . . ,an})
that establishes the states required by ppgoal, when executed in ppinit, and where each

Chapter 9. The CAMP-BDI Maintenance Algorithm 138

a ∈ ppp corresponds to some c ∈ ppoperators (i.e. the agent is capable of executing every

activity, either locally or through delegation).

CAMP-BDI is intended as planner-agnostic – i.e. we wish to treat the actual plan-

ning implementation as an effective ‘black box’ component. This allows flexibility to

adopt specific planners for agent implementation based upon computational consider-

ations; i.e. potentially ranging from classical or HTN runtime planners to the selection

from libraries of preformed plan recipes. This will also entail implementation-specific

requirements for translating pp to the appropriate problem specification (input) for that

planner (inputplanner), and converting the resultant output (outputplanner) into a linear

sequence of activities to return as p; Figure 9.1 suggests a design where the Problem

Converter and Plan Converter components perform these respective operations.

Figure 9.1: Abstracted view of formPlan design.

The issue of conversion is likely to be implementation specific, and dependent

upon the semantics of both the CAMP-BDI agent (including that of capabilities, and

the Belief representation model used to specify the initial state and goal) and selected

planner. We can generalize the requirements of the Planner component as to take an

input problem specification which can be formed from the contents of pp, and produce

an output plan (if found) which can be linearized (or scheduled) into an activity se-

quence; i.e. a planner can be employed iff some process exists for conversion such that

pp→ inputplanner and outputplanner→ p.

As we leave the converter components as abstract due to their implementation

specificity, this obviously allows for an extremely broad range of planning implemen-

tations to be employed; however, more restrictive assumptions can be formed with

consideration of the most likely practical implementations. Our capability model, and

the information within pp can be seen to closely correspond to classical planning rep-

Chapter 9. The CAMP-BDI Maintenance Algorithm 139

resentations such as STRIPS or PDDL (which also informed our initial specification

of the Capability model in Section 8.2.2, with a natural mapping similarly existing

between classical plans and the required format of p.

HTN methods may also potentially be employed. Where the planning domain

D= (O,M), the set of operators O can be formed from the primitive capabilities within

ppoperators, and the set of task decomposition methods M can be formed with each

m ∈ M corresponding to an individual plan (with selection precondition) represented

by a composite capability3. This will also require the declarative goal ppgoal to be

converted to an equivalent achievement task (e.g. achieve[ppgoal]); the resultant HTN

will also require traversal to form a sequential set of leaf nodes, which can then serve

to define the activities in p.

In Chapter 6, we formed the assumption that conformant, (PO)MDP or condition-

al/contingent approaches would be infeasible for intention formation due to intractabil-

ity reasons. We also assume these approaches will be unsuitable for maintenance plan-

ing under the same justification, and will not directly consider their applicability within

formPlan – particularly as capability confidence estimation does not require an exact

value (as might be needed for such approaches, such as to define the transition func-

tions required for MDP policy formation), but an indicative one.

Finally, determinization or pseudo-probabilistic approaches may be used to incor-

porate confidence information alongside use of classical planning methods. This would

likely entail additional requirements upon the Capability model to provide access to the

information supporting confidence estimation – for example, to define deterministic

operators with preconditions constrained to ensure (maintenance policy defined) con-

fidence thresholds are met, or to associate confidence-based metrics with various pre-

conditions to support a PAC-PLAN (Jiménez et al. [2006a]) style pseudo-probabilistic

approach4. As we are concerned with specification and usage of capability information

for maintenance reasoning – i.e. for performing introspection to anticipate threats and

generate maintenance task objects – we will not define a general approach for provid-

ing such additional information from Capability objects, and instead simply note addi-

3i.e. meaning that if a composite capability maps to n plans, then n methods will be generated in M
to correspond to that capability

4These approaches were employed for our experimental evaluation, described in Chapter 11.1.2.1

Chapter 9. The CAMP-BDI Maintenance Algorithm 140

tional implementation time decisions regarding the capability model may be driven by

the semantics of formPlan, and any requirements of the Problem Converter therein.

9.4.3 Acceptable Plan Criteria

Whilst generalizing the plan generation method allows greater flexibility in prac-

tical implementation, it also requires the agent to determine whether generated ‘plans

are acceptable under the confidence constraints guiding maintenance. We refer to the

maintenance plan generated for an mt as pmaint; the decision whether to accept pmaintt is

performed using acceptPlan (Algorithm 17), which compares estimated specific con-

fidence of pmaint against the threshold (Th) field within the maintenance policy (φmt)

mapped to mt.a. This ensures plani is not modified unless pmaint offers a confidence

improvement upon mt.a. If mt is of effects for pre type – at immediate, near certain,

risk of preconditions failure – the confidence threshold is relaxed; we treat a low prob-

ability of success as preferable to zero probability.

Algorithm 17: The acceptPlan method
Data: p – a plan

B – the execution context of the first activity in p

mta – a maintenance task for some a, being addressed by p

Result: boolean – true if confidence is sufficient for ps insertion

confp← confidence(p,Bp);

if confp > mta.φa then
return true;

else if (confp > 0) & (mta.type = effects for pre) then
return true;

else
return false;

Worst case complexity for acceptPlan derives directly from worst case confidence

estimation, itself depending on the specific confidence estimation implementation (Sec-

tion 8.2.6). We generalize this as requiring a full traversal of an AND-OR tree, giving

O(n) complexity where pmaint consists of n activities.

Chapter 9. The CAMP-BDI Maintenance Algorithm 141

9.4.4 Plan Insertion

Before discussing handling of maintenance task types, we define the various approaches

for inserting generated maintenance plans (pmaint) into some existing plan p. Each

approach takes a maintained activity a, plan to be inserted pmaint, and plan (being

maintained) p as arguments, and produces the modified p as an output. We use a hi-

erarchical plan as an example (Figure 9.2). Consideration of hierarchies allows theses

approaches to be applied for ‘flat’ (i.e. single-level hierarchy) or continual plans (i.e.

partially decomposed hierarchies).

Figure 9.2: An abstracted example of a hierarchical plan.

Using insertBefore(a, pmaint, p) modifies the subplan containing a by prepending

pmaint to a – such that ap1 follows a’s predecessor, with a following apn, ensuring p

executes immediately before a. If a is the first activity in that sub-plan, then ap1 instead

becomes the first activity.

Figure 9.3: Insertion of pmaint = {ap1,ap2} as the predecessor to a2−2

Intended for effects maintenance, replaceInPlan(a, pmaint, p) substitutes pmaint for

a (Figure 9.4): a is removed from p, as it is no longer required.

Chapter 9. The CAMP-BDI Maintenance Algorithm 142

Figure 9.4: Insertion of pmaint in substitution for a2−2

Using replaceFromActivity(a, pmaint, p) (Figure 9.5) expands insertion to cover

to the end of the subplan from a inclusive. Consequently, a and all successors in

the relevant sub-plan of p are removed and replaced with pmaint; apn becomes the

last activity. Activities following the modified sub-plan at parent plan levels, or in

subsequently executed sub-plans (i.e. decomposing other sub-goals), are not altered.

Figure 9.5: Replacement of a2−2 by pmaint, inclusive of following subplan activities

Finally, insertNewRefinement(a, pmaint, p) (Figure 9.6) requires a to correspond to

a composite capability (i.e. represent a sub/goal to be achieved), and inserts pmaint as

it’s refinement – replacing any decompositional plan for a. If a corresponds to goali,

this equates to complete replanning of. This is comparable to a re-refinement in HTN

plan repair – i.e. as in Unrefinement Planning (Krogt and Weerdt [2005]).

Figure 9.6: Insertion of pmaint to refine the composite activity a2.

Chapter 9. The CAMP-BDI Maintenance Algorithm 143

9.5 Preconditions Task Handling

Successful preconditions task handling inserts a maintenance plan that re-establishes

(anticipated violated) preconditions for mt.a. The neck point (Drabble et al. [1997])

for inserting the maintenance plan is immediately preceding mt.a; if p is hierarchical,

this will be within the relevant subplan. Algorithm 18 details preconditions handling,

where the maintenance planning problem forms the goal from capability preconditions.

Algorithm 18: The handlePreconditionsTask function
Data: mt – a maintenance task

p – the plan containing mt.a

Result: true if a plan was found and inserted

ca← getCapability(mt.a);

φa← getPolicy(mt.a);

if φa.DC ⊆ mt.Ba then
return false;

ppmt ← {formOperators(mt.Ba,φa.Threshold), mt.Ba, ca.pre(mt.a)};
pmt ← formPlan(ppm);

if pmt found & acceptPlan(pmt , mt.Ba, φa.Threshold) then
insertBefore(mt.a, pmt , p);

return true;

else
return false;

As only one maintenance task is provided as an argument, and no iteration is per-

formed, handlePreconditionsTask will terminate provided the plan formation, confi-

dence evaluation and insertion methods do so. General complexity can be given as

O(n) = O(naccept) + O(nformPlan) + O(ninsertBefore) – i.e. defined by sequential perfor-

mance of plan formation, plan acceptance and plan insertion operations. The dominant

factor is likely to be O(nformPlan) in most cases, due to the inherent complexity of run-

time planning; although this itself depends upon the implementation of formPlan. This

helps justify decoupling planning from the core CAMP-BDI algorithms, as the imple-

mentation of formPlan can be altered if complexity becomes an issue.

Chapter 9. The CAMP-BDI Maintenance Algorithm 144

9.6 Effects Task Handling

An effects (or effects for pre) maintenance task (mt) is handled by replacing mt.a with

a (sufficient confidence) plan achieving the same effects. As it will not always be

possible or desirable to substitute only mt.a activity, handleEffectsTask (Algorithm 19)

uses iterative abstraction, similar in concept to HTN repair – with the intent being

to minimise the scope of eventual modifications and restrict disruption to plani (and

associated obligation or dependency contracts).

Assuming a hierarchical plan, effects maintenance planning gradually increases the

scope of planning, terminating when an acceptable plan is found or no further scope

expansion is possible (total replanning has been attempted):

1 The algorithm first attempts to directly replace activity amt (where amt = mta.a,

amt ∈ psub and psub is a subplan within a hierarchical plani); the resultant pmaint

achieves the same (capability defined) effects as amt . This is performed using

trySubstitute (Algorithm 20); if amt corresponds to a composite capability pmaint

will be inserted to refine amt – otherwise, pmaint replaces amt . If drop conditions

(defined in φa.DC, where φa is the maintenance policy associated with amt) are

met, planning is treated as intractable and trySubstitute immediately returns.

Direct substitution risks iteratively increasing the length of psub and (by exten-

sion) plani, as amt will be replaced with a plan of at least a single activity. This

risks increasing complexity from preserving the remainder of a maintained psub,

even if those preserved activities do not directly contribute to the goal.

Existing dependencies suggest external capabilities may be necessary to achieve

the goal of psub. Changes since plan formation may render it uncertain whether

external capabilities are still available for contract formation, even if prior de-

pendencies had been formed upon them; the potential obligants may have expe-

rienced situational changes to prevent acceptance of new dependency requests.

Chapter 9. The CAMP-BDI Maintenance Algorithm 145

Algorithm 19: The handleEffectsTask function
Data: mt – a maintenance task

i – An intention where mt.a ∈ plani

Result: true if a plan was found and inserted into plani

amt ← mt.a;

Bmt ← mt.Ba;

Camt ← getCapability(amt);

dependenciesFollow←(true iff ∃ asucc ∈ psub where asucc ∈ Dp & asucc is to be

executed after amt);

if (dependenciesFollow ‖(Camt .type=composite) then
substituted← trySubstitute(mt, goali);

if substituted then
return true;

if plani is hierarchical then
Plan psub← subplan of plani containing amt ;

else
psub← plani;

if (amt is not the first activity ∈ psub) &

(∃apre ∈ psub where apre precedes amt & apre ∈ Dp) then
inserted← tryReplaceInclusive(mta, psub, goali);

if inserted then
return true;

while amt 6= goali do
amt ← goal activity performed by psub;

reRefined← recurseEffectsUp(amt , plani);

if reRefined then
return true;

return false;

Chapter 9. The CAMP-BDI Maintenance Algorithm 146

Algorithm 20: The trySubstitute function
Data: mt – a maintenance task of effects type p – A plan containing mt.a

Result: true if a plan was found and substituted for mt.a in p

ca← getCapability(mt.a);

φa← getPolicy(mt.a);

if φa.DC ⊆ mt.Ba then
return false;

ppmt ← {formOperators(mt.Ba, φa.Threshold), mt.Ba, ca.eff(mt.a)};
pmaint← formPlan(ppmt);

if pmaint found & acceptPlan(pmaint, mt.Ba, φa.Threshold) then
if ca.type=composite then

insertNewRefinement(mt.a, pmaint, p);

else
replaceInPlan(mt.a, pmaint, p);

return true;

else
return false;

As a result, we reason it preferable to (attempt to) preserve existing dependen-

cies, despite the potential for additional plan complexity. Substitution is there-

fore employed for primitive activity tasks only where some successor(s) of amt

in psub are associated with an existing dependency contract, to avoid that exter-

nal capability being required by, yet unavailable to, later maintenance planning.

Composite tasks use re-refinement to account for where a task consolidates mul-

tiple sub-plan tasks or uncertainty exists over currently unrefined goals (i.e. for

continual planning).

2 If amt is not substituted, and there are dependencies or goal contributing activi-

ties preceding a in psub, the scope increases to consider replacement of psub from

amt inclusive (tryReplaceInclusive; Algorithm 21). If successful, a new suffix is

set for amt’s predecessor by using replaceFromActivity to insert pmaint – equating

to partial re-refinement of psub, where pmaint achieves the same goal/performs

the same composite activity as psub. This step is skipped if amt is first in psub,

Chapter 9. The CAMP-BDI Maintenance Algorithm 147

as the following stage of scope expansion is equivalent. The utilized mainte-

nance policy φa is that associated with the goal of psub; the planning problem is

regarded as intractable (and planning skipped) if φa.DC holds in mt.Ba.

3 If the algorithm cannot restrict modifications to a subset of psub, it will attempt to

re-form it – i.e. re-refine the goal (composite activity performed through psub). If

an acceptable pmaint is found, insertNewRefinement replaces the existing refine-

ment subplan psub with it (including any ‘child’ subplans of psub). If plani is flat,

psub = plani – entailing complete replanning. For both this and the following

case, the policy mapped to psub’s goal defines the drop conditions (through the

DC field) used to avoid attempting intractable planning.

4 If psub cannot be reformed, the algorithm sets psub as the parent subplan – the al-

gorithm uses recursion to abstract up the hierarchy, attempting to re-decompose

successively more abstract goals until either an acceptable plan is found or an

unsuccessful attempt made to re-decompose goali (i.e. no further abstraction is

possible).

Algorithm 21: The tryReplaceInclusive function
Data: mt – an effects maintenance task

psub – A subplan containing mt.a

plani – An intended plan where psub represents a subplan part

Result: true if a plan was found and inserted into plani

ap← goal achieved/activity performed by psub;

cp← getCapability(ap);

φa← getPolicy(ap);

if φa.DC ⊆ mt.Ba then
return false;

ppmt ← {formOperators(mt.Ba,φa.Threshold), mt.Ba, cp.eff(ap)};
pmt ← formPlan(ppmt);

if pmt found & acceptPlan(pmt , mt.Ba, φa.Threshold) then
replaceFromActivity(mt.a, pm, plani);

return true;

else
return false;

Effects maintenance attempts to minimize the scope of maintenance planning to

Chapter 9. The CAMP-BDI Maintenance Algorithm 148

reduce distruption to plani. This is similar to HTN plan repair, and aims to mirror the

associated stability benefits over replanning (Fox et al. [2006]) relevant to distributed

planning (Komenda et al. [2012]). Where all scope levels are applicable, handleEffect-

sTask will abstract n levels ‘upwards’ in the plan hierarchy until planning is attempted

for goali – terminating when either a subfunction inserts a plan and returns true, or

where recurseEffectsTaskUp (Algorithm 22) attempts to replan goali and returns false.

The latter assumes each recursion possible represents an abstractive step ‘up’ a plan

hierarchy towards the root goali.

Algorithm 22: The recurseEffectsTaskUp function
Data: a – an activity, representing a sub-goal to be re-refined

plani – the plan containing a

Result: true if a new refinement plan for a was inserted into plani

ca← getCapability(a);

φa← getPolicy(a);

Ba← estimated execution context for amt ;

if φa.DC 6∈ Ba then
psub← (sub)plan containing a;

pp← {formOperators(Ba,φa.Threshold), Ba, ca.eff(a)};
pmt ← formPlan(pp);

if pmt found & acceptPlan(pmt , Ba, φa.Threshold) then
insertNewRefinement(a, pmt , plani);

return true;

if a 6= goali then
a← (parent)goal achieved/activity performed by psub;

return recurseEffectsTaskUp(a, plani);

else
return false;

Each sub-function call (i.e. at each scope level) has O(c+ p) complexity, where c

represents the complexity of confidence estimation for generated plans, and p the worst

case planning complexity (these are expected to be dominant factors in the individual

sub-function’s complexity). For a plan with n hierarchical levels, worst case complex-

ity for effects handling is O((n+2)(c+ p)); n is the number of plan levels (hierarchical

Chapter 9. The CAMP-BDI Maintenance Algorithm 149

depth), with two additional planning calls are made to (attempt to) substitute or replace

inclusive the maintained activity. This can be simplified to O(n) if a c and p are treated

as constants (i.e. worst case cost).

The potential for multiple planning operations, particularly for ‘deeper’ (greater n)

plans, is a potential concern in terms of computational cost; our algorithm trades this

cost off against minimizing disruption to the overall plani (and to any associated dis-

tributed intention). However, if domain specifics entail plan stability is not a concern,

agent plans are particularly deep (high n), or inter-agent dependencies are limited (or

have low associated communications costs), it is trivial to modify handleEffectsTask to

omit earlier, more restricted scope operations and solely call recurseEffects at the goali
level (i.e. reducing to O(c+ p) complexity with a total replan).

9.7 Running Example

We use our definition of the CAMP-BDI maintenance algorithm to provide an exam-

ple of maintenance behaviour within the previously described CargoWorld. In our

example scenario, Truck1 holds an intention (i) to deliver cargo (using geography from

Figure 2.6). For illustration purposes, Truck1 has cargo selection and delivery plans

(composite capabilities) normally restricted to LogisticsHQ. Policies have been defined

to give unload activities hold higher precedence than those using other capabilities, and

to define a threshold for move which requires employed roads to be in a dry state. We

describe our examples in the context of the progression of plani, and – for sake of

simplicity – omit any hypothetical interleaving of other intentions with plani.

Figure 9.8 shows a hierarchical plani to deliver an item of cargo to M, where

Move(J,D) is next to execute. The plan defines that Truck1 will move to D, load

the specific cargo Cargo1 there, move to M and finally unload Cargo1 (i.e. achieve

deliverCargo(M)).

Figure 9.7: Initial plani for deliverCargo(M).

Chapter 9. The CAMP-BDI Maintenance Algorithm 150

9.7.1 Preconditions Maintenance Task handling

In this first example, a dangerZone has emerged at I. Before executing Move(J, G), the

maintain function is called for i (goali =deliverCargo(M)). The following sequence of

behaviour activities result;

1 formAgenda iterates through leaf tasks and identifies that preconditions of Move(E, I)

do not hold (Figure 9.8). As this activity is followed by a dependency (for se-

cureArea(MilitaryHQ,M) preconditions task mtpre (mtpre.a=Move(E, I)) is gen-

erated; this is the sole task within the returned agenda.

Figure 9.8: Initial state of plani, where the next activity to execute is Move(J,G)

and preconditions of Move(E, I) are violated (threatened activities are indicated

by gray arrows underneath).

2 handlePreconditionsTask is invoked for mtpre. A plan pmaintpre is found, which

restores the states required by that Move activities’ preconditions through a sin-

gle secureArea(MilitaryHQ, I) activity.

3 Maintenance completes by inserting pmaintpre before the threatened Move(E, I)

(Figure 9.9); handlePreconditionsTask returns true, allowing maintain to exit.

Figure 9.9: Insertion of a maintenance plan prior to the threatened Move(E, I).

Chapter 9. The CAMP-BDI Maintenance Algorithm 151

9.7.2 Effects Maintenance Task handling

During execution of Move(J,G) (following the prior maintenance), junction C becomes

dangerous. Upon the next reasoning cycle (i.e. selection of i), the next activity of

plani becomes Move(G,F) with the Truck’s B set accordingly updated. The following

behaviour arises from maintain(i);

1 formAgenda identifies preconditions are violated for Move(F,C) due to the dan-

gerZone at C (Figure 9.10). As this activity is not followed by any dependencies

within the subplan for moveTo(J,D) and does not contribute any goal states, an

effects task – mteff−1 with mteff−1.a=Move(J,G) – is added to the agenda (even-

tually returned containing mteff−1 only).

Figure 9.10: The plani where the next activity is move(G, F), and move(F , C) is

threatened.

2 handleEffectsTask is invoked for mteff−1. As Move(F , C) is neither composite,

nor followed or preceded by a dependency, trySubstitute and tryReplaceInclusive

are skipped, with recurseEffects employed for the parent goal(s).

3 The maintenance planning goal is set as the parent goal for the subplan – MoveTo(J,

D) – with initial state as the execution context for the first activity in the relevant

subplan (in this case, also the next activity to be executed in plani).

4 The resultant generated maintenance plan pmainteff−1 (pmainteff−1={move(G,J), move(J,K),

move(K,H), move(H,C), move(C,D)}), is inserted to re-refine MoveTo(J,D)

(Figure 9.11).

Chapter 9. The CAMP-BDI Maintenance Algorithm 152

Figure 9.11: Insertion of a maintenance plan from move(F,C) inclusive, replacing

the following activities in the subplan for moveTo(J,D).

9.7.3 Effects Maintenance Task consolidation and handling

We next consider subsequent execution of plani (with Move(J,K) now the next activ-

ity), where roads D→ E and E→ I both become slippery:

1 formAgenda estimates the confidence for Move(D,E) and Move(E, I) activities.

Due to slippery road conditions, both have confidence below the Th field defined

in their associated policies. Effects type tasks are added into the agenda; mteff−2a

(mteff−2a.a= Move(D,E)) and mteff−2b (mteff−2b.a= Move(E, I)).

Figure 9.12: Multiple threatened activities in plani; the current activity is Move(J,

K).

2 The consolidate function, called when formAgenda returns for the subplan for

moveTo(D,M) consolidates the agenda {mteff−2a,mteff−2a} into a single effects

task mteff−2−consolidated with mteff−2−consolidated.a=moveTo(D,M).

3 handleEffectsTask is called for mteff−2−consolidated; as this task concerns a com-

posite activity, trySubstitute is employed.

4 The new plan for moveTo(D,M), mt (where mt={Move(D,C), Move(C,H), Move(H, I),

Move(I,M)}) is inserted as a (re)refinement (Figure 9.13). This also removes the

dependency for secureArea which lay within the prior (now re-refined) subplan

– simplifying the refinement of moveTo(D,M) but with some (limited) disruption

to obligant(s) for now-unecessary dependencies.

Chapter 9. The CAMP-BDI Maintenance Algorithm 153

Figure 9.13: Re-refinement of moveTo(D,M) by handling a consolidated task.

9.7.4 Iterative Scope expansion in Maintenance

Our final example shows wider scope modification of plani, where multiple precondi-

tion tasks arise from exogenous change destroying Cargo1. In this case, execution has

progressed to Move(C,D):

1 The formAgenda item identifies that preconditions of the load and unload activ-

ities in plani have been violated, as Cargo1 no longer exists (Figure 9.14).

Figure 9.14: plani where destruction of Cargo1 threatens load and unload activ-

ities required for the deliverCargo(M) goal.

2 As load does not directly contribute a goal state and is to execute next, a corre-

sponding effects for pre task is added to the agenda; mteffects for pre.a=load(Cargo1,D).

3 As unload contributes a goal state (by depositing a cargo object at M), a corre-

sponding preconditions task is also added (mtpre.a=unload(Cargo1,M)); as the

relevant maintenance policies give unload tasks higher priority, mtpre take prece-

dence in the agenda5.

4 The resultant ordered agenda {unload(Cargo1,M), load(Cargo1,D)} is returned

by formAgenda for plani

5 handleTask attempts to address the unload preconditions task; handlePrecondi-

tionsTask fails as the absence of Cargo1 renders it impossible, and returns false.

5For sake of this example, these tasks will not be consolidated to a single effects for pre task for
deliveryCargo(M).

Chapter 9. The CAMP-BDI Maintenance Algorithm 154

5 handleTask responds to this failure by generating an effects task for unload(Cargo1),

and subsequently calls handleEffectsTask for the resultant mteff (mteff .a=unload(Cargo1)).

6 As unload(Cargo1) is neither preceded nor followed by a dependency, neither

trySubstitute or tryReplaceInclusive are attempted. Instead recurseEffects at-

tempts to re-refine goali (i.e. the goal met by the subplan containing mteff .a).

7 A maintenance plan is found and inserted to re-refine goali, resulting in full

reformation of plani (Figure 9.15).

Figure 9.15: Re-refinement of deliverCargo(M) to handle the consolidated task.

9.8 Summary

This chapter contributes algorithms for the proactive modification of intended plans as

part of a modified BDI reasoning cycle – referred to as maintenance – and which define

the key behaviour of CAMP-BDI agents. The following chapter expands upon individ-

ual agent behaviour to use structured messaging, combined with contract information,

for decentralized maintenance of distributed intended plans.

We detailed a two step process; a diagnostic stage which forms an agenda of main-

tenance tasks (characterising threatened activities in a plan), followed by handling

though (attempted) appropriate proactive plan modificationn. We categorize main-

tenance tasks as preconditions or effects type (including an effects for pre subtype);

this guides initial goal specification for, and later insertion of, maintenance plans to

address identified threats. Although we primarily refer to hierarchical plans, our algo-

rithms equally apply to ‘flat’ structures or partially formed hierarchies, with composite

capabilities enabling reasoning over unrefined subgoals/abstract activities in the latter.

Our algorithms utilize the supporting architecture presented in Chapter 8:

• Capabilities allow introspective reasoning about intended plans, including quan-

titative evaluation of intended activities.

Chapter 9. The CAMP-BDI Maintenance Algorithm 155

• Contracts, detailed in Chapter 10, provide information regarding delegated ac-

tivity to allow the same introspective reasoning as for internal capabilities –

whilst offsetting information requirements to the obligant.

• Policies allow definition of generic algorithms, by externalizing definition of

maintenance trigger, drop and threshold conditions; allowing domain specific

definition and run-time modification.

We focus upon maintenance following the intention selection stage of BDI reasoning,

and assume agent BDI behaviour is goal orientated – selection of a given i is driven

by the desirability of the associated goali – and that maintenance modifications to the

plani cannot render i less selectable. This views goal-driven behaviour as a critical

element of agent rationality, as expressed by Kinny et al. [1992] and determined by

Wooldridge [2002] as a key requirement for intelligent agency.

Our maintenance algorithm adopts an approach similar to HTN plan repair, to

minimize disruption to the intended plan and associated inter-agent dependency re-

lationships. This does risk greater planning costs, particularly when planning scope

is iterated ‘up’ a hierarchical plan. The consolidation (aggregation) of maintenance

tasks mitigates against multiple planning steps where multiple tasks would otherwise

be handled over multiple reasoning cycles. Effects maintenance uses conditional cases

to relax the planning problem where viable, to avoid more constrained scope mainte-

nance planning. This attempts to mitigate against the worst case complexity of main-

tain, where n+ 3 planning calls are required for a n level hierarchical plan; the ad-

ditional three calls accounting for (failed) preconditions maintenance planning, plus

direct substitution (replaceInPlan) and inclusive substitution (replaceFromActivity) ef-

fects maintenance steps.

In general, it is expected that pre-emptive approaches face additional costs; as

any proactive system has to trade-off unnecessary mitigation behaviour through over-

sensitivity (false positive failure predictions) against risking false positive predicted

success. We also hypothesized that – in certain domains – the impact and cost of fail-

ure in terms of hindering reactive recovery may itself justify an additional preventative

cost. Our evaluation, therefore, must consider both planning costs of our approach and

the value of preventing failure and associated debilitative consequences. It is necessary

to consider the value of goals themselves – the negative impact of goal failure may also

justify additional expenditure, particularly where said failure risks damage to physical

Chapter 9. The CAMP-BDI Maintenance Algorithm 156

resources or human lives.

We also provide policies to aid in proportioning this additional cost – if a partic-

ular goal has more severe failure consequences, its associated policy (matched to the

relevant capability) can specify a lower threshold or additional trigger conditions to

increase sensitivity of maintenance. Conversely, goals with lower failure costs can

be allocated higher confidence thresholds or explicit drop conditions to reduce main-

tenance frequency – assuming their failure is permissible or that alternative reactive

handling is available.

Chapter 10

Distributed Maintenance

This chapter extends individual agent maintenance behaviour to the distributed case,

reflecting the importance of distributed planning in MASs. Obligation maintenance

processes are defined – specifically, conditions for obligants to invoke their maintain

method, and the behaviour required where a maintained intention is for a delegated

activity. We also describe how dependants respond to notifications of obligant mainte-

nance and conditions for adopting maintenance locally.

10.1 Introduction

The use of a MAS approach is often motivated by the distribution of knowledge and

capabilities in a given domain rendering centralized approaches infeasible (Sycara

[1998]). For similar reasons, we adopt a decentralized approach towards distributed

maintenance by extending individual agent maintenance. Use of structured local be-

haviour for designing decentralized, distributed behaviour is well-established – Partial

Global Planning (Durfee and Lesser [1991]), for example, is founded on the principle

of “co-ordination arising through local reasoning”.

10.1.1 Approach

Our distributed maintenance design aims to replicate local maintenance of hierarchi-

cal plans within the context of a distributed plan being executed by a decompositional

agent team. Achievement of a delegated activity through an obligant’s (intended) plan

(i.e. achievement of a goal/subgoal activity through a plan/subplan) is here analogous

to refinement of an HTN task. Mapping between HTN concepts and distributed agent

157

Chapter 10. Distributed Maintenance 158

activity has been recognised by prior research; the planner component of RETSINA

agents (Paolucci et al. [2000]) utilizes an HTN approach following a rationale of simi-

larities between task decomposition and sub-task delegation to others, as does work on

multiagent planning by Obst [2006]. de Silva and Padgham [2004] note HTN planners

and BDI agents employ similar decompositional tree structures for (respectively) task

refinement and goal-plan identification and observed, where both allow backtracking

– in BDI after activity failure (including unexpected post-effect states) and in HTN

when a pursued solution fails. Vincent et al. [2000] also observe that the TÆMS (Task

Analysis, Environment Modelling, Simulation) language used to model (multi)agent

activity extends HTN approaches, and shares similar task decomposition notions.

We conceptualized HTN plan repair as a process which determines if a (non-

primitive) plan task should be re-refined, based upon the tasks in the current refine-

ment. This entails agents adopt maintenance responsibility (with a delegated activity

equivalent to a non-primitive task refined by the obligant’s plan) when both;

• A delegated activity is at risk of failure, from either violation of preconditions

or the anticipated level of quality1 falling below a set (by contract maintenance

policy) threshold.

• The obligant(s) for that activity have been unable to restore required confidence

in their obligation to that dependant; i.e. meaning loss of mutual belief in that

delegated activity being performed at the required level of quality.

10.1.2 Synchronization and Communication Requirements

Distributed maintenance requires agents to both share information regarding delegated

activity and indicate whether they themselves attempted maintenance, in order to syn-

chronize escalation of responsibility to (or adoption of responsibility by) a dependant.

Distributed maintenance should start at the obligant level, with responsibility (and con-

sequent maintenance activity) escalating to dependants only as far as is required to

restore confidence. This limits disruption to the distributed plan to the smallest, most

specific subset of the executing hierarchical agent team, and ensures obligants are able

to use their local, more specific knowledge regarding to maintain their obligants first.

Dependants and obligants must synchronize behaviour – but we also wish to reduce

communication requirements when doing so. Rather than having (in effect) obligants

1Expressed, and subsequently referred to, as their estimated confidence.

Chapter 10. Distributed Maintenance 159

directly inform their dependant when to attempt maintenance, the dependant should

make that decision (to preserve autonomy); agents should similarly complete mainte-

nance locally, inform any dependant of changes, and subsequently continue with any

ongoing execution through their own autonomous reasoning.

It is possible an obligant may begin execution of an intention, only for the depen-

dant to cancel that obligation following maintenance changes at it’s own level. Whilst

this risks obligants expending unnecessary effort in executing intentions subsequently

aborted by dependant maintenance, it prevents forced waiting upon direct and indirect

dependant maintenance – an unnecessary delay if no dependant maintenance changes

are performed, or if such changes occur (temporally) later in the plan and would not

impact the waiting obligant (and obligation). The autonomous, local adoption of main-

tenance responsibility instead avoids such lengthy synchronization. We assume that,

if dependants do cancel a dependency following obligant maintenance, the ‘wasted’

expenditure executing an obligation between the obligant communicating their post

maintenance update and resultant dependant cancellation would not be excessive.

10.1.3 Reasoning Cycle Methods

The previous chapter described the CAMP-BDI agent reasoning cycle, focusing upon

the maintain function. Algorithm 23 repeats this reasoning cycle algorithm, highlight-

ing parts associated with distributed maintenance:

• extractObligationMaintainedMessages handles post-maintenance obligationMain-

tained messages from obligants (eventQueue includes message receipt events).

• formAndUpdateContracts performs dependency contract formation for (to be)

delegated activities within plani, and updates any existing associated dependency

or obligation (for goali) contracts.

• maintainDependencies triggers maintenance in response to receipt of obligation-

Maintained messages – i.e. where obligants have maintained an obligation plani,

with potential impact upon the dependant’s plani.

• maintainObligations performs maintenance of suspended intentions associated

with obligation contracts.

Chapter 10. Distributed Maintenance 160

Algorithm 23: The CAMP-BDI reasoning cycle, with steps relevant to dis-

tributed maintenance highlighted as black

initializeState();

while agent is alive do
msgOb← extractObligationMaintainedMessages(eventQueue);

B← updateBeliefs(eventQueue, B);

D← optionGenerator(eventQueue, I, B);

I ← deliberate(D, I, B);

i← updateIntentions(D, I, B);

if i 6= null & i not waiting on a dependency to complete then
maintain(i, B);

formAndUpdateContracts(i, B);

execute();

else if (Dps 6= /0) & (msgOb 6= /0) then
maintainDependencies(msgOb);

else if Obs 6= /0 then
maintainObligations(Obs);

getNewExternalEvents();

I← dropSuccessfulAttitudes();

I← dropImpossibleAttitudes();

I← postIntentionStatus();

10.2 Information sources in Distributed Maintenance

We will now overview use of the CAMP-BDI supporting architecture (Chapter 8)

within distributed maintenance.

10.2.1 External Capabilities

External capabilities are, from the perspective of maintenance, indistinguishable from

internal capabilities in terms of their fields; capabilities are polymorphic, and effec-

tively abstract the sources of their represented knowledge. Capabilities define fields

which must be specified in a capability advertisement; by using this information to

form external capabilities, recipients can use this information to reason over delegated

Chapter 10. Distributed Maintenance 161

(or potentially delegated) activities without requiring underlying semantic knowledge

of how that activity would be performed. Instead, only the advertiser requires seman-

tic knowledge, as they hold sole responsibility for actually calculating the relevant

(advertised) field values.

It will be typically more efficient in communications terms to perform advertise-

ment updates (i.e. a ‘push’ approach) than require possible dependants to query for the

latest capability information (i.e. ‘pull’). Agents therefore will be required to update

capability advertisements when changes to their B set impact confidence. Although not

explicitly defined in our above reasoning cycle, this update behaviour can be incorpo-

rated into the updateBeliefs function – the exact semantics will depend on the specific

implementation of capability advertisement and storage of capability information.

10.2.2 Dependency and Obligation Contracts

Teamwork approaches such as Joint Intentions (JI) (Levesque et al. [1990]) and Joint

Responsibilities (an extension of JI) theory (Jennings [1992]) require mutual belief

establishment between agents involved in a joint activity; our maintenance approach

is influenced by the latter, which models separate commitments to goals and plans

– to allow the latter to be revised if necessary to ensure belief in achieving the for-

mer. CAMP-BDI expresses these mutual belief requirements through contracts; agents

(as an implicit or explicit condition of contract acceptance) will update mutual be-

liefs through communicating contract updates when necessary. Contracts both guard

against contention and provide information regarding how a delegated activity is to be

performed (i.e. through the causal links – CL – and external capability – EC – fields).

This information is used in maintenance of both obligations and dependencies. CL

provides obligants with the combined effects of activities (yet to be) executed by their

dependant prior to the delegated activity; allowing estimation of the future execution

context when maintaining that obligation.

Contracts allow for provision of more specific external capability information than

generalized advertisement – and offering dependants more accurate knowledge for

use when maintaining their dependant intention. This offsets semantic knowledge re-

quirements to the obligant providing and updating the EC field (following exogenous

changes and/or maintenance changes). Dependants could, alternatively, directly query

Chapter 10. Distributed Maintenance 162

(poll) obligants to discover whether changes have occurred. However, this would in-

cur additional communications costs from being performed in anticipation of possible

change, rather than driven by definite changes known to the obligant. This would be

exacerbated for composite capabilities, where a specific confidence query could lead

to numerous reciprocal queries for each (potentially) delegated activity in the repre-

sented plans. Finally, this could compromise agent autonomy if requiring the handling

of these queries be prioritized, to avoid maintenance across the distributed team being

delayed by response waits.

Contract formation and update requirements entail additional messaging costs over

ad-hoc (contract-less) activity performance requests. We argue this cost (particularly

for updates) is justified through the provision of more accurate external capability

information for maintenance, and consequently greater robustness. We also assume

contracts are required to guard against contention, making contract formation (if not

updating) a necessary expense regardless of robustness approach.

10.2.3 Maintenance Policies

Policies define conditions for both generation of maintenance tasks, and for the accep-

tance (insertion) of generated maintenance plans. Specific maintenance policies are

held within contracts to ensure obligants and dependants share maintenance conditions

for the delegated activity. This prevents maintenance being triggered at dependant but

not obligant levels; ensuring the latter is not denied the opportunity to modify it’s lo-

cal plani (if successful, with consequently reduced disruption to the overall distributed

plan compared to maintenance by a dependant), due to being pre-empted by mainte-

nance by the former.

Specification of contract maintenance policies is combined with post-maintenance

messaging by obligants (Section 10.2.4.2) to synchronize adoption of maintenance re-

sponsibility up the distributed team hierarchy. An important aspect of our distributed

behaviour is that obligants do not ‘order’ dependants to perform maintenance, but in-

stead send updated information that allows the dependant to decide whether to maintain

the intention containing the relevant dependency. Contract-set maintenance policies

ensure consistency of conditions for forming and handling maintenance tasks; struc-

tured messaging drives when agents employ that policy as part of invoking maintain.

Chapter 10. Distributed Maintenance 163

10.2.4 Forming and Updating Contracts

Agents are responsible for forming and updating contracts. This section describes that

process, viewed as a necessary ancillary process to provide information for both main-

tenance and execution in general. Although we consider specific contract formation

protocols as implementation specific, there is a clear relationship with the CAMP-BDI

specific (in terms of requirements) update process – requiring the former be defined in

detail sufficient to illustrate the latter. This section provides a highly abstracted view

of the contract formation process, illustrating supporting assumptions regarding the

minimal agent behaviour performed when a contract is formed between a dependant

and obligant(s). Further activities, such as negotiation or obligant selection, lie within

the abstracted elements of these descriptions and would be implementation specific.

10.2.4.1 Obligant selection and task allocation

In distributed plans, the allocation of tasks to agents (obligants) will directly impact

the robustness and stability of that plan; an inappropriate obligant selection will in-

crease the failure risk of delegated activities, and upon the distributed plan as a whole.

Task allocation may be performed through direct assignment (i.e. where the depen-

dant specifies the obligants to perform a delegated activity), or through more ‘social’

approaches such as combinatorial auctions2.

Our reasoning cycle performs maintenance (i.e. calls maintain) after contract for-

mation – the latter assumed to implicitly include any necessary obligant selection pro-

cesses. This ordering allows maintenance to use the most accurate, up-to-date infor-

mation regarding obligations and obligants.

However, we do not assume every delegated activity in the plani considered by

maintain will necessarily have an associated obligation contract, or even obligant(s)

specified. Instead, our design considers three possible states of knowledge regarding

a (to be) delegated activity in the design of the getCapability method (Section 8.2.4,

Algorithm 2):

2A combinatorial auction sees agents bidding upon combinations of items, assigning some corre-
sponding ‘value’ – for example, to perform some set of activities with some given utility, quality or
cost (Hunsberger and Grosz [2000], Conitzer [2010]). The auction results in assignment of activities to
agents, accepting bids such that all activities are allocated – with the aim being to ensure the best total
cost (e.g. highest overall utility, or lowest cost).

Chapter 10. Distributed Maintenance 164

• An obligant is specified and contract exists; the contract EC field is returned

• An obligant is specified but no contract exists; the external capability is taken

from Cexternal (the subset of agent capability knowledge representing received

advertisements)

• No obligant is specified; the best option (highest general confidence) external

capability within Cexternal is used

We do not assume a specific mechanism for obligation selection, and assume the se-

mantic details of whichever method is employed will be subsumed within implementation-

specific contract formation protocols (for social methods such as auctions) or (for di-

rect assignment) the planner implementation. A further simplifying assumption is that

capability advertisements are updated to reflect whether the advertiser can accept obli-

gations; i.e. the presence of a capability within Cexternal indicates a dependency can be

formed and upon which agents.

It is also assumed any non-zero confidence capability within Cexternal can be in-

cluded within the operator specification formed for maintenance planning, and that a

willing obligant will exists if the relevant activity is used within a maintenance plan (as

contract formation for a modified plani occurs immediately after maintain completes).

Where no capability in Cexternal exists corresponding to a delegated plani activity, that

activity is regarded as having zero confidence – causing generation of a representative

effects maintenance task. Where a delegated activity is due to execute next in the cur-

rent plani, lacks a dependency contract and contract formation has previously failed

(i.e. indicating a dependency cannot be formed, as opposed to dependency formation

not yet having been attempted for an activity recently added by maintenance), similar

logic is applied with a new maintenance task being generated for that activity – with

subsequent maintenance planning employing the Cexternal set, whose members reflect

only obligations that can be formed in the current situation.

We assume the obligant selection processes are implementation specific, and leave

these abstract for simplification. The following sections describe required minimal

contract formation behaviour, illustrating assumptions and requirements regarding pro-

vision of contractual knowledge for maintenance.

Chapter 10. Distributed Maintenance 165

10.2.4.2 Contract Formation Protocol

Our basic assumption of Contract formation is represented by a relatively simple pro-

tocol, starting with proposal of a contract by the (prospective) dependant. This ini-

tial contract defines an activity, causal link effects, and the policy associated with the

dependant-activity pair. Figure 10.1 depicts the messaging sequence for successful

contract formation; a proposed dependency contract must be accepted by all prospec-

tive obligants before it can be finally confirmed by the dependant. If at least one

obligant rejects a contract, then the dependant will cancel the contract (Figure 10.2).

Figure 10.1: Sequence diagram of example messaging during contract formation.

Figure 10.2: Sequence diagram of example messaging during contract formation,

where the potential obligant rejects the obligation request.

Chapter 10. Distributed Maintenance 166

How individual agents determine whether to accept (or potentially negotiate) a

contract is implementation specific; we are solely concerned with the outcome of de-

pendency formation, and leave specific contract formation semantics abstract. We as-

sume acceptance includes specification of the contract’s maintenance policy, and will

require the obligant(s) hold the capabilities required to perform the delegated activity

with acceptable confidence. We also assume obligants pre-emptively form intentions

(suspended intentions) – representing a plani identified in advance and held in memory

ready to be executed upon dependant request.

Pre-emptive intention formation allows obligations to be maintained in advance of

execution as part of ensuring mutual beliefs, although it is not necessary for CAMP-

BDI. Obligants can instead use capability knowledge to reason about accepted obliga-

tions (matching activities to their internal capabilities) and perform contract updates;

this would also be less memory intensive than pre-emptively storing intentions. How-

ever, pre-emptive formation allows obligants to identify the semantic detail of how

they will (intend to) perform that specific delegated activity. Absence of this detailed

information may risk unnecessary escalation of maintenance responsibility – with con-

sequently greater distributed plan disruption – to dependants in circumstances where a

suspended intention, if formed, could have been successfully modified.

Agents generate an effects maintenance task for any activity, due to execute, where

contract formation previously failed. The resultant effects maintenance planning will

use the most recent external capability knowledge, effectively forcing reconsideration

of whether that (to be) delegated activity is desirable. Effects maintenance can also be

triggered by changes in the contract’s external capability field. For example, a potential

obligant may set (and advertise) capability confidence to zero following some change

in circumstance. This similarly causes a potential dependant (i.e. which requires use of

that external capability, but which has not yet formed a contract with the advertiser) to

perform effects maintenance and reconsider the intended use of that external capability,

due to the potential obligant offering insufficient confidence.

10.2.4.3 Forming and Updating Contracts For Intentions

The formAndUpdateContract function (Algorithm 24) executes after maintain is called

for some i, and both (attempts to) forms any dependency contracts required for activi-

Chapter 10. Distributed Maintenance 167

ties within the maintained plani, and update existing associated contacts. In the case of

dependency contracts for activities within plani, the CL field may be updated to reflect

where preceding activities – and preceding effects – have been modified; this can also

cover where maintenance did not modify plani plan, but receipt of obligant updates

changed the EC field (specifically, the effects) for relevant predecessor dependencies.

Similarly, if goali corresponds to an obligation contract, the EC field may be updated

– informing the dependant if preconditions have changed, effects have been modified,

or confidence differs. Again, this will include and propagate any EC updates received

for the obligation plani’s dependencies.

Algorithm 24: The formAndUpdateContracts function
Data: i – An intention which may be an obligation and/or have associated

dependencies; i = {goali,plani}
/* Update dependencies upon others; also determines and returns

plani preconditions and effects */

pre,eff ← updateDependencyContracts(goali,plani, /0, /0);

/* If there is an obligation contract for goali and changes have

occurred, updates and sends to the dependant */

if ∃contract ∈ Obs where contract.α = goali then
Bi← (Copy of) B;

Update Bi with contract.CL;

confobl← conf (plani,Bi);

if (confobl 6= contract.EC.conf (goali,Bi)) ‖ (pre 6= contract.EC.pre(goali)) ‖
(eff 6= contract.EC.eff (goali)) then

contract.EC.pre(goali)← pre;

contract.EC.eff (goali)← eff ;

contract.EC.conf (goali)← confobl;

Send updated contract to the Dependant of goali using an

obligationMaintained message;

The updateDependencyContracts function (Algorithm 25) performs both depen-

dency contract formation and updates for activities within the given plan. Hierarchical

structures are supported through recursion (similarly to maintenance agenda forma-

tion). The algorithm will iterate through all leaf activities in the plani, performing con-

Chapter 10. Distributed Maintenance 168

tract formation or update steps, and finally returning cumulative sets of preconditions

and effects. The returned effects set is formed as the accumulated (in execution order)

effects of all leaf activities in plani, representing the overall state transition resulting

from executing plani.

Algorithm 25: The updateDependencyContracts function
Data: g – the goal being met (composite activity being performed) by p

p – a plan or subplan of n activities (p={a1, . . . ,an}), where n≥ 1

pre – cumulative preconditions of activities prior to p

eff – effects of activities executed prior to p

Result: pre – pre updated to account for preconditions of each a ∈ p

eff – eff updated with the effects of each a ∈ p

for Each ai ∈ p, from i = 1 to i = n do
Ca← getCapability(ai);

if ai is a subgoal with subplan then
pai ← subplan for ai;

pre,eff ← updateDependencyContracts(ai, pai,pre,eff);

else
/* Set pre to include preconditions of ai, excluding

those states established by prior activities in p */

pre←(pre∪ Ca.pre(ai))\Ca.eff (ai);

eff ← eff ∪ Ca.eff (ai);

confa← Ca.conf(ai);

performContractUpdates(ai,eff);

i← i+1;

return pre,eff ;

The preconditions set is defined as the goal preconditions, plus any non-holding

preconditions of plani activities – i.e. defining states the obligant requires the depen-

dant to establish. These preconditions should hold as a condition of contract accep-

tance; however, as conditions change, it is possible a scenario will emerge where the

obligant cannot restore required preconditions through maintenance. Updating the EC

preconditions field allows these to be conveyed to the dependant – giving that agent the

opportunity to adopt responsibility and provide states required by the obligant using

Chapter 10. Distributed Maintenance 169

it’s own capabilities.

The updated preconditions set is formed by iterating through all leaf activities in

plani, adding their preconditions to the cumulative returned set if not established by the

accumulated effects of preceding activities are removed. This ensures this cumulative

preconditions set only contains states required to be present in the starting execution

context for plani – accounting for the preconditions of all a1, . . . , an ∈ plani to execute

– and omits those established by internal casual links (where preconditions of ai are

achieved by the effects of at least one ax, where x < i).

After dependency contract updates are performed for an plani, the agent identifies

whether the associated goali corresponds to an obligation contract. If so, and where

the confidence, preconditions or effects derived from plani differ from that contract’s

EC field, the obligation contract is updated and transmitted to the dependant using an

obligationMaintained message. This signifies the contract update follows a maintain

operation, and that the obligant has already performed (or attempted to) any modifica-

tions required to restore confidence, or ensure preconditions, for that obligation.

The performContractUpdates function (Algorithm 26) defines conditions for de-

termining whether contract formation or updating is required for a given activity a.

The cumulative effects (eff) of prior activities in plani determine the CL field of the as-

sociated contract, with updates performed where CL has changed (i.e. due to changes

in preceding plan activities from maintenance modification or propagated changes in

the EC fields of preceding activities’ dependency contracts).

The policy field is immutable once a contract has been agreed between agents, as

acceptance of an obligation is – at least partly – likely predicated on the exact policy

agreed between the obligant and dependant(s). The contract formation process may

involve negotiation between the dependent and obligants to define maintenance trigger

conditions and constraints – such that modifying a maintenance policy would require

a new contract be agreed, entailing a different protocol than for the (comparatively

simple) update of information.

We only describe an abstract protocol, to illustrate our assumptions towards in-

formation held regarding dependency and/or obligation relationships. Contract for-

Chapter 10. Distributed Maintenance 170

Algorithm 26: The performContractUpdates function, a subfunction of for-

mAndUpdateContracts
Data: a – An activity, corresponding to an external capability

eff – Cumulative effects of prior activities in the plani containing a

if Ca is external type then
if ∃contract ∈ Dependencies where contract.α = a then

// Check for causal link updates

if eff 6= contract.CL then
contractupdate← (Copy of) contract;

contractupdate.EC← eff ;

Send update message for contractupdate to obligants;

else
contractnew← new Contract();

contractnew.α← a;

contractnew.CL← eff ;

contractnew.φ← getPolicy(a);

// External Capability will depend upon Obligants

Send contractnew formation request to (prospective) obligants;

mation and update processes entail additional communication cost, compared to both

approaches that do not form contracts (but risk capable agents being unavailable when

required), or reactive approaches (which do not require information to reason regard-

ing potential failure). In the worst case, a plani of n delegated activities (for an ob-

ligated goali) will send n+ 1 messages in each reasoning cycle (i.e. O(n) cost for

the sending agent) – representing update of dependency contracts for n activities, plus

for an obligation contract corresponding to goali. This presents potential cost issues,

particularly in domains with high degrees of decomposition and delegation between

agents (increasing the size of n), or which are subject to frequent exogenous change

and maintenance (requiring frequent contract updates), suggesting further investigation

into communication optimization is desirable.

Chapter 10. Distributed Maintenance 171

10.3 Maintaining Obligations

Obligation maintenance occurs where the i passed into maintain corresponds to an

Obligation contract (i.e. goali represents an activity delegated to the agent), and is

performed when either;

• The currently selected i has a goali corresponding to an accepted obligation con-

tract (activity delegated to the agent)

• The agent is idle (has no intentions selected for execution), but has suspended

intentions for meeting current obligations

Suspended intentions can be pre-emptively maintained before execution – mean-

ing contract updates sent to the dependant will reflect the obligant’s ability to restore

confidence through maintenance. If idle and beliefs have changed, the obligant iterates

through and maintains suspended obligation intentions (Algorithm 27). The execution

context for each intention is estimated using addEstablishedStates (Algorithm 28),

which inserts casual links defined by the relevant obligation contract into the current

B. This is not required if maintaining selected obligation intentions, as the current B

defines the execution context.

Algorithm 27: The maintainObligations function
Data: Obs – The set of all obligation contracts held by the agent

// Assumes Bold is initialized to /0 at agent startup

if B 6= Bold then
for Each contractob ∈ Obs do

iob← suspended intention where goali=contractob.α;

Bob← B copied and updated with contractob.CL;

changedob←maintain(iob);

if changedob then
formAndUpdateContracts(iob, Bob);

Bold → copy of B;

Chapter 10. Distributed Maintenance 172

Algorithm 28: The addEstablishedStates function
Data: a – goal met / activity performed by a plan

B – a set of agent beliefs

Result: B updated with applicable causal link effects

if ∃contract ∈ Dependencies where contract.α=a then
∆B← B∪ contract.CL+;

∆B← ∆B\ contract.CL−;

return ∆B;

else
return B;

This assumes agents identify plans when deciding whether to accept an obliga-

tion request, as part of identifying whether the agent can perform that activity with

sufficient confidence. Forming a plani in advance enables more accurate communi-

cation of confidence, and allows maintenance to pre-emptively address the impact of

exogenous change. This second case of obligation maintenance provides mutual belief

maintenance; the obligant acts both to re-calculate confidence and identify whether it

can respond to negative changes through maintenance changes to the suspended plani.

10.3.1 Obligation Maintenance Cost

Iteration through suspended intentions incurs additional cost from planning calls dur-

ing maintenance and communication of contract updates (Section 10.2.4). Given worst

case O(na+1) messages for intention contract updates (where na is the number of plani

activities, and goali is an obligation), for ni cached planis, worse case messaging com-

plexity is O(nina +ni). Similarly, if we assume every obligation requires maintenance

planning, this leads to O(ni) planning calls (and thus computational cost). This cost

serves as our justification for reserving suspended obligation maintenance occur only

when an agent is idle – preventing execution delays from maintenance reasoning where

an intention is selected.

We can also suggest further optimisation approaches for domains where suspended

obligation maintenance poses excessive cost, particularly if agents may hold large

numbers of obligations in advance of their execution. Dependants may send addi-

Chapter 10. Distributed Maintenance 173

tional information to allow obligants to be selective regarding such maintenance. For

example, if an obligant has multiple obligations to the same dependant (including in-

directly) and is given the relative ordering of their precedence within the dependant

plani, obligation maintenance could be restricted to only those due to execute next.

It is not mandatory for CAMP-BDI agents to pre-emptively form intended plans for

obligations; agents can instead use internal composite capability knowledge to update

confidence (i.e. for the contract EC field) upon belief changes, rather than maintaining

suspended planis. We have suggested suspended intention maintenance to allow obli-

gants to perform local mitigation, avoiding dependants having to perform maintenance

if the obligant could resolve threats locally. It may be that a fixed capability approach

leads to scenarios where no viable external capability (for re-delegation) exists, yet

which could have been handled through suspended obligation maintenance by (more

semantically aware) obligant.

Regardless of whether for an executing or suspended intention, the same post-

maintenance behaviour applies, with an obligationMaintained message being sent (Sec-

tion 10.3). This may lead to updates being sent to (sub)obligants (i.e. where a main-

tained obligation plani has dependencies) to update CL fields. These do not trig-

ger obligation maintenance by that (sub)obligant; adoption of responsibility for per-

forming maintenance always progresses upwards in the decomposition hierarchy, to

avoid lengthy iterative maintenance where obligation maintenance triggered by con-

tract change subsequently triggers dependant maintenance – leading to further con-

tract changes and corresponding maintenance of the earlier obligation, and soforth.

This again has conceptual similarity to re-refinement HTN plan repair; both attempt

to re-refine composite activities (including goals decomposed through delegation) in-

creasingly ‘up’ a local or distributed plan hierarchy until successful.

10.3.2 Maintaining Joint Obligations

Joint activities occur where an activity must be performed simultaneously by multiple

agents (requiring co-ordination); obligations for multiple agents to perform a joint

activity result in a joint obligation. We denote joint activities through inclusion of

multiple agent identifiers within their variables – i.e. moveBox(robot1, robot2, box, a,

Chapter 10. Distributed Maintenance 174

B), where robot1 and robot2 are joint actors3.

Micalizio and Torasso [2008b] suggest joint action be seen as simultaneous exe-

cution of a subset of simple actions – i.e. ai, j defining a joint activity where ai and

a j execute simultaneously and actively co-operate to achieve the same effect. They

suggest ai and a j can be considered individual agent obligations (i.e. upon agenti and

agentj), with separate preconditions and where agents take individual responsibility.

Within CAMP-BDI these individual activities can be seen to reflect individual contri-

butions of separate obligants to the same contract, for the same activity and to the same

dependent, and requiring co-ordination as part of execution.

Joint Obligations represent a special maintenance case, due to the co-dependencies

between joint obligants. CAMP-BDI makes a number of abstracting assumptions re-

garding joint activity performance (which may be further examined by future work):

• Synchronization occurs as an inherent part of scheduling and execution.

• That if synchronizing communication is required to be represented within planis,

it can be modelled in capability terms, where preconditions and effects represent

the requirements and purpose of that communication (perhaps using a similar

approach to knowledge-based modelling of operators within PKS, by Petrick

and Bacchus [2004]).

• The planning process invoked by agents – both to initially form a plani and for

maintenance planning – accounts for multiagent planning (I.e. if an agent can

form a plani accounting for joint activity, it can form a maintenance plan doing

the same).

Joint Obligations result in each obligant holding an independent plani where the

joint obligants co-ordinate their individual execution to perform the delegated joint

activity. Each obligant must be capable of the contract activity, with capability knowl-

edge stating where multiple obligants are required (such as through the signature, as

described earlier). These activities are assumed inherently ‘joint’ – such that obligant

maintenance cannot modify a local plani for a joint obligation in such a way that the

joint obligant set is changed.

The EC field of a contract for a joint obligation merges the individual capability
3Agents do not have to define actors within activity signatures; we use this convention to easily state

obligants for a delegated activity.

Chapter 10. Distributed Maintenance 175

information of each obligant, sent in their individual contract request replies, using

the mergeCapabilities function (Section 8.2.4, Algorithm 4). The resultant capability

defines confidence as the minimum confidence of individual obligants; we do not use

an averaged value as this risks ‘hiding’ any risks (weak points) stemming from a single,

but low confidence, obligant.

A dependant may also be itself a joint obligant; i.e. if Truck1 holds a plan con-

taining an activity such as formConvoy(Truck1, Apc1, Apc2, A, B). In this case, that

agent adopts both the dependant and obligant role in maintenance. As a dependant,

the agent attempts to form a new plani, allowing it to still perform that joint activity.

In the obligant role, the dependant can replace the joint activity through effects main-

tenance if confidence cannot be restored – conceptually equivalent to re-refining at a

more abstract plan level.

10.4 Maintaining Plans containing Dependencies

We use ‘dependency maintenance’ to refer to maintenance of an intention i where plani

contains delegated activities; representing adoption of maintenance responsibility by

the dependant for it’s part of a distributed plan. Dependency maintenance occurs under

two conditions, neither of which require modification of our previously defined main-

tain algorithm; however, the latter does introduce an additional invocation condition:

• Within the CAMP-BDI reasoning cycle, where a maintained i’s plani contains

dependencies.

• Following obligants’ maintenance, if the EC field of the dependency contract

has changed.

The maintainDependencies (Algorithm 29) function is used where dependency

maintenance is performed following receipt of obligationMaintained messages. These

messages provide updated contract information (indicating a change in how the obli-

gant(s) intend to perform an obligation), and signify the obligant has already attempted

maintenance – including performing any possible local plan modifications in response

to generated maintenance tasks. This ensures obligants will not modify obligation

planis in parallel with their dependant’s maintenance, yet allows maintenance policies

(i.e. the maintenance task generation and maintenance plan acceptance conditions) to

Chapter 10. Distributed Maintenance 176

be shared within contracts.

The function first updates dependency contracts, before maintaining impacted in-

tentions. The first step ensures maintain calls use the most up-to-date dependency

contract information. The latter step avoids the same plani being maintained multiple

times due to different dependency contract updates (i.e. for multiple obligationMain-

tained messages, corresponding to different dependencies in the same plani). It can

also be considered similar to the consolidation function applied in formAgenda (Sec-

tion 9.3.1), as multiple plan threats (the multiple obligationMaintained messages) are

aggregated into one event and handled through a single operation.

Algorithm 29: The maintainDependencies function
Data: eventQueue – all events which occurred between the previous and current

reasoning cycle

maintainSet← /0;

for each obligationMaintained message in eventQueue do
i← intention where contractnew.α ∈ iplan;

if ¬∃ i ∈ maintainSet then
maintainSet← maintainSet∪ i;

for each i ∈ maintainSet do
Bi← copy of current B;

if (∃contract ∈ Obs where contract.α=goali) &

(i is suspended) & (contract.EC has changed) then
Insert contract.CL into Bi;

maintain(i,Bi);

formAndUpdateContracts(i);

In the case of joint activities – i.e. dependencies resulting in joint obligations –

the dependant waits until it receives obligationMaintained messages from all obli-

gants. The extractObligationMaintained function (Algorithm 30) removes obligation-

Maintained messages for a joint activity dependency from eventQueue and temporarily

stores them. Once messages are received from all joint obligants, a single new obli-

gationMaintained message is generated – aggregating the individual obligant updates

into a merged contract – with a corresponding ‘receipt’ event inserted into eventQueue.

Chapter 10. Distributed Maintenance 177

Algorithm 30: The extractObligationMaintainedMessages function
Data: eventQueue – A queue of events perceived by the agent, which can

include those signifying receipt of obligationMaintained messages from

obligants

Result: eventQueue – Updated to contain obligationMaintained messages

representing the cumulative updates for all obligants, with messages

received from individual joint obligants removed

messages← every message receipt of type for each msg ∈ messages do
contract← contract sent in msg;

αob← contract.α;

if αob is a joint obligation then
eventQueue← eventQueue\msg;

receivedαob ← receivedαob ∪msg;

if ∃msg ∈ receivedαob for every obligant of αob then
// Form merged contract from all obligant updates

contractmerged← empty contract;

for each msgreceived ∈ recievedαob do
contractreceived← content of msgreceived;

if contractmergedisempty then
contractmerged← contractreceived;

else
contractmerged← contractreceived merged with contractmerged;

msgmerged← new obligationMaintained message;

Set msgmerged content as contractmerged;

msgreceipt← receipt event for msgmerged;

eventQueue← eventQueue∪msgreceipt;

receivedαob ← /0;

// Update contracts with messages retained in the eventQueue

messages← every message receipt of type obligationMaintained∈ eventQueue;

for each msg ∈ messages do
contractnew← contract sent in msg;

contractold← contract ∈ Dps where contractold .α=contractnew.α;

Dps← Dps\ contractold;

Dps← Dps∪ contractnew;

return eventQueue;

Chapter 10. Distributed Maintenance 178

This avoids multiple iterative dependency maintenance operations, triggered by

each obligant’s obligationMaintained message. In a broader sense, this renders joint

and single agent dependencies identical within the context of maintain; both are re-

duced into a single contract update event, communicated through a single obligation-

Maintained message receipt event. We assume implicit synchronization in the timing

of obligation maintenance (i.e. that joint obligants perform maintenance in reasonably

close temporal proximity, such that one obligants ‘contribution’ correlates with those

of the other joint obligants) – such that the merged single contract can be considered

representative of the current state of the joint obligation.

Receipt of an obligationMaintained message does not force dependant mainte-

nance, as no synchronization is required between the sending obligant (as with obliga-

tion maintenance). Intentions may both contain dependencies and be associated with

obligations; this may lead to ‘chains’ of maintenance activity where dependency main-

tenance (where that i is also an obligation) subsequently triggers maintenance by it’s

own dependant. A generalized example of such a process is given below (Figure 10.3):

Figure 10.3: Example adoption of responsibility in a hierarchical team, where B is an

obligant of A, and C and D are obligants for a joint activity in B’s plan.

1. Agents C and D call maintain within local reasoning cycle(s).

2. C and D individually perform post-maintenance messaging; each sends a obli-

gationMaintained message to B that includes contracts updated to account for

any maintenance changes.

3. B calls it’s maintain method upon receipt of obligationMaintained messages

from all obligants. The information in these messages is used by B to update

Chapter 10. Distributed Maintenance 179

it’s corresponding dependency contract.

4. B sends A post-maintenance messaging, again using obligationMaintained mes-

sages, with that updated contract also reflecting the updated information received

from C and D.

5. A calls maintain upon receipt of B’s post-maintenance message; as A is not an

obligation, no further messaging is required.

The Dp set is always updated with contracts from received obligationMaintained

messages, regardless of whether dependency maintenance is triggered (although main-

tenance may remove that contract by modifying the dependant plani). Assuming ex-

ecution of the dependant i will begin at some point, i will be maintained through the

CAMP-BDI reasoning cycle and consequently utilize the received contract information

(unless superseded by more recent updates).

Dependency maintenance may result in multiple maintenance operations, if no in-

tention is selected and the eventQueue includes receipt of multiple obligationMain-

tained messages. This leads to worst case complexity of O(nomnmt) at the individual

agent level, where nom is the number of obligationMaintained messages (at worst equal

to the size of Dp) and nmt stems from our calculation of worst case maintenance com-

plexity as O(n). The overall cost will increase with adoption of responsibility by in-

creasingly higher-level dependants; if the maximum ‘depth’ of dependencies (i.e. from

the root to leaf activity in the distributed plan) is nD agents, the total complexity across

the system would be O(nomnmtnD). This is partially mitigated by CAMP-BDI agents

only maintaining dependencies if they do not have an intention selected – although this

does not reduce worst case complexity, it ensures agents only expend computational

effort on message-triggered dependency maintenance if otherwise idle.

These costs could be reduced by optimisation to account for more specific differ-

ences between dependencies. For example, extractObligationMaintainedMessage can

be modified to filter as well as aggregate messages – received contract updates without

a significant (i.e. below maintenance policy threshold levels) confidence loss could be

stored in the Dp set and removed from the eventQueue to defer maintenance. Alterna-

tively, a private/public action (Brafman and Domshlak [2008]) approach could also be

used to avoid update communication if contract changes only concern private atoms,

Chapter 10. Distributed Maintenance 180

or update frequency could be determined to decrease with (if known) greater temporal

distance before execution of that obligation.

10.5 Example Distributed Maintenance Behaviour

We now present a detailed example of distributed maintenance in the Cargoworld do-

main, using the geography given in Figure 10.4. The LogisticsHQ agent, through a

combination of dependencies uponTruck1 and Helicopter, intends to transport cargo

from location F to M. This results in the distributed plan shown in Figure 10.5, where

various dependecy contracts are formed with Truck1 and Helicopter by LogisticsHQ.

Figure 10.4: Example geography, showing sequence of agent activities – Truck1 will

travel to F(1), load Cargo1(2), before travelling to D(3), and unloading Cargo1(4). The

Helicopter, present at D, will load Cargo1(5) before flying to M(6) and unloading(7).

Figure 10.6 illustrates which agents perform obligation maintenance and, as a re-

sult, send obligationMaintained messages. Here, Truck1 is currently performing it’s

obligation to moveTo(A, F). LogisticsHQ has suspended its plani for deliverCargo(M)

until that executing dependency completes. As part of execution Truck1 will maintain

the intention for moveTo(A, F), including sending an obligationMaintained message

to the dependent LogisticsHQ.

Chapter 10. Distributed Maintenance 181

Fi
gu

re
10

.5
:E

xa
m

pl
e

di
st

rib
ut

ed
pl

an
,s

ho
w

in
g

Lo
gi

st
ic

sH
Q

ho
ld

in
g

m
ul

tip
le

de
pe

nd
en

cy
co

nt
ra

ct
s

w
ith

Tr
uc

k1
an

d
H

el
ic

op
te

r.
E

ac
h

gr
ey

bo
x

co
rr

es
po

nd
s

to
an

ag
en

t’s
pl

an
i,

w
he

re
so

lid
lin

es
in

di
ca

te
re

la
tiv

e
ac

tiv
ity

or
de

r.
D

as
he

d
lin

es
de

pi
ct

ta
sk

de
co

m
po

si
tio

n;
ei

th
er

to
in

te
rn

al

su
bp

la
ns

(w
ith

in
th

e
gr

ey
bo

x)
,o

rt
hr

ou
gh

de
le

ga
tio

n
(a

nd
ac

hi
ev

em
en

tb
y

ob
lig

at
io

n
pl

an
is

).

Chapter 10. Distributed Maintenance 182

Fi
gu

re
10

.6
:

E
xa

m
pl

e
of

ob
lig

at
io

nM
ai

nt
ai

ne
d

m
es

sa
gi

ng
du

rin
g

di
st

rib
ut

ed
m

ai
nt

en
an

ce
.

Tr
uc

k1
is

cu
rr

en
tly

ex
ec

ut
in

g
its

ob
lig

at
io

n
to

m
ov

eT
o(

A
,F

)
–

in
di

ca
te

d
by

bo
ld

te
xt

–
w

ith
Lo

gi
st

ic
sH

Q
su

sp
en

di
ng

it’
s

ow
n

de
pe

nd
an

t
pl

an
i

(w
ith

th
e

ex
ec

ut
in

g
de

pe
nd

en
cy

in
di

ca
te

d

by
th

ic
ke

rb
la

ck
bo

rd
er

)u
nt

il
th

at
ob

lig
at

io
n

co
m

pl
et

es
.

Chapter 10. Distributed Maintenance 183

As Truck1 has an intention selected, it will not maintain the suspended planis for

the obligations to load(Cargo1, F) and moveTo(D, F). The obligant Helicopter is

currently idle (no selected intention), and will perform obligation maintenance of the

suspended intentions for load, moveTo and unload. LogisticsHQ continues to receive

and handle belief updates, but reduces candidate desire and intention candidate sets

to empty due to waiting for completion of moveTo(Truck1, A, F) – no other intention

will be selected for execution, but dependency maintenance can still be triggered by

obligationMaintained messages.

We suggest a scenario where Helicopter detects location M is no longer secure

– violating preconditions for moveTo and unload activities at M. Helicopter fails to

successfully modify either obligation’s plani in mitigation; an obligationMaintained

message is sent to the dependant LogisticsHQ for each. These messages inform Logis-

ticsHQ of the following;

1. Helicopter has attempted and been unable to counter threats within it’s plan for

these obligations; the updated contract EC’s preconditions are updated to include

the violated ¬ dangerzone (M) condition.

2. LogisticsHQ can assume that, having attempted maintenance already, Helicopter

is unlikely to modify it’s planis for moveTo(D, M) or unload(Cargo1, M); Lo-

gisticsHQ therefore can maintain it’s dependant i.

LogisticsHQ performs message triggered dependency maintenance of the deliv-

erCargo intention. Maintenance tasks mtpre1 (mtpre1.a =moveTo(Helicopter, D, M))

and mtpre2 (mtpre2.a =unload(Helicopter, Cargo1, M)) are generated; both are precon-

ditions tasks, as the former precedes an existing dependency contract, and the latter

achieves a state required for the goali.

LogisticsHQ successfully handles mtpre1, by inserting a new activity to secure M – a

corresponding dependency is formed upon MilitaryHQ, which in turn forms associated

(sub)dependencies upon APC1 (Figure 10.7) to perform the necessary activities within

the world. As LogisticsHQ has successfully handled a task, maintain exits with the

agent performing contract updates to reflect dependant plani changes. The CL field

for Helicopter’s obligations to moveTo(D,M) and unload(Cargo1, M) is updated to

include the ¬dangerZone(M) effects achieved by the inserted secure activity.

Chapter 10. Distributed Maintenance 184

Fi
gu

re
10

.7
:E

xa
m

pl
e

ou
tc

om
e

of
ef

fe
ct

s
m

ai
nt

en
an

ce
at

de
pe

nd
an

tl
ev

el
,a

se
cu

re
ac

tiv
ity

is
in

se
rt

ed
,r

es
ul

tin
g

in
a

ne
w

de
pe

nd
en

cy
co

nt
ra

ct

be
in

g
fo

rm
ed

w
ith

M
ili

ta
ry

H
Q

(it
se

lf
de

pe
nd

an
tu

po
n

A
P

C
1)

.

Chapter 10. Distributed Maintenance 185

A coincidental side-effect of handling mtpre1 will be re-establishment of un-

load’s preconditions (i.e. whose anticipated violation led to generation of mtpre2),

which require that same state.

A further example of maintenance at the dependant level is given by Figure 10.8.

In this scenario windy conditions reduce the confidence of Helicopter in moveTo; as

this stems from weather conditions (i.e. that cannot be modified using any agents

capabilities), Helicopter cannot find a maintenance plan to restore confidence. Logis-

ticsHQ receives an obligationMaintained message, where the updated contract’s EC

field gives a lowered confidence value below the threshold (Th) set by the contract

maintenance policy.

LogisticsHQ consequently generates an effects maintenance task mteffects (mteffects.a

= moveTo(Helicopter,D,M)). When handling mteffects, LogisticsHQ cannot find and

substitute a higher confidence maintenance plan for the moveTo activity (which is pre-

ceded and followed by dependencies). Maintenance scope is increased until a mainte-

nance plan is found. As a result, the dependent plani is reformed to replace Helicopter

with use of a new obligant – Truck1 – to transport Cargo1 to, and unload at, M. This

entails cancellation of existing dependency contracts with Helicopter, and formation

of dependency contracts upon Truck1 for inserted maintenance plan activities.

Although these particular examples do not depict maintenance planning scope ex-

tending across the entire dependant plani, maintain may see an executing dependency

removed – e.g. if a dependant messages an updated contract EC showing low con-

fidence, continues post-maintenance execution of that obligation, but the dependant’s

local maintenance replaces that executing activity (dependency). Removing an exe-

cuting dependency from a plani results in the associated contract being cancelled; the

obligant will drop the executing i as soon as possible following loss of (external) mo-

tivation for that goali. This does mean the obligant will have wasted time and effort on

that partial execution, but the alternative is to force the obligant to wait on maintenance

results from it’s direct and indirect dependants before continuing execution – such syn-

chronization would result in unnecessary execution delays where an obligation is not

cancelled as a result of dependant maintenance.

Chapter 10. Distributed Maintenance 186

Fi
gu

re
10

.8
:E

xa
m

pl
e

ou
tc

om
e

of
ef

fe
ct

s
m

ai
nt

en
an

ce
at

de
pe

nd
an

tl
ev

el
;L

og
is

tic
sH

Q
m

od
ifi

es
it’

s
pl

an
i
to

us
e

Tr
uc

k1
as

a
ne

w
(s

ol
e)

ob
lig

an
t

fo
rd

el
iv

er
in

g
C

ar
go

1
to

M

Chapter 10. Distributed Maintenance 187

10.6 Summary

This chapter extended individual CAMP-BDI maintenance behaviour to cover dis-

tributed plans. We described adoption of individual responsibility by agents based

upon a combination of structured messaging and knowledge sharing through contracts.

A key element of our design is decentralization – as the semantic knowledge and situ-

ational awareness (of environment and agent’s current mental state) requirements will

likely render centralized approaches impractical for complex realistic environments.

We preserve agent autonomy and do not mandate dependants automatically re-

spond to obligationMaintained messages with maintenance, but instead choose to

adopt maintenance responsibility through local reasoning; future work may extend

the adoption process to consider factors beyond current intention state. The obliga-

tionMaintained messages facilitate synchronization, both conveying contract changes

and indicating the obligant’s local maintenance has completed. This allows the depen-

dendant – if it chooses to do so – to maintain the dependant plani under an assumption

that, if the shared maintenance policy (defined in the contract) indicates some threat,

the obligant has already performed any maintenance changes possible through it’s own

capabilities.

The supporting architecture defined in Chapter 8 supports our distributed main-

tenance design. Contracts support maintenance by providing causal link information

to estimate execution context when maintaining suspended intentions. Dependency

maintenance is supported through the EC field – which encapsulates the obligant(s)

local semantic knowledge, allowing dependants to reason about delegated activity as

if locally performed (i.e. through internal capability). Our capability model provides a

common representation, for communication between agents within contracts.

The final element of the supporting architecture are maintenance policies. We pre-

viously described use of maintenance policies to guide maintenance task generation

within maintain. Contracts include a shared maintenance policy, to ensure both de-

pendant and obligants form maintenance tasks using the same criteria, and allowing

implicit synchronization when combined with the use of obligationMaintained mes-

sages. If a dependant attempts maintenance following receipt of obligationMaintained

messages and consequently forms a maintenance task for the associated dependant

Chapter 10. Distributed Maintenance 188

activity, the shared policy entails obligant(s) must have already have formed and at-

tempted to handle equivalent local maintenance tasks under those policy conditions.

Structured obligationMaintained messaging, combined with contract defined main-

tenance policies, allows dependency maintenance to avoid modifying larger, more ab-

stract, sections of a distributed plan due to falsely assuming obligants cannot maintain

confidence at their local plani level. This reduces distributed maintenance changes,

minimizing disruption to the distributed intention and associated inter-agent depen-

dency relationships, and also mirroring iterative expansion of planning scope in the

local maintenance task handling algorithms.

We have primarily considered CAMP-BDI in comparison to reactive replanning

(whilst not excluding reactivity; our design inserts itself as reasoning prior to execution,

rather than after any execution failure). In the distributed case, reactive replanning

can be a simple process where, upon failure, obligants attempt to replan plani (where

the post-failure state represents the initial state in the planning problem, and the goal

is goali) before reporting failure to their dependant. If that obligant cannot form a

new plan to satisfy their obligation, the dependant fails that delegated task activity

and performs replanning at it’s own level. Failure and response would escalate up a

dependency hierarchy until either an agent successfully replans, or none can.

Our approach does entail greater complexity – and computational cost – than this

type of reactivity. As with localized maintenance, agents in a dependency hierarchy

must consider possible failure rather than post-hoc respond to known activity failure.

In any realistic system, we must assume false positives will occur during maintenance

task identification – causing unnecessary handling and planning operations, with in-

creased computational cost upon the overall distributed team (particularly where main-

tenance responsibility is adopted at higher levels). Updating of contract information

also entails messaging costs – while CAMP-BDI agents require information updates

during even successful execution to facilitate maintenance, reactive approaches only

require information in a post-failure state, as necessary for (attempted) recovery.

The CAMP-BDI design has been founded on a basis that, in at least some cases, it

is worthwhile to incur these additional costs – including from false positives – to avoid

greater and more significant costs associated with actual activity failure. Such costs are

Chapter 10. Distributed Maintenance 189

likely to be activity and domain specific, making it difficult to generalize the trade-off

between risking these and our proactive costs. It is also possible to partially mitigate

these if a reactive approach is implemented in parallel, using maintenance policies.

Confidence threshold values can increase or decrease the probability of maintenance

task generation (and maintenance planning), by being raised or lowered based upon

the severity of failure consequences for their associated activity-agent pair. Failure

of activities with low associated costs could be set as solely handled reactively, in

recognition of a relative ease of recovery. Depending on planning implementation,

contract updates sent can be reduced to only occur where changes to CL or EC fields

will impact other agents (i.e. correspond to public atoms).

The following chapter, details experimental evaluation of the CAMP-BDI design.

We consider a variety of metrics against a reactive approach, including goal achieve-

ment, under a variety of perturbation and failure consequence configurations.

Chapter 11

Experimental Evaluation

Hanks et al. [1993b] describes the purpose of experimentation in AI as being to dis-

cover the relationship between a system S, environment E, and the behaviour B of

S. This chapter evaluates our contribution, comparing robustness (effectiveness of B)

for CAMP-BDI against alternative robustness approaches (various S) in a Cargoworld

environment under various levels of perturbation (E).

We first describe implementation of the Cargoworld and our evaluated robust-

ness approaches in Section 11.1. This is followed by our experimental design (Sec-

tion 11.2), giving the key metrics measured, experimental protocol and environmental

configurations. The following chapter presents our experimental results and compares

CAMP-BDI against reactive and continuous replanning approaches.

11.1 Implementation

Our implementation extended Jason (Bordini and Hübner [2006]), a Java based BDI

framework1 to implement both the Cargoworld simulator providing our experimental

environment, and the agent systems being evaluated2. Jason provided a stable, well-

documented framework to support implementation of, and agent integration with, the

Cargoworld simulator, and has been used for prior experiments involving integration

of runtime planning within BDI agents, such as Peleus (Meneguzzi and Luck [2008]).

1http://jason.sourceforge.net/wp/
2Code for both is accessible at https://gitlab.com/aldo_14/CAMP-BDI

190

http://jason.sourceforge.net/wp/
https://gitlab.com/aldo_14/CAMP-BDI

Chapter 11. Experimental Evaluation 191

11.1.1 Implementation of the Cargoworld Simulator

Our experimentation used an implementation of the Cargoworld domain – the Car-

goworld simulator – introduced in Section 2.4, and further specified in Chapter 7. En-

vironmental geography was generated using a seeded, procedural algorithm; an initial

geography was used for implementation and testing, with new geographies generated

for the actual experimentation (Section 11.2.1). Probabilities for exogenous change

and debilitative failure consequences were parametrized for explicit specification.

Activity in Cargoworld centred around delivery of cargo to requesting locations.

Delivery requests were generated at a random location (selected using a seeded ran-

dom number generator), and accompanied with generation of a new cargo object at

the most distant (but accessible) junction from the request location. Only one cargo

object was present at any one time – existing cargo objects (i.e. undelivered from prior

failure) were destroyed upon generation of new requests. This minimized divergence

in the initial state contexts under which goals were generated for the approaches being

compared, provided explicit control over the difficulty of each goal request, and en-

sured the desired distance between cargo request location and the cargo object (to be)

delivered.

Exogenous events, with frequency and quantity determined by configured proba-

bilities, were generated either after activity completion and upon generation of a new

cargo request (referred to as ‘per step’ for clarity). Activity execution duration was

intentionally truncated for the purposes of practical experimentation; in a real-world

scenario we would expect a typical move activity to take significantly longer than fea-

sible for repeatable experimentation. This led to agent reasoning – especially planning

– dominating over the time spent acting to a degree unlikely to hold for realistic ac-

tivity durations. A ‘stepwise’ exogenous change approach was intended to avoid plan

success solely due to the world changing to a more optimal state whilst agents were

planning, rather than as a result of effective mitigation behaviour.

Particular states and state combinations reduce the risk of activity success, without

prohibiting it. For example, vehicles could travel slippery tarmac roads, but would

face consequently increased failure risk. Risk increasing states may have a combined

impact; i.e. a Truck would face further increased risk if travelling a slippery tarmac

Chapter 11. Experimental Evaluation 192

road while also damaged.

The Cargoworld domain provided a Transport type domain; this type of domain

has been extensively used in existing work, including within International Planning

Competition (IPC) domains (Section 2.2) frequently employed as planner benchmarks

(Helmert [2008]). Our simulator implementation allowed specific control over pertur-

bation, providing the ability to scale environmental difficulty. This provided a stochas-

tic, non-episodic environment, where exogenous change can occur randomly (from an

agent perspective) with effects lasting beyond the current sequence of MAS activity.

11.1.1.1 Exogenous Change Parameters

Figure 11.1 lists parameters controlling environmental perturbation, as used to control

generation of exogenous change events. Parameter values were continuous, with their

range 0:1 equating to 0 to 100% probability or proportion per step.

Road flooding state could only be modified by exogenous change, meaning agents

could not modify these road conditions (i.e. to be dry). Maximum limits were con-

sequently imposed (through maxSlippery and maxFlooded) to avoid scenarios where

the road conditions rendered system goals impossible regardless of any failure miti-

gation approach (i.e. where no routes existed between locations), and to help control

environmental difficulty.

Chapter 11. Experimental Evaluation 193

Parameter Purpose

windyChangeChance Probability of changing to or from a ‘windy’ state.

closeRoadChance Probability of at least one or more (to a limit defined

by maxRoadClosuresPerStep), randomly chosen

roads becoming ‘closed’.

openRoadChance Probability of opening a random, closed road.

addDzChance Probability of one or more (to the maximum num-

ber defined by maxDzPerStep) junctions becom-

ing dangerous – i.e with addition of a ‘dangerZone’

state.

removeDzChance Probability of a (randomly selected) existing ‘dan-

gerZone’ being removed.

maxRoadClosuresPerStep Maximum number, as a proportion, of roads which

can be set as ‘closed’ in any single step.

maxDzPerStep Maximum proportion of junctions which may have

a corresponding ‘dangerZone’ added in any single

step.

chanceOfFlooding Probability of one or more roads (limited by

maxFloodPerTurn) increasing in flood state per

step.

chanceOfDrying Probability of at least one road (limited by

maxFloodPerTurn) decreasing in flood state (dry-

ing) per step.

maxSlippery Maximum proportion of roads which can be

‘flooded’ at any one point in time.

maxFloodPerTurn Maximum, as a proportion, roads which can be in-

creased in flooding state per step.

maxDryPerTurn Maximum, as a proportion, roads which can dry out

per step.

maxFlooded Maximum proportion of roads which may be ‘slip-

pery’ at any one time.

maxSlippery Maximum proportion of roads which may be

‘flooded’ at any one time.

Figure 11.1: Parameters controlling exogenous change in the Cargoworld simulator

Chapter 11. Experimental Evaluation 194

11.1.1.2 Failure And Debilitative Consequence Parameters

The simulator modelled two types of activity failure; Preconditions failures where pre-

conditions did not hold at execution, and Non-deterministic failures occurring during

execution due to that activity being performed in a state with increased risk of failure

– i.e. a Truck moving along a slippery tarmac road, or doing so while damaged, would

have increased probability for failing during execution of that activity.

Exogenous failure – i.e. solely due to some exogenous event during execution

– was not modelled; this type was explicitly not handled by CAMP-BDI (which is

concerned with ‘predictable’ failure types). Such failures could only be handled re-

actively; we can intuit our approach would have an inevitable disadvantage if such

types dominated failure, although we assume any practical implementation would see

CAMP-BDI being paired with complementary robustness methods (including reactive

ones).

Failure risked debilitative consequences, with probabilities defined through the pa-

rameters in Table 11.2 (applied individually for each failed activity). Agent health was

modelled in three states, of increasing severity – healthy (optimal), damaged (subopti-

mal performance, i.e. increased risk of failure for any activity) and mortal (unable to

act). Agent damage could persist over multiple delivery requests, and also accumulate

– i.e. failure by a damaged agent could cause mortal damage. If a damaged agent

was idle for the duration of a cargo request, however, it would partially ‘heal’ (from

‘mortal’ to ‘damaged’, or ‘damaged’ to ‘healthy’).

Chapter 11. Experimental Evaluation 195

Parameter Purpose

cargoDestroyChance If the agent is carrying cargo, the probability of that

cargo being destroyed by failure.

cargoSpillChance The probability of cargo (if carried) spilling; ren-

dering a road ‘toxic’ if the acting agent was on a

road, or surrounding roads ‘toxic’ if that agent was

at a junction. Toxic roads are unusable for travel

by any agent other than APC and Hazmat types –

the latter can remove toxic states through success-

ful decontaminate activities.

chanceOfPostFailureDamage Probability of agent damage following a failure.

stuckChance Probability of the agent becoming ‘stuck’ (i.e. skid-

ding off the road) and unable to move following

failure of a movement activity. This reduces the ef-

fectiveness of ‘brute force’ solutions that repeat a

specific movement (with a non-zero chance of fail-

ure) until it eventually succeeds.

Figure 11.2: Parameters controlling probabilities for potential failure consequences.

11.1.2 Implementation of Experimental Systems

Several different robustness approaches were compared against CAMP-BDI. We ex-

tended Jason to support contract formation (and general support for performing del-

egated activity) and runtime planning, to provide a common framework which was

extended to implement both CAMP-BDI and our comparative approaches. Jason is an

AgentSpeak (ASL) interpreter; agent behaviour is defined by predefined (unground)

plans, triggering events (e.g. goal addition or belief changes) and selection precondi-

tions (Figure 11.3); the same agent behaviour definitions (ASL files) were used in all

approaches under evaluation, with robustness behaviour provided through the general-

ized underlying agent reasoning.

The LPG-td planner (Gerevini and Serina [2002]) was employed for runtime plan-

ning; this planner previously shown competitive performance in IPC domains (Hoff-

mann and Edelkamp [2005]), and offered a means to test alternate modalities of plan-

ning within CAMP-BDI (Section 11.1.2.1). Our algorithms were implemented as be-

Chapter 11. Experimental Evaluation 196

ing planner-agnostic, solely assuming an accessible module existed which – given a

planning problem – would attempt to form and return a plan (as described in Sec-

tion 9.4.2).

@moveToAtJ

+!moveTo(AGENT, CLOC, CDES):

not busy(AGENT) & atJ(AGENT, CLOC) & not mortal(AGENT) &

location(CLOC) & location(CDES) & not dangerZone(CLOC) &

not dangerZone(CDES)

<- vehicle.ia.planRoute(CLOC, CDES); !doRoute(AGENT, CLOC, CDES).

Figure 11.3: Example AgentSpeak plan, labelled moveToAtJ, for travelling between two

junctions. This plan is applicable for intention selection upon addition of the moveTo

goal (indicated by +!), provided the context condition (in italics) holds. The body of

the plan (following <-) consists of two steps; planRoute generates and inserts a new

route plan (sequence of move activities) into the plan library, and a second which adds

a doRoute goal to stimulate adoption of that route plan as a plani.

All experimental systems employed LPG-td (Gerevini and Serina [2002]) for run-

time planning. This planner was selected due to both prior competitive performance

in IPC domains (Hoffmann and Edelkamp [2005]) and support of PDDL metric ex-

tensions; the latter allowed for additional evaluation of CAMP-BDI.Quality (described

subsequently), which performed pseudo-probabilistic planning using a metric mini-

mization approach. As LPG-td is a generalized, domain independent, planner we also

viewed it as unlikely to have any biasing features for or against our proactive approach.

Our implementations were fully decoupled from the planner to avoid any planner

specific optimizations associated with more direct code integration. PDDL files for

operator and problem specification formed to serve as input for invoking the LPG-td

executable; any resultant solution (plan) files generated where then detected and – if

so – loaded and parsed to form an ASL format plan for use within our agent code.

Restriction to a single – but domain independent – planner allowed our experimen-

tation to concentrate upon investigating differences arising from variance in planning

context (i.e. with proactive versus reactive invocation), rather than differences between

planners invoked under the same context (i.e. examining a multiplicity of planners for

Chapter 11. Experimental Evaluation 197

each approach). Additionally, inter-planner comparison would (arguably) have only

suggested optimal planner selection for each approach within the specific Cargoworld

environment, rather than provided further information to compare the benefits – or

drawbacks – of CAMP-BDI against reactive approaches in general.

We do not believe an alternate runtime planner would significantly impact our re-

sults, due to both the planner-agnosticism of CAMP-BDI, the decoupling of experi-

mental implementations from any possibility of planner-specific optimizations and the

generality of LPG-td itself. A library of pre-formed recovery or preventative plans

could instead be employed for general efficiency – in which case significant differ-

ences would likely emerge from the designer’s ability to anticipate ante or post-failure

robustness scenarios. This would represent the outcome of the system designers an-

ticipation of scenarios, however, rather than the efficacy of the particular (proactive or

reactive) robustness approach.

We did not compare the quality of the plans generated by each approach. Such

metrics are primarily used to compare the relative performance of different planners,

by allowing comparison of which provides the ‘best’ plan when given the same plan-

ning problem. However, our approach is posited as an alternative to reactive methods –

meaning inherent and intentional differences in the planning problems generated which

prevent like-for-like comparison between generated plans from these approaches. In

this context, quality based metrics would serve more to examine a specific implemen-

tation, rather for considering more general properties of proactive versus reactive ap-

proaches – particularly as our CAMP-BDI design is designed as planner agnostics.

Measuring the generated plan quality would also be of reduced value due to our

robustness concern; any advantage in plan quality held by a particular approach could

be outweighed by the impact of further failure, as further plani revisions (whether

reactive or proactive) removing unexecuted parts of that generated plan. In this context,

superior individual plan quality (i.e. for plani modifications by the robustness process)

could be outweighed by overall costs from activity failure and backtracking costs or

potential goali failure.

Instead, our gathered metrics (Section 11.2.2) examine activity cost per goal achieved

– to consider the actual activities executed and factor in costs from unsuccessful goal

Chapter 11. Experimental Evaluation 198

pursuit. We also evaluated planner invocations and planner execution time to assess

whether CAMP-BDI risks excessive computational cost with pre-emptive planning

(but with consideration of robustness benefits); albeit noting the latter will provide

only a general indication, with values specific to LPG-td.

11.1.2.1 Systems under comparison

The following agent robustness approaches were implemented and evaluated:

• CAMP-BDI: Our proactive robustness approach, presented (i.e. implementing

the supporting architecture and algorithms) in the preceding Chapters.

• Replanning: Following activity failure, agents form (taking the post failure state

as the initial state specification) and insert a new plani for the relevant goali. The

activity (and corresponding intention) is only regarded as failed if no plan could

be found.

• Continual planning: Agents attempt to reform plani after every activity com-

pletes regardless of whether it succeeded or failed; failure conditions are the

same as for Replanning.

• None: Agents had no failure mitigation strategy.

Activity execution (from the agent perspective) covers both that of a primitive ac-

tivity within the environment, and of a delegated activity (seen as primitive from the

point of view of the dependant, and composite by the obligant). Continual Replanning

agents would only replan for a dependant plani upon a notification of a delegated activ-

ity completing (successfully or otherwise) from an obligant; Replanning agents would

similarly wait for an obligant to report failure before performing any local replanning.

As replanning is performed on a local plani basis, this results in a distributed repair

strategy; dependants only replan upon notification of failure from an obligant, limiting

distributed plan changes to the replanning agent and any direct or indirect obligants.

This bears similarities to FF-Replan’s approach (Yoon et al. [2007]); preconditions

for activities are effectively a single-outcome determinization, having been selected

on significance criteria (i.e. reflecting the qualification problem defined by McCarthy

[1958]) – making non-deterministic failure similar to the divergence from expected

outcome handled by FF-Replan performing replanning3.

3LPG-td employs an algorithm similar to FF (Hoffmann [2001]), reinforcing this similarity.

Chapter 11. Experimental Evaluation 199

At an agent team level, individual reactive replanning lead to distributed repair

behaviour through cascading assumption of responsibility by dependants (where obli-

gants failed in local replanning) – especially as the distributed plan can be viewed as

hierarchical, with obligant plan formation equivalent to task decomposition (i.e. for

obligation activities). The resulting MAS-level behaviour was seen as offering the

most efficient reactive approach in planner invocation count and activity cost; our ex-

perimental observations of agent activity within Cargoworld led us to conclude local

plan repair was unlikely to offer benefits over total replanning, as the likely physical

activity failures (i.e. for movement or movement enabling activities) would typically

impact multiple future plani activities and eventually require repair approaches recon-

sider the entire plan regardless.

This meant the key benefit of local repair – namely plan stability – was unlikely to

be observed, with instead potential for unnecessary extra planning operations as part

of incrementally increasing planning scopes. Consequently, we omitted evaluation

of individual agent plan repair, reasoning that reactive replanning would likely entail

the same eventual outcome but without excess planning operations from attempting

change minimization – and therefore would represent the optimal reactive approach

within our experimental domain.

We implemented two modalities for forming operator specifications and perform-

ing planning for evaluating CAMP-BDI, using different modalities of LPG-td. In both

implementations capability knowledge (i.e. signature, preconditions and effects) was

employed to form operator specifications:

• CAMP-BDI.Speed(CAMP-BDI.Spd): Operator preconditions were defined as

those states offering confidence equal or greater to the Th field within that capa-

bilities’ associated policy (i.e. the policy effectively defined the significance val-

ues for forming preconditions). Planning was performed using the LPG-td.speed

modality, which returned the first plan found. Figure 11.4 gives an example of a

generated operator specification for a Truck’s move activity.

• CAMP-BDI.Quality(CAMP-BDI.Qty): We adopted the pseudo-probabilistic plan-

ning approach employed by PACPlan (Jiménez et al. [2006a]); each operator

was given a metric cost effect corresponding to the inverse log of the confidence

were those preconditions to hold (i.e. cost =−log(conf)), as in Figure 11.5.

Chapter 11. Experimental Evaluation 200

Multiple operators were formed for each capability, for different precondition

combinations and associated confidences. Planning was performed using LPG-

td.quality, which attempted to minimize the cost metric by forming increasingly

lower-cost plans, until a maximum number of plans were found or a set time

limit exceeded. These limits were set to 20 plans and 0.5 seconds execution

time for experimentation; initial testing suggested these values were sufficient to

ensure the optimal possible plan would be found.

(:action OP_1_move

:parameters (?AGENT ?RID ?O ?J)

:precondition

(and (truck1 ?AGENT) (connection ?RID)

(location ?J) (location ?O)

(road ?RID ?O ?J) (healthy ?AGENT)

(not (blocked ?O ?J)) (not (toxic ?O ?J))

(not (dangerZone ?O)) (not (dangerZone ?J))

(not (stuck ?AGENT)) (onR ?AGENT ?RID)

(dry ?O ?J))

:effect

(and (atJ ?AGENT ?J) (not (onR ?AGENT ?RID))

(not (atJ ?AGENT ?O)))

)

Figure 11.4: Example PDDL operator from CAMP-BDI.Speed for a move activity, where

agent damage or a slippery road state would reduce confidence below the defined

threshold.

Chapter 11. Experimental Evaluation 201

(:action OP_1_move

:parameters (?AGENT ?RID ?O ?J)

:precondition

(and (truck3 ?AGENT) (connection ?RID)

(location ?J) (location ?O) (road ?RID ?O ?J)

(healthy ?AGENT) (not (blocked ?O ?J))

(not (toxic ?O ?J)) (not (dangerZone ?O))

(not (dangerZone ?J)) (not (stuck ?AGENT))

(onR ?AGENT ?RID) (dry ?O ?J))

:effect

(and (atJ ?AGENT ?J) (not (onR ?AGENT ?RID))

(not (atJ ?AGENT ?O)) (increase (total-cost) 0.01))

)

(:action OP_8_move

:parameters (?AGENT ?RID ?O ?J)

:precondition

(and (truck3 ?AGENT) (connection ?RID)

(location ?J) (location ?O) (road ?RID ?O ?J)

(damaged ?AGENT) (not (blocked ?O ?J))

(not (toxic ?O ?J)) (not (dangerZone ?O))

(not (dangerZone ?J)) (not (stuck ?AGENT))

(atJ ?AGENT ?O) (slippery ?O ?J) (tarmac ?O ?J))

:effect

(and (atJ ?AGENT ?J) (not (onR ?AGENT ?RID))

(not (atJ ?AGENT ?O)) (increase (total-cost) 7.1))

)

Figure 11.5: Example PDDL operators for Truck3’s move activity, showing the con-

fidence costs for different preconditions. OP 1 move offers 100% confidence where

agents are healthy and the road is dry; OP 8 move offers reduced confidence (in-

creased cost) where the agent is damaged and the road is slippery tarmac. Costs

were multiplied from −log(confidence) values due to precision issues observed with

LPG-td.quality.

Chapter 11. Experimental Evaluation 202

CAMP-BDI.Speed offered a guarantee that plans, if formed, would have suf-

ficient confidence – but at the cost of tightly constraining preconditions. For CAMP-

BDI.Quality, pseudo-probabilistic planning offered greater flexibility – agents could

form better plans than the maintained activity, even if not all activities within the

generated plans were above the required confidence level. This allowed iterative im-

provement; for example, preventing failure in immediate activities, with later main-

tenance addressing any later low-confidence activities introduced by the maintenance

plan. In both systems, plan confidence estimation used a weighted average approach

(Section 8.2.6.2); this had little impact on plan acceptance in the Speed case (due to

already constrained preconditions), but enabled acceptance of plans in the Quality case

(provided they improved upon the current plani). Primitive capability estimation was

implemented using prior domain knowledge, and reflected our assumptions that such

estimation was accurate.

Finally, the None system covered where agents possessed no proactive or reactive

failure mitigation strategy; providing a worst-case goal achievement baseline, allowing

comparison of relative difficulty for experimental configurations, and confirming the

necessity of a robustness strategy. We note differences in agent behaviour would result

in divergences in terms of environmental changes from agent activity; meaning our

results will be somewhat approximated by this fact.

11.1.2.2 MAS design

We designed and implemented agents following the description presented in Sec-

tion 7.2. The same AgentSpeak (ASL) files were employed in all cases; compared agent

systems only varied in terms of robustness behaviour. Figure 11.6 gives agent types

within the MAS and their individual capability sets. We did not specify a MAS or-

ganization (i.e. authority constraints between agents) – however, a meta-organization

would emerge for each system goal through dependency formation, guided by the con-

straints upon capability advertisements between agents.

Chapter 11. Experimental Evaluation 203

Figure 11.6: Diagram showing capabilities held by agents in the MAS; composite ca-

pabilities denoted by italics, whilst those advertised (i.e. forming other agent’s external

capabilities) are underlined. Figure 7.3 in Chapter 7 previously indicated the inter-

agent visibility of advertisements. An asterisk (*) denotes capabilities where the agent

performs a broker role; i.e. does not provide that capability internally, but provides func-

tionality through use of it’s own external capabilities. Physical agents are shown by

rounded edges.

Although the simulated Cargoworld environment was arguably simple enough (to

avoid details of agent behaviour being obfuscated by domain complexity) to simply use

a single central agent, we designed our MAS to provide realistic meta-organizational

hierarchies such as the Strategic-Tactical-Operational structure (Killion [2000]). The

restriction of capability visibility reflects a typical motivation for a MAS approach,

where distribution of knowledge and ability required agent co-operation and co-ordination

to achieve system goals.

Three (types of) agent roles can be defined for an executing multiagent plan; root

(those with dependencies only), middle (holding both dependencies and obligations)

and leaf agents (holding only obligations). LogisticsHQ and MilitaryHQ represented

logical agents – only able to achieve environmental change through delegation – and

performed roles as both middle and broker agents by allowing formation of indirect

dependencies between physical agents (which did not have peer-to-peer visibility for

capability advertisements). For example, to perform a moveTo activity, a Truck agent

Chapter 11. Experimental Evaluation 204

may for a dependency upon the unblock capability of LogisticsHQ; LogisticsHQ would

consequently select and form a dependency upon a Bulldozer (holding the relevant

physical capability) – meaning LogisticsHQ held root and middle agent roles (respec-

tively) for moveTo and unblock.

Our experimental MAS was defined with two logical (one LogisticsHQ and one

MilitaryHQ) and ten physical agent types (three Truck, one Helicopter, two Bulldozer,

two APC and two Hazmat agents). The physical agent count was selected to provide

logical agents with sufficient options to allow meaningful planning decisions, but with-

out levels of redundancy that would effectively negate any agent loss from post-failure

debilitation.

11.1.2.3 Maintenance Policies

Maintenance policies were implemented with default field values (Figure 11.3) and

applied across all agents and capabilities. Policies associated with Helicopter flight

capabilities inserted an additional ‘windy’ state within DC, as this state could not be

counteracted through maintenance. As our focus was on application within mainte-

nance rather than communication of policies, we did not implement a dedicated policy

service.

Chapter 11. Experimental Evaluation 205

Field Value

Threshold (Th) 0.95

TriggerConditions (TC) /0

Priority (Pr) Normal/Default

DropConditions (DC) {‘damaged’, ‘mortal’, ‘resting’}

Table 11.3: Maintenance policy field values used during experimentation.

Maintenance policy values were defined using our knowledge of the Cargoworld

(as were agent capabilities). Th was defined by estimating weighted averages for a

sample four activity plan, and set such that a generated plan would be accepted if

at least the first two activities had an acceptable confidence – i.e. where the agent

was not ‘damaged’, the road used (for road vehicle movement) was not ‘slippery’ or

conditions (if flying) were not ‘windy’. The DC represented those states that reduced

confidence, but which could not be counteracted by any agent capability – meaning no

maintenance plan could exist to counteract them. Th values encompassed any states

that would otherwise be present in TC, meaning TC could be left an empty set.

11.2 Experimental Design

The core hypothesis behind this work is that:

‘In realistic environments where failure risks debilitative consequences, a proactive

approach of pre-emptive plan modification can improve robustness over a purely reac-

tive approach’.

In Section 4.1, we defined robustness and concluded that:

‘The efficacy of our approach is to be measured through goal achievement rate under

perturbation; the latter defined as the rate of exogenous change.’

This follows the definition of Hahn et al. [2003] of robustness as ‘graceful degra-

dation of performance under perturbation’; which we interpret as meaning that, if our

hypothesis holds, our approach should provide consistently higher goal achievement

rates than reactive alternatives under increasing perturbation. This enabled comparison

of proactive and reactive types of approaches, unlike more semantic dependant defini-

Chapter 11. Experimental Evaluation 206

tions such as activity success rate.

A number of secondary hypotheses were also formed within our design process,

which can be evaluated as corollaries of the core hypothesis by examining whether the

resultant CAMP-BDI design improved robustness:

• ‘Agents can be embodied with capability knowledge to represent both those ac-

tivities they can perform themselves, and those which they are dependent upon

others to perform.’

• ‘The resultant capability model can be used to intelligently determine when plan

failure is threatened, and to direct consequent mitigation behaviour.’

• ‘This local behaviour can be designed such that decentralized, distributed main-

tenance behaviour is achieved on an agent-team level through use of dependency

contracts and appropriate co-ordination messaging.’

• ‘Policies – sets of behavioural constraints, applied to sets of agent-capability

pairs – can be used to tailor agent maintenance behaviour during runtime, al-

lowing a degree of adaptation to changing knowledge of the agent and environ-

ment.’

11.2.1 Experimental Geographies

Our experimental evaluation used two Cargoworld geographies, with different levels

of complexity (Figure 11.7 and Figure 11.8). Geographies were created by the Car-

goworld simulator through a procedural algorithm, using a specified seed value and

set of constraints (maximum and minimum junction count, airport count, and the max-

imum number of road connections per junction). The generated road network was

required to be fully interconnected, with every junction reachable from every other

(excluding environmental states limiting road use). Initial world state was generated

by simulating 500 exogenous change steps before the first cargo request was generated,

and based upon the experimental parameters given in Section 11.3.

The primary factor influencing difficulty was the length of agent travel route -

greater numbers of individual movement activities entailed greater potential exposure

to the risks associated with both exogenous change or existing debilitated states. This

route length was determined by both the number of junctions present (i.e. geography

size) and their connectivity. Lower connectivity entailed less direct routes, increasing

Chapter 11. Experimental Evaluation 207

both activity length and the likelihood of backtracking being required when needing

to form an alternate route from a given location; i.e. while a mesh-like geography of-

fered near immediate options for an immediate change of route, limited connectivity

increased the risk of the agent being partially down a linear or low-branching path at

the point of replanning or repair.

We also used definition of Airports, present at only a limited number of junctions,

to constrain the point-to-point movement possible for Helicopters. This avoided over-

reliance upon these vehicle types, and prevented the impact of geographical complexity

being wholly overridden by use of direct air travel. This also allowed alternate cargo

transport approaches, including use of heterogeneous agent types where a Helicopter

performed partial transport between intermediate locations (i.e. where Truck agents

were employed to transport Cargo to and from locations inaccessible via Helicopter).

Cargo objects and requests were initially generated by our simulator at maximally

distant (but accessible) locations; this helped ensure differences in geography repre-

sented meaningful differences in difficulty. The alternative – use of wholly random

generation – could potentially place cargo at an initial location immediately adjacent

to the desired delivery location, negating our use of geographic size and complexity to

define and gauge relative environmental difficulty.

Our first experimental geography – World A (Figure 11.7) – represented a rela-

tively simple environment; routes (and consequent plans) between junctions were rel-

atively short. World A also had greater interconnectivity (more connections between

junctions), increasing options available for agent route planning.

World B (Figure 11.8) presented a more complex geography with increased junc-

tions. Reduced interconnectivity compared to (the mesh-like) World A increased the

risk of backtracking being required to mitigate failures (anticipated or actual) in route

plans. Finally, a larger geography increased the risk of exogenous change impacting a

given intention, by increasing the average route plan length and the average number of

activities (potential exogenous change steps) required to achieve a goal.

Chapter 11. Experimental Evaluation 208

Figure 11.7: Screenshots showing geography of World A, with 27 junctions, 8 airports

(used by Helicopter agents) and 63 roads.

Figure 11.8: World B geography with 39 junctions, 16 airports, and 83 roads.

11.2.2 Key Metrics

Metrics were recorded and averaged from results of all experimental runs for each

approach, in the relevant experimental configuration. Our core metric for comparing

robustness was the Delivery Success Rate (Equation 11.1); this gave the percentage of

cargo requests satisfied and, consequently, overall achievement of MAS system goals.

Chapter 11. Experimental Evaluation 209

Delivery Success Rate =
(

Total Deliveries Made
Total Delivery Requests

)
∗100 (11.1)

The Activity Success Rate (Equation 11.2) gave the percentage of successful activ-

ities executed and was used to confirm the efficacy of CAMP-BDI in avoiding activity

failure; this is expected to be lower for reactive systems, which respond after failure.

Activity Success Rate =
(

Activities Succeeded
Activities Failed

)
∗100 (11.2)

The primary aim of CAMP-BDI is to improve goal achievement – reflected in the

Delivery Success Rate metric. However, additional metrics were gathered to analyze

relative performance in terms of activity, planning and messaging costs.

A proactive method risks executing additional activities to address false positive

anticipation of threats – but a reactive method may also risk additional costs to recover

from failure, such as backtracking or from enlisting alternate obligants. We measured

Average Delivery Cost as the average number of activities executed per goal achieved,

to factor in both the efficiency of goal achievement and costs where robustness be-

haviour was unable to prevent failure.

Average Delivery Cost =
(

Total Activities Performed
Total Goals Achieved

)
(11.3)

We did not directly compare the quality of generated plans, as the evaluated ap-

proaches performed planning under different contexts and with different (in the case

of CAMP-BDI in particular) scopes of goal. This made direct comparison inappro-

priate, particularly as it would arguably serve to evaluate the performance of LPG-td

rather than either proactive or reactive implementations. The average delivery cost

can be considered as holding an indicative value through including the activities added

through insertion of maintenance plans, or by replanning.

Several metrics were gathered to consider differences in planning cost. Average

Planning Operations Per Delivery (Equation 11.4) was given as the total number of

individual plan generation operations (successful or otherwise), divided by the total

goals achieved.

Chapter 11. Experimental Evaluation 210

Average Planning Operations Per Delivery =
(

Total Planner Operations
Total Goals Achieved

)
(11.4)

Average Planning Time Per Delivery (Equation 11.5) provided the average execution

time in nanoseconds for each individual call to the LPG-td planner, used to indicate

the approximate complexity of planning tasks generated by each approach. The val-

ues given by this metric were partially specific to the LPG-td implementation, but we

suggest still held indicative value.

Average Planning Time =
(

Accumulated Planning Time
Total Planner calls

)
(11.5)

Our final metric (Equation 11.6) gave average messaging costs per goal. This

was used to consider the additional costs of communicating contract updates in CAMP-

BDI, and to compare relative stability between approaches by measuring the volume of

messages concerned with forming, cancelling or modifying inter-agent dependencies.

Average Messages Per Delivery =
(

Total Message Count
Total Goals Achieved

)
(11.6)

The Total Message Count was formed through recording and summation of the follow-

ing message types:

• dependencyCancel: sent to cancel a dependency, whether as an outcome of plan

failure or plan modification/replanning.

• confirmContractWithObligant: sent to confirm the formation of an obligation.

• obligationMaintained: sent by an obligant to inform the dependant it has com-

pleted maintenance, including any resultant contract changes.

• dependencyMaintained: sent by a dependant to obligants when maintenance

impacts an/the obligation held by the latter – e.g. to update the contract’s CL

field following changes to preceding activities in the dependant plani.

• updatedContract: conveys changes in meta-knowledge regarding how depen-

dencies will (are expected to) be performed.

Of these, the first two were common to all approaches; the latter three specific

to CAMP-BDI. We selected these message types to evaluate how proactive behaviour

incurred costs from additional contract updates (as extra information is required for

threat anticipation), and whether there was a reduction in contract formation and can-

cellation messages for our repair-orientated strategy.

Chapter 11. Experimental Evaluation 211

A separate metric excluding the updatedContract type was gathered for CAMP-

BDI to evaluate stability (i.e. giving solely messaging for dependency contract forma-

tion, modification or cancellation). The size of messages sent was not recorded, as this

was judged as implementation dependant, with optimization lying outside our inves-

tigative scope. We similarly considered optimization of CAMP-BDI updatedContract
messaging cost as outside the scope of this thesis; our recorded results likely represent

worst-case scenarios.

11.2.3 Experimental Protocol

Experiments were ran under different parameter configurations for both exogenous

change and the likelihood of post-failure debilitation. All experiments were performed

on a machine with an Intel i5-3750k processor, 16GB RAM and – to avoid any signif-

icant read/write latency – used a Solid State Drive (SSD). All code was implemented

in Java, and ran with version 1.80.30 of the Java Virtual Machine.

To improve reproducibility, independent pre-defined seed values controlled exoge-

nous event generation and the occurrence of post-failure debilitation; although the dif-

ferent robustness behaviours of each approach would still lead a degree of divergence

in how the world state evolved with agent activity, even when using the same seed val-

ues. Each individual experimental run (i.e. the period of operation for a MAS employ-

ing the particular approach under evaluation) lasted for the generation of 100 delivery

requests (i.e. for 100 – successful or failed – system goals). We judged that this limit

was short enough to prevent excessive divergence (and less appropriate comparability)

between approaches, but sufficient to allow gathering of data (allowing detection of

longer-term instabilities or performance degradation from accumulated failure conse-

quences).

For each parameter configuration tested, each approach (employed by a MAS fol-

lowing the design given in Section 11.1.2.2) was run for ten different seed values, and

repeated six times for each seed. We used these repeats to account for microsecond

level differences in agent reaction to belief updates or message receipt; due to the

asynchronous nature of agent behaviour, such differences could still impact the out-

come of experimental runs. We evaluated performance in two geographies (ngeo = 2),

Chapter 11. Experimental Evaluation 212

for combinations of perturbation (nperturbation = 3) and debilitative risk (nrisk = 4); giv-

ing nconfig = ngeo× nperturbation× nrisk = 24 individual configurations. Each of four

approaches (nsystem = 4 was ran sixty times (six times for each of ten seed values;

nruns = 60) per environment configuration (giving a nsystem× nruns× nconfig = 5,760

experiments). Finally, we ran CAMP-BDI.Quality in the highest perturbation configu-

ration for World A and World B (nquality = ngeo×nrisk×nruns = 480) – performing an

overall total of 6,240 individual experimental runs.

11.3 Experimental Parameters

We evaluated performance under scaled levels of both perturbation and risk of post-

failure debilitation, controlled using the parameters defined in Figure 11.1 and Fig-

ure 11.2. This allowed assessment of performance under ‘increasing levels of pertur-

bation’ (Hahn et al. [2003]). Perturbation was scaled through nexo = {1,2,3}. We

evaluated four levels of perturbation risk – nrisk = {0,0.25,0.5,0.75} for each value

of nexo. The initial values of parameters were set using initial experimentation with

the None system; we selected a configuration identified as suitably difficult – to offer

the possibility for improvement with robustness behaviour, but still allow scaling to a

greater difficulty – we reduced variables to use a common denominator (i.e. providing

the configuration for nexo = 1).

Chapter 11. Experimental Evaluation 213

Parameter Value

windyChangeChance 0.125nexo

closeRoadChance 0.05nexo

openRoadChance 0.1nexo

addDzChance 0.1nexo

removeDzChance 0.05nexo

maxRoadClosuresPerStep 0.015nexo

maxDzPerStep 0.03nexo

chanceOfFlooding 1

chanceOfDrying 0.7

maxFloodPerTurn 0.06nexo

maxDryPerTurn 0.06nexo

maxFlooded 0.1nexo

maxSlippery 0.1nexo

cargoDestroyChance nrisk

cargoSpillChance nrisk

chanceOfPostFailureDamage nrisk

stuckChance nrisk

Figure 11.9: Experimental parameters, where nexo = {1,2,3} and nrisk =

{0,0.25,0.5,0.75} scale probabilities of exogenous change and debilitative conse-

quence. Values for chanceOfFlooding and chanceOfDrying were fixed (favouring

incremental addition of risk from slippery or flood states), with the flooding and drying

related parameters effectively defining the rate of change.

11.4 Summary

This chapter described our experimental protocol, including configuration and use of

the Cargoworld domain. The following chapter presents our experimental results for

each evaluated maintenance approach, within World A and B geographies for progres-

sively scaled nexo = {1,2,3} and nrisk = {0,0.25,0.5,0.75}4.

4Appendix A gives example screenshots showing the state of each environment and nexo configura-
tion at the start of execution.

Chapter 12

Experimental Results

The following sections present our experimental results for World A and B over pro-

gressively scaled probabilities of perturbation and post-failure debilitation (nexo = {1,2,3}
and nrisk = {0,0.25,0.5,0.75}). None, Replanning, Continual Replanning and CAMP-

BDI.Speed approaches were evaluated for all nexo, with CAMP-BDI.Quality also eval-

uated in the highest difficulty perturbation configuration (nexo = 3).

Our results show CAMP-BDI had a significant goal achievement advantage over

Continual Replanning and Replanning results, especially as nexo and nrisk increased.

CAMP-BDI additionally had lower per-goal activity and planning costs, with lower

messaging costs (for messages concerned with dependency formation or cancellation)

indicating CAMP-BDI approaches offered greater plan stability.

12.1 Delivery Success Rate

The average success rates of all approaches for all nexo and nrisk, are given in Fig-

ure 12.1 for World A and Figure 12.2 for World B. Figure 12.3 and Figure 12.4 give

differences between CAMP-BDI.Speed and other approaches for all nexo and nrisk. As

we observed reduced performance from CAMP-BDI.Speed in World B nexo = 3, addi-

tional CAMP-BDI.Quality runs were performed to determine if the looser precondition

constraints of CAMP-BDI.Quality’s pseudo-probabilistic planning approach offered

benefits for maintenance in this configuration.

214

Chapter 12. Experimental Results 215

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.1: Delivery Success Rate in World A; exact numerical values for this and all

other graphs within this chapter are given in Appendix B

Chapter 12. Experimental Results 216

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.2: Delivery Success Rate in World B

Chapter 12. Experimental Results 217

World A

nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +49.983 +56.967 +59 +67.8

(1.55x10−50) (5.65x10−43) (2.46x10−40) (4.01x10−45)

Replanning +0.1 +9.55 +26.233 +37.783

(0.863) (3.01x10−27) (6.61x10−35) (3.5x10−39)

Continual -0.117 +7.517 +11.083 +15.417

Replanning (0.834) (4.83x10−26) (3.74x10−26) (1.4x10−30)

World A

nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +65.65 +72.717 +76.217 +79.117

(5.06x10−66) (1.56x10−59) (2.33x10−57) (1.79x10−68)

Replanning -0.45 +19.75 +43.95 +60.717

(0.224) (1.83x10−38) (5.09x10−46) (1.48x10−51)

Continual +0.1 +14.433 +25.65 +36.567

Replanning (0.773) (3.17x10−29) (3.69x10−33) (2.06x10−38)

World A

nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +66.967 +74.55 +79.017 +80.317

(1.7x10−60) (3.25x10−61) (9.34x10−64) (1.33x10−66)

Replanning -6.9 +22.967 +50.4 +66.867

(1.34x10−15) (1.26x10−32) (1.01x10−51) (1.62x10−61)

Continual -6.267 +14.117 +33.65 +45

Replanning (5.19x10−14) (3.6x10−27) (1.08x10−36) (3.994x10−50)

CAMP-BDI +0.033 -0.433 +1.35 +1.233

Quality (0.965) (0.482) (0.036) (0.031)

Figure 12.3: Differences (p in brackets) in average delivery success rate between

CAMP-BDI.Speed and other approaches in World A, showing that CAMP-BDI.Speed

achieved more goals than Continual Replanning and Replanning where nrisk ≥ 0.25,

with that advantage increasing with nrisk. Each row corresponds to an approach com-

pared to CAMP-BDI.Speed, with the columns giving the difference under increasing

(left to right) nrisk. Positive values show that CAMP-BDI.Speed achieved more goals on

average (had superior robustness).

Chapter 12. Experimental Results 218

World B

nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +63.25 +73.017 +72.8 +74.4

(1.93x10−63) (1.39x10−53) (2.94x10−54) (8.1x10−64)

Replanning -0.983 +19.267 +40.733 +56.967

(0.009) (1.06x10−34) (1.08−45) (1.95x10−52)

Continual -0.167 +10.183 +18.65 +24.583

Replanning (0.707) (9.61x10−21) (5.91x10−35) (3.76x10−36)

World B

nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +74.233 +78.583 +80.95 +80.317

(1.23x10−68) (3x10−74) (8.51x10−69) (5.84x10−71)

Replanning -2.55 +34.533 +59.95 +70.6

(4.54x10−5) (2.07x10−42) (8.51x10−60) (2.05x10−64)

Continual -2.083 +20.45 +39.15 +47.033

Replanning (0.001) (1.92x10−42) (4.05x10−49) (7.56x10−50)

World B

nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +54.3 +57.583 +58.05 +56.65

(5.85x10−56) (4.16x10−57) (2.23x10−58) (1.3x10−52)

Replanning -28.367 +21.267 +44.067 +50.367

(4.98x10−40) (2.36x10−26) (5.4x10−44) (2.25x10−49)

Continual -28.833 +9.417 +28.5 +36.1

Replanning (2.32x10−36) (1.23x10−10) (1.76x10−33) (5.78x10−39)

CAMP-BDI -1.45 -1.333 +0.383 -0.15

Quality (0.161) (0.303) (0.766) (0.911)

Figure 12.4: Differences (p in brackets) in average delivery success rate between

CAMP-BDI.Speed and other approaches in World B. Positive values indicate CAMP-

BDI.Speed achieved more goals on average; our results show greater goal achieve-

ment for CAMP-BDI over replanning approaches for nrisk ≥ 0.25, with that advantage

growing with increasing nrisk.

Chapter 12. Experimental Results 219

In both geographies, None had universally poor performance, worsening with greater

nexo. The differences in goal achievement over increasing nrisk for None were not so ob-

vious (or, indeed present), and not always significant (Figure 12.5)1; in several cases,

particularly within World B, nrisk did not have a significant impact on goal success.

This indicated the primary influence was perturbation rather than debilitation; plans for

None would fail on the first activity failure, regardless of any resultant debilitation, and

largely negating the possibility of cumulative debilitation seen in reactive approaches.

These None results primarily define a worst-case minima for performance, but also

show the necessity of failure mitigation behaviour in that environment.

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -6.667 (5.91x10−5) -12.567 (2.56x10−6) +1.767 (0.491)

nexo = 2 -7 (1.58x10−9) -3.267 (0.017) -2.667 (0.058)

nexo = 3 +7.633 (4.74x10−10) -3.3 (0.007) -0.767 (0.632)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +9.45 (1.95x10−8) -0.1 (0.952) -1.217 (0.449)

nexo = 2 -3.967 (2.38x10−5) -1.85 (0.275) +0.067 (0.94)

nexo = 3 -2.267 (0.001) -0.1 (0.873) +0.167 (0.818)

Figure 12.5: Differences (p in brackets) for Average Delivery Success Rate for increas-

ing nrisk for None in World A and B; column names show the nrisk values whose results

are being compared. Negative values show that None achieved less goals at the higher

nrisk than at the lower.

In World A for nexo = 3 and World B for nexo = 2 and 3, where nrisk = 0,

Continual Replanning and Replanning held small but significant advantages in goal

achievement over CAMP-BDI.Speed (Figure 12.3). Replanning, but not Continual

Planning also held a significant advantage for nexo = 1 in World B. For World B,

nexo = 3, a much larger difference was observed between these reactive approaches

and both CAMP-BDI modalities (Figure 12.4). The uniformly high success of reac-

tive approaches at nrisk = 0 stems from the impossibility of debilitation from failure –

which would allow repetition of the same failed low confidence activity, with no fail-

ure penalty, until eventual success. Where replanning approaches did fail to achieve a

1We treated p < 0.05 as indicating a significant difference

Chapter 12. Experimental Results 220

goal, we attribute this to the specific world state preventing any successful delivery –

most likely due to the specific combination of flooded roads (a scenario which could

not be reverted using any agent capability) preventing an agent travelling to a required

location and performing an activity critical to success (for example, if no APC was

able to secure some location whose use, or transit through, was required for successful

cargo retrieval and delivery). In contrast, CAMP-BDI agents would not attempt re-

covery for activity failure, and were dependent upon the ability to anticipate and form

viable maintenance plans before a threatened activity’s execution.

Our results also show CAMP-BDI offering superior robustness to reactive approaches,

where failure risked debilitation (i.e. at nrisk ≥ 0.25), increasing as perturbation in-

creased (i.e. increasing nexo). These results shown that, as the risk of debilitation

increased – either with the increasing risk for individual failures being associated with

debilitation, or with exogenous change increasing the overall risk for, and number of

activity, failures – reactive approaches faced increasing scenarios where both debili-

tation rendered recovery impossible and where the lasting impact of said debilitation

impacted the success of future activity.

Where reactive approaches did show superior performance at nrisk = 0, these differ-

ences were – whilst statistically significant – relatively small. The sole exception was

in World B nexo = 3, where differences between CAMP-BDI approaches and reactive

ones were much larger – however, once debilitative risk was introduced, the consistent

goal achievement of both CAMP-BDI.Speed and CAMP-BDI.Quality offered superior

robustness over Continual Replanning or Replanning approaches.

Those cases where CAMP-BDI was disadvantaged at nrisk = 0 are likely to be

due to the absence of any greater confidence plan to be found by maintenance (of

either modality); as a purely pre-emptive system, CAMP-BDI would see overall goal

failure upon any failed activity (including for low-confidence cases), whilst reactive

approaches could – as noted prior, and due to not being bound by debilitation conse-

quences – continually form plans that served to repeat the failed low confidence activity

until success.

With nrisk ≥ 0.25, goal achievement for both Replanning and Continual Replan-

ning decreased with increasing debilitation – for example, in World A nexo = 1 Replan-

Chapter 12. Experimental Results 221

ning goal achievement dropped from 98.15% at nrisk = 0 to 60.82% at nrisk = 0.75,

with Continual Replanning dropping from 98.38% to 83.18%. In the more difficult

World B nexo = 3, average goal achievement dropped from 93.83% to 15.25% for

Replanning and 94.3% to 29.52% for Continual Replanning. These decreases were

associated with the increasing risk of debilitative consequences from failure.

Continual Replanning did partially mitigate such risk (shown by consistently su-

perior goal achievement to Replanning). This was due to the continual reformation

of planis, following every activity execution, and using current beliefs to specific the

planning problem initial state; the Continual Replanning system attempted to form an

optimal plani for the goali of the selected intention upon every reasoning cycle. This

meant the reformed plani would consequently contain only activities whose precondi-

tions were expected to hold given current beliefs – implicitly removing any remaining

activities in the previous plani whose preconditions had been violated by exogenous

change. In contrast, the purely reactive Replanning would only respond when failure

actually occurred – a plan containing future threatened activities would remain un-

modified until some failure occurred. However, both reactive and continual replanning

methods remained vulnerable to non-deterministic failures, as a result of their planning

operator preconditions excluding less significant, but still failure-risk inducing, states.

Unlike reactive approaches, no significant changes in goal achievement over in-

creasing nrisk were observed for CAMP-BDI.Speed in World A or B (Figure 12.6), at

any level of perturbation. This also applied for CAMP-BDI.Quality in nexo = 3. These

results show our maintenance approach mitigated the risk of post-failure debilitation,

by avoiding activity failure(s) in the first place.

Chapter 12. Experimental Results 222

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.317 (0.565) +0.167 (0.463) -0.133 (0.551)

nexo = 2 +0.067 (0.85) +0.233 (0.45) +0.233 (0.377)

nexo = 3

CAMP-BDI.Spd -0.05 (0.964) +1.233 (0.076) +0.8 (0.244)

CAMP-BDI.Qty +0.417 (0.596) -0.55 (0.468) +0.917 (0.16)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.317 (0.367) -0.317 (0.4) +0.383 (0.264)

nexo = 2 +0.383 (0.471) +0.517 (0.331) -0.567 (0.317)

nexo = 3

CAMP-BDI.Spd -0.05 (0.419) +1.233 (0.77) +0.8 (0.31)

CAMP-BDI.Qty +0.417 (0.526) -0.55 (0.324) +0.917 (0.62)

Figure 12.6: Difference (p in brackets) for CAMP-BDI goal achievement in World A and

B under progressive increase of nrisk, for all nexo. Positive values show greater goal

achievement at the higher nrisk.

The notable decrease in goal achievement for CAMP-BDI in World B at nexo = 3

led to consideration of whether the deterministic preconditions defined by the speed

modality were overly-restrictive and preventing generation of maintenance plans. We

consequently evaluated CAMP-BDI.Quality in nexo = 3, which relaxed precondition

constraints by using pseudo-probabilistic planning. However the actual difference be-

tween CAMP-BDI modalities (Figure 12.7) was not statistically significant in World

B; there were also small but statistically significant advantages for CAMP-BDI.Speed

in World A for nrisk = 0.5 (92.18% compared to 90.83%) and nrisk = 0.75 (91.75%

versus 92.98%).

nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

World A +0.03 (0.965) -0.43 (0.482) +1.35 (0.036) +1.23 (0.031)

World B -1.45 (0.161) -1.34 (0.303) +0.38 (0.766) -0.15 (0.911)

Figure 12.7: CAMP-BDI.Quality goal achievement subtracted from CAMP-BDI.Speed

(p in brackets) for nexo = 3 in World A and B. Positive values indicate CAMP-BDI.Speed

achieved more goals on average than CAMP-BDI.Quality.

Chapter 12. Experimental Results 223

This suggests CAMP-BDI failure arose where acceptable maintenance plans could

not be formed, for either modality; i.e. even with relaxed constraints, there were cases

where the best (highest confidence / lowest inverse risk cost) maintenance plan gen-

erated for CAMP-BDI.Quality was still considered of unacceptable confidence. The

small superiority of CAMP-BDI.Speed in World A nrisk = 3 may reflect the conse-

quences of permitting (limited) low confidence activities in maintenance plans for

CAMP-BDI.Quality, if these activities later suffered non-deterministic failure (and

could not themselves be addressed by subsequent maintenance). Although significant,

the small absolute difference may also potentially be a result of divergence between

the two maintenance modalities.

Continual Replanning could be considered as ‘aggressive’ maintenance, in the

sense of reforming plans (albeit using a deterministic domain specification without

capability knowledge) on each step. The superior performance of CAMP-BDI (both

modalities) against this system shows the value of capability knowledge, which al-

lowed avoidance of non-deterministic failure from low-confidence execution contexts.

This is shown by decreasing performance of Continual Replanning (and Replanning)

over increasing nexo – as this entailed greater perturbation, and a greater probability

of agent plans containing activities impacted by such states (if not explicitly avoiding

them through capability confidence knowledge).

Although we did not require any specific planning method, our results show the

determinization employed by CAMP-BDI.Speed was effective for maintenance plan

generation despite more restrictive precondition constraints; offering the same or bet-

ter robustness as the CAMP-BDI.Quality (pseudo-probabilistic) planning modality. In

general terms, they support our core hypothesis that robustness – measured through

goal achievement – in realistic environments where failure risks debilitation can be

improved by adopting a proactive approach to avoid failure rather than relying upon

reactive recovery. This applied across increasing levels of perturbation and for both

geographies tested – even where our approach performed worst (nexo = 3 in World B),

it held significant and increasing superiority for goal achievement with debilitation risk

(nrisk ≥ 0.25).

Chapter 12. Experimental Results 224

12.2 Average Activity Success Rate

This section considers the activity success rate of CAMP-BDI, to verify our proactive

approach successfully avoids activity failure. Due to their fundamentally different,

reactive, approach towards robustness we expect greater activity failure rates for Re-

planning and Continual Replanning approaches than CAMP-BDI.

Figure 12.8 and Figure 12.9 gives the activity success rate for approaches in World

A and B respectively. We provide specific differences in Appendix B.2 (Figure B.5

and Figure B.6, using the same format as Figure 12.3)2. Although generally high

for all approaches and configurations (≥ 77%), our results show CAMP-BDI had

the greatest success rate for all nexo and nrisk. For nexo = 3, in both World A and

World B, CAMP-BDI.Quality had a lower activity success rate – these differences

were marginal (ranging from 0.081% to 0.157%, both in World B) but statistically

significant for nrisk ≥ 0.5 in World A, and all nrisk in World B. This is attributed to

CAMP-BDI.Quality being able to form and accept maintenance plans containing lower

confidence activities, where these later suffered non-deterministic failure.

Activity success for Replanning decreased with both increasing nexo and nrisk –

extending to equal or worse rate of activity success than None at nrisk = 0.75, stemming

from the increased probability and potential accumulation of post-failure debilitation.

Continual Replanning exhibited more success in activity execution than Replanning, as

(attempted) constant revision of agent plans helped prevent preconditions failure. The

superior activity success rate of CAMP-BDI over Continual Replanning reinforces the

utility of confidence estimation, combined with Maintenance Policy thresholds, as a

trigger for maintenance – preventing non-deterministic failures where preconditions

held, yet the execution context still increased failure risk.

2For brevity, numerical detail for performance metrics from our experiments are given in Ap-
pendix B.

Chapter 12. Experimental Results 225

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.8: Activity Success Rate in World A

Chapter 12. Experimental Results 226

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.9: Activity Success Rate in World B

Chapter 12. Experimental Results 227

These results show CAMP-BDI was more effective at avoiding activity failure than

Replanning or Continual Replanning, due to being able to revise plans pre-emptively

and, with respect to the latter, using confidence estimation to anticipate increased fail-

ure risk. Our maintenance approach also retained consistency despite increasing risks

of debilitation (Figure 12.10). In both World A and B for all nexo CAMP-BDI.Speed did

not experience any statistically significant difference in activity success with increasing

nrisk – evidencing the robustness (in activity failure avoidance terms) benefits of avoid-

ing debilitation by avoiding failure. These results also applied for CAMP-BDI.Quality

evaluation in nexo = 3, showing both modalities were effective at preventing activity

failure.

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -0.001 (0.952) +0.008 (0.606) -0.005 (0.751)

nexo = 2 +0.009 (0.686) +0.016 (0.384) +0.01 (0.491)

nexo = 3

CAMP-BDI.Spd -0.009 (0.79) +0.058 (0.078) +0.035 (0.298)

CAMP-BDI.Qty +0.024 (0.546) +0.02 (0.594) +0.048 (0.11)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.021 (0.242) -0.011 (0.548) +0.022 (0.306)

nexo = 2 +0.007 (0.693) +0.019 (0.351) -0.014 (0.465)

nexo = 3

CAMP-BDI.Spd -0.056 (0.108) -0.039 (0.261) -0.002 (0.956)

CAMP-BDI.Qty -0.011 (0.856) -0.008 (0.889) -0.015 (0.692)

Figure 12.10: Differences (p in brackets) for CAMP-BDI activity success rates under

progressive increase of nrisk. Negative values indicate decreased activity success rate

at the higher nrisk.

Chapter 12. Experimental Results 228

12.3 Average Delivery Cost (Activities per Goal)

The previous results support our primary hypothesis of improved robustness through

proactive maintenance behaviour, reflecting the successful avoidance of activity fail-

ure. The average delivery cost is intended to identify the efficiency impact associated

with our CAMP-BDI approach, including from plans added to prevent or (in compar-

ison against reactive approaches) recover from failure. Figure 12.11 and Figure 12.12

show average delivery cost (in activities) for World A and B respectively. Specific dif-

ferences between approaches are detailed in Appendix B.3; Figure B.9 and Figure B.10

give differences for CAMP-BDI.Speed in World A and B, and give those Figure B.11

for CAMP-BDI.Quality.

We first consider the performance of None, where activity failure entailed imme-

diate goal failure. In World A, for all nexo the average activity cost initially rose

with increasing nrisk, but levelled off such that no significant difference existed be-

tween nrisk = 0.5 and 0.75. In World B delivery costs for None were more vari-

able. In nexo = 1, only the difference between nrisk = 0 and 0.25 was significant

(p = 1.914x10−5); for nrisk = 2, only that between nrisk = 0.5 and 0.75 was signifi-

cant (p = 0.01); in nexo = 3, no differences between escalating nrisk were. Where cost

decreased in nexo = 2 between nrisk = 0.5 and 0.75, this can be attributed to where the

increased debilitation risk led to earlier failure of activities (and consequently inten-

tions) – or potentially that highly likely debilitation led to a shortage of non-mortal

agents of the types required to form a plani.

Chapter 12. Experimental Results 229

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.11: Average Activities Per Goal in World A, with standard deviation

Chapter 12. Experimental Results 230

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.12: Average Activities Per Goal in World B, with standard deviation

Chapter 12. Experimental Results 231

In both World A and World B and for all nexo, significant increases in activity cost

occurred for both Replanning and Continual Replanning over progressively increasing

nrisk. Conversely, neither CAMP-BDI.Speed nor CAMP-BDI.Quality shown significant

(Figure 12.13) differences in average cost over increasing nrisk, in any geography or for

any nexo. The increasing advantage of CAMP-BDI approaches with greater nrisk can be

attributed to Continual Replanning and Replanning approaches suffering greater levels

of post-failure (cumulative) debilitation, such that recovery was eventually rendered

impossible – i.e. more activities were executed for ultimately unsuccessful goals.

Indeed, None actually held lower average activity costs than Replanning at nrisk =

0.75, in both geographies and all nexo, due to the extra expenditure associated with

trying to recover from activity failure for ultimately impossible goals. Unlike Replan-

ning, None would fail goals immediately with activity failure – the lack of recovery

activity both reduced the cost of failed goals and exposure to debilitation caused by

failed activities performed in attempt of recovery (but with the cost of unacceptably

low goal achievement).

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -0.021 (0.761) +0.029 (0.715) -0.0277 (0.737)

nexo = 2 +0.092 (0.488) -0.272 (0.078) +0.138 (0.285)

nexo = 3

CAMP-BDI.Spd -0.203 (0.34) -0.112 (0.655) -0.047 (0.791)

CAMP-BDI.Qty -0.13 (0.451) -0.282 (0.501) +0.017 (0.925)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.197 (0.123) -0.027 (0.854) -0.134 (0.265)

nexo = 2 -0.021 (0.938) +0.202 (0.053) +0.101 (0.699)

nexo = 3

CAMP-BDI.Spd -0.443 (0.694) -1.532 (0.227) -0.096 (0.934)

CAMP-BDI.Qty +0.305 (0.663) -0.705 (0.317) +0.1001 (0.91)

Figure 12.13: Differences (p in brackets) in average activities per delivery for CAMP-

BDI over increasing nrisk; positive values where average cost was greater at higher

nrisk, although this was not significant if p > 0.05.

Chapter 12. Experimental Results 232

In World A, CAMP-BDI.Speed had consistently lower average activity costs for all

nexo where nrisk ≥ 0.5; at nrisk ≤ 0.25 CAMP-BDI either had lesser or no significant

advantage over others. For nrisk = 0 in all World A nexo, and for nrisk = 0.25 at nexo =

2 (by a small but significant degree) and nexo = 3, Continual Replanning had lower

activity costs than other approaches – likely as an outcome of optimizations offered by

continually (re)forming an optimal plan after every activity. Replanning also had small

but significant advantages over CAMP-BDI approaches where nrisk = 0; likely due to

the non-impact of debilitation allowing near 100% goal achievement (i.e. avoiding

activities being ‘wasted’ on failed goals). Finally, we observed a small but significant

advantage for CAMP-BDI.Quality over CAMP-BDI.Speed in all nrisk ≤ 0.5 when both

were evaluated in nexo = 3, which we attribute to the former being able to (potentially)

form shorter route plans by permitting travel through lower-confidence roads (if zero-

risk movement was impossible, or incurred high enough cumulative cost to override

the cost metric values that normally biased against low confidence activities).

World B shown considerable variance in results between nexo ≤ 2 and nexo = 3 –

reflecting decreased CAMP-BDI goal achievement for the latter nexo value. For World

B nexo = 1, CAMP-BDI.Speed had significantly less average activity cost than Con-

tinual Replanning and Replanning, with that advantage growing with nrisk – except

for nrisk = 0, where Continual Replanning executed (by a small but significant mar-

gin) less activities per goal. For nexo = 2, CAMP-BDI.Speed executed less activities

per goal on average than Replanning for nrisk ≥ 0.25, and than Continual Replanning

for nrisk ≥ 0.5; this advantage again grew with nrisk. In World B nexo = 3, CAMP-

BDI.Speed consistently had higher per-goal activity costs than reactive robustness ap-

proaches – reflecting significantly decreased goal achievement for this configuration,

and the greater likelihood that activities within inserted maintenance plans would not

lead to eventual goal success. These differences lessened, reflecting decreasing goal

achievement of reactive approaches with increasing nrisk – extending to no significant

difference between CAMP-BDI.Speed and Replanning at nrisk = 0.75.

In World A, CAMP-BDI.Quality generally mirrored results for CAMP-BDI.Speed,

with a small (≤ 0.92) yet statistically significant increase in cost for nexo≤ 0.5. Within

World B, however, CAMP-BDI.Quality executed less activities on average than CAMP-

BDI.Speed, and also less than Replanning for nrisk ≥ 0.5 (7.939 and 13.144 activities

less, on average). Despite goal achievement being worse than CAMP-BDI.Speed (Sec-

Chapter 12. Experimental Results 233

tion 12.1) – i.e. indicating more activities would be performed in ultimately failed

plans – this indicates CAMP-BDI.Quality agents were able to form shorter length plans

by allowing of lower confidence activities. CAMP-BDI.Speed agents, conversely, risk

additional backtracking to completely avoid low-confidence activities within mainte-

nance plans (particularly for route plans). This difference was likely most prominent in

World B due to it’s larger geography and reduced interconnectivity limiting the range

of possible plans to achieve movement goals.

We can consider the significantly lower goal achievement of both Replanning and

Continual Planning approaches for nrisk ≥ 0.25 in World B nexo = 3 as a mitigating

factor where (either or both) CAMP-BDI approaches held higher costs. Being reactive

approaches (with regard to failure handling) meant Replanning and Continual Replan-

ning ‘allow’ failure to occur, risking associated debilitation. The high rate of goal

failure indicates both reactive approaches increasingly found themselves in irrecover-

able failure scenarios; this makes it likely more rapid failure would occur, and also

that (for nrisk>0) debilitative effects would accumulate and hasten failure of subse-

quent goal. In contrast, CAMP-BDI agents formed and executed maintenance plans

until failure avoidance was impossible – in this most difficult environment, this can be

characterised as the agents acting constantly to avoid failure (or, in a critical interpre-

tation, delay it). Finally, the greater goal achievement of CAMP-BDI agents (of either

approach) may indicate CAMP-BDI expended greater activity cost when achieving

those goals than reactive approaches expended before goal failure.

Average activity cost derives from two factors; the efficiency of goal achievement –

i.e. the cost of plans which prevent or recover from failure – and the rapidity of failure

– i.e. the number of activities an agent expended, including for proactive or reactive

failure mitigation, before a goal became impossible. In World A, once debilitation

was a risk, CAMP-BDI.Speed executed the least activities per goal on average, fol-

lowed by Continual Replanning, Replanning and finally None – correlating with goal

achievement (Section 12.1) and suggesting CAMP-BDI’s lower costs were attributable

to avoiding ‘futile’ activities associated with the pursuit of failed goals.

CAMP-BDI.Quality shown broadly similar results to CAMP-BDI.Speed in World

A; executing slightly (but significant) more activities per goal on average in nrisk≤ 0.5,

but providing effective parity (no significant difference) at nrisk = 0.75. CAMP-BDI

Chapter 12. Experimental Results 234

maintained consistent performance across increasing debilitation risk, with greater ef-

ficiency advantages over reactive approaches at increasing perturbation levels. The

superior performance of Continual Replanning over Replanning for all configurations

in both geographies is attributable to the former constantly reforming plans – allow-

ing both avoidance of preconditions failure, and for Continual Replanning agents to

always hold the optimal (shortest length) plan possible given current beliefs.

Results for nexo = 1,2 in World B reflected those of World A, with CAMP-BDI.Speed

again showing lower average activity cost and increasingly superior performance with

increasing nrisk for nexo = 1 and 2. For nexo = 3, however, CAMP-BDI.Speed was

consistently worse, and over all nrisk (excepting Replanning for nrisk = 0.75). Despite

this, CAMP-BDI.Speed (and CAMP-BDI.Quality) maintained consistent costs regard-

less of debilitation risk for all nexo, whilst reactive approaches faced increasing average

activity costs as nrisk increased.

The increased costs for CAMP-BDI are attributed to an evident marked increase

in difficulty for World B nexo = 3. This level of perturbation requires more frequent

maintenance (with resultant maintenance plans adding to absolute activity costs), with

the reduced interconnectivity of this geography reducing possible route plans for road

travel (increasing the risk of failed maintenance planning and, ergo, goal failure). The

general geographic properties of World B also increased the length of individual route,

increasing the possible exposure to exogenous change during plan execution. CAMP-

BDI.Quality – although still incurring greater activity cost than Continual Replanning

for all nrisk , and greater than Replanning for nrisk ≤ 0.25, in World B – did show sig-

nificantly lower average activity costs than CAMP-BDI.Speed. This suggests pseudo-

probabilistic planning, which allowed reduced precondition constraints through adding

confidence-reflecting costs, may be advantageous if the high probability, or wide distri-

bution of, confidence lowering states in the environment hinders stricter deterministic

planning (i.e. as in CAMP-BDI.Speed).

12.4 Planning Operations Per Goal

CAMP-BDI maintenance behaviour employs proactive, pre-emptive planning, using

capability knowledge to estimate the execution context of future activities and – by

extension – initial state specifications when performing maintenance planning. Unlike

Chapter 12. Experimental Results 235

reactive Replanning, performed following confirmed failure, proactive behaviour risks

incurring extra costs from uncertainty – i.e. from false positive anticipation of failure,

or if maintaining activities which are themselves removed (before execution) by future

maintenance. CAMP-BDI also risks additional costs due to performing discrete plan-

ning calls for each step of scope escalation during local maintenance, and if dependants

adopt maintenance responsibility. Our algorithm uses these multiple planning opera-

tions to minimize changes to planis, and sacrifices the possibility of planner-specific

optimizations to avoid mandating a specific planner implementation.

Section 12.1 showed that CAMP-BDI’s proactive approach improved robustness

over reactive approaches when failure risked debilitation; here, we evaluate planning

cost in terms of average planner invocations per achieved goal. Figure 12.14 and Fig-

ure 12.15 shows the average planning calls per achieved goal in World A and B respec-

tively. Detailed differences are given in Appendix B.4 – Figure B.14 and Figure B.15

give differences for CAMP-BDI.Speed against other approaches, and Figure B.16 de-

fines differences between CAMP-BDI.Quality and replanning approaches for nexo = 3

in both geographies.

Chapter 12. Experimental Results 236

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.14: Planning Cost in World A

Chapter 12. Experimental Results 237

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.15: Planning Cost in World B

Chapter 12. Experimental Results 238

For all experiments (i.e. all geographies, nexo and nrisk) Continual Replanning

required significantly more planning operations per goal than any other approach, as

every activity – successful or failed – was followed by (re)planning. Increases in av-

erage planner call cost also reflects decreasing rate of goal achievement with increas-

ing nexo and nrisk – meaning more planning calls were ultimately futile, particularly

where stymied by increasing probabilities and accumulation of post-failure debilita-

tion. These results show CAMP-BDI offered an improvement over continual replan-

ning in this context, by making planner invocation non-arbitrary and performed upon

the basis of capability-driven threat anticipation.

Both geographies show similar results; Replanning initially had lower planner ex-

ecution costs (less planning operations per activity) – reflecting that replanning was

only performed when necessary to respond to actual, rather than (potentially incor-

rectly) anticipated, failure. As nrisk increased Replanning executed more planning

operations per goal than CAMP-BDI.Speed in World A for all nexo, in World B for

nexo ≤ 2 where nrisk ≥ 0.5, and in World B nexo = 3 at nrisk = 0.75. Whilst aver-

age planning operations rose with increasing nrisk for Replanning, the planning rate

remained consistent (i.e. with no significant differences) regardless of increasing de-

bilitation risk for both CAMP-BDI.Speed and CAMP-BDI.Quality in all experimental

configurations (Figure 12.16). Finally, CAMP-BDI.Speed performed slightly – but sta-

tistically significantly – more planning operations per goal in World A nexo = 3 (for all

except nrisk = 0.5), but not in World B (where no significant difference was recorded).

When a statistically significant difference did exist, CAMP-BDI.Quality performed a

maximum 0.845 more planning operations per goal.

CAMP-BDI typically executed more absolute planning calls than Replanning (but

less than Continual Replanning) in World A for all nexo (Figure 12.17), and in World

B for nexo = 2 and 3 (Figure 12.18). In World B, CAMP-BDI.Speed, followed by

CAMP-BDI.Quality actually executed more planning calls than Continual Replanning

for nexo = 3. As this occurred for nrisk = 0 – i.e. where Continual Replanning did not

see post-failure debilitation stymie recovery planning and reduce calls through earlier

goal failure – it likely signifies increased escalation of maintenance responsibility to

(adoption by) dependants, where obligants were unable find plans in a highly perturbed

environment. It is probable that CAMP-BDI agents performed multiple maintenance

planning operations as the density of low confidence states – especially for slippery

Chapter 12. Experimental Results 239

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -0.002 (0.957) -0.056 (0.291) +0.002 (0.963)

nexo = 2 +0.054 (0.55) -0.164 (0.092) +0.005 (0.94)

nexo = 3

CAMP-BDI.Spd -0.029 (0.848) -0.328 (0.068) +0.031 (0.815)

CAMP-BDI.Qty -0.138 (0.301) -0.229 (0.09) +0.011 (0.942)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.01 (0.883) +0.009 (0.897) -0.074 (0.254)

nexo = 2 -0.091 (0.521) +0.105 (0.443) -0.046 (0.751)

nexo = 3

CAMP-BDI.Spd -0.299 (0.687) -0.889 (0.296) -0.226 (0.768)

CAMP-BDI.Qty +0.018 (0.977) -0.155 (0.836) -0.172 (0.831)

Figure 12.16: Differences (p in brackets) for CAMP-BDI average planning calls per goal

in World A and B over increasing nrisk; negative values indicate less planning calls per

goal were performed at the greater nrisk.

roads – made it difficult to identify alternate obligants in a position to both replace

existing, low confidence, obligants and avoid confidence reducing states. The similar

lack of success for CAMP-BDI.Quality could indicate that, even with reduced con-

straints, in many cases it was impossible to find acceptable maintenance plans.

Consistency in CAMP-BDI planning call costs, and increasing average calls for

Continual Replanning and Replanning with nrisk, can be attributed to differences in

goal achievement rates. This suggests CAMP-BDI’s mitigation against goal and activ-

ity failure also mitigated additional planning costs by avoiding futile planning (where

the goal eventually failed due to debilitation). Where CAMP-BDI presents excess (ab-

solute or relative) planning operations, these can be justified through superior goal

achievement (robustness where nrisk ≥ 0.25) or, potentially, as a result of earlier total

plan failure restricting the opportunity(s) for reactive replanning to add activities.

Chapter 12. Experimental Results 240

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.17: Total (absolute) Planner Calls in World A

Chapter 12. Experimental Results 241

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.18: Total (absolute) Planner Calls in World B

Chapter 12. Experimental Results 242

12.5 Planning Time Costs

Although CAMP-BDI may entail more individual planning operations than reactive

Replanning, the previous section showed these were effectively mitigated by robust-

ness improvements under increasing risks of post-failure debilitation. This section

examines whether the context for invoking planning (proactive, reactive or continual)

impacts computational cost. We employ the same third party planning implementation

(LPG-td) for runtime planning in all cases, without any approach specific optimiza-

tions3. Although planning time metrics are considered as approximate (i.e. as exact

values are specific to LPG-td), we argue they remain useful, and assume planning time

can be applied as a proxy indicator for the relative complexity of problems presented

to the planner.

Figure 12.19 (World A) and Figure 12.20 (World B) gives the average time (ns)

per planning operation for all nexo and nrisk. We do not measure per goal achieved as

we wish to evaluate the difficulty of individual planning operations, rather than time

expenditure per goal. Differences between CAMP-BDI.Speed and other approaches

are detailed in Appendx B.5; in Figure B.19 and Figure B.20 for World A and B re-

spectively.

CAMP-BDI.Quality was not directly compared against other approaches due to

employing the LPG-td.quality modality, which defined planner execution as lasting ei-

ther for a fixed time bound, or until either a set number of (progressively improved,

i.e. metric minimized) plans were generated or the state search space was exhausted.

Small but significant differences in planning execution time for CAMP-BDI.Quality

over increasing nrisk in Figure 12.21 suggest a certain margin of error (± ≤ 1.5%)

may exist with regard to the fixed time bound; we suggest likely attributable to an in-

creased rate of failure (early termination), although it is also possible (but, we suggest,

less likely) factors such as PDDL parsing time had an impact. The (comparatively)

high time cost of planning with even a pseudo-probabilistic method also supports our

assumption that true probabilistic planning (being of greater computational complex-

ity than the determinized, cost based method used in CAMP-BDI.Quality) would be

impractical in realistic domains.

3Variance in planning was solely from differences in how planning problems were generated and
responses handled – the planner was not aware of the robustness approach invoking it.

Chapter 12. Experimental Results 243

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.19: Average time for individual planning operations in World A

Chapter 12. Experimental Results 244

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.20: Average time for individual planning operations in World B

Chapter 12. Experimental Results 245

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 −1.326% (0.497) −2.426% (0.125) −0.445% (0.791)

nexo = 2 +3.743% (0.097) +3.512% (0.069) −10.07% (8.15x10−10)

nexo = 3

CAMP-BDI.Spd +6.458% (0.003) −8.794% (0.0001) +6.165% (0.036)

CAMP-BDI.Qty −1.169% (0.025) +0.643% (0.079) +0.653% (0.032)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 −2.64% (0.257) +5.814% (0.0003) −3.241% (0.036)

nexo = 2 −3.135% (0.148) +0.924% (0.732) +6.062% (0.004)

nexo = 3

CAMP-BDI.Spd +0.194% (0.92) −0.591% (0.664) +0.701% (0.651)

CAMP-BDI.Qty +1.623% (0.002) −1.703% (0.678) −0.176% (0.005)

Figure 12.21: Percentage differences (p in brackets) for CAMP-BDI average planning

time per goal in World A and B over increasing nrisk for all nexo. Positive values show

increased average planning time at the greater nrisk.

In both World A and World B for nexo = 1 and 2, Continual Replanning had the

lowest average planning costs, taking up to 30% less than CAMP-BDI.Speed – al-

though these differences became less significant as nrisk increased. For nexo = 3 any

advantages in planning time held by Continual Replanning were not statistically sig-

nificant, and gradually decreased; at nrisk ≥ 0.5 in World A and nrisk ≥ 0.75 CAMP-

BDI.Speed took significantly less time on average per operation. Replanning generally

required the same or greater time per planning operation in all environments as CAMP-

BDI.Speed; World B nexo = 1 and nrisk = 0 was the sole case where Replanning spent,

on average, a statistically significant amount of time less per planning call.

The lower planning time for Continual Replanning may stem from being invoked

continuously – i.e. without threats from exogenous change, and where the current

plani remained optimal. As Section 12.4 indicates, Continual Planning invoked many

more planning operations per goal than approaches responding to failure – meaning

many such operations would occur where there was no threat to the current plan, and

the agent’s previous activity would have placed it closer to goal achievement (rather

than facing a threat requiring maintenance activity, or recovering from failure with any

Chapter 12. Experimental Results 246

associated hindering causal or consequential states). This would ease the difficulty of

the planning problem, particularly when invoked in close ‘proximity’ to achieving the

goal (i.e. where forming a plan required selection of only only a small number – or

one – of activities).

Where a statistically significant difference existed, planning operations in Replan-

ning lasted longer than within CAMP-BDI.Speed. CAMP-BDI.Speed’s relative per-

formance was generally better (i.e. advantage increasing, or disadvantage decrease)

with higher nrisk, although not in all cases. In these exception cases where CAMP-

BDI.Speed relative performance was worse in higher nrisk (e.g. nrisk = 0.75 in World

B nexo = 1) this may be due to a more rapid failure in the reactive systems – i.e. where

debilitation meant the planning goal was identified as unsolvable earlier by the planner.

For nexo = 3, the difference between Continual Replanning and CAMP-BDI.Speed

was significantly pronounced in nexo = 3 – contradicting the shorter average planning

time of Continual Replanning in nexo ≤ 2. This may be a product of an increased

number of low confidence states (i.e. slippery roads impacting route plans). CAMP-

BDI.Speed placed additional, more constraining preconditions to prohibit execution of

activities with low confidence – our goal success results suggest that in many cases

(more than other nexo) maintenance failed to find a plan to prevent failure. This may

indicate there were more cases of early planning failure than for other exogenous

change configurations, where CAMP-BDI.Speed could still form maintenance plans

under these confidence-guaranteeing preconditions.

Our results suggest that CAMP-BDI.Speed may offer reduced individual planning

costs over Replanning, particularly as environmental difficulty increases, and partic-

ularly considering the reduced individual planning operations per goal observed in

Section 12.4. While our algorithms are planner agnostic and these results are partially

specific to LPG-td, they provide evidence that CAMP-BDI.Speed does not present dis-

proportionately difficult planning problems – and computational cost – compared to

Replanning, supporting the relevance of average planning operations as a comparative

metric. Although Continual Replanning took less time cost for individual planning

operations, this needs to be considered against lower goal achievement and higher

planning operations cost than CAMP-BDI.Speed.

Chapter 12. Experimental Results 247

12.6 Messaging Costs

CAMP-BDI requires communication between agents to share contract information and

drive adoption of responsibility by dependants during distributed maintenance. This

necessitates additional communication costs over reactive approaches, which do not

require information to identify threats to activities in advance – only that needed to

perform planning after failure. We recorded the quantity of messages sent concerned

with establishing, cancelling or (for CAMP-BDI) updating contracts to determine an

average per delivery cost. This indicated the volatility of dependency relationships –

i.e. how often dependencies changed due to plan failure, or from mitigatory proactive

or reactive changes. For CAMP-BDI (both modalities), we also gathered metrics ex-

cluding the updatedContract message type in order to also the understand messaging

costs solely related to plan (and delegated activity) changes made by maintenance.

Figure 12.22 and Figure 12.23 respectively show the average messages per goal in

World A and B. The differences in message costs (including updatedContract) between

CAMP-BDI and other approaches are given in Appendix B.6.7.4, by Figure B.27 and

Figure B.28 for CAMP-BDI.Speed and Figure B.29 for CAMP-BDI.Quality; these

show both modalities of CAMP-BDI incurred significantly higher communication cost

per goal than in both World A and B. Figure B.30 also details the differences in mes-

sage cost for CAMP-BDI.Speed and CAMP-BDI.Quality with increasing nrisk – show-

ing that in all experimental configurations, increasing debilitative risk did not signifi-

cantly impact the average messaging cost per goal.

The absolute message counts (i.e. not divided per goal) sent, as summed across the

entire experimental run, are given in Figure 12.24 and Figure 12.25 for World A and B.

Appendix B.6.5 details changes in absolute message count with increasing nrisk levels;

Figure B.25 for World A, and Figure B.26 for World B.

Chapter 12. Experimental Results 248

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.22: Average messages per delivery in World A

Chapter 12. Experimental Results 249

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.23: Average messages per delivery in World B

Chapter 12. Experimental Results 250

None shows increasing per-goal cost with nrisk, albeit with variation in the abso-

lute number of messages; significant decreases were seen for (averaged) total messages

with increasing nrisk between nrisk = 0 and 0.5, but a conversely significant increase

was recorded between nrisk = 0.5 and 0.75. No significant differences in average total

messages were associated with nrisk increases in nexo = 2 or 3 for World A. Simi-

larly variable results were seen for total message count in World B. Inconsistency in

absolute message count over differing nrisk values reflects previous observations that

perturbation level was the dominant influence upon the performance of None – mes-

saging requirements would be determined by the initial plan formed, rather than any

proactive or reactive plan modification or replanning behaviour.

Gradual increase of None’s messaging costs per goal can be attributed to decreas-

ing goal achievement, as the total message count did not show any corresponding up-

wards trend. None consequently did not present a worst case baseline for messaging

costs; other approaches required more messaging per goal due to reforming or mod-

ifying their planis to mitigate against failure, which could lead to adding, modifying

(for CAMP-BDI) or cancelling dependency contracts. CAMP-BDI.Speed sent signifi-

cantly more messages per goal than any other approach; CAMP-BDI.Quality sent sig-

nificantly less messages per goal than CAMP-BDI.Speed, but more than Continual

Replanning and Replanning (Figure B.29).

Of the alternate mitigation approaches, Continual Replanning generally had lower

messaging costs than Replanning. This is somewhat surprising, given the former per-

formed constant plan revision, including cancellation of any pre-existing dependen-

cies4. As Figure 12.24 and Figure 12.25 show, absolute messaging counts were gener-

ally similar – with Replanning occasionally sending more messages (E.g. in World A

for nrisk = 0.75, for all nexo).

4Continual Replanning agents formed dependency contracts for all activities requiring delegation in
their current plan, as there was no guarantee over when or whether a new plan would be formed.

Chapter 12. Experimental Results 251

World A - nexo = 1

World A - nexo = 2

World A - nexo = 3

Figure 12.24: Absolute message counts (averaged) in World A.

Chapter 12. Experimental Results 252

World B - nexo = 1

World B - nexo = 2

World B - nexo = 3

Figure 12.25: Absolute message counts (averaged) in World B.

Chapter 12. Experimental Results 253

We attribute these differences to greater activity and success rates for Continual

Replanning, as agents were less likely to fail in an activity and incur debilitation than

Replanning. Both replanning approaches adopted decentralized approaches; obligants

reported obligation failure if unable to replan following activity failure, with their de-

pendants replanning when a delegated activity succeeded (Continual Replanning only)

or failed (either approach). Continual Replanning had a greater activity success rate

due to it’s constant revision; lower level agents (such as Truck agents being able to re-

form route plans to avoid failure) suffered less consequent debilitation and were less

likely to fail and escalate responsibility to a dependant. Replanning agents conversely

suffered greater activity failure and consequent debilitation, making local replanning

failure more likely (e.g. due to mortal damage) and increasing escalation of planning

to dependants – who would require alternate (non-debilitated) obligants, requiring for-

mation of new, and cancellation of old, dependency contracts.

Continual Replanning held the lowest per-goal messaging costs of all mitigation

approaches. Replanning costs rose with nrisk, reflecting decreasing goal achievement.

In all cases CAMP-BDI.Speed costs were significantly higher than all other approaches

for all experimental configurations; CAMP-BDI.Quality messaging costs were consis-

tently lower than CAMP-BDI.Speed, but also consistently higher than all other ap-

proaches. This difference decreased with increasing nrisk; CAMP-BDI (both modali-

ties) consistency in messaging costs (see Figure B.25 and Figure B.26 in Appendix B.6)

reflected their consistency in goal achievement, whilst conversely decreasing goal

achievement for other approaches increased associated average messaging costs. The

lower messaging costs of CAMP-BDI.Quality compared to CAMP-BDI.Speed can be

attributed to reduced average activity costs for the former (Section 12.3); this indi-

cated shorter plan execution, with a reduction in activities likely to be associated with

reduced delegation requirements.

Our results show significantly higher messaging costs for CAMP-BDI due to con-

tinuous messaging of contract updates. These results do present a worst-case, as we

did not investigate possible optimization and reduction within our implementation – in-

stead focusing on supporting the mechanisms required for robustness. Appendix B.6,

Section B.6.8, details specific differences between approaches when updatedContract

messages were excluded; Figure B.31 and Figure B.32 give the exact difference and

Chapter 12. Experimental Results 254

significance between CAMP-BDI.Speed and other approaches; Figure B.33 provide

equivalent information for CAMP-BDI.Quality.

When we excluded contract update messages to focus upon messages types asso-

ciated with cancellation or formation of dependencies, differences between CAMP-

BDI and other approaches significantly narrowed. In World A, when updateContract
messages were excluded, CAMP-BDI.Speed had significantly lower average per-goal

message costs than Replanning for nrisk ≥ 0.25 for nexo = 1 and 2, and nrisk ≥ 0.5;

for Continual Replanning in World A, CAMP-BDI.Speed sent less messages per goal

for nrisk ≥ 0.25 in nexo = 1, and for nrisk ≥ 0.5 in nexo = 2 and 3. CAMP-BDI.Quality

shown similar relative results in World A nexo = 3, with advantages over CAMP-

BDI.Speed being both small (< 1.5 average messages per goal) and not significant

for nrisk ≥ 0.5.

Results for World B when updateContract messages were excluded were similar

to those for World A. For nexo = 1, CAMP-BDI.Speed sent significantly lower messages

per goal than both Continual Replanning and Replanning for nrisk≥ 0.25. For nexo = 2,

messaging costs per goal were lower then Replanning for nrisk ≥ 0.25, and lower than

Continual Replanning for for nrisk ≥ 0.5. Finally, in nexo = 3 CAMP-BDI.Speed sent

less messages on average per goal than Continual Replanning for nrisk = 0.75, and

less than Replanning for nrisk ≥ 0.5. As in World B, CAMP-BDI.Quality had lower

average messaging costs than CAMP-BDI.Speed; this approach sent less messages per

goal on average than both Continual Replanning and Replanning for nrisk ≥ 0.5. In all

cases for World A and B, the disadvantages of CAMP-BDI approaches against other

approaches decreased, and advantages increased, with increasing nrisk – reflecting con-

sistent CAMP-BDI goal achievement levels, whilst Continual Replanning and Replan-

ning saw average goal achievement decline – and absolute messaging increase – with

increasing risk of post-failure debilitation.

This suggests CAMP-BDI did improve stability compared to replanning, by reduc-

ing the messaging to cancel or form new dependencies following plan changes – but

that this benefit was outweighed by messaging to maintain mutual beliefs. These re-

sults also show that consistently higher robustness – i.e. greater goal achievement – can

help mitigate higher absolute communication costs, particularly when post-failure de-

bilitation risks stymieing reactive approaches. Continual Replanning and Replanning

Chapter 12. Experimental Results 255

systems also benefited from the assumption no communication was required to main-

tain mutual beliefs during execution; conversely CAMP-BDI results represented the

worst-case scenario, where contract updates occured every reasoning cycle. However,

messaging costs remain the principal drawback of CAMP-BDI, due to the additional

information requirements of threat anticipation.

12.7 Discussion

Our experimental results show superior robustness for CAMP-BDI5 where agents risked

debilitation from consequence of failure, with the consistency of goal achievement in-

dicating effective mitigation of debilitative risk – conversely, reactive recovery (Con-

tinual Replanning and Replanning) faced increasing penalties and decreasing robust-

ness under the same conditions. This advantage persisted over increasing perturbation,

in both simpler (World A) and more complex (World B) geographies.

In the sole case where CAMP-BDI goal achievement was below 90% (World B,

nexo = 3), our approach maintained consistency in goal achievement and held an ad-

vantage over alternative approaches under debilitation risk (i.e. nrisk ≥ 0.25). It is

likely reduced CAMP-BDI goal achievement for World B nexo = 3 reflected greater en-

vironmental difficulty – i.e. that increased perturbation and decreased interconnectivity

(increasing difficulty when forming alternate route plans for road vehicles, whether to

transport cargo or enable delivery through activities such as unblocking roads) made

goal achievement less possible overall. This also justified our experimentation in mul-

tiple geographies, by allowing analysis of performance within what proved a more

difficult environment than World A under the same nexo and nrisk.

12.7.1 Goal Success Rates and Activity Costs

Activity success rates show CAMP-BDI maintained consistently greater activity

success than other approaches. Continual Replanning – which allowed a degree of

failure prevention as a side-effect of constant plan revision – exhibited superior ro-

bustness to Replanning but lower than CAMP-BDI under debilitation. Our results for

5We refer to CAMP-BDI where results applied to both CAMP-BDI.Speed in all nexo and CAMP-
BDI.Quality in nexo = 3.

Chapter 12. Experimental Results 256

CAMP-BDI also evidences the utility of confidence estimation (combined with the Th

field found in Maintenance Policies) provided through capability modelling, which

allowed CAMP-BDI agents to react to an increased possibility of failure as well as

definitive (expected) failure where preconditions were not expected to hold.

Whilst focusing upon Goal Achievement to verify our hypothesis regarding CAMP-

BDI robustness, we gathered additional metrics to understand performance – particu-

larly as proactive behaviour risks costs from false positive anticipation of failure. We

did not directly compare the quality – commonly viewed in terms of plan length – as

each approach would present different forms of planning problem. For example, we

could expect CAMP-BDI maintenance plans to be shorter then those for replanning,

due to our algorithm attempting to minimize the scope of maintenance planning. In-

stead, we used average activity cost per goal as a proxy, as this metric included activity

costs from plans formed to (proactively or reactively) mitigate failure.

In all nexo configurations for World A, and nexo = 1 and 2 for World B, CAMP-BDI

performed less activities per goal on average than Replanning once debilitation risk

was introduced (nrisk ≥ 0.25), and less than Continual Replanning for nrisk ≥ 0.5.

Continual Replanning’s consistently greater efficiency terms than Replanning, and

than CAMP-BDI at lower levels of nrisk, reflects continual optimization from form-

ing plans (i.e. where a newly generated, optimal activity length, plan would replace

the current plani) following every activity; this advantage, however, was associated

with additional planning costs.

In World B, at nexo = 3, agents faced a significantly increased difficulty – al-

though CAMP-BDI still shown superior robustness, it suffered significant decreases

in goal achievement compared to other experimental configurations (geography and

nexo combinations). CAMP-BDI.Speed had greater activity costs than reactive ap-

proaches, although CAMP-BDI.Quality did show lower activity costs over Replanning

for nrisk ≥ 0.5. This may be partially due to earlier goal failure (or even an inability

to form initial plans following cumulative agent debilitations) in both Replanning and

Continual Replanning (nexo = 3 saw Replanning goal success drop from 45.22% to

15.25%, and Continual Replanning from 57.05% to 29.52% over nrisk = 0.25 to 0.75).

We suggest that the efficiency of CAMP-BDI (either modality) may be significantly

Chapter 12. Experimental Results 257

reduced in environments where preventative activity is less feasible, or debilitation is

of lower risk. This – and the other cost metrics gathered – would require domain

specific consideration over whether (and how much) additional activity cost is justified

to improve robustness and achieve MAS goals. Maintenance Policies can be of use in

such cases by allowing control over which agents maintain what activities, and to what

level of (confidence) sensitivity.

12.7.2 Planning Costs

Planning costs represented another key consideration, particularity as our algorithms

traded off a potential multiplicity of planning operations (associated with increasing

scope of maintenance planning) to allow planner agnosticism. This lead to considera-

tion of two planning cost metrics – the average number of operations invoked per goal

achieved, and the average execution time (as a proxy for computational difficulty) per

operation. These metrics were selected to evaluate the planning ‘load’ upon agents,

and determine if any approach defined planning problems of significantly greater com-

plexity. In the latter case, planning time will result from a combination of multiple

factors; as well as different planning contexts and problems presented by alternate ap-

proaches, time based results would be influenced by the actual planner implementation

and potentially even external factors such as CPU thermal throttling or operating sys-

tem process management (although we assumed these, if present, were of negligible

influence). This leads us to treat planning time results as being indicative, as they will

contain elements specific to the LPG-td planner used by all approaches.

In terms of individual planning operations, Continual Replanning consistently ex-

ecuted more operations per goal – an obvious and expected drawback of it’s continual

revision approach. In certain cases (E.g. World A, nexo = 3) Replanning executed a

similar average number of planning operations per goal to Continual Replanning (al-

beit with greater deviation); reflecting an increased proportion of planning operations

being performed when pursuing delivery goals that eventually failed. Whilst Contin-

ual Replanning and reactive Replanning both saw planning operations cost rise with

increasing nrisk – and decreasing goal achievement – CAMP-BDI (either modality)

maintained consistent average planning costs. Where CAMP-BDI did have greater ab-

solute planning costs (World B nexo = 3), these may be justified by superior robustness.

Chapter 12. Experimental Results 258

For average planning time, Continual Replanning calls generally took less time

than in either CAMP-BDI.Speed or Replanning. This difference is attributed to contin-

ual planning also occurring in non failure states, which can present simpler planning

problems – e.g. if only a few (or even solely one) easily identified activities were nec-

essary to achieve the required goal. In comparison to reactive Replanning, where a

statistically significant difference did exist, CAMP-BDI.Speed spent less time on aver-

age for each planning operation. As time results will be partially specific to the LPG-td

planner itself, we do not definitively conclude CAMP-BDI.Speed offers lower individ-

ual planning time or easier to solve planning problems. We argue, though, our results

provide sufficient evidence that CAMP-BDI maintenance does not present significantly

more difficult planning problems, and that we can reasonably compare planning costs

across approaches using a metric of planning operations per goal.

Finally, CAMP-BDI.Quality spent overwhelmingly longer each planning opera-

tions. This was due to utilizing an alternate planner modality (LGG-td.quality), whose

execution time was effectively set to last for a predefined period, rather than (as for

CAMP-BDI.Speed, Replanning and Continual Replanning) how quickly a plan could

be found. This expansive planning time was seen to be of magnified effect within

our experimentation due to the truncated duration of activities; in a realistic environ-

ment, with longer activity durations, this impact may be less proportionately severe

and justified through the reduced activity and messaging costs identified for the qual-

ity modality. Another possibility is that we may be able to identify an alternate (pseudo

or otherwise) method for probabilistic planning with less time cost – although our re-

view in Chapter 6 (reflected by our consequent assumptions) suggests true probabilistic

methods are likely to be intractable in a realistic environment.

12.7.3 Messaging Costs

The primary drawback of CAMP-BDI approaches was communications cost. Our

maintenance algorithm required continual communication to maintain the beliefs held

by both obligants and dependants regarding delegated activity, in order to support dis-

tributed maintenance; this entailed a much higher messaging costs per goal, as agents

would communicate contract updates after every activity execution.

One advantage CAMP-BDI did exhibit was for messaging excluding contract up-

Chapter 12. Experimental Results 259

dates. This shows CAMP-BDI agents generally performed less communication to

change (cancel or form) dependency relationships – indicating greater plan stability

over Continual Replanning and Replanning. Like the activity and planning costs ben-

efits identified, this is attributed to greater robustness (higher goal achievement) miti-

gating any greater absolute cost – i.e. less messaging cost was expended (was futile)

on ultimately failed goals. Avoiding failure-associated debilitation reduced obligant

failure, reducing adoption of maintenance responsibility by dependants and the conse-

quent selection of alternate obligants (and therefore formation of new dependencies)

by those dependants following maintenance changes.

Our implementation of contract update messaging was relatively crude, as our fo-

cus was upon use of the resultant information. We believe it may be possible to mitigate

costs with optimization work; we discuss several potential approaches in the following

chapter (in Section 14.4.3).

12.7.4 Summary of Results

Our experimental results show CAMP-BDI offered superior robustness where there is

a risk of debilitation, and that excess activity or planning costs were mitigated by su-

perior goal achievement (meaning proportionately less absolute costs were futile). In

our experimentation, we employed a single environment – Cargoworld – in order to

focus upon an in-depth examination of the impact of increasing perturbation and de-

bilitation. We justify this singular domain focus through the widespread existing usage

of similar Transport domains for planner benchmarking (evidenced by, and a result of,

this type’s predominance within IPC domain sets) Long and Fox [2000] similarly note

transportation is a “common feature of planning problems, either as a central or an

incidental component” when suggesting methods for inferring the generic type for a

planning domain.

Our evaluation domain also provided stochasticity and non-determinism through

unpredictable exogenous change, and was non-episodic due to the persistence of ex-

ogenous changes or agent debilitation. The distribution of agents and resources (i.e.

cargo), combined with heterogeneous agent capabilities (including those of logical

brokers) mirrored typical motivating factors for MAS approaches, with the enable-

ment (i.e. to allow agents that actually carry cargo to achieve their goals) role of

Chapter 12. Experimental Results 260

agent types of APC and Bulldozer agents allowing for examination in the context of

inter-agent coupling, and providing hierarchical team meta-organizations that reflected

similar structures in real-world organizations (such as described by Killion [2000]).

Given the infinite variety of possible real world domains, we will not claim our

results inherently hold in all possible circumstances. Rather, we suggest they are in-

dicative for a variety of realistically plausible domains – such as discussed in Chap-

ter 2 when describing our motivation. CAMP-BDI is intended, and suited, to agents

that perform discrete sequences of goal-driven activity (i.e. based on goal selection

and plan invocation), representable in world state transition terms – rather than less

plan-orientated agents concerned with continuous monitoring and constraint tailoring

such as for power management (Catterson et al. [2012]). CAMP-BDI is most suited for

environments where the rate of exogenous change is high enough to introduce a real-

istic threat to agent plans, yet not so high or chaotic as to render any form of long term

planning – whether for maintenance or to enable resource reservation after intention

formation – unrealistic.

CAMP-BDI can result in additional costs in more difficult environments, shown by

our experimentation in World B nexo = 3, where maintenance is effectively only post-

poning inevitable failure. These cases may require work to refine Maintenance Policies

to allow the ‘target’ of maintenance behaviour to focus upon where the relevant goali is

(believed to be) achievable. Mutual belief maintenance required by CAMP-BDI entails

an excess communications cost; although we are optimistic future work could reduce

this weakness, CAMP-BDI would not be suitable for domains where communications

cost is of key importance. Any increased costs (of any type) should be considered with

regard to the robustness benefit offered by CAMP-BDI – in certain domains, excess

cost may be justified to preserve higher goal achievement or avoid particularly severe

activity failure consequences.

Our results for nrisk = 0 show that CAMP-BDI does not hold an advantage over

reactive systems where failure is effectively consequence free – this is as expected (we

cannot assume perfect failure anticipation), and befits our motivating domains being

those where debilitative risk does exist. In a realistic domain it is likely the risk and

types of debilitation will vary based upon the particular activity types; and that in a

practical implementation CAMP-BDI would be paired with complementary robustness

Chapter 12. Experimental Results 261

methods, including reactive activity failure handling. This justifies use of Maintenance

Policies – which allow conditions for triggering maintenance task generation to be

externalized and configured on a per agent, per capability, or per agent-capability pair

level basis, meaning CAMP-BDI behaviour could be reduced in sensitivity or disabled

(with failure handled by reactive mechanisms), to mitigate maintenance costs if an

activity faces reduced risk of post-failure debilitation.

Finally, we considered Speed and Quality modalities for CAMP-BDI to investigate

the increased CAMP-BDI.Speed goal failure in World B nexo. This illustrates our algo-

rithm’s flexibility in supporting different planning methods (albeit as different LPG-td

modalities) through generation of different planning problem specifications. We lim-

ited our experimentation for CAMP-BDI.Quality to nexo = 3, as high goal achievement

rates in nexo = 1 and 2 signified there was insufficient scope to exhibit any robust-

ness improvement; i.e. that maintenance plans using the constrained preconditions

employed by CAMP-BDI.Speed could be formed without the need to consider use of

lower confidence activities, and that CAMP-BDI.Quality would therefore likely pro-

duce identical plans to CAMP-BDI.Speed. CAMP-BDI.Quality offered lower activity

and messaging cost, at the expense of longer planning duration – although we did not

observe superior goal achievement, and actually observed (marginally) inferior robust-

ness in World A at higher nrisk. Further experimentation may be useful to differentiate

between different planner modalities – or to investigate use of heterogeneous planning

methods, selected depending upon the computational constraints of individual agents.

12.7.5 Applicability of the CAMP-BDI approach

TODO - how can CAMP-BDI be applied in further domains

12.8 Conclusion

This chapter evaluated the CAMP-BDI implementation over multiple experimental

runs, for agents acting within geographies of differing complexity, and over increasing

and independently scaled probabilities for perturbation and post-failure debilitation.

Through comparison against both a reactive post-failure replanning system and one

using continuous deterministic replanning, we shown that, where activity failure risks

debilitation, CAMP-BDI improved robustness over reactive approaches in our experi-

Chapter 12. Experimental Results 262

mental Cargoworld environment. Although proactive behaviour incurs potential costs

from planning operations and maintenance, our results suggest this can be mitigated

by overall robustness benefits – although further work will be required to optimize the

communication efficiency of mutual belief maintenance.

Chapter 13

Applicability of CAMP-BDI

Chapter 11 evaluated CAMP-BDI within a simulated Cargoworld environment – a do-

main expressly designed to provide explicit specification of environmental properties

and allow examination of robustness under scaled risk and perturbation. This chapter

further discusses the applicability of CAMP-BDI as a robustness method within the

motivating domains discussed in Chapter 2, and for other example real-world applica-

tion domains.

13.1 General applicability

We can characterise CAMP-BDI as primarily applicable in domains where activity

failure results in a debilitated state to hinder reactive recovery, agents form plans in

advance of execution (are aware of intended future activities), and exogenous changes

can be detected. CAMP-BDI requires domains to be relatively stable in order to antic-

ipate failure through estimating future execution contexts – i.e. if exogenous change

does threaten planned activity, it should be reasonable to perform maintenance under

the assumption threats are unlikely to be removed by later exogenous change. This

domain stability can be considered as an inherent requirement for agents to employ

deterministic plans in general, as constant, chaotic levels of exogenous change would

otherwise render activity post-conditions too unpredictable.

CAMP-BDI may carry additional costs, particularly from communication, mean-

ing use must be balanced against the potential risks of debilitation (considering both

failure of the initial activity and any subsequent recovery activities) and the cost of

goal failure(s). In the latter, we observed additional per-goal costs (in activity, commu-

263

Chapter 13. Applicability of CAMP-BDI 264

nications or planning tems) of CAMP-BDI may be justified where goal failure carries

sufficient consequences – such as destruction of resources, or even loss of life. The

importance of contract update messaging within distributed maintenance means the

viability of CAMP-BDI may be challenged where communications are unreliable or

required resources are limited, although optimisation of communications requirements

remains an area for future work (as discussed in Chapter 14).

A key element of our contribution is CAMP-BDI’s provision of distributed main-

tenance behaviour; whilst still applicable for individual agent robustness, CAMP-BDI

will offer greater benefits in a multi agent, team-forming system. Similarly, our ca-

pability based approach supports heterogeneous agent sets through providing a gen-

eralized model, intended to allow sharing of information without requiring semantic

knowledge be held and understood by dependants. In homogeneous agent systems

(i.e. with limited agent types), the associated homogeneity of agent capabilities may

make it practical to implement domain specific robustness methods that share (and

use) semantic knowledge between agents. While CAMP-BDI is still applicable within

such homogeneous MASs, it may be more effective to implement domain-specific ro-

bustness approaches if agents can be assumed to have semantic understanding of each

others’ capabilities.

13.2 Space Domains

Chapter 2, discussed the International Planning Competition (IPC) Rovers and Satel-

lites domains (Fox and Long [2003]), concerned with activities outside of Earth and

deriving from real world NASA (National Aeronautic and Space Agency) scenarios.

These domains did not model exogenous change or debilitative failure consequences,

due to their origins as IPC domains for planner (and plan quality) evaluation, rather

than to test agent handling of environment change. We have suggested plausible ex-

tension to include such properties, and argue such extension can be justified with the

existence of real world equivalents. Autonomous behaviour is an area of active re-

search interest (such as NASA’s Intelligent Systems project, described by Morris et al.

[2004]) in real-world equivalent Space domains, due to the costs associated with Earth

based personnel and the time latencies of communication (line-of-sight based commu-

nication also risks being stymied by the relative positioning of the involved parties).

This suggests similar benefits in augmenting such autonomy with proactive robustness

Chapter 13. Applicability of CAMP-BDI 265

approaches (such as CAMP-BDI) – particularly as the sheer distances involved can

heavily restrict reactive repair of, or recovery from, failure-associated damage.

The inherent uncertainty associated with exploration suggests a strong need for

robustness approaches to allow adaptation to new discoveries and threats; this particu-

larly applies if plans are being generated offline and transmitted from Earth, as is typi-

cal for planetary rovers. For example, the CASPER (Continuous Activity Scheduling,

Planning and Replanning) system (Estlin et al. [2003]), intended for use in automated

terrestrial rovers or spacecraft, addresses uncertain environments through continual

planning and by giving the ability to modify goals in response to exogenous events –

for example, removing goals upon unexpectedly high energy use during movement.

This motivation for CASPER also applies to justify CAMP-BDI, which additionally

offers support for robustness within the context of distributed activity.

In both the Satellites and Rovers domains, the potential severity of failure con-

sequences supports the likelihood of detailed domain and sensory information being

available to support capability modelling. The distances that agents may be required

to travel suggest CAMP-BDI’s proactive behaviour can expand preventative options

through earlier response – for example, allowing a backup satellite to re-orient in a

new orbit, ready to receive communication or perform observations when serving as a

new obligant.

Confidence estimation can be valuable due to allowing small sensed faults – other-

wise insignificant in precondition terms – to be related to greater long term threats. As

part of the NASA Intelligent Systems project, Hofbaur and Williams [2002] describe

use of Hidden Markov Models to predict the probability of ‘failure modes’ arising

given current states; their approach seeks to identify where small state changes, in-

dividually indistinguishable from sensory noise, combine to risk future catastrophic

failure. Like our confidence model, they seek to detect if seemingly insignificant (i.e.

non-preconditions violating) state changes increase failure risk, and to allow preven-

tative response. Their approach can be seen as validating the utility of CAMP-BDI’s

preventative focus and the use of capability confidence estimation within such do-

mains; it may also provide a method for estimating confidence (generalization within

our capability model also allows flexible implementation of confidence estimation).

Chapter 13. Applicability of CAMP-BDI 266

The Satellites domain is inherently more multiagent in nature, due to being based

around constellations – groups of satellites equatable to an agent team. Damiani et al.

[2005] describes a satellite constellation system (D-SpaCPlanS, or Distributed Space-

craft and Coordination Planning and Scheduling), based upon a French Space Agency

mission definition. The organizational structure and description of decentralized be-

haviour in D-SpaCPlanS closely resembles our supporting assumptions regarding hi-

erarchical (dynamically formed) teams, as used in design of CAMP-BDI distributed

maintenance. In contrast, the distances and difficulty of interplanetary transport sug-

gest Rovers domain instances are likely to see only a limited number of physical vehi-

cles represented within a MAS.

The exploratory nature of Rovers domains may also see such agents as physically

distant, and raise challenges in terms of the ability to perform communications required

for distributed maintenance (of course, this raises the issue of whether such distance is

prohibitive of co-operative teamwork anyway). One other possibility is to model indi-

vidual agents as holons (Schillo and Fischer [2003]), with constituent physical compo-

nents (e.g. wheels, motors, effector arms) also modelled as individual agents. Physical

rover activities would consequently resolve into planned sequences of physical com-

ponent activities, where involved component agents form a team, acting as obligants

to the dependant rover agent. CAMP-BDI can offer further utility under such an ap-

proach; for example, dangerous temperature buildup in motor components could be

accompanied with decreases in confidence, with maintenance behaviour being trig-

gered to switch component use and avoid failure and potential damage. The benefits

of proactivity could be further pronounced if individual component failures more risk

widespread impact – such as if the aforementioned motor overheating lead to a crash,

causing damage to multiple components. Such behaviour does rely upon alternate ca-

pabilities existing; the potential benefits of CAMP-BDI are likely to be limited where

components are highly specialized and no alternative means exist (maintenance plans

cannot be found) for a threatened activity – although such component specialization

could also constrain reactive recovery, following component damage from failure.

The uncertainty present will vary between both Space domains. In Rovers, where

agents will be exploring a new region of a (most likely) lifeless planet, the princi-

ple source of uncertainty is likely to stem from a lack of geographic knowledge – i.e.

where belief changes arise from sensing new information about a relatively static en-

Chapter 13. Applicability of CAMP-BDI 267

vironment, rather than environment change. Where environment change does occur,

we suggest it is most likely to stem from changes in weather systems – which may be

detectable in advance and from distance (particularly if supporting resources such as

satellites or remote sensors are present). Given this, it is plausible to estimate future

execution context from current state, and to consequently anticipate activity failure –

aiding the efficacy of CAMP-BDI.

In the Satellite domain, the sources of uncertainty may present greater challenge to

CAMP-BDI. Threats such as micro-meteorites or debris impacts (suggested by Dami-

ani et al. [2005]) may occur without warning, preventing any pre-emptive behaviour1.

CAMP-BDI will obviously not offer utility where such events cause immediate fail-

ure of a currently executing activity; but if impact damage does not cause immediate

failure but results in a gradual debilitation and degradation of performance, then this

can be represented by capability confidence loss – and with CAMP-BDI able to offer

proactive, preventative robustness behaviour in response.

Perhaps the main difficulty with employing CAMP-BDI in Space domains stems

from resource limitations. Limited energy resources may serve to prohibit the fre-

quency of communication required by our distributed maintenance, and may prevent

runtime maintenance planning by limiting computational hardware resource. Although

CAMP-BDI is planner agnostic, limited environment knowledge (e.g. if exploring

a new region) may restrict the viability of recipe based maintenance planning ap-

proaches, much as uncertainty hinders the use of offline generated and transmitted

initial plans. The decision whether to adopt CAMP-BDI for robustness within a space

domain, will therefore likely be determined by whether benefits of avoiding activity

failure (and debilitation) outweigh the associated energy costs of performing compu-

tation and communication.

13.3 Transport Domains

Transport domains, describable as logistics or mobile problem domains, present sce-

narios where goals are achieved through movement of some portable object from an

initial to goal location. As Long and Fox [2000] note, mobile problems are common

1Although it is possible some orbital threats such as larger pieces of debris may be tracked, and
therefore may lead to state changes that then trigger CAMP-BDI maintenance to avoid impact.

Chapter 13. Applicability of CAMP-BDI 268

(implicit or explicit) aspects of many agent domains. The LS/ATN (Living Systems /

Adaptive Transportation Networks) represents one real world MAS application (Dorer

and Calisti [2005]) in the logistics domain, adopted by ABX (a European logistics

company) due to (experimentally proven) efficiency benefits in truck utilization. Like

CAMP-BDI, LS/ATN models heterogeneous agents (vehicles vary in properties and

capabilities, with differences including cargo capacity and load/unload abilities), and

respond and reconfigure plans upon disruption from exogenous change (e.g. traffic,

breakdowns or accidents). Pokahr et al. [2008] also note the appropriateness of MAS

approaches within transport domains, by defining simulation methods to ease the tran-

sition of MAS implementations from simulated experimental evaluation to real-world

application use.

The Cargoworld domain shares similarities with – and partly derives from – mobile

problem domains, through adoption of a road network and generation of cargo delivery

goals. However, Cargoworld does present a more heterogeneous agent-capability set,

and is more explicitly designed to entail decompositional team formation, than the

domains described here. Regardless, we suggest many of Chapter 12’s observations of

CAMP-BDI performance are also applicable to this domain type.

We suggest CAMP-BDI is beneficial in such domains due to the usage of a road

network. Plans will inherently involve sequences of deterministic movements along

roads; CAMP-BDI can therefore relate detected exogenous change threatening in-

tended use of roads, to requirements for plan maintenance, allowing proactive avoid-

ance. We can intuit proactive robustness will offer benefits over reactive response in

terms of reduced backtracking, through allowing earlier route plan changes (rather than

only upon the point – and location – of failure). Additionally, (at least some) move-

ment failures can be reasonably associated with debilitation risk – as if the agent were

still able to move they would likely have completed said movement. Finally, if cur-

rent conditions cause movement to fail midway along a road, these will likely further

hinder any reactive recovery movements required to use that same road.

The Tileworld agent domain (Pollack and Ringuette [1990]) presents a highly ab-

stracted environment, where CAMP-BDI is of limited utility; the lack of debilitative

consequences to failure makes reactive recovery an effective strategy, with the fully

connected grid geography minimizing backtracking costs. Whilst Tileworld can be ex-

Chapter 13. Applicability of CAMP-BDI 269

tended with properties more suitable for CAMP-BDI, extension also risks introducing

an inadvertent bias towards our approach (a risk noted by Lees [2002] for extending

Tileworld in general). As such, we will focus upon more realistic domains when eval-

uating CAMP-BDI applicability – particularly as Tileworld is sufficiently abstract that

it could arguably be extended to form many of the domains discussed in this chapter.

The Triangle-Tileworld domain (Little and Thibaux [2007]) represents an exten-

sion of Tileworld for probabilistic planner evaluation, using a triangle rather than grid

geography. Again, this presents an abstracted, unrealistic domain which – being an IPC

domain for evaluating the quality of formed plans – does not model exogenous change;

this means CAMP-BDI cannot offer a robustness benefit without domain modification

to include exogenous change events, under the same bias risk as noted for Tileworld.

Although failure and debilitation probabilities – i.e. of a puncture occurring – are

modelled for road movement, these are constant and intended to be handled during

plan formation. Finally, whilst this domain does offer the potential of an agent to load

spare tyres to prevent total goal failure, doing so only facilitates recovery from failure,

rather than offer a means of prevention.

The applicability of CAMP-BDI increases within the more realistic scenarios pre-

sented by the Trucks (Edelkamp et al. [2011]) and DriverLog (Gregory and Lindsay

[2007]) IPC domains or the Truckworld (Hanks et al. [1993a]) simulated environment.

These domains present mobile problems, concerned with use of a truck to deliver some

package to a given destination. As the two IPC domains do not present exogenous

change or debilitative failure (due to being for evaluation of generated plan quality

rather than agent robustness), we focus upon the Truckworld simulated environment –

which does provide such characteristics, as an experimental testbed for reactive plan-

ning by agents2.

These domains may be single or multi-agent; in the latter case, the mobile prob-

lem includes determining the appropriate vehicle to perform a delivery goal, implying

a manager agent exists that can perform such delegation. In the single agent case,

CAMP-BDI’s appropriateness would be reduced due to the inapplicability of our dis-

tributed maintenance design, and with the absence of options for failure prevention
2As Trucks, DriverLog and Truckworld present very similar problems, we suggest the environment

properties of the latter provide plausible guidance for the properties of any realistic simulated environ-
ment for the former two.

Chapter 13. Applicability of CAMP-BDI 270

through delegation and team formation (a reduced set of agents would also reduce

reactive recovery options). As noted earlier, CAMP-BDI is more appropriate in het-

erogeneous multi-agent domains, where distributed maintenance can be employed and

where – depending upon advertisement visibility – maintenance planning can take ad-

vantage of the more varied options available with a heterogeneous agent capability

set.

In Truckworld, exogenous changes include roads becoming muddy under rain, or

placement of bombs; failure-associated debilitation includes agents skidding off roads

under the former and being damaged by explosions from the latter. CAMP-BDI can

respond to such exogenous threat states through maintenance to avoid activity failure,

avoiding such risks of debilitation. These scenarios closely correlate with Cargoworld,

which similarly models wet (i.e. flooded or slippery) road states, and where a danger-

Zone at a junction has consequences equivalent to the presence of a bomb. Aside

from general benefits from reducing backtracking, the efficacy of CAMP-BDI is aided

through domain specification of advance mitigatory activities (e.g. fitting tyre chains

before travelling along wet roads) to reduce failure risk.

Although Truckworld presents a homogeneous agent set (i.e. only contains a Truck

vehicle), it models the constituent components of such an agent; such as fuel tank,

tyre, loading arm and cargo bay state. This information can be employed towards

capability modelling, both to specify activity preconditions and consider component

state changes as part of confidence estimation. Modelling of component internal health

state (which also implies corresponding introspective sensory capacities) aids CAMP-

BDI by providing detailed information for capability modelling and advertisement,

which can be used to improve the effectiveness of maintenance reasoning.

The value of detailed component health information will partly depend on whether

agents can repair themselves (i.e. improve health state) or whether similarly capable

agents exist in the domain. If a truck can sense its own suboptimal health, but nei-

ther repair itself or see a dependant agent reassign consequently threatened goals (i.e.

through distributed maintenance processes) to an alternate obligant, then any sensory

capacity and CAMP-BDI’s proactive approach will hold little benefit – as no options

will exist for prevention, regardless of the ability to anticipate failure.

Chapter 13. Applicability of CAMP-BDI 271

One challenge for CAMP-BDI within Truckworld stems from the visibility of ex-

ogenous change. Truckworld can model distance and noise constraints upon agent

sensing, potentially restricting the ability of trucks to detect change. This can restrict

the viability of CAMP-BDI by preventing or delaying detection of exogenous change

until close to execution of a threatened activity (although this can be partly mitigated

if agents are sharing observations with each other). In the former case, CAMP-BDI

obviously cannot anticipate a failure if unable to detect the causal state; in the latter,

CAMP-BDI can prevent failure but risks losing benefits associated with earlier detec-

tion. This issue of sensory noise and information availability is applicable to all poten-

tial CAMP-BDI application domains, and must be considered as part of any decision

whether to employ CAMP-BDI as a robustness approach within that domain.

13.4 MAS Disaster Response Domains

The real world application of MAS technology for Disaster Management is of increas-

ing research interest (Jain et al. [2012]), particularly given recent natural (e.g. the

2004 Asian Tsunami of 2004, Hurricane Katrina in 2005 or 2010 Haitian Earthquake)

and man-made events (e.g. 9/11 or London 2005 terrorist attacks). Such domains are

concerned with management of emergency services, including use of military and/or

humanitarian aid forces to perform rescue and evacuation – in the military context, Mil-

itary Operations Other Than War or MOOTWs (Smart [2008]). Chapter 2, discussed

three disaster management domains; Pacifica/PRECiS (Planning, Reactive Execution

and Constraint Satisfaction) (Reece et al. [1993]), Blogohar (Sensoy et al. [2010])

and Robocup Rescue (Kitano et al. [1999]) – all of which see heterogeneous agents

co-operate to perform emergency response tasks over a distributed geography.

Emergency response domains present scenarios where goal failure may hold se-

vere consequences; such as failure to evacuate civilians leading to injury and death in

Pacifica scenarios, failure to escort humanitarian vehicles leading to their destruction

in Blogohar, or failure to extinguish fires leading to building collapse or civilian ca-

sualties in Robocup Rescue. These domains present significant uncertainty; as well as

the possibility of exogenous events such as rainstorms or landslips (Pacifica), insurgent

activity (Blogohar) or fire spread and building collapse (Robocup Rescue), time con-

straints (i.e. a need for immediate, rapid response) upon disaster scenarios may force

the adoption of intentions while the exact environmental state is still being discovered.

Chapter 13. Applicability of CAMP-BDI 272

The organizations in such domains often adopt hierarchical command structures – such

as Strategic-Tactical-Operational models (Killion [2000]) – which reflect assumptions

behind (and supports the utility of) CAMP-BDI distributed maintenance design.

Unlike the transport domains in Section 13.3, the heterogeneous nature of the MAS

introduces the possibility of agents employing their or obligants’ capabilities to remove

threatening states (e.g. prohibiting travel through a road or location). This allows

CAMP-BDI to provide further benefits; proactive maintenance planning can identify

suitably capable agents for performing preventative activities to explicitly remove fail-

ure causing states, and avoid contention over necessary agent resource through en-

abling earlier identification of, and contract formation with, required obligants.

CAMP-BDI allows agents to adapt intended plans following belief changes; this is

particularly beneficial upon discovery of states that add danger to an intended activity,

and consequently increase the risk of debilitation as a cause or consequence of subse-

quent failure. These domains also present non-episodic environments (e.g. Blogohar

scenarios last over two days), such that post-failure debilitation can have lasting im-

pact upon future activities – and that avoidance of failure and debilitation holds implicit

benefits beyond achieving the current goal. Our confidence model allows recognition

of where such dangerous states do not prohibit activity, but do increase risk – and our

maintenance policy approach allows control over whether agents perceive such risk as

prohibitive (i.e. requiring maintenance), with an ability to perform runtime modifica-

tion to reflect changes in environment state or agent set.

Pacifica defines a number of heterogeneous agent types and capability sets (for

example, aircraft have different constraints upon operation including turnaround time,

carrying capacity, and which runways can be employed), supporting the utility of our

generalized capability model and allowing a range of adaptive options for CAMP-BDI

maintenance to employ. Blogohar similarly models humanitarian and military agents,

where communications restrictions may exist – these can be reflected through con-

straints on capability advertisement, and are further supported through our capability

model explicitly not requiring communication of semantics (which may be barred by

such restrictions). Robocup Rescue does support a reduced degree of heterogeneity,

as each key activity in the domain (namely, clearing roads, providing medical care or

extinguishing fires) can only be performed by one agent type – although we can still

Chapter 13. Applicability of CAMP-BDI 273

consider property changes within maintenance reasoning, such as setting confidence in

a fire engines’ capability to extinguish fires to reflect current water reserves.

The challenges to CAMP-BDI identified within Transport domains in Section 13.3

similarly apply within emergency response domains – namely, the risk of commu-

nications difficulty, and potential limits to sensory perception. There is a risk that

some exogenous changes which threaten activities may only occur at execution, and

be undetectable or unpreventable – particularly in the case of hostile actors such as

insurgents within Pacifica and Blogohar. Such changes present threats and are perpe-

trated in a manner designed to avoid detection. CAMP-BDI may still be offer benefits

in these scenarios, however – if knowledge requirements are modelled within activ-

ity preconditions, or lack of knowledge reduces confidence, maintenance can modify

plans to include active sensing in response. For example, a lack of knowledge regard-

ing the safety of a location in Blogohar may manifest as reduced confidence in moving

through that location – with the generated maintenance plan including activities to send

reconnaissance units that will perform the required sensing.

Cargoworld bears a close similarity to – and indeed was inspired by – these do-

mains, including the use of a road network, the presence of heterogeneous agents either

able to achieve the system goal or perform enabling activities, and equivalent exoge-

nous threats. Our cargo delivery goal can be considered as, in abstracted terms, equiv-

alent to mobile problems solved by agents in these domains – i.e. unloading cargo

objects at a destination can be reduced to a task to travel to a defined location and per-

form a goal achieving activity. For example, dangerZones resemble the threats of IEDs

or hostile areas in Blogohar, and road blockages (landslips or floods) can be seen to

derive from similar threat events in RoboCup Rescue (building collapses) and Pacifica

(which sees similar threats to traversal). As such, we suggest our Cargoworld-based

evaluation results can be considered broadly applicable towards these domains.

13.5 Further Industrial Application Domains

A number of real-world industrial applications also suggest possible domains where

CAMP-BDI may be applied. In a survey of AAMAS’05 (The 2005 International Con-

ference on Autonomous Agents and Multiagent Systems) industry track highlights,

Pěchouček et al. [2006] highlight domains including where data for decision making

Chapter 13. Applicability of CAMP-BDI 274

is decentralized, and those requiring time-critical response and robustness – the for-

mer requirement being accounted for in CAMP-BDI’s distributed maintenance design

assumptions (i.e. by using a general capability model design to allow communication

of activity performance information, without mandating sharing of semantic details,

and allowing autonomous local adoption and performance of maintenance, without

centralized control), and the latter corresponding to the purpose of our contribution.

Pěchouček and Mařı́k [2008] review further examples of industrial MAS deploy-

ments, noting that automated reconfiguration is a highly desirable property for man-

ufacturing tasks, as is collision avoidance within robotics; the former of these can be

provided through CAMP-BDI’s decentralized, distributed maintenance design (where

dependants effectively ‘reconfigure’ teams if maintenance determines new activity se-

quences and obligant sets), and the latter as a general property of our proactive focus

(i.e. avoiding failure includes those due to collisions).

As exogenous change is an inherent property of real world environments, agents in

industrial applications must handle uncertainty and adapt plans accordingly to change.

We consider CAMP-BDI as generally offering benefits in those domains where failure

causes are anticipatable, it is feasible to assume communication is possible between

agents (to facilitate information sharing upon contracts and capabilities, to enable dis-

tributed maintenance and team formation), and where it is possible for failure to result

in difficult – or costly – to recover from scenarios.

One potential application for CAMP-BDI lies within UAV domains, where agents

control and co-ordinate Unmanned (autonomous) Aerial Vehicles. For example, Bax-

ter and Horn [2008] describes a system, developed as part of research program for the

British Ministry of Defence, where a human user controls a team of autonomous UAVs

by assigning tasks to locate or destroy targets. Ondráček et al. [2015] also describe an

application where UAVs monitor oil pipelines in remote or dangerous areas The MAS

must both organize the allocation of recharging stations and maximize monitoring cov-

erage; failure of the latter risks monitored infrastructures being damaged (by natural

or artificial causes).

In these domains there can be obvious benefits from proactive robustness; both

in avoiding potential debilitation, and (as UAVs frequently serve reconnaissance pur-

Chapter 13. Applicability of CAMP-BDI 275

poses) in preventing dangerous exogenous changes being missed when active sensing

(i.e. information gathering performed through planned activity) fails. Challenges to

CAMP-BDI use will again stem from whether threats can be anticipated (i.e. whether

threats from exogenous changes can be detected in advance of activity execution), and

to what degree preventative activity is possible. For example, a UAV controller may be

able to respond to higher than expected power use from a UAV obligant (as modelled

through confidence decreases) by reassigning tasks to another – but ambushes from

hidden hostile forces in a military domain may be less preventable and require reactive

recovery. Of course, if enemy forces are detected, CAMP-BDI can offer mitigation

by triggering maintenance (based on reduced confidence, or violated preconditions)

such that UAV adopts a less dangerous route or calls in armed escorts. Again, a bene-

fit of CAMP-BDI is that such behaviour can be performed pro-actively rather than in

reaction to failure, allowing earlier identification and reservation of required resource.

Somewhat similarly to Space domains, UAV domains may involve agents oper-

ating at great distances, and with limited power and communications ability. This

means that the communications required for distributed maintenance may prove diffi-

cult, even with our assumption of other robustness methods to ensure correctness (i.e.

against noise or corruption), due to positional constraints upon line-of-sight communi-

cations, or the energy costs of transmission. Further difficulties may stem from weight

limits upon a physical agent, which may restrict the ability to provide computational

resources (hardware) for maintenance reasoning – particularly if maintenance employs

(more computationally demanding) runtime planning.

Manufacturing system domains present dynamic environments, where agents co-

operate to perform some manufacturing process; activities involve material transport

of material and tool deployment, as well as assembly of products. Leitão [2009] note

an increasing tendency of manufacturing organizations to specialize and co-operate

to maintain competitiveness; this is unsuited to traditional centralized manufacturing

processes (where, as Colombo et al. [2005] note, one failure can shut down the entire

system), but where a MAS approach provides the required flexibility and adaptabil-

ity. They note such environments may be chaotic, with “unexpected disturbances that

leads to deviations from the initial plans and usually degrades the performance of the

system” – highlighting the same risk from exogenous change that CAMP-BDI seeks to

address, and which Cargoworld provides within our evaluation.

Chapter 13. Applicability of CAMP-BDI 276

For example, Bussmann and Schild [2001] describe a manufacturing domain, suc-

cessfully prototyped by the DaimlerChrysler car manufacturer, where production is

optimized through using agents to represent manufacturing machines, with dynamic

assignment of work performed through an auction system (rather than through advance

scheduling).

Mařı́k et al. [2005] describe the MAST (Manufacturing Agent Simulation Tool), a

simulation developed at Rockwell Automation, which served as a demonstrator for

flexible manufacturing processes. MAST included simulated events, such as bro-

ken components that force adaptive system responses – e.g. re-routing products to

avoid a broken conveyor belt. Intended to aid the practically applicability of MAS ap-

proaches, MAST was employed to develop a reconfigurable control system for a US

Navy Ship Chilled Water System (CWS). Here, agents represent physical components

of the CWS, with diagnostics models and plan recipes (for fast reaction) reconfiguring

agent relationships in response to partially damaged equipment.

Pěchouček et al. [2007] described ExPlanTech, a multi-agent planning technology,

developed for and industrially deployed by SkodaAuto to mass-produce car engines.

ExPlanTech provides long term (six week) production plans, employing monitoring

tools to perform system reconfiguration and real-time replanning to respond to changes

in production demand or anomalies (errors) such as late material arrivals. Planning in

ExPlanTech is decomposed, with agents attempting to resolve detected errors locally,

before escalating responsibility to manager agents – this behaviour resembles that of

CAMP-BDI distributed maintenance.

Manufacturing domains present a heterogeneous agent environment, with agents

representing physical resources such as machine tools, robots, automated vehicles,

products or logical objects such as schedules. The use of long term production plans,

combined with a likelihood of exogenous change during execution, means the proac-

tive behaviour offered by CAMP-BDI may be beneficial by preventing failure. Al-

though delays to expected production are more likely consequences than outright agent

debilitation, failures may still lead to the loss – with associated costs – of manufactur-

ing material. Our confidence model may be employed to represent fatigue upon agents

if sensors exist to detect such information; if agent activities are at risk from fatigue,

Chapter 13. Applicability of CAMP-BDI 277

the resultant confidence loss can trigger mitigatory maintenance planning, allowing the

obligation to cancelled before failure occurs and risks more permanent damage. This

release of agents from obligations may also allow agents to adopt (self) repair goals,

previously barred by the commitment to the (cancelled) obligation.

We would not expect communication to pose as significant an issue within such

domains, as agents are likely to operate within a close physical environment (e.g. a

factory or warehouse), and similarly are likely to have a reliable, consistent power sup-

ply (to support continuous manufacturing). Our assumptions of contract pre-formation

are likely to hold, as efficient manufacturing will require ensuring the necessary agents

(e.g. tools or transporters) are available for use. The main challenge to the applica-

bility of CAMP-BDI is likely to arise from whether the consequences and costs of

failure exist to justify the effort of capability specification, and whether reactive re-

covery methods would suffice. This may depend upon the specific products being

manufactured, and the risk of damage to them from failure; for example, assembling

a cheap disposable widget will justify preventative costs less than assembling a more

expensive car engine.

One benefit of our capability advertisement approach can be to enable a degree

of dynamic optimization. If performance of an agent drops, this can be reflected in

decreased confidence; if the MAS has seen changes to the agent-capability set (e.g.

addition of some newly purchased machine or tool, accompanied with advertisement

of their capabilities), triggered maintenance planning will employ an updated EC set -

allowing consideration of the newly added system agent capabilities. This benefit may

be more generally applicable, in domains where the MAS is open (allows dynamic

addition of agents, provided they perform the contract formation and capability ad-

vertisement required by CAMP-BDI) – including those previously considered in this

chapter (particularly as disaster management domains may see addition of new agents,

where governments and humanitarian organizations may dispatch assistance as the sit-

uation unfolds).

Chapter 13. Applicability of CAMP-BDI 278

13.6 Conclusion

This chapter discussed how CAMP-BDI may be applicable within other domains, and

considered selected real world application domains. The exact suitability of CAMP-

BDI will vary depending upon domain specifics – including the risk of debilitation fol-

lowing failure, the ability of agents to detect exogenous change and relate it to threats

upon activities, and whether it is plausible to avoid activity failures given the capabil-

ities existing within the MAS. Constraints upon our approach centre around whether

computational, energy and communication resources exist to enable CAMP-BDI be-

haviour, particularly within the context of capability advertisement and distributed

maintenance behaviour (i.e. for contract updates). However, we suggest our approach

can offer broad applicability as the core domain properties targeted by CAMP-BDI –

exogenous change during plan execution and debilitative failure – can be viewed as

common within many realistic application domains.

Chapter 14

Conclusion

This thesis presented CAMP-BDI, an approach for proactive plan execution robust-

ness. CAMP-BDI provides BDI agents with algorithms (and supporting meta-knowledge)

for anticipation of future activity failure, and for performing modification of intended

plans to avoid that failure. Although existing BDI frameworks typically employ reac-

tive behaviour to recovery from activity failure, this may be stymied in domains where

failure risks debilitative consequences. In Chapter 2, we described examples of such

motivating domains based upon existing planning and multiagent domains. We also

introduced the Cargoworld domain, employed for both examples of agent behaviour

and experimental evaluation.

Chapter 3 focused upon understanding the critical mental state and behavioural

components of BDI rationality, and their extension to multiagent activity. Agent ro-

bustness approaches were discussed in Chapter 4, allowing our approach to be placed

within the context of general agent robustness and providing a definition of robustness

for use in evaluation.

Plan formation and execution were identified as critical in BDI rational behaviour,

leading to a focus upon plan robustness. Chapter 5 examined automated planning,

reasoning that information used in plan formation could be applied to reason about

plan activities during execution – allowing identification of knowledge requirements

for our capability model. Methods for avoiding failure during planning or execution

were evaluated in Chapter 6; this established the necessity of plan failure mitigation

in realistic domains, and provided models for triggering or performing such mitigation

(such as Plan Execution Monitoring and Plan Repair).

279

Chapter 14. Conclusion 280

Our literature review led to specification of desired behaviour in Chapter 7, which

extended the Cargoworld to describe an example MAS – subsequently used for both

illustrative examples and as a specification for experimental implementation. Our de-

sign was presented in the following chapters; covering provision of required infor-

mation (the supporting architecture, in Chapter 8), agent-level algorithms using that

information to identify and handle threats (Chapter 9), and finally extension of local

behaviour to perform decentralized, distributed maintenance (Chapter 10).

Our experimental CAMP-BDI implementation was evaluated against MASs em-

ploying the same agent design, but with (reactive) Replanning or Continual Replan-

ning strategies. Chapter 11 described our experimental protocol, which evaluated

CAMP-BDI within a Cargoworld simulation over scaled levels of perturbative ex-

ogenous change and debilitative failure risk. We evaluated overall robustness, and the

(per-goal) efficiency in terms of three factors – activity cost, planning operations, and

messaging cost.

Our results, given in Chapter 12, supported our hypothesis by showing, if failure

risked debilitation, CAMP-BDI offered superior robustness over the other evaluated

approaches for all experimental configurations. Under the majority of circumstances,

CAMP-BDI also had lower per-goal activity and planning costs. Although high mes-

saging costs from contract updates represent a disadvantage of CAMP-BDI and an area

for future investigation, our results also show CAMP-BDI generally sent less messages

concerned with dependency formation or cancellation – indicating plan stability bene-

fits over other approaches.

Finally, Chapter 13 discussed the general applicability of CAMP-BDI, considering

potential benefits (and challenges) within other planning domains and agent environ-

ments (including the motivating domains described in Chapter 2).

14.1 Contributions

The core contribution of this thesis is the CAMP-BDI (Capability Aware, Maintaining

Plans - BDI Agents) approach for proactive plan modification; a design for improving

plan execution robustness in domains where activity failure risks consequent debilita-

Chapter 14. Conclusion 281

tion. This can be divided into the following sub-contributions:

• Algorithms for performing pre-emptive maintenance, which use introspec-

tion to identify activities at risk of failure following exogenous change and per-

forms plan modifications to prevent failure of the relevant intended plan. CAMP-

BDI extended the generic BDI reasoning cycle (Rao and Georgeff [1995]), to

first form a priority ordered agenda of maintenance tasks – each representing a

plan activity at threat – and then to handle threats defined by that agenda.

• A capability meta-knowledge model, supporting introspective reasoning in
maintenance algorithms by enabling both threat identification (deterministic

or non-deterministic) and specification of planning problem goals for handling

resultant maintenance tasks. Our capability definition also provided a shared

model for communication regarding delegated activity, and allowed maintenance

to use the same algorithmic reasoning for internally and externally performed ac-

tivities. Although capability knowledge suggests additional specification costs,

we argue much of the required information is necessary regardless for forming

operator specifications or plan libraries. Specification costs may also be miti-

gated by potential applicability elsewhere in BDI reasoning, such as to guide

desire and intention selection.

• Structured messaging behaviour to extend individual agent maintenance
behaviour into the distributed case of a plan-executing team, including pro-

vision of obligation and dependency knowledge within our supporting architec-

ture. CAMP-BDI uses post-maintenance contract updates to drive autonomous

adoption of maintenance responsibility by dependants, providing distributed main-

tenance behaviour that mimics re-refinement HTN plan repair.

• A policy based mechanism to tailor maintenance, allowing runtime modifi-

cation of key variables and constraints used by our algorithms. This employed

policies as behaviour modifiers, providing both a mechanism for tailoring main-

tenance costs and a framework for further extension (e.g. to support reuse of

CAMP-BDI agents across different environments).

CAMP-BDI provides a novel approach, embodying agents with capability knowl-

edge and proactive reasoning for failure avoidance; in our literature review we did not

identify any other approaches which defined capabilities for this form of introspec-

tive reasoning (e.g. Busetta et al. [2000] and Braubach et al. [2006] view capabilities

Chapter 14. Conclusion 282

as modular components for building agents). Although Plan Execution Monitoring

(PEM) or replanning (such as FF-Replan by Yoon et al. [2007]) respond to divergence

between actual and assumed states, none of the approaches surveyed employed the

same combination of approaches as CAMP-BDI; i.e. using proactive threat identifica-

tion (similar to PEM) to drive plan repair, and to define such within an explicit context

of BDI behaviour and multiagent team activity.

We do not suggest CAMP-BDI can replace reactive methods; we cannot assume

all failure is preventable, and some failures may be trivially easy to reactively recover

from (i.e. reducing the value of our approach). However, our contribution provides a

complementary approach which can offer robustness benefits where debilitative failure

consequences exist to (potentially) stymie reactive methods. Our experimental evalua-

tion shows beneficial performance within the context of a transport domain; Long and

Fox [2000] note this generic type is common to many domains, whether as an explicit

or implicit aspect. This suggests the robustness benefits of CAMP-BDI may be ap-

plicable beyond the specific Cargoworld environment or Logistics domain – although

further research will be required.

14.2 Discussion

In this section, we will discuss the outcomes of the work presented in this thesis; both

in terms of our original research aims, and also in assessing our contribution.

14.2.1 Achievement of Research Aims and Objectives

Section 1.3 defines this thesis as aiming to identify and design an approach towards

plan execution robustness for BDI agents, based upon the proactive modification of

plans to avoid anticipated (risk of) activity failure. To achieve this aim, four individual

research objectives were formed, which we discuss and evaluate below.

1 To determine knowledge requirements for agents to anticipate where an in-
tended activity risks failure, following exogenous change.

Our review of information requirements for automated planning (Chapter 5) and

plan robustness under uncertainty (Chapter 6) led us to identify a requirement for ca-

pability meta-knowledge, to enable agent introspection regarding their intended plan

Chapter 14. Conclusion 283

and activities. We also inferred a requirement for communicating such information, as

regarding delegated activity(s), due to our wish to also consider distributed plan execu-

tion; this led to modelling of such information as fields within contracts. The resultant

supporting architecture, given in Chapter 8, acts to satisfy this objective by defining the

knowledge required by and provided to our resultant algorithms – including relating

such information to BDI mental states and, for distributed activity, agent obligations

(discussed in Section 3.3) and dependencies.

The supporting architecture and our maintenance algorithms are interdependent;

the former was defined as a realistic provision of information based upon our literature

review, but was also modified as our algorithmic design evolved towards the final ver-

sion presented in this thesis (particularly as our initial local algorithms were expanded

to the distributed context, with maintenance policies being employed to provide implic-

itly synchronized behaviour). Our objective was therefore effectively refined as being

to satisfy knowledge requirements for our designed behaviour, in recognition of these

mutual dependencies. Consequently, these identified knowledge requirements may not

apply as a universal definition for proactive plan execution robustness in general – i.e.

be appropriate for all hypothetical proactive approaches.

Finally, we note our maintenance policy concept represents an extension upon our

initial objective, having been adopted to improve flexibility based upon observations of

existing (non-robustness centric) work such as CoSAR-TS (Uszok et al. [2004], Tate et

al. [2004]). Maintenance Policies were not necessary for our objective to define robust-

ness behaviour – such information could be held and defined at implementation time,

or incorporated as contract fields for the distributed maintenance case – but supported

an informally formed objective to provide a more practically applicable design. The

achievement of that objective, however, can only be fully evaluated with the benefit of

future observation regarding the impact and adoption of our contributions.

2 To provide BDI agents with behaviour to anticipate activity failure and avoid
resultant intention failure through proactive plan modification.

This objective was met by Chapter 9, which defined the maintain function and

it’s invocation within the temporal context of BDI reasoning. Following our literature

review of the multiplicity of agent robustness approaches, we viewed our behaviour

contribution as necessarily part of a larger set of potentially complementary robustness

Chapter 14. Conclusion 284

behaviours; with it’s bounds defined through forming assumptions upon which aspects

of robustness would be addressed through other methods (e.g. to assume belief and

communications correctness lay outside our area of concern).

The behavioural specification in Chapter 7 allowed refinement of this second ob-

jective as to provide plan-execution and monitoring, with plan repair-style modifica-

tions being performed in response to detection of where activities risked failure. Our

designed behaviour specifically seeks to form appropriate planning problems which

can be passed to an (abstracted) planning module, with the generated result (if found)

inserted (to modify) the plani. We adopted a plan repair approach based upon our

literature review of plan robustness techniques, and sought to balance the costs of

maximizing plan stability against the associated stability benefits for distributed plan-

ning (reflecting observations by Fox et al. [2006] and Nebel and Koehler [1992] upon

experimental and theoretical complexities of plan repair).

Our design’s planner agnosticism (Section 9.4.2) may impact practical applicabil-

ity; our approach requires agents possess either plan generation capacity or sufficiently

detailed plan libraries. This impacts viability of our approach if such plan generation

is overly costly, or anticipation and identification of maintenance plan recipes unreal-

istic; but it may conversely aid viability through providing flexibility to select the most

appropriate planning component implementation for the environment, or even on a per-

agent basis (discussed in Section 14.4.2). Our generalization of the planner component

does abstract part of the behaviour provided by CAMP-BDI; we argue this is in line

with our focus upon agent behaviour rather than planning techniques, and recognizes

that adopting BDI agent reasoning does not mandate a specific planning method1.

As Section 14.2.3 discusses, our contribution is potentially applicable in non BDI

agent reasoning approaches, provided supporting architecture and temporal require-

ments can be met. This means our contribution arguably exceeds the BDI specificity

of our original objective. Conversely, it does not necessarily stand our contribution is

applicable for all BDI framework implementations; we model intentions as goal-plan

pairs (i = goali : plani), which will not hold if this information is either not represented

or inferable from the contents of the I set. Similarly, our design does assume support
1i.e. we regarded our behavioural objective as invocation and performance of plan modification

activities using an appropriate planner ‘tool’, but not the – domain-dependant – planning processes of
activity selection.

Chapter 14. Conclusion 285

for our distributed approach can be implemented – i.e. that agents form and commu-

nicate contractual information, and that support exists for capability advertisement.

3 To provide agent team level behaviour that provided such proactive robustness
within the context of distributed plan execution.

Chapter 9 contributed local maintenance behaviour (proactive plan modification in

anticipation and prevention of failure), as required by our second objective. Our third

objective sought to provide equivalent behaviour for execution of distributed plans,

as the necessity of multi-agent team activity is a typical motivator for a MAS ap-

proach. Chapter 10 – drawing from our literature review of mental state concepts for

distributed activity, agent robustness, and HTN plan repair techniques – provided this

design, where structured messaging was used to drive the autonomous adoption of

maintenance responsibility by members of hierarchical agent team.

We defined a further requirement to provide a decentralized approach for this ob-

jective, recognizing the likely infeasibility of centralized methods in realistic environ-

ments. This influenced our supporting architecture, requiring the sharing of capability

information both between agents within an activity delegation relationship, and more

generally upon those activities which could potentially be delegated.

Our design extended Chapter 9, by defining communications requirements and in-

vocation conditions for maintaining both dependant intentions and those motivated as

(contractual) obligations. Distributed and non-distributed maintenance also differed

in the provision of capability and maintenance policy information by the supporting

architecture, but with the source of these knowledge objects kept transparent to the

maintain function. By using the same representation model was used in both local

and distributed cases, with semantic details of the source encapsulated within methods

such as getCapability (Section 8.2.4) or getPolicy (Section 8.3.2), we could therefore

reuse maintain reasoning without modification.

Our messaging driven process was inspired by work upon exception handling and

aggregation (Section 4.3), for the propagation of responsibility – resulting in dis-

tributed plan repair behaviour intentionally similar to re-refinement repair of HTN

plans. Maintenance policies, specifically with their usage within contracts, provided

Chapter 14. Conclusion 286

synchronization through defining shared maintenance conditions for agents in a (i.e.

contractually formed) delegation relationship.

A number of simplifying assumptions were made; specifically to abstract task-

allocation and contract formation processes as implementation dependent components,

with our work focusing upon use of the resultant information (i.e. the dependency or

obligation contracts for delegated activities). The distributed maintenance design does

have a potential restriction upon applicability to the importance of contracts as infor-

mation ‘carriers’; our approach would – at best2 – struggle if agents performed ad-hoc

distributed activity without requiring advance agreement upon delegation. However,

we argued this assumption of contract-formation is justified as being a likely require-

ment to guard against agent resource contention in realistic domains.

4 To show our proactive plan modification approach can offer superior robust-
ness over reactive approaches, where environments possess properties befitting
our motivation.

To address this objective, we first more formally defined robustness; establishing

that ‘the efficacy of our approach is to be measured through goal achievement rate un-

der perturbation; the latter defined as the rate of exogenous change’ (Section 4.1). Our

experimental results (Chapter 11 showed CAMP-BDI offered superior robustness,with

that advantage increasing with increased perturbation (i.e. greater probability of ex-

ogenous change and/or post-failure debilitation).

This identification of superior robustness satisfied our initial objective. We fur-

ther expanded our evaluation to also consider planning and messaging costs – relevant

towards the practical applicability of CAMP-BDI; i.e. to show that our proactive ro-

bustness approach did not carry associated excess costs. We verified that robustness

improvements from CAMP-BDI were not accompanied with excessive planning costs,

although the messaging costs associated with contract updates were identified as re-

quiring further optimizations (Section 14.4.3). Our messaging cost evaluation did also

observe lower per-goal number of contract cancellation and/or formation messages

for CAMP-BDI; this suggested a stability benefit, helping validate our reasoning for

adopting a plan repair style approach for the distributed maintenance case.
2Specifically, external capability information could be employed to reason about potential delega-

tions in the absence of specific contract knowledge – but such information would be of reduced speci-
ficity, for reasons discussed earlier in this thesis.

Chapter 14. Conclusion 287

Although we regard our objectives – and consequently our research aim – as being

largely achieved, our results are viewed as indicative rather than definitive. Our re-

view of planning and multiagent domains (Chapter 2) described realistic and plausible

extensions to provide existing domains with our motivating properties, but also iden-

tified a number of issues with existing implementations of such domains. This lead

to the design and adoption of the Cargoworld for evaluation; use of this custom do-

main allowed for (and shifted our objective somewhat towards) a deeper evaluation of

performance, by facilitating the explicit scaling of properties influencing environmen-

tal perturbation. We also discussed the potential applicability of CAMP-BDI in other

domains in Chapter 13, highlighting how and where our approach could be suitable.

14.2.2 Relationship and dependencies between CAMP-BDI and BDI

The BDI rational reasoning approach plays an important role in our contribution, by

providing an experimentally validated approach towards rational reasoning for our

eventual definition of CAMP-BDI and offering immediate practical applicability through

BDI’s own status as a de-facto standard (Wickler et al. [2007]). We adopted BDI in

favour of a bespoke agent architecture with integral proactive robustness behaviour, as

the latter would require (re)validation of general correctness and lose benefits associ-

ated with existing use and acceptance of BDI. Use of an existing reasoning architecture

also made available a number of validated agent frameworks (such as Jason) suitable

for experimentation; a further risk of a custom architecture was that experimentation

would be evaluating the rational reasoning in general, rather than the relative merits of

proactive versus reactive plan robustness.

We used the generic BDI reasoning cycle (Rao and Georgeff [1992], Rao and

Georgeff [1995]) to describe invocation of maintain, including assumptions concern-

ing the relative timing of messaging and activity execution. The maintain function

employed information within Beliefs (which included the CAMP-BDI supporting ar-

chitecture) to reason over a specified (to be maintained) intention, but was not con-

cerned with the reasoning for generating the B, D or I (or indeed D) mental state

sets. Agents situated within realistic environments may considered to inherently re-

quire mental state components equivalent to BDI – Georgeff et al. [1999] argue the

“basic components of a system designed for a dynamic, uncertain world should in-

Chapter 14. Conclusion 288

clude some representation of Beliefs, Desires, Intentions and Plans, or what has come

to be called a BDI agent” – meaning our assumptions, and the base concept of Beliefs

and Intentions, are potentially generic enough for CAMP-BDI applicability to extend

beyond BDI (discussed in Section 14.2.3).

BDI lacks an explicit model of social ability (i.e. a characteristic Wooldridge

[1999] requires for intelligent agency), although extensions such as BOID (Broersen

et al. [2001a]) and B-DOING (Dignum et al. [2002]) do model the motivation and

constraining role of obligations within agent reasoning. Distributed maintenance re-

quired specification of assumptions regarding the use of contracts and the temporal

context of messaging when designing distributed maintenance, as these elements can

be viewed as left implicit within generic BDI reasoning. These assumptions do entail

that our approach has requirements beyond the minimum of ‘generic’ BDI reasoning,

which implicitly allows ad-hoc delegation and execution (i.e. without advance contract

formation or update messaging being required).

We assumed intentions could be modelled as goal:plan pairs, with this information

either directly represented (i.e. as our design employed employed for a simplifying

assumption) or inferable from the I set. This attempted to address ambiguity in the

specific meaning of an intention within existing work, and an additional lack of an

explicit representation of selected goals within BDI (Section 3.2.1). We argue it is rea-

sonable to assume agents would record, or could infer, relationships between activities

(i.e. to identify plan members) and selected desires (goals). This particularly applies

for environments – such as our motivating domain – where the risk of activity failure

would likely require such information to be available for reactive recovery (regardless

of CAMP-BDI’s requirements).

It is worthwhile to consider how BDI reasoning may evolve in future, and the po-

tential impact upon CAMP-BDI. One criticism of BDI has been a lack of support for

learning – arguably stemming from a traditional use of plan libraries for computational

efficiency, and which may be addressed through (increasingly viable) use of runtime

planning. Our composite capability definition primarily used plan library contents to

specify (from selection conditions) capability preconditions and for confidence esti-

mation; Section 8.2.3.2 discusses the extension of composite capabilities to represent

the ability achieve goals through runtime planning, noting that manual specification of

Chapter 14. Conclusion 289

preconditions and confidence functions would likely be required. Changes to compos-

ite capabilities would potentially impact reasoning over as-yet unselected or unrefined

goals; selected goals would likely have associated intended plans, where most activi-

ties to be considered by maintenance would likely be atomic and mappable to primitive

or external capability knowledge.

Increased runtime planning could lead to BDI rationality focusing upon goal deter-

mination over activity selection, as the latter can be delegated to automated planning

components once a goal is selected. This may lead BDI implementations to further

record the reasoning behind goal selection, perhaps through recording QOC-style3 ra-

tionale (MacLean et al. [1991], Polyak and Tate [1998]) to support retrospective eval-

uation of agent decision making. Rationale capture would potentially require CAMP-

BDI to record information regarding maintenance decisions (i.e. which tasks were

identified, which were selected, and why a given maintenance plan was accepted or

rejected). Supporting architecture knowledge could also be recorded if desire and in-

tention selection were to be extended to employ capability information.

Research upon agents reasoning behaviour when acting within a multiagent system

or team context will be important in enabling the use of BDI within distributed activ-

ity contexts. Existing work such as BOID and B-DOING, as noted previously, extend

BDI to represent the role of Obligations to other agents upon agent motivation and

behaviour. Norms, represented within B-DOING or Normative Agent Architecture

(NoA) (Kollingbaum and Norman [2003]), similarly present societal constraints or

requirements upon activity – for example, to prohibit certain activities or the establish-

ment of certain states. In NoA, norms include the concept of obligation (Kollingbaum

et al. [2006]) – i.e. define a requirement to perform some activity or ensure some state

holds – which can be regarded as similar to the Obligation concept of B-DOING and

BOID4.

Whilst CAMP-BDI’s core maintain function is intended to be executed following

3Questions, Options, Criteria records decision rationale through in three elements; Questions or is-
sues to be addressed, Options for answering those questions, and Criteria for selecting between Options.

4BOID treats Obligations as implicit Norms. B-DOING distinguishes Norms from Obligations, with
former being stable, abstract and inherent to operating within the agent group or society, and the latter
entered into by choice as a result of agent activity. We note in all these cases Obligations refer to
external motivational requirements for activity; this differs slightly from our supporting architecture,
which models the specific contract contents as well as the existence of agreements between agents.

Chapter 14. Conclusion 290

I, and ergo arguably insulated from changes to the generation of intentions, such con-

straints would need to be respected; we opted to assume the maintenance planning

component (Section 9.4.2) would include any reasoning required to account for sys-

tem norms. There remains an additional possibility that norms, particularly if modified

during runtime, could impact the specification of maintenance planning problems (i.e.

by introducing constraints or requirements on top of the planning problem generated

using capability precondition or effects specification). Consequently, work may be

required to adapt CAMP-BDI for use in particular norm-aware BDI frameworks de-

pending upon the norm semantics and any reasoning specifics relevant to maintenance

planning.

Finally, we can suggest the potential extension of BDI reasoning to consider un-

certainty over beliefs – i.e. associating state atoms in B with probability values. This

would recognize the B mental component as believed rather than certain information,

and that the agent may have sensory or otherwise limitations impacting the certainty

of environmental knowledge (Section 14.4.4 also suggests similar potential extension

of CAMP-BDI to use state probability information, to improve estimation of future

activities’ execution context). If so, work would be required to integrate such state

probability information within CAMP-BDI maintenance reasoning. Whilst an obvi-

ous, intuitive solution is to determinize B for use by maintain (employing some min-

imal probability threshold for ‘true’ states), the significance and relevance of given

state atoms may differ in the terms of their impact upon robustness. Whilst a straight

threshold-based determinization of B remains intuitively viable, future investigation

could better consider the relative importance of state atoms using capability knowl-

edge (i.e. with reference to preconditions, and states contributing to confidence) dur-

ing determinization – i.e. to recognize which atoms are particularly irrelevant in the

context of successful execution, and which would have severe enough consequences

to mandate a greater degree of caution and ergo a lower ‘truth’ probability threshold.

14.2.3 Requirements and Potential Generalization

The requirements of our approach can be characterized in terms of the information re-

quired by the maintain function, the temporal context of invocation, and infrastructure

requirements for facilitating distributed maintenance:

• In Information terms, we defined maintain(i)→ i′; where i is {goali,plani}

Chapter 14. Conclusion 291

(with goali and plani treated as respectively immutable and mutable). This as-

sumes implicit access to agent beliefs B (i.e. B = {W,C,MP,Ob,Dp}, giving

world state W , and with the supporting architecture of Capabilities C, Main-

tenance Policies MP, Obligation contracts Ob and Dependency contracts Dp);

meaning we can more generally define maintain as:

maintain(goali,plani,W,C,MP,Ob,Dp)→ plan′i.

• In Temporal terms, maintain must be executed after (in response to, or to prop-

agate) receipt of post-maintenance messaging from obligants and before per-

forming messaging dependants with obligation changes, due to maintenance or

by propagated (received) sub-obligant changes. These are not required to exist

within the agent reasoning approach, but rather require an ability to modify agent

reasoning to support these messaging requirements.

• In Infrastructure terms, CAMP-BDI agents require provision of services to

share (advertise) the Capability and Maintenance Policy information required

for distributed maintenance. We also assume the delegation of activities leads to

acyclic structures, including the decomposition of delegated tasks by obligants,

to void the risk of infinite maintenance ‘loops’ from cyclical relationships5.

Whilst we initially sought to investigate robustness within a BDI context, our ap-

proach may be suitable as a robustness approach for agents employing deterministic

plans in general. This is particularly as our algorithms do not require BDI rational

behaviour, but rather reason over the outcome of it – i.e. it is not important how beliefs

are updated, or goals and plans selected, but rather that they are available for use as

parameters to maintain. Whilst we extend the BDI reasoning cycle in our design, this

primarily serves to provide a temporal context and conditions for invoking maintain in-

vocation with regard to message receipt (i.e. defining contract messaging assumptions

for the distributed case), plan selection (and execution).

Although our design refers to BDI mental state concepts of Belief and Intention,

such concepts need not be restricted to BDI rationality – as our generalization of main-

tain’s arguments suggests, our pre-emptive plan modification logic can be applied in

any agent which employs a plan, associates that plan with a goal or task, and has some

5Although our concern is with the decomposition of tasks; agents may hold indirect self-
dependencies, provided the distributed plan eventually resolves to an acyclic graph of activities.

Chapter 14. Conclusion 292

form of holding world state knowledge to allow implementation of our supporting

architecture (including infrastructure for capability and maintenance policy advertise-

ment). This raises the possibility of applying our approach within other plan-executing

agent approaches (including, as we do not strictly require autonomous goal and plan

formation, non-intelligent ones); such generalization represents an important area for

future investigation and for enhancing the applicability of our contribution.

14.3 Related Work

In our literature review, we did not identify any robustness approaches specifically

equivalent to CAMP-BDI; i.e. those for proactively avoiding the failure of activities

within intended plans, or for doing so within a distributed team context. We did, how-

ever, identify alternate approaches towards plan robustness, or which are proactive but

concerned with different aspects of agent or MAS fault tolerance.

Replication or redundancy approaches can prevent failure from agent loss, but do

not target behavioural robustness (i.e. are responsible for whether BDI agent instances

exist, but not their behavioural correctness). Our capability model may be useful for

targeted replication (e.g. de Luna Almeida et al. [2007]), as it can allow consideration

of agent capabilities as part of determining relative criticality. Role-filling approaches,

such as OMACS by DeLoach [2009] or that by Preisler and Renz [2012] can use

utility functions similar to capability confidence estimation, but are concerned with

agent role assignment as part of maintaining a fixed, predefined system organization

rather than providing robust behaviour by agents. While role-filling approaches are

concerned with maintaining predefined organizations, CAMP-BDI effectively allows

modification of the meta-organizations arising from task delegation as a consequence

of maintenance changes to plans. If a fixed organizational structure does exist, this

can be represented in CAMP-BDI by appropriate constraints upon capability adver-

tisement, as capability awareness controls the delegation relationships an agent is able

to (knows it can) form.

Sentinel monitoring, Exception propagation and Failure Diagnosis approaches (sur-

veyed in Chapter 4) are considered outside our plan execution focus and not directly

impacting (or conflicting with) CAMP-BDI. Sentinels (Hägg [1997]) and failure diag-

nosis approaches (Kaminka and Tambe [1998], Roos and Witteveen [2005]), observe

Chapter 14. Conclusion 293

agent behaviour to detect and (reactively) reconcile belief inconsistencies; this would

only impact CAMP-BDI in terms of taking action to ensure more accurate agent be-

liefs (i.e. as used for reasoning). The approach used by our design for adoption of re-

sponsibility during distributed maintenance mimics exception propagation (Klein and

Dellarocas [1999], Souchon et al. [2004]), in terms of escalation and aggregation of

maintenance responsibility up a hierarchical team.

One approach for improving plan robustness is to form plans which account for

environmental uncertainty. Conformant planning (Smith and Weld [1998]) attempts to

form plans guaranteed to succeed regardless of world state, covering uncertainty over

outcome or world state; MDP (Markov Decision Process) are solved to form a policy

that defines the optimal (maximum reward) activity for any given world state. How-

ever, both are often intractable for realistically complex environments (such as shown

in Schut et al. [2002]), especially when uncertainty includes unpredictable exogenous

change as well as probabilistic activity effects (especially for POMDPS, which intro-

duce additional levels of complexity by reasoning over possible observations). Do-

main abstraction can improve tractability for both conformant planning (Palacios and

Geffner [2006]) and MDP solution (Boutilier and Dearden [1994]), but this reduced

precision can reduce optimality – and introduce a risk of failure as a result. Capability

estimation can be equated to definition of transition probabilities in MDP models, al-

though the former only requires an indicative, scalar estimation of quality rather than

an exact probability.

Continual planning defers planning decisions until during execution, assuming

more accurate knowledge would be held at that point than at planning time (desJardins

et al. [1999]). Where this involves decomposition of abstract activities at execution,

CAMP-BDI allows maintenance through composite capabilities, which allow determi-

nation of whether an undecomposed activity has a selectable plan and can estimate

confidence by anticipating the plan most likely to be selected. Where planning can in-

clude sensing activities, this can be supported by definition of knowledge-requirement

preconditions and knowledge-attainment effects (similar to Petrick and Bacchus [2002]

or Brenner and Nebel [2009]) within corresponding capabilities.

Conditional or Contingent planning handles uncertainty using conditional branch-

ing. This can risk exponential plan growth in realistic domains due to their complexity

Chapter 14. Conclusion 294

(Albore et al. [2007]); making some form of intelligent branch placement necessary

– for example, Dearden et al. [2002] probabilistically identify likely failure points. It

is unlikely contingent plans can entirely avoid failure in realistic domains, particularly

where exogenous changes can occur at any point during plan execution (and ergo re-

quire handling branches at any activity point). CAMP-BDI can maintain conditional

plans where linearized, inferring branches likely to be followed using current beliefs.

CAMP-BDI’s approach to handling threats adopts a plan repair style approach,

due to the stability benefits offered over replanning (Fox et al. [2006]). Our literature

review found only limited current work on multiagent plan repair. One approach, by

Boella and Damiano [2002], defined a reactive plan repair algorithm aimed at BDI

agents. Like CAMP-BDI, their approach was agent-centric and employed a utility

function (equatable to our confidence function) to determine whether repair was re-

quired; however, unlike CAMP-BDI, their approach did not extend to the multiagent

case, or define how utility function information was provided for agent reasoning.

Komenda et al. [2012] compared multiple approaches for repairing a multiagent

plan following activity failure: back on track repair inserted activities to re-establish

‘missing’ post-effects; lazy repair inserted a new suffix to the end of the plan upon each

failure to achieve missing effects, to be executed after any remaining viable activities

in the original plan; repeated lazy repair avoided concatenation of lazy-repair suffixes

following multiple failures by (re)forming a suffix after every failure, removing any

added by prior repair. Both back on track repair and CAMP-BDI preconditions main-

tenance may be triggered by loss of causal links and entail addition of repair plans as

prefixes – however, as CAMP-BDI is a proactive approach it may insert ‘prefix’ plans

as suffixes to the preceding activity. CAMP-BDI effects maintenance bears similarities

to repeated lazy repair in terms of the scope of plan changes, as this maintenance type

may replace the maintained activity and the remainder of the (sub)plan containing it.

We employed an HTN re-refinement repair approach towards distributed mainte-

nance, regarding the hierarchical decomposition performed by an agent team as struc-

turally equivalent to HTN task refinement. However, CAMP-BDI performs such be-

haviour in a proactive context rather than in response to activity failure – requiring

CAMP-BDI agents hold additional knowledge and algorithms to anticipate possible

failure, rather than respond to post-hoc detection. A key distinction of CAMP-BDI

Chapter 14. Conclusion 295

is our focus upon knowledge requirements for enabling proactive use of plan repair,

rather than defining particular semantics for forming repair plans.

Braubach et al. [2005] define two types of goals driving agent proactivity – those to

achieve a state, and those to maintain it while state or temporal conditions hold. Duff

et al. [2006] further distinguish proactive and reactive types of maintenance goal. Re-

active maintenance goals require re-establishment of violated ‘protected’ states when

violated – driving adoption of (re)achievement goals (where resultant intentions could

be maintained by CAMP-BDI) – whilst proactive goals constrain intention formation

(both goals and plans) to prevent violation of protected states. CAMP-BDI arguably

produces a similar outcome to proactive maintenance goals, as the maintenance agenda

formation algorithm effectively acts to preserve precondition required states. Effects

maintenance proactively responds to state violations – similar to a proactive mainte-

nance goal to ensure the inverse or absence of confidence lowering states – but the

consequent behaviour can allow insertion of an alternate equivalent activity sequence

rather than requiring effective removal of confidence lowering states. We also assume

planning mechanisms used by CAMP-BDI respect proactive maintenance goals, in the

same manner as forming (or selecting) intended plans.

Hindriks and van Riemsdijk [2008] used (limited) lookahead to ensure proactive

maintenance goals are respected; a goal plan tree was formed and used to anticipate

the future effects of adopted intentions, to identify potential violations of maintenance

goal states. Such violation was suggested as best addressed by goal relaxation (which,

we note, may not be always be a viable option) – they viewed plans as pre-defined and

immutable, whilst CAMP-BDI treats intended plans as mutable but goals met by them

as effectively immutable. Duff et al. [2006] suggest another predictive approach, again

using a goal-plan tree to filter goal adoption and avoid plans with effects that would

violate proactive maintenance goals. CAMP-BDI varies from both these approaches

by recognizing and reacting to the effects of exogenous change, rather than assuming

state violations only arise from the selection of new plans or goals.

CAMP-BDI agenda formation behaviour serves a similar purpose to Plan Ex-

ecution Monitoring by responding to activity failure or unexpected effects. PEM

approaches, such as SIPE (Wilkins [1983]) or IPEM (Ambros-Ingerson and Steel

[1988]), detect and react to divergence between expected (at plan formation) and ac-

Chapter 14. Conclusion 296

tual execution context, such as by invoking replanning or plan repair – this arguably

blurs boundaries between proactive and reactive behaviour where divergence can arise

from exogenous change rather than activity failure. FF-Replan (Yoon et al. [2007]),

for example, determinizes probabilistic domains to take advantage of classical plan-

ning optimizations – using PEM to perform replanning if actual effects differ from

those stated in the determinized (single, most likely outcome) domain.

Like FF-Replan, CAMP-BDI responds to unexpected outcomes, but attempts to

minimize resultant changes rather than entirely replan; our focus is also more upon ex-

ogenous change impacting future activities, rather than occurrence of known but less-

likely (by determinization) activity effects. Similarities also exist between CAMP-

BDI and the use of protection monitors as repair triggers in O-Plan (Drabble et al.

[1997]), as both employ causal link information to determine whether future activity

risks violated preconditions. A more general difference with PEM behaviour is that

our approach is agent orientated – we directly consider provision and communication

of (planning operator equivalent) capability knowledge, including between members

of a MAS. We also use confidence estimation to anticipate risk of failure, whilst PEM

approaches typically consider deterministic operator models; PEM approaches also re-

spond to existing (i.e. occurred) failure, whilst CAMP-BDI examines plans for threats

on every reasoning cycle to identify the impact of belief changes from any source.

Foss et al. [2007] describe an approach which, like CAMP-BDI, aims to avoid

irrecoverable failure. Their approach is inspired by FF-Replan, determinizing a Prob-

abilistic PDDL specification, but employing pseudo-probabilistic planning similar to

PACPlan (Jiménez et al. [2006a]). Their planner can both insert precautionary re-

pair steps, and perform limited conformant or contingent planning where a potential

outcome would cause irrecoverable failure. Whilst sharing our motivation, they only

consider effects defined in PPDDL operator specifications; CAMP-BDI does not per-

form the same type of precautionary repair or advance contingency planning, as it

only modifies plans in response to known current threats, it can account for exogenous

change as well as unexpected (low probability, known or unknown) effects.

Chapter 14. Conclusion 297

14.4 Further Work

CAMP-BDI presents an initial approach; our design and experimentation suggests a

number of opportunities for further research and development, which we will detail

here to conclude this thesis. Future work to expand our experimentation to consider

different domains or domain properties is also desirable, as is investigation into the use

of CAMP-BDI to complement reactive robustness methods.

14.4.1 Asynchronous Maintenance

Our capability model currently defines preconditions and effects for activities, similar

to within a STRIPS (Fikes and Nilsson [1971]) operator. Although we have viewed

activities in state transition terms, they may involve transient or fluent states that persist

for some period during execution. There may be benefits from modelling such durative

states within internal and external (whether advertised or within contract EC fields)

capabilities, such as to support asynchronous performance of maintenance alongside

standard BDI reasoning.

Planning is likely to represent the primary temporal cost in maintenance, which

risks imposing a delay between completion of an activity and execution of it’s succes-

sor. If activities typically take longer to execute than maintenance planning takes to

complete, maintenance could be performed in parallel – under the assumption agents

are logically idle while executing a non-instant activity. Durative state knowledge

could facilitate maintenance during this ‘idle’ period by allowing estimation of the

post-execution state following the current activity – meaning the current plani could

be maintained whilst that activity is executing (under an assumption of success). This

would require the CAMP-BDI reasoning cycle employ multi-threaded reasoning – i.e.

one thread forming desires, intentions and plans whilst another continuously evaluates

the currently executing plani. Whilst reactive approaches can only invoke planning op-

erations after execution has completed (and failed) and post-failure state is known, this

approach towards maintenance could mitigate planning costs through parallelization.

Multi-threaded maintenance behaviour could be further extended to perform ‘spec-

ulative’ reasoning; using current beliefs, capability knowledge and potential exogenous

change types to identify alternative possible future execution contexts for planned ac-

Chapter 14. Conclusion 298

tivities. Multiple threads of maintenance could consider these potential beliefs, pre-

emptively forming maintenance plans that could be cached for future use, generalized

to form reactive plan libraries, or inserted as conditional (contingency) plans (similar

to Foss et al. [2007]). This could, however, risk high computational cost and would

require balancing against resources available to that agent – possibly to the extent of

only being viable for certain logical ‘controller’ type agents.

14.4.2 Heterogeneous Planning

CAMP-BDI algorithms were designed as planner agnostic; this allows for the possi-

bility of heterogenous planning. For example, physical agents with reduced compu-

tational resources or tighter time constraints could use HTN approaches or libraries

for maintenance planning – trading flexibility for greater reactive speed. Conversely,

agents with greater computational resource – such as broker or controlling logical

agents – could employ more flexible classical planning, or even pseudo-probabilistic

methods such as used by CAMP-BDI.Quality (Chapter 11).

Planner heterogeneity could also be employed within an individual CAMP-BDI

agent, using different types of planning depending upon the particular activity under

maintenance, the associated goali, or even the current extent of maintenance scope

(i.e. increasing computational expenditure where larger parts of the plan would be

impacted). Maintenance plans, once formed, could also be generalized and stored

(providing generic types can be defined for maintenance tasks, so as to be associated

with generic plans) – allowing more reactive behaviour for frequent and common case

issues. Plan and task type generalization could also enable the sharing of maintenance

plans across agents, effectively defining standard operating procedures.

14.4.3 Communications Optimizations

The primary drawback observed for CAMP-BDI was the communications cost of fre-

quent contract update messages. Potential optimization may consider two factors; re-

ducing the volume of messages sent, and reducing individual cost (size) for messages.

As the latter is specific to the particular agent framework implementation, we will focus

on the former. However, one possible size optimization is to compress communicated

information to only contain the information required by recipients to locally modify

contracts. This would not effect worst case complexity – where all contract fields are

Chapter 14. Conclusion 299

updated – but could improve the average case.

If multiagent planning employs a specific private/public action approach (Braf-

man and Domshlak [2008]), frequency could be reduced by only considering whether

public atoms have changed – i.e. if changes to the Casual Link (CL) or External Capa-

bility (EC) fields (Section 8.4) only concern private atoms, these can be identified as

only meaningful to the obligant and that any communication to update the dependant

would be unnecessary. The set of private/public atoms information could potentially

be inferred using external capabilities – although this must consider that restrictions on

advertisement might prevent agents identifying all public atoms, due to lacking total

awareness of other agent capabilities. Again, this would not improve worst case cost,

but may improve the general case (but requiring use of a private/public model).

The frequency of dependency contract updates could also be linked to immediacy

– or to even omit updates entirely if execution of the dependency is sufficiently dis-

tant. This would trade off the accuracy of information available to obligants against

the cost of communication. Such an approach might also require modification to the

agenda formation algorithm to consider increased uncertainty stemming from less fre-

quent contract updates for distant dependencies. It may also be advantageous to form

a method to determine if contract changes are significant – and therefore only commu-

nicate updates where changes are likely to require maintenance changes by recipients.

This would involve reconsideration of the information shared between agents, with

particular regard to establishing the roles delegated activities play in providing causal

links or establishing goal states within the dependent plan.

14.4.4 Execution Context Prediction

CAMP-BDI predicts the future execution context of an activity by combining current

beliefs with the (capability defined) ordered effects of preceding plan activities. Al-

though exogenous events are unpredictable, we assume they are not chaotic; i.e. that

they may be inferred, or associated with a set probability of occurring at some point

in the future. Investigation of more accurate predictive approaches could help avoid

both false positive and false negative maintenance task generation – improving failure

avoidance and reducing the cost of unnecessary planning or change.

Chapter 14. Conclusion 300

One option is to associate probabilities with predicted state atoms, denoting how

likely they are to hold. For example, a flooded road will gradually dry out if not cur-

rently being rained upon; conversely, a rained-upon road would be expected to become

slippery and flooded for future activities. Where a particular facet of the world is rep-

resented by multiple atoms (e.g. flooded/slippery/dry, or dangerZone / ¬dangerZone),

each possibility would have an associated probability – with maintenance employing

the most likely beliefs for an activities execution context. This would entail additional

temporal modelling and domain knowledge to perform probabilistic predictions and

inference.

Improved execution context prediction could also support preventative activity.

Where some negative (confidence lowering) state exceeds a certain probability thresh-

old (potentially defined in maintenance policies), agents could employ behaviour to

insert pre-emptive mitigatory activities – such as a Truck loading a spare tyre if there is

a sufficiently high likelihood of a flat tyre at some point in the future. Adopting a state

probability method for triggering such behaviour would allow balancing the costs of

potentially unnecessary preventative activity, against the benefits where those activities

are needed to avoid failure. This would raise further issues for consideration, such as

accounting for uncertainty when predicting future states – including appropriate scal-

ing with increasing time – and consideration of the risk of combinatorial blow-up from

probabilistic reasoning.

Appendices

301

Appendix A

Cargoworld Simulator Screenshots

This appendix presents screenshots of our Cargoworld simulator, taken during experi-

mentation, to illustrate the differences in initial world state for both geographies. The

same seed values were used for exogenous event generation.

Yellow circles represent junctions, interconnected by tarmac (gray if dry, light blue

if slippery, and dark blue if flooded) or mud (light brown if dry, brown if slippery, dark

brown if flooded) roads; blocked roads are coloured red and toxic roads (not shown

here) as purple. The airplane symbols in yellow boxes indicate airports; red polygons

denote dangerzones, with junction circles and airplane symbols similarly coloured red.

Finally, vehicles are shown as green circles, labelled with their identifying names; as

the simulation has not yet started in these screenshots, all vehicles are in their initial

starting locations at junctions and no cargo objects or requests have been generated.

302

Appendix A. Cargoworld Simulator Screenshots 303

A.1 World A

Figure A.1: Screenshot of Cargoworld simulator showing the initial state of World A for

nexo=1.

Figure A.2: Initial state of World A for nexo=2.

Appendix A. Cargoworld Simulator Screenshots 304

Figure A.3: Initial state of World A for nexo=3.

A.2 World B

Figure A.4: Screenshot of Cargoworld simulator showing the initial state of World B for

nexo=1.

Appendix A. Cargoworld Simulator Screenshots 305

Figure A.5: Initial state of World B for nexo=2.

Figure A.6: Initial state of World B for nexo=3.

Appendix B

Experimental Results

This appendix provides the detailed numerical results, as used to form the result graphs

present in Chapter 12. We provide further comparative values (and p values; we

deemed p < 0.05 as being statistically significant) employed for evaluation of per-

formance (activity, planning and messaging related) metrics; these detail differences

between approaches for every experimental configuration (World, nexo and nrisk value).

Finally, we also provide tables detailing the specific changes (or otherwise) in CAMP-

BDI performance for each performance metrics as nrisk values were progressively in-

creased for experimentation.

306

Appendix B. Experimental Results 307

B.1 Average Goal Achievement

B.1.1 World A – Average Goal Achievement

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 57 (6.765) 41.6 (11.542) 29.08 (15.293) 30.8 (12.691)

Replanning 98.15 (1.376) 89.02 (3.708) 73.77 (6.847) 60.82 (9.058)

Continual 98.37 (1.57) 91.05 (2.883) 87.65 (4.254) 83.18 (4.928)

CAMP-BDI.Spd 98.25 (3.952) 98.57 (1.309) 98.73 (1.25) 98.6 (1.332)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 31.9 (6.461) 24.9 (7.487) 21.63 (8.744) 18.97 (5.828)

Replanning 98 (1.761) 77.87 (4.349) 53.9 (7.926) 37.37 (8.67)

Continual 97.45 (2.003) 83.18 (5.038) 72.2 (7.328) 61.52 (8.945)

CAMP-BDI.Spd 97.55 (2.132) 97.62 (1.518) 97.85 (1.579) 98.08 (1.282)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 24.033 (5.003) 16.4 (6.481) 13.17 (6.13) 12.67 (5.641)

Replanning 97.9 (1.446) 67.98 (6.217) 41.78 (6.844) 26.12 (6.086)

Continual 97.27 (1.914) 78.83 (4.36) 58.53 (7.288) 47.98 (6.305)

CAMP-BDI.Spd 91 (4.651) 90.95 (3.304) 92.18 (3.447) 92.98 (3.212)

CAMP-BDI.Qty 90.97 (3.924) 91.38 (4.115) 90.83 (3.6) 91.75 (3.118)

Figure B.1: Average goal achievement (%) for approaches in World A for every nexo and

nrisk combination, with standard deviation in brackets. Each table corresponds to an

nexo configuration; each cell defines the percentage of goals met for that (row-defined)

approach, under the (column-defined) level of nrisk.

Appendix B. Experimental Results 308

B.1.2 World B – Average Goal Achievement

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 32.267 (5.332) 22.82 (9.509) 22.72 (8.798) 21.5 (6.652)

Replanning 96.5 (2.195) 76.57 (5.497) 54.78 (7.28) 38.93 (8.205)

Continual 95.68 (2.52) 85.65 (5.108) 78.87 (4.602) 71.32 (6.474)

CAMP-BDI.Spd 95.517 (2.029) 95.83 (1.951) 95.52 (2.164) 95.9 (1.578)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 18.383 (4.491) 14.417 (4.076) 12.57 (5.172) 12.63 (4.266)

Replanning 95.17 (2.192) 58.47 (6.977) 33.57 (5.655) 22.35 (4.857)

Continual 94.7 (2.452) 72.55 (4.068) 54.37 (5.562) 45.92 (6.977)

CAMP-BDI.Spd 92.62 (3.656) 93 (2.387) 93.52 (2.878) 92.95 (2.872)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 11.167 (3.309) 8.9 (3.375) 8.8 (3.572) 8.97 (3.381)

Replanning 93.83 (3.431) 45.22 (6.248) 27.78 (5.067) 15.25 (4.085)

Continual 94.3 (3.303) 57.07 (6.969) 38.35 (5.913) 29.52 (5.832)

CAMP-BDI.Spd 65.47 (6.349) 66.48 (6.328) 66.85 (6.18) 65.62 (6.998)

CAMP-BDI.Qty 66.92 (6.905) 67.82 (7.484) 66.47 (7.338) 65.77 (8.16)

Figure B.2: Average goal achievement (%) for approaches in World B for all nexo and

nrisk configurations, with standard deviation in brackets.

Appendix B. Experimental Results 309

B.2 Average Activity Success Rate

B.2.1 World A – Average Activity Success Rate

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 92.872 (1.524) 91.3 (3.269) 89.15 (4.766) 89.51 (5.924)

Replanning 93.77 (1.098) 93.19 (1.165) 90.99 (1.576) 89.54 (2.148)

Continual 96.51 (1.149) 96.47 (0.862) 96.5 (0.984) 96.06 (1.028)

CAMP-BDI.Spd 99.9 (0.117) 99.9 (0.093) 99.91 (0.083) 99.91 (0.099)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 88.963 (1.821) 85.17 (4.418) 83.1 (5.962) 85.68 (4.405)

Replanning 89.66 (1.326) 88.49 (1.29) 85.49 (2.061) 82.94 (3.169)

Continual 93.89 (1.051) 93.59 (0.988) 92.85 (1.476) 92.16 (1.715)

CAMP-BDI.Spd 99.86 (0.134) 99.86 (0.09) 99.88 (0.094) 99.89 (0.08)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 86.09 (2.212) 80.62 (5.809) 78.42 (5.745) 80.84 (6.683)

Replanning 86.67 (1.831) 84.84 (1.968) 81.68 (2.194) 79.29 (2.771)

Continual 91.16 (1.588) 90.84 (1.174) 89.53 (1.658) 89.21 (1.26)

CAMP-BDI.Spd 99.6 (0.249) 99.59 (0.157) 99.65 (0.166) 99.69 (0.161)

CAMP-BDI.Qty 99.57 (0.211) 99.59 (0.203) 99.57 (0.175) 99.62 (0.138)

Figure B.3: Average activity success rate (%) for approaches in World A for every nexo

and nrisk combination, with standard deviation in brackets. Each table corresponds to

an nexo configuration; each cell defines the percentage of successful activity executions

for that (row-defined) approach, under the (column-defined) level of nrisk.

Appendix B. Experimental Results 310

B.2.2 World B – Average Activity Success Rate

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 91.101 (1.563) 87.91 (5.133) 87.96 (4.695) 88.44 (3.248)

Replanning 92.59 (1.163) 90.72 (1.029) 88.42 (1.917) 86.78 (2.06)

Continual 96.56 (0.83) 96.19 (0.842) 95.74 (0.751) 95.69 (0.857)

CAMP-BDI.Spd 99.781 (0.106) 99.8 (0.1) 99.76 (0.092) 99.81 (0.383)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 86.874 (2.026) 83.457 (3.99) 81.46 (5.211) 83.27 (4.67)

Replanning 88.37 (1.065) 85.31 (1.351) 82.85 (1.928) 80.65 (2.383)

Continual 93.42 (0.765) 92.92 (0.94) 91.38 (1.048) 91.5 (1.478)

CAMP-BDI.Spd 99.76 (0.117) 99.77 (0.097) 99.79 (0.098) 99.77 (0.096)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 82.814 (2.707) 78.55 (4.67) 77.91 (5.269) 78.36 (6.216)

Replanning 85.07 (1.08) 81.7 (7.401) 78.63 (2.186) 77.49 (2.267)

Continual 90.82 (1.303) 88.89 (1.619) 87.92 (1.433) 89.21 (1.658)

CAMP-BDI.Spd 99.23 (0.207) 99.29 (0.185) 99.32 (0.165) 99.33 (0.162)

CAMP-BDI.Qty 99.15 (0.23) 99.16 (0.361) 99.17 (0.247) 99.18 (0.186)

Figure B.4: Average activity success rate (%) for approaches in World B for every nexo

and nrisk combination, with standard deviation in brackets.

Appendix B. Experimental Results 311

B.2.3 World A – Differences between CAMP-BDI.Speed and other

Approaches

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +7.03 +8.604 +9.246 +10.4

(1.83x10−41) (3.27x10−28) (1.96x10−24) (1.26x10−19)

Replanning +6.123 +6.714 +8.915 +10.367

(2.91x10−46) (3.82x10−47) (2.15x10−46) (1.22x10−42)

Continual +3.396 +3.435 3.415 +3.849

Replanning (5.59x10−31) (5.8x10−38) (2.75x10−34) (8.71x10−36)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +10.893 +14.699 +16.777 +14.211

(4.23x10−48) (1.46x10−33) (9.55x10−30) (6.88x10−33)

Replanning +10.194 +11.376 +14.392 +16.949

(4.58x10−54) (5.57x10−58) (8.65x10−52) (4.69x10−45)

Continual +5.963 +6.275 +7.028 +7.734

Replanning (2.13x10−46) (3.41x10−49) (4.55x10−42) (7.01x10−41)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +13.512 +18.968 +21.232 +18.848

(9.06x10−48) (3.71x10−33) (3.95x10−36) (1.04x10−29)

Replanning +12.937 +14.752 +17.975 +20.397

(1.51x10−51) (1.73x10−53) (3.99x10−56) (4.41x10−53)

Continual +8.444 +8.752 +10.122 +10.472

Replanning (2.32x10−45) (1.79x10−53) (1.27x10−47) (5.6x10−56)

CAMP-BDI +0.035 +0.002 +0.079 +0.066

Quality (0.376) (0.954) (0.012) (0.013)

Figure B.5: Differences (p in brackets) in average activity success rate (% of activi-

ties that completed successfully) between CAMP-BDI.Speed and other approaches in

World A. Each table corresponds to an nexo configuration, cells give the difference in

percentage activity success between CAMP-BDI and the (row-defined) other mitigation

approach under that (column defined) level of nrisk. Positive values show a greater

percentage of activities successfully executed for CAMP-BDI.Speed agents than those

using any other approach.

Appendix B. Experimental Results 312

B.2.4 World B – Differences between CAMP-BDI.Speed and other

Approaches

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +7.193 +9.077 +11.37 +13.038

(5.81x10−46) (2.089x10−25) (3.58x10−27) (1.02x10−34)

Replanning +7.193 +9.077 +11.37 +13.0378

(1.66−48) (8.32x10−58) (8.64x10−48) (1.95x10−49)

Continual +3.221 +3.615 +4.052 +4.124

Replanning (8.78x10−37) (3.89x10−39) (6.71x10−45) (2.15x10−42)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +8.68 +11.894 +11.832 +11.37

(1.64x10−49) (1.05x10−38) (6.7x10−35) (5.81x10−35)

Replanning +11.398 +14.454 +16.935 +19.125

(2.12x10−62) (1.12x10−62) (1.31x10−57) (4.97x10−55)

Continual +6.341 +6.844 +8.404 +8.27

Replanning (2.21x10−55) (2.9x10−53) (3.06x10−55) (1.35x10−52)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +12.889 +16.311 +18.329 +16.504

(1.11x10−47) (6.8x10−40) (7.63x10−38) (2.03x10−33)

Replanning +14.157 +17.585 +20.697 +21.838

(3.26x10−67) (3.87x10−66) (2.39x10−59) (1.66x10−59)

Continual +8.406 +10.4 +11.407 +12.177

Replanning (6.93x10−49) (1.65x10−49) (3.13x10−55) (2.28x10−53)

CAMP-BDI +0.081 +0.127 +0.157 +0.143

Quality (0.034) (0.017) (3.8x10−5) (3.47x10−5)

Figure B.6: Differences (p in brackets) in average activity success rate (% of activi-

ties that completed successfully) between CAMP-BDI.Speed and other approaches in

World B, for all nexo and nrisk configurations. Positive values show a greater percentage

of activities successfully executed for CAMP-BDI.Speed agents than those using any

other approach.

Appendix B. Experimental Results 313

B.3 Average Delivery Cost

B.3.1 World A – Average Delivery Cost

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 15.417 (1.384) 15.57 (1.683) 17.98 (5.38) 17.74 (4.64)

Replanning 13.58 (0.549) 14.58 (0.796) 17.04 (1.643) 18.76 (2.383)

Continual 12.91 (0.594) 13.54 (0.605) 14.29 (0.984) 14.92 (1.04)

CAMP-BDI.Spd 13.19 (0.409) 13.17 (0.403) 13.2 (0.447) 13.17 (0.429)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 19.938 (2.81) 22.45 (4.819) 23.85 (6.718) 22.66 (4.631)

Replanning 15.99 (0.685) 18.44 (1.233) 23.68 (2.939) 29.01 (7.75)

Continual 15.08 (0.631) 16.44 (1.083) 18.58 (1.865) 20.52 (2.417)

CAMP-BDI.Spd 16.74 (0.886) 16.83 (0.845) 16.56 (0.709) 16.7 (0.721)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 23.538 (3.709) 30.82 (10.963) 33.94 (11.164) 32.13 (10.66)

Replanning 17.99 (0.999) 22.47 (2.243) 29.54 (4.401) 37.62 (8.158)

Continual 17.28 (0.881) 19.68 (1.433) 23.41 (2.077) 25.73 (2.95)

CAMP-BDI.Spd 23.24 (1.262) 23.03 (1.346) 22.92 (1.106) 22.87 (1.135)

CAMP-BDI.Qty 22.32 (1.01) 22.18 (0.849) 22.47 (1.078) 22.48 (1.097)

Figure B.7: Average delivery cost (activities per goal achieved) in World A, with stan-

dard deviation in brackets, for all nexo and nrisk. Each cell defines how many activities

were executed per goal achieved, for that (row-defined) approach at the given (column-

defined) level of nrisk

Appendix B. Experimental Results 314

B.3.2 World B – Average Delivery Cost

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 24.279 (5.332) 27.89 (4.866) 28.92 (8.236) 28.85 (11.186)

Replanning 20.01 (0.812) 23.75 (1.79) 28.68 (2.967) 33.87 (5.221)

Continual 19.45 (0.749) 20.77 (1.153) 23.31 (1.4) 24.15 (1.97)

CAMP-BDI.Spd 19.884 (0.732) 20.08 (0.794) 20.05 (0.871) 19.92 (0.749)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 35.68 (5.61) 38.581 (11.057) 40.77 (10.397) 35.69 (9.858)

Replanning 24.64 (0.957) 33.66 (3.875) 44.13 (6.773) 49.95 (8.612)

Continual 24.03 (1.033) 27.6 (1.728) 33.68 (3.058) 35.77 (5.367)

CAMP-BDI.Spd 29.22 (1.538) 29.2 (1.391) 29.4 (1.395) 29.5 (1.32)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 50.767 (15.624) 55.3 (22.258) 53.8 (26.846) 51.02 (36.012)

Replanning 30.85 (1.769) 45.31 (5.317) 61.09 (15.844) 66.19 (15.619)

Continual 29.23 (1.718) 37.96 (3.991) 42.26 (4.357) 49.04 (7.75)

CAMP-BDI.Spd 64.53 (6.088) 64.97 (5.77) 66.5 (6.567) 66.6 (5.961)

CAMP-BDI.Qty 52.75 (3.804) 52.45 (3.351) 53.15 (4.48) 53.05 (4.898)

Figure B.8: Average delivery cost (activities per goal achieved) in World B, with standard

deviation in brackets, for all nexo and nrisk.

Appendix B. Experimental Results 315

B.3.3 World A – Differences between CAMP-BDI.Speed and other

Approaches

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -2.224 -2.396 -1.645 -4.563

(9.16x10−17) (2.42x10−15) (6.64x10−9) 1.99x10−10)

Replanning -0.392 -1.408 -3.271 -5.591

(0.0001) (1.23x10−17) (4.33x10−7) (6.95x10−25)

Continual +0.278 -0.371 -1.088 -1.746

Replanning (0.006) (0.0004) (1.3x10−10) (1.22x10−16)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -3.197 -5.614 -7.29 -5.964

(2.93x10−11) (8.29x10−13) (1.69x10−11) (1.79x10−13)

Replanning +0.754 -1.609 -7.116 -12.309

(1.17x10−7) (2.29x10−11) (2.68x10−25) (8.09x10−18)

Continual +1.66 +0.391 -2.019 -3.819

Replanning (3.15x10−17) (0.043) (1.64x10−10) (9.23x10−18)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -0.301 -7.782 -11.015 -9.257

(0.525) (1.12x10−6) (3.79x10−10) (1.4x10−8)

Replanning +5.248 +0.567 -6.623 -15.042

(2.87x10−33) (0.107) (4.53x10−16) (1.56x10−20)

Continual +5.962 +3.358 -0.487 -2.859

Replanning (2.31x10−39) (7.64x10−19) (0.144) (6.16x10−9)

CAMP-BDI +0.92 +0.85 +0.456 +0.392

Quality (9.43x10−6) (0.0001) (0.025) (0.055)

Figure B.9: Differences (p in brackets) in average goal cost between CAMP-BDI.Speed

and other approaches in World A. Each table corresponds to a nexo configuration; each

cell gives the difference between CAMP-BDI.Speed and some (row-defined) approach,

under a given (column defined) nrisk. Negative values indicate CAMP-BDI.Speed exe-

cuted, on average, less activities for each achieved goal then the compared approach

– i.e. was more efficient in activity terms.

Appendix B. Experimental Results 316

B.3.4 World B – Differences between CAMP-BDI.Speed and other

Approaches

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -4.395 -7.807 -8.87 -8.927

(1.22x10−17) (4.34x10−17) (1.91x10−11) (8.31x10−8)

Replanning -0.125 -3.669 -8.623 -13.948

(0.361) (4.19x10−20) (2.14x10−28) (2.25x10−28)

Continual +0.427 -0.686 -3.255 -4.227

Replanning (0.001) (0.0004) (6.3x10−21) (7.28x10−22)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -5.879 -9.383 -11.371 -6.187

(1.23x10−10) (2.05x10−8) (1.55x10−11) (1.46x10−5)

Replanning +4.578 -4.463 -14.732 -20.449

(1.12x10−28) (9.91x10−12) (8.84x10−24) (2.58x10−25)

Continual +5.186 +1.603 -4.282 -6.273

Replanning (4.33x10−29) (3.56x10−7) (5.83x10−14) (3.02x10−12)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +13.761 +9.668 +12.7 +15.583

(2.01x10−08) (0.003) (0.0005) (0.002)

Replanning +33.676 +19.656 +5.414 +0.406

(1.5x10−45) (3.08x10−27) (0.017) (0.851)

Continual +35.299 +27.0111 +21.248 +17.56

Replanning (1.39x10−46) (5.23x10−37) (3.4x10−27) (1.01x10−20)

CAMP-BDI +11.777 +12.525 +13.353 +13.55

Quality (5.03x10−20) (6.16x10−19) (7.77x10−19) (6.72x10−21)

Figure B.10: Differences (p in brackets) in average goal cost between CAMP-

BDI.Speed and other approaches in World A, for all nexo and nrisk configurations. Neg-

ative values indicate CAMP-BDI.Speed executed, on average, less activities for each

achieved goal then the compared approach – i.e. was more efficient in activity terms.

Appendix B. Experimental Results 317

B.3.5 Differences between CAMP-BDI.Quality and other Approaches

World A nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +4.328 -0.283 -7.079 -15.434

(1.25x10−31) (0.339) (2.44x10−18) (5.68x10−21)

Continual +5.042 +2.508 -0.943 -3.251

Replanning (5.58x10−37) (1.35x10−19) (0.003) (8.17x10−12)

World B nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +21.899 +7.131 -7.939 -13.144

(5.36x1046) (2.69x10−12) (0.0003) (1.13x10−7)

Continual +23.522 +14.486 +7.895 +4.01

Replanning (4.8x10−47) (4.38x10−28) (3.26x10−15) (0.001)

Figure B.11: Differences (p in brackets) in average goal cost between CAMP-

BDI.Quality and replanning approaches when evaluated in nexo = 3; each table cor-

responds to a different world geography. Negative values indicate CAMP-BDI.Quality

executed, on average, less activities for each achieved goal then the compared ap-

proach – i.e. was more efficient in activity terms.

Appendix B. Experimental Results 318

B.4 Planning Operations Per Goal

B.4.1 World A – Average Planning Operations Per Goal

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 0.9 (0.187) 1.27 (0.34) 2.58 (0.906) 4.2 (1.807)

Continual 6.55 (0.393) 7.12 (0.487) 7.67 (0.771) 8.29 (0.892)

CAMP-BDI
Speed

1.71 (0.365) 1.71 (0.255) 1.65 (0.285) 1.653 (0.242)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 1.77 (0.321) 2.99 (1.356) 6.36 (2.169) 11.21 (5.678)

Continual 7.85 (0.417) 9.13 (0.828) 11.11 (1.775) 13.24 (2.74)

CAMP-BDI
Speed

3.45 (0.479) 3.51 (0.503) 3.35 (0.43) 3.35 (0.373)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 2.54 (0.484) 4.77 (1.389) 10.35 (3.364) 18.24 (6.759)

Continual 9.29 (0.635) 11.63 (1.148) 15.46 (1.944) 18.28 (2.969)

CAMP-BDI
Speed

8.21 (0.959) 8.18 (0.943) 7.85 (0.838) 7.88 (0.756)

CAMP-BDI
Quality

7.47 (0.734) 7.33 (0.672) 7.56 (0.788) 7.55 (0.752)

Figure B.12: Average planning cost (planner operations per goal achieved) in World

A, with standard deviation in brackets. Each table provides results for an nexo config-

uration; each cell provides the average planner operations per goal achieved for that

(row-defined) approach in a given (column-defined) nrisk.

Appendix B. Experimental Results 319

B.4.2 World B – Average Planning Operations Per Goal

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 1.57 (0.321) 3.03 (1.085) 6.09 (2.104) 10.29 (3.704)

Continual 11.39 (0.549) 12.69 (0.931) 14.86 (2.679) 15.87 (1.77)

CAMP-BDI
Speed

3.272 (0.44) 3.28 (0.392) 3.29 (0.406) 3.22 (0.383)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 3.02 (0.372) 7.04 (1.734) 15.09 (4.95) 22.98 (7.6)

Continual 14.47 (0.711) 18.07 (1.372) 24.43 (3.343) 28.07 (5.776)

CAMP-BDI
Speed

7.8 (0.868) 7.71 (0.726) 7.81 (0.782) 7.77 (0.76)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 5.21 (2.754) 12.67 (3.045) 27.69 (12.096) 38.7 (13.191)

Continual 17.95 (1.21) 27.35 (3.756) 37.27 (5.852) 43.77 (9.558)

CAMP-BDI
Speed

33.28 (3.958) 33.58 (3.733) 34.47 (4.579) 34.7 (3.933)

CAMP-BDI
Quality

33.42 (2.873) 33.4 (3.851) 33.55 (3.977) 33.72 (4.646)

Figure B.13: Average planning cost (planner operations per goal achieved) in World B,

with standard deviation in brackets, for all nexo and nrisk configurations.

Appendix B. Experimental Results 320

B.4.3 World A – Differences between CAMP-BDI.Speed and other

Approaches

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +0.812 +0.433 -0.925 -2.551

(6.22x10−30) (1.99x10−10) (1.75x10−9) (4.3x10−15)

Continual -4.839 -5.411 -6.016 -6.635

Replanning (9.17x10−61) (2.24x10−61) (3.17x10−53) (4.21x10−52)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +1.687 +0.521 -3.01 -7.863

(5.3x10−31) (0.007) (1.14x10−14) (2.54x10−15)

Continual -4.394 -5.625 -7.774 -9.889

Replanning (5.58x10−52) (5.78x10−46) (9.79x10−39) (2.003x10−35)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +5.67 +3.41 -2.501 -10.361

(3.29x10−45) (1.47x10−22) (7.23x10−7) (8.75x10−17)

Continual -1.082 -3.45 -7.61 -10.405

Replanning (1.1x10−10) (1.42x10−25) (4.38x10−34) (9.08x10−34)

CAMP-BDI +0.736 +0.845 +0.287 +0.329

Quality (1.21x10−6) (4.84x10−7) (0.08) (0.026)

Figure B.14: Differences (p in brackets) in average planning calls per goal between

CAMP-BDI.Speed and other approaches in World A. Each table corresponds to a nexo

configuration; each cell gives the difference between CAMP-BDI.Speed and some (row-

defined) approach, under a given (column defined) nrisk. Negative values show where

CAMP-BDI.Speed performed, on average, less planning operations for each goal than

the compared approach; i.e. was more efficient in planning terms.

Appendix B. Experimental Results 321

B.4.4 World B – Differences between CAMP-BDI.Speed and other

Approaches

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +1.701 +90.252 -2.8 -7.076

(5.78x10−34) (0.099) (3x10−14) (4.93x10−21)

Continual -8.113 -9.413 -11.564 -12.654

Replanning (3.81x10−64) (3.41x10−58) (9.81x10−8) (5.565x10−52)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +4.782 +0.665 -7.279 -15.21

(6.04x10−45) (0.006) (1.25x10−16) (1.1x10−21)

Continual -6.668 -10.364 -16.622 -20.308

Replanning (2.81x10−47) (1.45x10−50) (3.11x10−43) (1.01x10−34)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +28.072 +20.914 +6.776 -4.004

(8.31x10−50) (2.95x10−40) (0.0002) (0.032)

Continual +15.338 +6.237 -2.803 -9.078

Replanning (9.05x10−37) (4.23x10−14) (0.007) (1.85x10−9)

CAMP-BDI -0.132 +0.185 +0.919 +0.972

Quality (0.813) (0.795) (0.265) (0.216)

Figure B.15: Differences (p in brackets) in average planning calls per goal between

CAMP-BDI.Speed and other approaches in World B, for all nexo and nrisk configurations.

Appendix B. Experimental Results 322

B.4.5 Differences between CAMP-BDI.Quality and other Approaches

World A nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +4.934 +2.565 -2.788 -10.69

(1.78x10−44) (4.6x10−19) (2.07x10−8) (1.26x10−17)

Continual +1.818 -4.296 -7.898 -10.734

Replanning (5.37x10−21) (1.74x10−34) (6.39x10−36) (6.25x10−36)

World B nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +28.072 +20.914 +6.776 -4.004

(7.74x10−51) (6.37x10−40) (0.001) (0.01)

Continual +15.338 +6.237 -2.803 -9.078

Replanning (8.05x10−43) (6.7x10−13) (0.0001) (2.68x10−10)

Figure B.16: Differences (p in brackets) in average planner operations per goal be-

tween CAMP-BDI.Quality and replanning approaches when evaluated in nexo = 3; each

table corresponds to a different world geography. Negative values indicate CAMP-

BDI.Quality executed, on average, less activities for each achieved goal then the com-

pared approach – i.e. was more efficient in planning terms.

Appendix B. Experimental Results 323

B.5 Planning Time Costs

B.5.1 World A – Average Planning Operation Time

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 224647561.1 231393504.8 219686321.7 212509413.4

(24834961.55) (51839423.95) (43912349.95) (39701306.45)

Continual 180906459.1 186429542.1 190528407.1 188631450.3

Replanning (38220649.27) (41262910.49) (43017092.4) (41696859.55)

CAMP-BDI 225714151.2 222721444.1 217317231.4 216349491.4

Speed (51714395.39) (42008312.45) (41765224.1) (46390455.04)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 224820496.1 234506435.3 212802630.2 216365734.2

(27880044.72) (53428217.35) (31247267.73) (30338466.71)

Continual 163301655.4 177180479.8 184857896.5 187645935.1

Replanning (40031105.47) (45677389) (44600075.83) (44644254.04)

CAMP-BDI 194938357.6 202234396.7 209337763.4 188257611.8

Speed (38988265.43) (34298210.62) (35623259.83) (32995741.59)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 187544916.8 200408781.7 201453497.9 192446049.6

(39646416.61) (41435249.08) (43202521.91) (37245175.82)

Continual 167667566.1 175638995.3 176017368.3 195863054

Replanning (37689237.58) (44530566.66) (40467801.11) (45003799.53)

CAMP-BDI 167767101.5 178558035.3 162855158.7 172894569.1

Speed (27825980.59) (33088372.05) (28191981.05) (39014909.21)

CAMP-BDI 567396652.6 560764379.2 557155862.2 560792848.8

Quality (21339269.22) (10474347.97) (10420689.36) (9755132.237)

Figure B.17: Average execution time for each planning operation (in ns) in World A, with

standard deviation in brackets. Each table provides results for an nexo configuration;

each cell provides the average time for that (row-defined) approach in a given (column-

defined) nrisk. Lower values show planning (on average) completed earlier for that

approach, in that nexo and nrisk configuration.

Appendix B. Experimental Results 324

B.5.2 World B – Average Planning Operation Time

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 233537035 245879491.5 258967342.1 263671465.2

(34597433.41) (51577245.44) (53765514.53) (56529130.8)

Continual 177460981.8 199075477.2 224589561.9 230837308.1

Replanning (41732617.73) (46638704.94) (51235629.56) (51128754.4)

CAMP-BDI 252398535.1 245734399.7 260020259 251592301.7

Speed (52024266.36) (41902656.47) (46423262.04) (45483471.35)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 248201236.5 268250535.7 283463172.7 287340019.4

(25417262.83) (29684823.88) (37968775.33) (34342844.81)

Continual 191340826 212791696.9 230996889.2 254803959.1

Replanning (45727428.53) (45565753.51) (49223185.41) (56703758.56)

CAMP-BDI 246704384.3 238970691.2 241178003.4 255798051.2

Speed (41417674.17) (38821570.81) (35579886.96) (26923196.43)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning 250544242.2 256531171.5 252909841 262311486.2

(57906555.72) (46167195.91) (52158409.39) (56345281.12)

Continual 190520622.4 225016734.3 247540680.3 258604877

Replanning (40724621) (48965863.88) (55818988.33) (63919184.98)

CAMP-BDI 195621445.3 195242489.2 196395650 195018019.9

Speed (36746249.53) (32664428.4) (34237814.2) (30964714.99)

CAMP-BDI 610157472.3 600253254.3 610476304.8 611549866.3

Quality (7620685.32) (20119749.99) (17165339.89) (10558331.65)

Figure B.18: Average execution time for each planning operation (in ns) in World B, with

standard deviation in brackets, for all nexo and nrisk configurations.

Appendix B. Experimental Results 325

B.5.3 World A – Differences between CAMP-BDI.Speed and other

Approaches

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +0.473% −3.894% −1.394% +1.775%

(0.888) (0.347) (0.747) (0.458)

Continual +19.852% +16.295% +15.764% +12.817%

Replanning (2.55x10−6) (0.0001) (0.007) (0.005)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning −15.329% −15.958% −1.655% −14.931%

(3.76x10−6) (4.77x10−5) (0.461) (2.17x10−8)

Continual +16.229% +12.389% +11.694% +0.325%

Replanning (0.001) (0.005) (0.003) (0.935)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning −11.789% −12.237% −23.701% −11.308%

(0.0002) (1x10−5) (2.92x10−8) (0.0002)

Continual +0.059% +1.635% −8.082% −13.285%

Replanning (0.984) (0.53) (0.029) (0.001)

Figure B.19: Percentage difference (p in brackets) between CAMP-BDI.Speed and

other approaches for average planner operation execution time in World A. Each table

corresponds to a nexo configuration; each cell provides the difference between that

(row-defined) approach and CAMP-BDI.Speed under the given (column-defined) level

of nrisk. Negative values denote planning operations in CAMP-BDI.Speed spent less

time on average – i.e. terminated faster – that the compared approach.

Appendix B. Experimental Results 326

B.5.4 World B – Differences between CAMP-BDI.Speed and other

Approaches

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +7.473% −0.059% +0.405% −4.801%

(0.001) (0.967) (0.805) (0.003)

Continual +29.69% +18.988% +13.626% +8.249%

Replanning (7.72x10−9) (3.52x10−5) (0.004) (0.079)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning −0.607% −12.252% −17.533% −12.331%

(0.79) (2.84x10−6) (2.17x10−9) (1.3x10−15)

Continual +22.441% +10.955% +4.221% +0.389%

Replanning (5.63x10−8) (0.003) (0.232) (0.889)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning −28.076% −23.526% −28.776% −34.506%

(1.28x10−7) (3.48x10−13) (1.62x10−13) (1.98x10−14)

Continual +2.607% −11.429% −26.042% −32.606%

Replanning (0.319) (3.08x10−5) (5.32x10−11) (3.35x10−11)

Figure B.20: Percentage difference (p in brackets) between CAMP-BDI.Speed and

other approaches for average planner operation execution time in World B, for all nexo

and nrisk configurations.

Appendix B. Experimental Results 327

B.6 Messaging Costs

B.6.1 World A – Average Messaging Costs

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 14.6 (2.5) 16.8 (4.9) 23.6 (10.2) 25.5 (18.0)

Replanning 7.3 (0.5) 8.5 (1.1) 13.2 (3.9) 20.3 (7.7)

Continual 7.8 (0.6) 8.6 (0.7) 9.8 (1.4) 11.5 (2.9)

CAMP-BDI.Spd 36.5 (2.0) 36.3 (1.8) 36.5 (2.1) 36.1 (1.8)

(excluding

updatedContract) 7.8 (0.6) 7.7 (0.4) 7.8 (0.6) 7.7 (0.5)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 24.6 (5.3) 34.1 (14.6) 42.3 (24.5) 41.2 (14.0)

Replanning 9.3 (0.7) 12.7 (2.2) 25.3 (8.1) 46 (21.9)

Continual 9.8 (0.6) 11.7 (1.5) 16.2 (4.2) 22.2 (7.3)

CAMP-BDI.Spd 53 (4) 53.5 (4.2) 52.4 (3.3) 52.9 (3.3)

(excluding

updatedContract) 11.6 (1) 11.6 (1.1) 11.4 (0.8) 11.4 (0.8)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 34.1 (9.0) 57.8 (34.8) 72.1 (38.6) 74.6 (40.2)

Replanning 10.8 (0.8) 17.5 (3.6) 38.3 (11.8) 72.4 (26.5)

Continual 11.8 (0.8) 15.2 (1.8) 24.8 (4.5) 34.8 (10.1)

CAMP-BDI.Spd 84.9 (6.0) 84.5 (6.5) 84.1 (5.6) 82.9 (6.0)

(excluding

updatedContract) 20.3 (1.7) 20.3 (1.9) 19.9 (1.6) 19.7 (1.6)

CAMP-BDI.Qty 80.0 (5.0) 79.3 (4.3) 80.9 (5.4) 80.9 (5.9)

(excluding

updatedContract) 19.0 (1.5) 18.9 (1.4) 19.4 (1.7) 19.3 (1.7)

Figure B.21: Average messaging cost (messages sent per goal achieved) in World A,

with standard deviation in brackets. Each table provides results for an nexo configuration;

each cell provides the average message sent per goal achieved for that (row-defined)

approach in a given (column-defined) nrisk.

Appendix B. Experimental Results 328

B.6.2 World B – Average Messaging Costs

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 23.5 (4.5) 35.6 (15.9) 39.2 (22.9) 39.4 (18.4)

Replanning 9.2 (0.6) 13.8 (2.7) 25.8 (7.5) 44.1 (16.2)

Continual 11.3 (0.7) 13.5 (1.3) 17.3 (2.6) 20.5 (5.3)

CAMP-BDI.Spd 53.5 (3.1) 54.2 (3.3) 54.2 (3.7) 53.5 (2.9)

(excluding

updatedContract) 11.0 (0.8) 11.0 (0.8) 11.1 (0.9) 10.9 (0.8)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 46.1 (12.8) 58.6 (22.9) 69.9 (29.8) 66.7 (27.0)

Replanning 12.5 (0.8) 23.4 (5.2) 51.9 (16.1) 87.6 (29.5)

Continual 14.9 (1.0) 19.8 (2.2) 32.6 (7.8) 45.8 (14.8)

CAMP-BDI.Spd 95.3 (7.6) 95.0 (6.0) 95.7 (6.7) 96.7 (5.6)

(excluding

updatedContract) 20.7 (1.8) 20.6 (1.5) 20.8 (1.8) 21.0 (1.5)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 80.2 (31.9) 103.3 (53.8) 111.5 (71.2) 109.7 (93.9)

Replanning 17.4 (3.0) 38.9 (9.0) 94.4 (39.2) 151.4 (60.1)

Continual 20.4 (1.8) 34.6 (6.6) 61.5 (16.7) 83.6 (29.9)

CAMP-BDI.Spd 271.6 (29.3) 272.9 (28.4) 279.1 (30.4) 278.7 (27.7)

(excluding

updatedContract) 70.8 (8.4) 71.0 (8.0) 72.4 (8.7) 72.7 (7.9)

CAMP-BDI.Qty 215.8 (17.8) 213.1 (17.4) 216.7 (22.1) 216.9 (24.3)

(excluding

updatedContract) 53.7 (5.2) 52.8 (5.3) 53.9 (6.4) 54.1 (7.2)

Figure B.22: Average messaging cost (messages sent per goal achieved) in World B,

with standard deviation in brackets, for all nexo and nrisk configurations.

Appendix B. Experimental Results 329

B.6.3 World A – Absolute Messaging Costs

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 687.2 (36.1) 649.3 (103.6) 568.2 (204) 642.7 (127.5)

Replanning 715.2 (44.7) 755.3 (69.2) 960.2 (235.3) 1176.7 (280.1)

Continual 764.5 (54.8) 781.3 (57.8) 856.9 (91.7) 946.5 (198.7)

CAMP-BDI.Spd 3585 (234.3) 3580 (184.8) 3604.2 (194.5) 3561.7 (175.5)

(excluding

updatedContract) 767.7 (48.1) 763.6 (42.5) 766.5 (49.4) 757.1 (43.6)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 757.9 (34.7) 750.3 (29.2) 741.9 (33.6) 712.3 (86.6)

Replanning 908.6 (61.8) 982.8 (140.6) 1313.6 (256.1) 1553.2 (328.1)

Continual 950.3 (55.8) 971 (89.5) 1146.8 (208) 1311 (268.3)

CAMP-BDI.Spd 5168 (388.1) 5225.4 (390.2) 5130 (318.1) 5184.1 (328.2)

(excluding

updatedContract) 1127.7 (92.5) 1135.9 (97.9) 1111.2 (76.1) 1117.5 (78)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 775.4 (32.7) 769.9 (35.3) 760.6 (41.7) 756 (42.6)

Replanning 1058.5 (71.3) 1168.7 (155.8) 1536.4 (285) 1746.5 (300.7)

Continual 1148.2 (70.4) 1162.5 (92.9) 1427.3 (169) 1627.4 (352.2)

CAMP-BDI.Spd 7718.9 (599.1) 7676.6 (570.1) 7744.5 (533) 7707.2 (547.2)

(excluding

updatedContract) 1840.2 (141.2) 1843.1 (152.5) 1834.5 (132.8) 1829.6 (137)

CAMP-BDI.Qty 7270.2 (459.2) 7239.4 (466.4) 7339 (440.9) 7409.6 (457.9)

(excluding

updatedContract) 1729.8 (118.6) 1724.7 (119.2) 1755.9 (123.2) 1767.2 (122.6)

Figure B.23: Total messages sent in World A, with standard deviation in brackets. Each

table provides results for an nexo configuration; each cell provides the averaged total

messages sent for each an experimental run of that (row-defined) approach in a given

(column-defined) nrisk.

Appendix B. Experimental Results 330

B.6.4 World B – Absolute Messaging Costs

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 736.8 (34.2) 695 (142.8) 738 (145.4) 754.9 (135.8)

Replanning 891.3 (51.3) 1043.4 (144) 1370 (254.7) 1609 (331.2)

Continual 1078.1 (66.7) 1150.7 (85.8) 1318 (147.8) 1445.9 (323)

CAMP-BDI.Spd 5110.9 (266.6) 5188 (298.5) 5177.8 (352.1) 5126.1 (264.8)

(excluding

updatedContract) 1049.3 (66.3) 1055.8 (67) 1062.7 (75.6) 1043.7 (68.3)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 794.7 (41) 759.7 (31) 743.2 (35.4) 739.2 (37.6)

Replanning 1193.1 (71.9) 1336.3 (141.7) 1665.1 (245.8) 1839.5 (310.7)

Continual 1412.3 (82.2) 1428.2 (137.2) 1737.5 (246.7) 2023.1 (407)

CAMP-BDI.Spd 8800.5 (573.6) 8838.3 (583.6) 8942.3 (574.6) 8978.2 (496.9)

(excluding

updatedContract) 1913.4 (131.3) 1917.3 (132.5) 1942.4 (150.7) 1953.3 (121.6)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None 791.9 (35.8) 776.6 (43.4) 770.6 (36.11) 769.1 (41.8)

Replanning 1627.3 (279.1) 1713(204.6) 1978.2 (309.7) 2135.8 (549.3)

Continual 1920.3(143.8) 1936.6 (216.9) 2293.5 (447) 2332.6 (439.4)

CAMP-BDI.Spd 17681.1(1775.4) 18041.6(1701.8) 18539.6(1644) 18184.8(1812.6)

(excluding

updatedContract) 4602 (438.3) 4687.2 (425.2) 4802.4 (413.7) 4738.2 (440.9)

CAMP-BDI.Qty 14375.6(1429.1) 14402.4(1572.6) 14294.6(1327.4) 14124.8(1378.1)

(excluding

updatedContract) 3569.6 (296.5) 3559 (346.9) 3546.4 (298.5) 3514.4 (307.7)

Figure B.24: Total messages sent in World B, with standard deviation in brackets, for all

nexo and nrisk configurations.

Appendix B. Experimental Results 331

B.6.5 World A – Absolute Message count differences with increas-

ing nrisk

World A nexo = 1 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None -36.717 (0.015) -83.583 (0.013) +90.733 (0.008)

Replanning +43.633 (0.0003) +216.667 (3.77x10−8) +228.95(8.74x10−6)

Continual +20.867 (0.042) +84.933 (1.79x10−7) +97.683 (0.001)

CAMP-BDI.Spd -5 (0.885) +24.183 (0.511) -42.5 (0.22)

(excluding

updatedContract) -4.033 (0.605) +2.85 (0.763) -9.35 (0.303)

World A nexo = 2 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None -5.283 (0.342) +0.6 (0.933) -17.617 (0.166)

Replanning +125.533 (0.024) +306.267 (2.12x10−6) +244.367 (1.08x10−5)

Continual +30.8 (0.019) +187.35 (1.32x10−7) +171 (0.001)

CAMP-BDI.Spd +57.35 (0.319) -95.367 (0.186) +54.117 (0.37)

(excluding

updatedContract) +8.167 (0.596) -24.7 (0.175) +6.267 (0.666)

World A nexo = 3 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None -6.433 (0.344) -0.733 (0.921) +6.683 (0.382)

Replanning +124.8 (2.34x10−6) +381.567

(2.87x10−13)

+214.844 (6.46x10−6)

Continual +21.5 (0.166) +282.85 (2.92x10−15) +210.967 (8.62x10−5)

CAMP-BDI.Spd -30.833 (0.721) +99.55 (0.206) +70.6 (0.374)

(excluding

updatedContractd) -5.067 (0.821) +31.183 (0.155) +11.25 (0.607)

CAMP-BDI.Qty -42.233 (0.652) +67.867 (0.496) -37.333 (0.707)

(excluding

updatedContract) +2.9 (0.897) -8.533 (0.732) -4.95 (0.838)

Figure B.25: Differences in the total messages sent, on average, in World A by each

approach over increasing nrisk (with p in brackets). Each table corresponds to a given

nexo; cells define the change in total messages sent, on average, for that (row-defined)

approach over the given (column-defined) increase in nrisk – positive values show more

messages were sent at the higher nrisk.

Appendix B. Experimental Results 332

B.6.6 World B – Absolute Message count differences with increas-

ing nrisk

World B nexo = 1 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None -77.167(0.0002) +43.05(0.082) +16.833(0.534)

Replanning +89.983(4.35x10−5) +326.583(2.95x10−11) +238.967(0.0001)

Continual +9.283 (0.458) +167.3(5.38x10−13) +127.933 (0.005)

CAMP-BDI.Spd +77.133 (0.115) -10.233 (0.854) -51.667 (0.251)

(excluding

updatedContract) +6.433 (0.585) +6.95 (0.567) -18.983 (0.083)

World B nexo = 2 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None -32.987 (1.51x10−5) -0.633 (0.93) +27.617 (0.001)

Replanning +151.428 (5.4x10−9) +343.167

(8.41x10−14)

+174.467 (0.002)

Continual +20.045 (0.301) +324.85 (8.37x10−14) +297.667 (5.91x10−5)

CAMP-BDI.Spd +37.826 (0.618) +103.967 (0.351) +35.967 (0.709)

(excluding

updatedContract) +3.877 (0.737) +25.15 (0.344) +10.867 (0.657)

World B nexo = 3 nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

None +12.317 (0.094) -8.233 (0.313) -14.4 (0.087)

Replanning -11.45 (0.932) +278.15 (1.93x10−6) +160.75 (0.055)

Continual +14.6 (0.675) +380.867(4.48x10−8) +51.35 (0.556)

CAMP-BDI.Spd +360.517 (0.295) +497.917 (0.108) -354.783 (0.283)

(excluding

updatedContract) +85.217 (0.305) +115.217 (0.147) -64.267 (0.424)

CAMP-BDI.Qty +26.783 (0.928) -107.733 (0.697) -169.833 (0.482)

(excluding

updatedContract) -10.617 (0.871) -12.583 (0.836) -31.95 (0.564)

Figure B.26: Differences in the total messages sent, on average, in World B by each

approach over increasing nrisk (with p in brackets) in all nexo – positive values show

more messages were sent at the higher nrisk.

Appendix B. Experimental Results 333

B.6.7 Messaging Costs including updatedContract

B.6.7.1 World A – Differences between CAMP-BDI.Speed and other Approaches

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +21.916 +19.557 +12.896 +10.597

(1.29x10−51) (1.72x10−36) (4.68x10−13) (2.53x10−5)

Replanning +29.207 +27.795 +23.27 +15.846

(5.04x10−69) (1.84x10−69) (2.19x10−42) (8.27x10−22)

Continual +28.721 +27.723 +26.69 +24.643

Replanning (5.5x10−69) (2.21x10−70) (1.61x10−62) (2.04x10−54)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +28.369 +19.48 +10.143 +11.657

(2.22x10−39) (1.76x10−14) (0.002) (9.35x10−8)

Replanning +43.715 +40.85 +27.104 +6.881

(7.55x10−64) (6.36x10−57) (3.97x10−31) (0.019)

Continual +43.236 +41.809 +36.218 +30.687

Replanning (1.33x10−62) (2.46x10−59) (9.04x10−51) (1.68x10−37)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +50.821 +26.705 +11.949 +8.349

(5.19x10−43) (2.3x10−7) (0.023) (0.122)

Replanning +74.072 +67.024 +45.7190 +10.518

(3.43x10−66) (9.88x10−60) (8.28x10−34) (0.005)

Continual +73.082 +69.279 +59.281 +48.104

Replanning (2.86x10−66) (1.36x10−61) (9.37x10−55) (7.52x10−14)

CAMP-BDI +4.898 +5.234 +3.165 +2.08

Quality (1.1x10−6) (1.37x10−6) (0.003) (7.52x10−14)

Figure B.27: Difference (p in brackets) between CAMP-BDI.Speed and other ap-

proaches for average messages per goal in World A (including updatedContract mes-

sages); each table corresponds to a particular nexo configuration, with cells defining

the difference between the given (row-defined) approach and CAMP-BDI under that

(column-defined) nrisk – positive values indicate CAMP-BDI.Speed sent more mes-

sages on average.

Appendix B. Experimental Results 334

B.6.7.2 World B – Differences between CAMP-BDI.Speed and other Approaches

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +29.99 +18.549 +15.006 +14.03

(1.14x10−43) (1.07x10−11) (5.12x10−6) (2.12x10−7)

Replanning +44.294 +40.387 +28.406 +9.379

(7.7x10−70) (5.5x10−61) (1.31x10−32) (7.69x10−5)

Continual +42.267 +40.673 +36.973 +32.943

Replanning (3.09x10−68) (1.17x10−64) (4.63x10−54) (2.24x10−46)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +49.19 +36.441 +25.855 +29.972

(2.93x10−34) (5.89x10−17) (1.08x10−8) (1.14x10−11)

Replanning +82.712 +71.662 +43.838 +9.003

(7.3x10−62) (1.99x10−57) (1.81x10−28) (0.028)

Continual +80.327 +75.298 +63.089 +50.813

Replanning (2.37x10−60) (2.29x10−64) (1.77x10−49) (5.83x10−34)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None +191.337 +169.565 +167.542 +168.98

(1.7x10−41) (1.64x10−28) (1.24x10−24) (1.48x10−19)

Replanning +254.195 +233.912 +184.672 +127.321

(1.09x10−57) (1.19x10−55) (1.76x10−36) (1.6x10−21)

Continual +251.164 +238.258 +217.567 +195.149

Replanning (5.99x10−57) (8.86x10−57) (1.34x10−49) (1.44x10−42)

CAMP-BDI +55.797 +59.758 +62.418 +61.83

Quality (1.4x10−19) (1.06x10−17) (1.59x10−18) (3.83x10−20)

Figure B.28: Difference (p in brackets) between CAMP-BDI.Speed and other ap-

proaches for average messages per goal in World B (including updatedContract mes-

sages), for all nexo and nrisk configurations – positive values indicate CAMP-BDI.Speed

sent more messages on average.

Appendix B. Experimental Results 335

B.6.7.3 Differences between CAMP-BDI.Quality and other Approaches

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +69.174 +61.79 +42.554 +8.438

(7.61x10−69) (4.1x10−65) (4.88x10−36) (0.023)

Continual +68.184 +64.045 +56.116 +46.024

Replanning (9.65x10−69) (1.09x10−71) (3.52x10−54) (4.73x10−40)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +198.397 +174.153 +122.254 +65.491

(2.16x10−63) (3.35x10−58) (4.82x10−31) (3.97x10−10)

Continual +195.367 +178.5 +155.149 +133.319

Replanning (3.16x10−63) (7.81x10−59) (1.23x10−45) (2.24x10−35)

Figure B.29: Difference (p in brackets) between CAMP-BDI.Quality and other ap-

proaches for average messages per goal in World A and B for nexo = 3 (including

updatedContract messages); each cell define the difference between the given (row-

defined) approach and CAMP-BDI under that (column-defined) nrisk – positive values

indicate CAMP-BDI.Quality sent more messages on average.

Appendix B. Experimental Results 336

B.6.7.4 Messaging Cost differences with increasing nrisk

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -0.178 (0.585) +0.198 (0.604) -0.391 (0.294)

nexo = 2 +0.556 (0.376) -1.112 (0.152) +0.42 (0.501)

nexo = 3

CAMP-BDI.Spd -0.404 (0.67) -0.425 (0.718) -1.119 (0.252)

CAMP-BDI.Qty -0.74 (0.382) +1.644 (0.043) -0.034 (0.974)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.618 (0.258) +0.068 (0.91) -0.754 (0.137)

nexo = 2 -0.204 (0.969) +0.659 (0.596) +0.9444 (0.407)

nexo = 3

CAMP-BDI.Spd +1.294 (0.812) +6.215 (0.29) -0.357 (0.947)

CAMP-BDI.Qty -2.667 (0.461) +3.556 (0.312) +0.2 (0.958)

Figure B.30: Messaging cost differences (p in brackets) for CAMP-BDI in World A and

B including updatedContract, over increasing nrisk for all nexo. Each table corresponds

to an experimental geography; cells define the difference between average messages

between the (column defined) lower and higher value of nrisk for the (row-defined) nexo;

positive values denote more messages were sent per goal when nrisk increased.

Appendix B. Experimental Results 337

B.6.8 Messaging Costs excluding updatedContract

B.6.8.1 World A – Differences between CAMP-BDI.Speed and other Approaches

World A
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -6.751 -9.013 -15.853 -17.848

(4.9x10−28) (2.02x10−20) (3.21x10−17) (2.38x10−10)

Replanning +0.54 -0.774 -5.479 -12.598

(8.25x10−6) (2.94x10−6) (6.84x10−15) (3.28x10−18)

Continual +0.054 -0.846 -2.059 -3.802

Replanning (0.636) (1.71x10−10) (1.13x10−15) (1.14x10−14)

World A
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -13.055 -22.424 -30.932 -29.804

(2.85x10−26) (3.79x10−17) (7.63x10−14) (1.72x10−23)

Replanning +2.292 -1.054 -13.97 -34.579

(4.66x10−23) (0.002) (4.49x10−19) (1.14x10−17)

Continual +1.812 -0.095 -4.856 -10.774

Replanning (2.68x10−17) (0.696) (6.04x10−12) (1.97x10−16)

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -13.814 -37.485 -52.183 -54.893

(4.29x10−17) (1.69x10−11) (6.36x10−15) (4.47x10−15)

Replanning +9.438 +2.833 -18.412 -52.725

(4.67x10−45) (4.63x10−7) (4.79x10−17) (9.58x10−22)

Continual +8.447 +5.088 -4.85 -15.138

Replanning (2.45x10−43) (1.4x10−22) (3.67x10−10) (3.04x10−16)

CAMP-BDI +1.21 +1.398 +0.556 +0.404

Quality (1.5x10−5) (6.95x10−6) (0.087) (0.218)

Figure B.31: Difference (p in brackets) between CAMP-BDI.Speed and other ap-

proaches for average messages per goal in World A (excluding updatedContract mes-

sages); each table corresponds to a particular nexo configuration, with cells defining

the difference between the given (row-defined) approach and CAMP-BDI under that

(column-defined) nrisk – negative values indicate where CAMP-BDI.Speed sent less

messages on average.

Appendix B. Experimental Results 338

B.6.8.2 World B – Differences between CAMP-BDI.Speed and other Approach-

esB

World B
nexo = 1 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -12.55 -24.582 -28.083 -28.55

(2.77x10−28) (4.11x10−17) (2.38x10−13) (1.97x10−17)

Replanning +1.754 -2.744 -14.684 -33.201

(7.06x10−20) (2.72x10−10) (2.49x10−21) (1.434x10−22)

Continual -0.273 -2.458 -6.117 -9.637

Replanning (0.052) (3.99x10−18) (1.05x10−23) (3.1x10−20)

World B
nexo = 2 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -11.039 -37.983 -49.053 -45.644

(1.3x10−22) (1.7x10−18) (1.56x10−18) (5.916x10−19)

Replanning +1.015 -2.762 -31.069 -66.613

(8.42x10−40) (0.0003) (9.05x10−22) (1.15x10−24)

Continual +0.798 +0.874 -11.819 -24.803

Replanning (2.51x10−29) (0.0163) (8.7x10−17) (7.13x10−19)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

None -9.436 -32.312 -39.134 -36.992

(0.029) (3.25x10−5) (8.08x10−5) (0.004)

Replanning +53.422 +32.034 -22.005 -78.651

(2.57x10−50) (1.34x10−29) (8.89x10−5) (2.67x10−14)

Continual +50.391 +36.38 +10.89 -10.823

Replanning (9.13x10−48) (4.06x10−37) (2.35x10−5) (0.009)

CAMP-BDI +17.06 +18.156 +18.509 +18.596

Quality (1.99x10−21) (9x10−19) (2.69x10−19) (1.06x10−20)

Figure B.32: Difference (p in brackets) between CAMP-BDI.Speed and other ap-

proaches for average messages per goal in World A (excluding updatedContract mes-

sages), for all nexo and nrisk configurations – negative values indicate where CAMP-

BDI.Speed sent less messages on average.

Appendix B. Experimental Results 339

B.6.8.3 Differences between CAMP-BDI.Quality and other Approaches

World A
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +8.228 +1.435 -18.968 -53.128

(2x10−42) (0.004) (2.92x10−18) (5.38x10−22)

Continual +7.237 +3.69 -5.406 -15.542

Replanning (9.41x10−41) (1.26x10−20) (6.37x10−12) (1.71x10−17)

World B
nexo = 3 nrisk = 0 nrisk = 0.25 nrisk = 0.5 nrisk = 0.75

Replanning +36.362 +13.878 -40.514 -97.248

(1.76x10−48) (1.33x10−15) (4.09x10−11) (9.27x10−18)

Continual +33.332 +18.224 -7.619 -29.429

Replanning (1.85x10−48) (2.33x10−23) (0.002) (3.86x10−10)

Figure B.33: Difference (p in brackets) between CAMP-BDI.Quality and other ap-

proaches for average messages per goal in World A and B for nexo = 3 (excluding

updatedContract messages); each cell define the difference between the given (row-

defined) approach and CAMP-BDI under that (column-defined) nrisk – positive values

indicate CAMP-BDI.Quality sent more messages on average.

Appendix B. Experimental Results 340

B.6.8.4 Differences with increasing nrisk

World A nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 -0.081 (0.424) +0.019 (0.851) -0.086 (0.39)

nexo = 2 +0.076 (0.666) -0.283 (0.158) +0.034 (0.825)

nexo = 3

CAMP-BDI.Spd +0.04 (0.879) -0.366 (0.271) +0.23 (0.418)

CAMP-BDI.Qty -0.148 (0.583) +0.476 (0.09) 0.078 (0.804)

World B nrisk = 0→ 0.25 nrisk = 0.25→ 0.5 nrisk = 0.5→ 0.75

nexo = 1 +0.027 (0.846) +0.109 (0.444) -0.244 (0.066)

nexo = 2 -0.098 (0.854) +0.175 (0.584) +0.236 (0.447)

nexo = 3

CAMP-BDI.Spd +0.19 (0.9) +1.416 (0.404) +0.347 (0.821)

CAMP-BDI.Qty +0.906 (0.396) +1.063 (0.299) +0.26 (0.834)

Figure B.34: Messaging cost differences (p in brackets) for CAMP-BDI in World A and B

excluding updatedContract, over increasing nrisk for all nexo. Each table corresponds

to an experimental geography; cells define the difference between average messages

between the (column defined) lower and higher value of nrisk for the (row-defined) nexo;

positive values denote more messages were sent per goal when nrisk increased.

Appendix C

Publications

Work based upon earlier design and experimental results was presented at the 18th

Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2015):

Alan White, Austin Tate, Michael Rovatsos. CAMP-BDI: A Pre-emptive Approach
for Plan Execution Robustness in Multiagent Systems. In Qingliang Chen, Paolo

Torroni, Serena Villata, Jane Yung-jen Hsu, Andrea Omicini, editors, PRIMA 2015:

Principles and Practice of Multi-Agent Systems - 18th International Conference, Berti-

noro, Italy, October 26-30, 2015, Proceedings. Volume 9387 of Lecture Notes in Com-

puter Science, pages 65-84, Springer, 2015.

http://www.aiai.ed.ac.uk/project/ix/documents/2015/2015-prima-white-camp-bdi.pdf

341

http://www.aiai.ed.ac.uk/project/ix/documents/2015/2015-prima-white-camp-bdi.pdf

Bibliography

Alexandre Albore, Héctor Palacios, and Héctor Geffner. Fast and Informed Action Se-

lection for Planning with Sensing. In Daniel Borrajo, Luis A. Castillo, and Juan M.

Corchado, editors, Current Topics in Artificial Intelligence, 12th Conference of the

Spanish Association for Artificial Intelligence, CAEPIA 2007, Salamanca, Spain,

November 12-16, 2007. Selected Papers, volume 4788 of Lecture Notes in Com-

puter Science, pages 1–10. Springer, 2007.

David N. Allsopp, Patrick Beautement, Jeffrey M. Bradshaw, Edmund H. Durfee,

Michael Kirton, Craig A. Knoblock, Niranjan Suri, Austin Tate, and Craig W.

Thompson. Coalition agents experiment: Multiagent cooperation in international

coalitions. IEEE Intelligent Systems, 17(3):26–35, 2002.

Jose A. Ambros-Ingerson and Sam Steel. Integrating Planning, Execution and Mon-

itoring. In Howard E. Shrobe, Tom M. Mitchell, and Reid G. Smith, editors, Pro-

ceedings of the 7th National Conference on Artificial Intelligence. St. Paul, MN,

August 21-26, 1988., pages 83–88. AAAI Press / The MIT Press, 1988.

Chitta Baral and Tran Cao Son. Approximate Reasoning about Actions in Presence

of Sensing and Incomplete Information. In Jan Maluszynski, editor, ILPS, pages

387–401. MIT Press, 1997.

Jeremy W. Baxter and Graham S. Horn. Controlling Teams of Uninhabited Air Vehi-

cles, pages 97–112. Birkhäuser Basel, Basel, 2008.

Guido Boella and Rossana Damiano. A Replanning Algorithm for a Reactive Agent

Architecture. In Donia Scott, editor, Artificial Intelligence: Methodology, Systems,

and Applications, 10th International Conference, AIMSA 2002, Varna, Bulgaria,

September 4-6, 2002, Proceedings, volume 2443 of Lecture Notes in Computer Sci-

ence, pages 183–192. Springer, 2002.

342

Bibliography 343

Blai Bonet and Héctor Geffner. Planning with Incomplete Information as Heuristic

Search in Belief Space. In Steve A. Chien, Subbarao Kambhampati, and Craig A.

Knoblock, editors, Proceedings of the Fifth International Conference on Artificial

Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17, 2000, pages

52–61. AAAI, 2000.

Blai Bonet and Héctor Geffner. Planning and Control in Artificial Intelligence: A

Unifying Perspective. Applied Intelligence, 14(3):237–252, 2001.

Blai Bonet and Héctor Geffner. Planning As Heuristic Search. Artificial Intelligence,

129(1-2):5–33, June 2001.

Rafael H. Bordini and Jomi F. Hübner. Computational Logic in Multi-Agent Systems:

6th International Workshop, CLIMA VI, London, UK, June 27-29, 2005, Revised

Selected and Invited Papers, chapter BDI Agent Programming in AgentSpeak Using

Jason, pages 143–164. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Craig Boutilier and Richard Dearden. Using Abstractions for Decision Theoretic Plan-

ning with Time Constraints. In Proceedings of the 12th National Conference on

Artificial Intelligence, pages 1016–1022. San Francisco, CA: Morgan Kaufmann,

1994.

Craig Boutilier. Planning, learning and coordination in multiagent decision processes.

In Proceedings of the Sixth Conference on Theoretical Aspects of Rationality and

Knowledge (TARK96), pages 195–210, 1996.

Jeffrey M Bradshaw, Stewart Dutfield, Pete Benoit, and John D Woolley. Kaos: toward

an industrial-strength open agent architecture. In Software agents, pages 375–418.

MIT Press, 1997.

Ronen I. Brafman and Carmel Domshlak. Factored Planning: How, When, and When

Not. In Proceedings, The Twenty-First National Conference on Artificial Intelli-

gence and the Eighteenth Innovative Applications of Artificial Intelligence Confer-

ence, July 16-20, 2006, Boston, Massachusetts, USA, pages 809–814, 2006.

Ronen I. Brafman and Carmel Domshlak. From One to Many: Planning for Loosely

Coupled Multi-Agent Systems. In Procs. ICAPS 2008, pages 28–35. AAAI Press,

2008.

Bibliography 344

Michael E. Bratman. Intention, Plans, and Practical Reason. Cambridge University

Press, March 1999.

Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal

representation for bdi agent systems. In Rafael H. Bordini, Mehdi Dastani, Jrgen

Dix, and Amal El Fallah Seghrouchni, editors, Programming Multi-Agent Systems,

volume 3346 of Lecture Notes in Computer Science, pages 44–65. Springer Berlin

Heidelberg, 2005.

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. Extending the Capability

Concept for Flexible BDI Agent Modularization. In Rafael H. Bordini, MehdiM.

Dastani, Jrgen Dix, and Amal El Fallah Seghrouchni, editors, Programming Multi-

Agent Systems, volume 3862 of Lecture Notes in Computer Science, pages 139–155.

Springer Berlin Heidelberg, 2006.

Michael Brenner and Bernhard Nebel. Continual Planning and Acting in Dy-

namic Multiagent Environments. Autonomous Agents and Multi-Agent Systems,

19(3):297–331, December 2009.

Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zhisheng Huang, and Leendert W. N.

van der Torre. The BOID architecture: conflicts between beliefs, obligations, inten-

tions and desires. In Agents, pages 9–16, 2001.

Jan Broersen, Mehdi Dastani, and Leendert Van Der Torre. Resolving conflicts be-

tween beliefs, obligations, intentions, and desires. In Symbolic and Quantitative

Approaches to Reasoning with Uncertainty, pages 568–579. Springer, 2001.

Jan Broersen, Mehdi Dastani, Joris Hulstijn, and Leendert van der Torre. Goal genera-

tion in the BOID architecture. Cognitive Science Quarterly, 2(3-4):428–447, 2002.

Alan Burns and A. J. Wellings. Real-time Systems and Their Programming Languages.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

Paolo Busetta, Nicholas Howden, Ralph Rönnquist, and Andrew Hodgson. Structuring

BDI Agents in Functional Clusters. In 6th International Workshop on Intelligent

Agents VI, Agent Theories, Architectures, and Languages (ATAL), ATAL ’99, pages

277–289, London, UK, UK, 2000. Springer-Verlag.

Stefan Bussmann and Klaus Schild. An agent-based approach to the control of flexi-

ble production systems. In ETFA 2001. 8th International Conference on Emerging

Bibliography 345

Technologies and Factory Automation. Proceedings (Cat. No.01TH8597), volume 2,

pages 481–488 vol.2, Oct 2001.

Tom Bylander. The Computational Complexity of Propositional STRIPS Planning.

Artificial Intelligence, 69:165–204, 1994.

Ibrahim Cakirlar, Erdem Eser Ekinci, and Oguz Dikenelli. Exception Handling in

Goal-Oriented Multi-Agent Systems, volume 5485 of Lecture Notes in Computer

Science, pages 121–136. Springer, 2008.

Victoria M. Catterson, Euan M. Davidson, and Stephen D.J. McArthur. Practical ap-

plications of multi-agent systems in electric power systems. European Transactions

on Electrical Power, 22(2):235–252, 2012.

Tushar Deepak Chandra and Sam Toueg. Unreliable Failure Detectors for Reliable

Distributed Systems. Journal of the ACM (JACM), 43(2):225–267, March 1996.

Edwin K. P. Chong, Robert L. Givan, and Hyeong Soo Chang. A Framework for

Simulation-based Network Control via Hindsight Optimization. In 39th IEEE Conf.

on Decision and Control, pages 1433–1438, 2000.

Kum Wah Choy, Adrian A. Hopgood, Lars Nolle, and Brian C. O’Neill. Implementa-

tion of a Tileworld Testbed on a Distributed Blackboard System. In Proceedings of

The 18th European Simulation Multiconference, pages 129–135, 2004.

Bradley J Clement and Anthony C Barrett. Continual coordination through shared ac-

tivities. In Proceedings of the second international joint conference on Autonomous

agents and multiagent systems, pages 57–64. ACM, 2003.

Bradley J. Clement and Edmund H. Durfee. Top-down Search for Coordinating the

Hierarchical Plans of Multiple Agents. In Proceedings of the Third Annual Confer-

ence on Autonomous Agents, AGENTS ’99, pages 252–259, New York, NY, USA,

1999. ACM.

Armando Walter Colombo, Ronald Schoop, and Ralf Neubert. An agent-based intelli-

gent control platform for industrial holonic manufacturing systems. IEEE Transac-

tions on Industrial Electronics, 53(1):322–337, Feb 2005.

Vincent Conitzer. Comparing multiagent systems research in combinatorial auctions

and voting. Annals of Mathematics and Artificial Intelligence, 58(3-4):239–259,

April 2010.

Bibliography 346

Arie A. Covrigaru and Robert K. Lindsay. Deterministic Autonomous Systems. AI

Magazine, 12(3):110–117, September 1991.

Jeffrey S. Cox, Edmund H. Durfee, and Thomas Bartold. A Distributed Framework for

Solving the Multiagent Plan Coordination Problem. In Proceedings of the Fourth

International Joint Conference on Autonomous Agents and Multiagent Systems, AA-

MAS ’05, pages 821–827, New York, NY, USA, 2005. ACM.

Matthew Crosby, Anders Jonsson, and Michael Rovatsos. A Single-Agent Approach

to Multiagent Planning. In 21st European Conf. on Artificial Intelligence (ECAI’14),

Prague, Czech Republic, 2014.

Jeff Dalton, Jeffrey M. Bradshaw, Austin Tate, and Andrzej Uszok. Coalition Search

and Rescue - Task Support: Intelligent Task Achieving Agents on the Semantic Web.

Interim Technical Report (Final DAML Program Technical Report), January 2003-

December 2004. Technical Report AFRL-IF-RS-TR-2006-91, Air Force Research

Laboratory, July 2006. AIAI Contract No. F-30602-03-2-0014 (DARPA Order No.

P105/00), IHMC Contract No. F-30602-00-2-0577.

Sylvain Damiani, Gérard Verfaillie, and Marie-Claire Charmeau. An Earth Watching

Satellite Constellation: How to Manage a Team of Watching Agents with Limited

Communications. In Proceedings of the Fourth International Joint Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 455–462, New

York, NY, USA, 2005. ACM.

Mehdi Dastani, M. Birna van Riemsdijk, and Michael Winikoff. Rich Goal Types in

Agent Programming. In The 10th International Conference on Autonomous Agents

and Multiagent Systems - Volume 1, AAMAS ’11, pages 405–412, Richland, SC,

2011. International Foundation for Autonomous Agents and Multiagent Systems.

Alessandro de Luna Almeida, Samir Aknine, Jean-Pierre Briot, and Jacques Malen-

fant. Predictive fault tolerance in multiagent systems: a plan-based replication ap-

proach. In Edmund H. Durfee, Makoto Yokoo, Michael N. Huhns, and Onn She-

hory, editors, 6th International Joint Conference on Autonomous Agents and Multi-

agent Systems (AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, 2007, page 139.

IFAAMAS, 2007.

Lavindra de Silva and Lin Padgham. A Comparison of BDI Based Real-Time Rea-

soning and HTN Based Planning. In Geoffrey I. Webb and Xinghuo Yu, editors,

Bibliography 347

Australian Conference on Artificial Intelligence, volume 3339 of Lecture Notes in

Computer Science, pages 1167–1173. Springer, 2004.

Mathijs de Weerdt and Brad Clement. Introduction to Planning in Multiagent Systems.

Multiagent Grid Syst., 5(4):345–355, December 2009.

Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David Smith, and Rich

Washington. Contingency planning for planetary rovers. October 2002.

Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algo-

rithm. International Journal of Intelligent and Cooperative Information Systems,

1(02):319–346, 1992.

Keith S. Decker and Victor R. Lesser. Quantitative Modeling of Complex Environ-

ments. International Journal of Intelligent Systems in Accounting, Finance and

Management. Special Issue on Mathematical and Computational Models and Char-

acteristics of Agent Behaviour., 2:215–234, January 1993.

Scott A. DeLoach, Walamitien H. Oyenan, and Eric T. Matson. A capabilities-based

model for adaptive organizations. Autonomous Agents and Multi-Agent Systems,

16(1):13–56, 2007.

Scott A DeLoach. OMACS: a Framework for Adaptive, Complex Systems. Com-

plex Systems. In V. Dignum, editor, Handbook of Research on Multi-Agent Systems:

Semantics and Dynamics of Organizational Models, pages 76–104, 2009.

Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz, and Michael J. Wolverton.

A Survey of Research in Distributed, Continual Planning. AI Magazine, 20(4), 1999.

Ralph Deters. Scalable Multi-agent Systems. In Proceedings of the 2001 Joint ACM-

ISCOPE Conference on Java Grande, JGI ’01, pages 182–, New York, NY, USA,

2001. ACM.

Frank Dignum, David Kinny, and Liz Sonenberg. From desires, obligations and norms

to goals. Cognitive Science Quarterly ., 2(3-4):407–427, 2002.

Yannis Dimopoulos, Alfonso Gerevini, Patrik Haslum, and Alessandro Saetti. The

Benchmark Domains of the Deterministic Part of IPC-5. In Special Booklet for the

Planning Competition in the Working Notes of the 16th Int’l Conf. on Automated

Planning and Scheduling (ICAPS-06), Monterey, CA, USA, June 2006.

Bibliography 348

Mark dInverno, Koen Hindriks, and Michael Luck. A Formal Architecture for the

3APL Agent Programming Language. In ZB 2000: Formal Specification and De-

velopment in Z and B, volume 1878 of Lecture Notes in Computer Science, pages

168–187. Springer Berlin Heidelberg, 2000.

Klaus Dorer and Monique Calisti. An Adaptive Solution to Dynamic Transport Op-

timization. In Proceedings of the Fourth International Joint Conference on Au-

tonomous Agents and Multiagent Systems, AAMAS ’05, pages 45–51, New York,

NY, USA, 2005. ACM.

Brian Drabble, Jeff Dalton, and Austin Tate. Repairing Plans on the Fly. In Proceed-

ings of the NASA Workshop on Planning and Scheduling for Space, Oxnard, CA,

USA, October 1997.

Simon Duff, James Harland, and John Thangarajah. On Proactivity and Maintenance

Goals. In Proceedings of the Fifth International Joint Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’06, pages 1033–1040, New York, NY,

USA, 2006. ACM.

Edmund H. Durfee and Victor R. Lesser. Using Partial Global Plans to Coordinate

Distributed Problem Solvers. In Proceedings of the 10th International Joint Confer-

ence on Artificial Intelligence - Volume 2, IJCAI’87, pages 875–883, San Francisco,

CA, USA, 1987. Morgan Kaufmann Publishers Inc.

Edmund Durfee and Victor R. Lesser. Partial Global Planning: A Coordination Frame-

work for Distributed Hypothesis Formation. IEEE Transactions on Systems, Man,

and Cybernetics, 21:1167–1183, 1991.

Edmund H. Durfee. Multi-agents Systems and Applications. chapter Distributed Prob-

lem Solving and Planning, pages 118–149. Springer-Verlag New York, Inc., New

York, NY, USA, 2001.

Stefan Edelkamp, Roman Englert, Jörg Hoffmann, Frederico dos S. Liporace, Sylvie

Thiébaux, and Sebastian Trüg. Engineering Benchmarks for Planning: the Domains

Used in the Deterministic Part of IPC-4. CoRR, abs/1110.1016, 2011.

Eithan Ephrati and Jeffrey S. Rosenschein. A Heuristic Technique for Multiagent

Planning. Annals of Mathematics and Artificial Intelligence, 20, 1997.

Bibliography 349

Eithan Ephrati, Martha E. Pollack, and Sigalit Ur T. Deriving multi-agent coordination

through filtering strategies. In Proceedings of the 14th International Joint Confer-

ence on Artificial Intelligence. Morgan Kaufmann, 1995.

Kutluhan Erol, James Handler, and Dana S. Nau. Semantics for Hierarchical Task-

Network Planning. Technical Report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-

95-9, University Of Maryland, 1994.

Tara Estlin, Rebecca Castano, Robert Anderson, Daniel Gaines, Forest Fisher, and

Michele Judd. Learning and Planning for Mars Rover Science. In Proceedings of

IJCAI Workshop on Issues in Designing Physical Agents for Dynamic Real-Time

Environments: World Modeling, Planning, Learning, and Communicating. Morgan

Kaufmann Publishers, 2003.

Oren Etzioni, Keith Golden, and Daniel Weld. Tractable Closed World Reasoning

with Updates (Extended Abstract). In Proceedings of the Conference on Principles

of Knowledge Representation and Reasoning, KR-94, pages 178–189, 1994.

Alan Fedoruk and Ralph Deters. Improving Fault-tolerance by Replicating Agents. In

Proceedings of the First International Joint Conference on Autonomous Agents and

Multiagent Systems: Part 2, AAMAS ’02, pages 737–744, New York, NY, USA,

2002. ACM.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. In Proceedings of the 2Nd International Joint

Conference on Artificial Intelligence, IJCAI’71, pages 608–620, San Francisco, CA,

USA, 1971. Morgan Kaufmann Publishers Inc.

Avgoustinos Filippoupolitis, George Loukas, Stelios Timotheou, Nikolaos Dimakis,

and Erol Gelenbe. Emergency response systems for disaster management in build-

ings, May 2009.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

Distributed Consensus with One Faulty Process. Journal of the ACM (JACM),

32(2):374–382, April 1985.

Klaus Fischer, Michael Schillo, and Jörg Siekmann. Holonic multiagent systems: A

foundation for the organisation of multiagent systems. In Holonic and Multi-Agent

Systems for Manufacturing, pages 71–80. Springer Berlin Heidelberg, 2003.

Bibliography 350

Janae Foss, Nilufer Onder, and D Smith. Preventing unrecoverable failures through

precautionary planning. In ICAPS07 Workshop on Moving Planning and Scheduling

Systems into the Real World, 2007.

Maria Fox and Derek Long. PDDL2. 1: An Extension to PDDL for Expressing Tem-

poral Planning Domains. Journal of Artificial Intelligence Research (JAIR), 20:61–

124, 2003.

Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina. Plan stability: Replanning

versus plan repair. In In Proc. ICAPS, pages 212–221. AAAI Press, 2006.

Christian Fritz and Sheila McIlraith. Monitoring Plan Optimality during Execution:

Theory and Implementation. In The 18th International Workshop on Principles of

Diagnosis (DX-07), Nashville, TN, USA, May 29–31 2007. An extended version of

this paper appeared at ICAPS07.

Michael P. Georgeff and Francois Felix Ingrand. Decision-making in an Embedded

Reasoning System. In Proceedings of the 11th International Joint Conference on

Artificial Intelligence - Volume 2, IJCAI’89, pages 972–978, San Francisco, CA,

USA, 1989. Morgan Kaufmann Publishers Inc.

Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael J.

Wooldridge. Intelligent Agents V: Agents Theories, Architectures, and Languages:

5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998 Proceedings,

chapter The Belief-Desire-Intention Model of Agency, pages 1–10. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1999.

Alfonso Gerevini and Ivan Serina. LPG: A planner based on local search for planning

graphs. In ”In Proc. of 6th Int. Conf. on AI Planning Systems (AIPS02)”. AAAI

Press, 2002.

Peter Gregory and Alan Lindsay. The dimensions of driverlog. In Proceedings of the

UK PlanSIG, 2007.

Barbara J. Grosz, Luke Hunsberger, and Sarit Kraus. Planning and Acting Together.

AI Magazine, 20(4):23–34, 1999.

Rachid Guerraoui and André Schiper. Software-Based Replication for Fault Tolerance.

Computer, 30(4):68–74, April 1997.

Bibliography 351

Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. Adaptive Replication of Large-

Scale Multi-Agent Systems - Towards a Fault-Tolerant Multi-Agent Platform, pages

238–253. Springer Verlag, February 2005.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent Planning with Factored

MDPs. In In NIPS-14, pages 1523–1530. The MIT Press, 2001.

Staffan Hägg. A Sentinel Approach to Fault Handling in Multi-Agent Systems. In

Revised Papers from the Second Australian Workshop on Distributed Artificial In-

telligence: Multi-Agent Systems: Methodologies and Applications, pages 181–195,

London, UK, UK, 1997. Springer-Verlag.

Christian Hahn, Bettina Fley, and Michael Schillo. Optimisation of multiagent organ-

isation for robustness. Sozionik Aktuell, 3(1), 2003.

Karen Zita Haigh and Manuela M. Veloso. Planning, execution and learning in a

robotic agent. In Proceedings of the Fourth International Conference on Artificial

Intelligence Planning Systems, pages 120–127, Pittsburgh, PA, June 1998.

Liangxiu Han, Stephen Potter, George Beckett, Gavin Pringle, Stephen Welch, Sung-

Han Koo, Gerhard Wickler, Asif Usmani, José L. Torero, and Austin Tate. FireGrid:

An e-infrastructure for next-generation emergency response support. Journal of

Parallel and Distributed Computing, 70(11):1128–1141, 2010.

Steve Hanks, Dat Nguyen, and Chris Thomas. A Beginner’s Guide to the Truckworld

Simulator. Technical report, Dept. of Computer Science and Engineering UW-CSE-

TR 93-06-09, University of Washington, 1993.

Steve Hanks, Martha E. Pollack, and Paul R. Cohen. Benchmarks, Test Beds, Con-

trolled Experimentation, and the Design of Agent Architectures. AI Magazine,

14(4):17–42, 1993.

Linli He and Thomas R. Ioerger. A Quantitative Model of Capabilities in Multi-Agent

Systems. In Proceedings of the International Conference on Artificial Intelligence,

IC-AI ’03, June 23 - 26, 2003, Las Vegas, Nevada, USA, Volume 2, pages 730–736,

2003.

Malte Helmert. Understanding Planning Tasks: Domain Complexity and Heuristic

Decomposition. Springer-Verlag, Berlin, Heidelberg, 2008.

Bibliography 352

James Hendler, Austin Tate, and Mark Drummond. AI Planning: Systems and Tech-

niques. AI Magazine, 11(2):61–77, April 1990.

Koen V. Hindriks and M. Birna van Riemsdijk. Satisfying maintenance goals. In

Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael Winikoff,

editors, Declarative Agent Languages and Technologies V: 5th International Work-

shop, DALT 2007, Honolulu, HI, USA, May 14, 2007, Revised Selected and Invited

Papers, pages 86–103, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Michael W. Hofbaur and Brian C. Williams. Mode Estimation of Probabilistic Hybrid

Systems, pages 253–266. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Jörg Hoffmann and Stefan Edelkamp. The Deterministic Part of IPC-4: An Overview.

Journal of Artificial Intelligence Research (JAIR), 24(1):519–579, October 2005.

Jörg Hoffmann. FF: The Fast-Forward Planning System. AI magazine, 22:57–62,

2001.

Jörg Hoffmann. The metric-FF Planning System: Translating ”Ignoring Delete Lists”

to Numeric State Variables. Journal of Artificial Intelligence Research (JAIR),

20(1):291–341, December 2003.

Mark Hoogendoorn, Catholijn M. Jonker, Martijn C. Schut, and Jan Treur. Modeling

Adaptive Multi-agent Organizations for Naval Missions. In Proceedings of the 5th

WSEAS International Conference on Artificial Intelligence, Knowledge Engineering

and Data Bases, AIKED’06, pages 470–478, Stevens Point, Wisconsin, USA, 2006.

World Scientific and Engineering Academy and Society (WSEAS).

Luke Hunsberger and Barbara J. Grosz. A combinatorial auction for collaborative

planning. Multi-Agent Systems, International Conference on, 00(undefined):0151,

2000.

Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. An Architecture for

Real-Time Reasoning and System Control. IEEE Expert: Intelligent Systems and

Their Applications, 7(6):34–44, December 1992.

Manish Jain, Bo An, and Milind Tambe. An Overview of Recent Application Trends

at the AAMAS conference: Security, Sustainability and Safety. AI Magazine,

33(3):14, 2012.

Bibliography 353

Yosr Jarraya, Sujoy Ray, Andrei Soeanu, Mourad Debbabi, Mohamad Allouche, and

Jean Berger. Towards a Distributed Plan Execution Monitoring Framework. In

Elhadi M. Shakshuki, Karim Djouani, Michael Sheng, Mohamed Younis, Eduardo

Vaz, and Wayne Groszko, editors, Proceedings of the 4th International Conference

on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd International

Conference on Sustainable Energy Information Technology (SEIT-2013), Halifax,

Nova Scotia, Canada, June 25-28, 2013, volume 19 of Procedia Computer Science,

pages 1034–1039. Elsevier, 2013.

Nicholas R. Jennings. Towards a Cooperation Knowledge Level for Collaborative

Problem Solving. In 10th European Conf. on Artificial Intelligence (ECAI-92),

pages 224–228, Vienna, Austria, 1992.

Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence,

117(2):277–296, 2000.

Sergio Jiménez, Andrew Coles, and Amanda Smith. Planning in Probabilistic Domains

Using a Deterministic Numeric Planner. In Proceedings of the 25th Workshop of the

UK Planning and Scheduling Special Interest Group (PlanSIG 2006), December

2006.

Sergio Jiménez, Fernando Fernández, and Daniel Borrajo. Inducing non-deterministic

actions behaviour to plan robustly in probabilistic domains. In ICAPS’06 Workshop

on Planning under Uncertainty and Execution Control for Autonomous Systems,

2006.

Anders Jonsson and Michael Rovatsos. Scaling Up Multiagent Planning: A Best-

Response Approach. In Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, and

Malte Helmert, editors, Proceedings of the 21st International Conference on Auto-

mated Planning and Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011.

AAAI, 2011.

Gal A. Kaminka and Milind Tambe. What Is Wrong With Us? Improving Robustness

Through Social Diagnosis. In Jack Mostow and Chuck Rich, editors, AAAI/IAAI,

pages 97–104. AAAI Press / The MIT Press, 1998.

Raveesh Kandiyil and Yang Gao. A Generic Domain Configurable Planner Using

HTN For Autonomous Multi-Agent Space System. In International Symposium on

Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), October 2012.

Bibliography 354

Thomas H. Killion. Decision making and the levels of war. Military Review, pages

66–70, November 2000.

David Kinny, Magnus Ljungberg, Anand S. Rao, Liz Sonenberg, Gil Tidhar, and Eric

Werner. Planned Team Activity. In MAAMAW, volume 830 of Lecture Notes in

Computer Science, pages 227–256. Springer, 1992.

Hiroaki Kitano, Satoshi Tadokoro, Itsuki Noda, Hitoshi Matsubara, Tomoichi Taka-

hashi, Atsuhi Shinjou, and Susumu Shimada. RoboCup Rescue: Search and Rescue

in Large-Scale Disasters as a Domain for Autonomous Agents Research. In IEEE

International Conference on Systems, Man, and Cybernetics, pages 739–746. IEEE

Computer Society, 1999.

Mark Klein and Chrysanthos Dellarocas. Exception Handling in Agent Systems. In

Agents, pages 62–68, 1999.

Mark Klein, Juan A. Rodrı́guez-Aguilar, and Chrysanthos Dellarocas. Using Domain-

Independent Exception Handling Services to Enable Robust Open Multi-Agent Sys-

tems: The Case of Agent Death. Autonomous Agents and Multi-Agent Systems,

7(1-2):179–189, 2003.

Martin J Kollingbaum and Timothy J Norman. NoA-a normative agent architecture.

In IJCAI, pages 1465–1466, 2003.

M Kollingbaum, T Norman, Alun Preece, and Derek Sleeman. Norm refinement:

Informing the re-negotiation of contracts. In ECAI 2006 Workshop on Coordina-

tion, Organization, Institutions and Norms in Agent Systems, COIN@ ECAI, volume

2006, pages 46–51, 2006.

Andrey Kolobov, Mausam, and Daniel S. Weld. ReTrASE: Integrating Paradigms for

Approximate Probabilistic Planning. In Proceedings of the 21st International Jont

Conference on Artifical Intelligence, IJCAI’09, pages 1746–1753, San Francisco,

CA, USA, 2009. Morgan Kaufmann Publishers Inc.

Antonin Komenda, Jiri Vokrinek, Michal Pěchouček, Gerhard Wickler, Jeff Dalton,

and Austin Tate. I-Globe: Distributed Planning and Coordination of Mixed-initiative

Activities. In Proceedings of Knowledge Systems for Coalition Operations (KSCO

2009), 2009.

Bibliography 355

Antonı́n Komenda, Gerhard Wickler, Jĭrı́ Vokřı́nekk, Michal Pěchouček, Jeff Dalton,

and Austin Tate. I-Globe: Distributed Planning and Coordination of Team-oriented

Activities, 2009.

Antonı́n Komenda, Peter Novák, and Michal Pěchouček. Decentralized multi-agent

plan repair in dynamic environments. In International Conference on Autonomous

Agents and Multiagent Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3

Volumes), pages 1239–1240, 2012.

Antonı́n Komenda, Peter Novák, Michal Pěchouček, Raz Nissim, Daniel L Kovacs,

and Ronen Brafman. How to repair multi-agent plans: Experimental approach.

Proceedings of Distributed and Multi-agent Planning (DMAP) Workshop of 23rd

International Conference on Automated Planning and Scheduling (ICAPS13), 2013.

Roman Van Der Krogt and Mathijs De Weerdt. Plan Repair as an Extension of Plan-

ning. In Proceedings of the 15th International Conference on Automated Planning

and Scheduling (ICAPS-05, pages 161–170, 2005.

Sanjeev Kumar and Philip R. Cohen. Towards a Fault-tolerant Multi-agent System

Architecture. In Proceedings of the Fourth International Conference on Autonomous

Agents, AGENTS ’00, pages 459–466, New York, NY, USA, 2000. ACM.

Sanjeev Kumar and Philip R. Cohen. Towards a Fault-tolerant Multi-agent System

Architecture. In Proceedings of the Fourth International Conference on Autonomous

Agents, AGENTS ’00, pages 459–466, New York, NY, USA, 2000. ACM.

Michael Lees. A history of the Tileworld agent testbed. Technical report, School of

Computer Science and Information Technology, University of Nottingham, Notting-

ham, 2002.

Paulo Leitão. Agent-based Distributed Manufacturing Control: A State-of-the-art

Survey. Engineering Applicatins of Artificial Intelligence, 22(7):979–991, October

2009.

Victor R. Lesser, Keith S. Decker, Thomas Wagner, Norman Carver, Alan Garvey,

Bryan Horling, Daniel Neiman, Rodion Podorozhny, M. V. Nagendra Prasad, Anita

Raja, Rgis Vincent, Ping Xuan, and Xiaoqin Zhang. Evolution of the GPGP/-

TAEMS Domain-Independent Coordination Framework. Autonomous Agents and

Multi-Agent Systems, 9(1):87–143, July 2004.

Bibliography 356

Hector J. Levesque, Philip R. Cohen, and Jos H. T. Nunes. On Acting Together. In

Howard E. Shrobe, Thomas G. Dietterich, and William R. Swartout, editors, AAAI,

pages 94–99. AAAI Press / The MIT Press, 1990.

Iain Little and Sylvie Thibaux. Probabilistic planning vs. replanning. In In ICAPS

Workshop on IPC: Past, Present and Future, 2007.

Derek Long and Maria Fox. Automatic Synthesis and use of Generic Types in Plan-

ning. In AIPS-00, pages 196–205. AAAI Press, 2000.

Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P. Moran.

Questions, options, and criteria: Elements of design space analysis. Hum.-Comput.

Interact., 6(3):201–250, September 1991.

Janusz Marecki, Nathan Schurr, Milind Tambe, and Paul Scerri. Safety and Security in

Multiagent Systems: Research Results from 2004-2006, chapter Analyzing Dangers

in Multiagent Rescue Using DEFACTO, pages 241–257. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2009.

Vladimı́r Mařı́k, Pavel Vrba, Ken H. Hall, and Francisco P. Maturana. Rockwell Au-

tomation Agents for Manufacturing. In Proceedings of the Fourth International

Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05,

pages 107–113, New York, NY, USA, 2005. ACM.

Stephen D.J. McArthur, Euan M. Davidson, Victoria M. Catterson, Aris L. Dimeas,

Nikos D. Hatziargyriou, Ferdinanda Ponci, and Toshihisa Funabashi. Multi-agent

systems for power engineering applications - part 1: Concepts, approaches and tech-

nical challenges. IEEE Transactions on Power Systems, 22(4):1743–1752, 2007.

John McCarthy. Programs with Common Sense. In Proceedings of the Teddington

Conference on the Mechanisation of Thought Processes, pages 77–84, 1958.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,

Manuela Veloso, Daniel Weld, and David Wilkins. PDDL – The Planning Domain

Definition Language – Version 1.2. Technical report, Yale Center for Computational

Vision and Control, 1998.

Juan Pablo Mendoza, Manuela M. Veloso, and Reid G. Simmons. Plan execution mon-

itoring through detection of unmet expectations about action outcomes. In ICRA,

pages 3247–3252. IEEE, 2015.

Bibliography 357

Felipe Meneguzzi and Michael Luck. Declarative Agent Languages and Technologies

V: 5th International Workshop, DALT 2007, Honolulu, HI, USA, May 14, 2007, Re-

vised Selected and Invited Papers, chapter Composing High-Level Plans for Declar-

ative Agent Programming, pages 69–85. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2008.

Felipe Meneguzzi, Yuqing Tang, Katia Sycara, and Simon Parsons. On representing

planning domains under uncertainty. In The Fourth Annual Conference of the Inter-

national Technology Alliance, London, UK, 2010.

Felipe Meneguzzi, Yuqing Tang, Katia Sycara, and Simon Parsons. An approach to

generate MDPs using HTN representations. In Decision Making in Partially Observ-

able, Uncertain Worlds: Exploring Insights from Multiple Communities, Barcelona,

Spain, 2011.

Roberto Micalizio and Pietro Torasso. Diagnosis of multi-agent plans under partial

observability. In 18th International Workshop on Principles of Diagnosis (DX07),

pages, pages 346–353. Citeseer, 2007.

Roberto Micalizio and Pietro Torasso. Multiagent System Technologies: 5th German

Conference, MATES 2007, Leipzig, Germany, September 24-26, 2007. Proceedings,

chapter Team Cooperation for Plan Recovery in Multi-agent Systems, pages 170–

181. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Roberto Micalizio and Pietro Torasso. Plan Diagnosis and Agent Diagnosis in Multi-

agent Systems. In Roberto Basili and Maria Teresa Pazienza, editors, AI*IA 2007:

Artificial Intelligence and Human-Oriented Computing, 10th Congress of the Italian

Association for Artificial Intelligence, Rome, Italy, September 10-13, 2007, Proceed-

ings, volume 4733 of Lecture Notes in Computer Science, pages 434–446. Springer,

2007.

Roberto Micalizio and Pietro Torasso. Plan Execution and Recovery in Multi Agent

Systems for Space Applications, 2008.

Roberto Micalizio and Pietro Torasso. Supervision and diagnosis of joint actions in

multi-agent plans. In Lin Padgham, David C. Parkes, Jrg P. Mller, and Simon Par-

sons, editors, AAMAS (3), pages 1375–1378. IFAAMAS, 2008.

Bibliography 358

Roberto Micalizio and Pietro Torasso. Exploiting agent diagnosis for plan repair in

MAS. In Carles Sierra, Cristiano Castelfranchi, Keith S. Decker, and Jaime Simão

Sichman, editors, 8th International Joint Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume

2, pages 1231–1232. IFAAMAS, 2009.

Leora Morgenstern. A First Order Theory of Planning, Knowledge, and Action. In

Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About

Knowledge, TARK ’86, pages 99–114, San Francisco, CA, USA, 1986. Morgan

Kaufmann Publishers Inc.

Robert Morris, Tara Estlin, and Brian Williams. Demonstrating Robotic Autonomy in

NASA’s Intelligent Systems Project. In Proceedings of the 8th ESA Workshop on

Advance Space Technologies for Robotics and Automation, ASTRA 2004, 2004.

Karen L. Myers. CPEF: A Continuous Planning and Execution Framework. AI Mag-

azine, 20(4):63–69, 1999.

Giuseppe Narzisi, Joshua S. Mincer, Silas Smith, and Bud Mishra. Resilience in the

Face of Disaster: Accounting for Varying Disaster Magnitudes, Resource Topolo-

gies, and (Sub)Population Distributions in the PLAN C Emergency Planning Tool.

In Vladimı́r Marı́k, Valeriy Vyatkin, and Armando W. Colombo, editors, Holonic

and Multi-Agent Systems for Manufacturing, Third International Conference on In-

dustrial Applications of Holonic and Multi-Agent Systems, HoloMAS 2007, Regens-

burg, Germany, September 3-5, 2007, Proceedings, volume 4659 of Lecture Notes

in Computer Science, pages 433–446. Springer, 2007.

Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. SHOP: Simple Hierar-

chical Ordered Planner. In Proceedings of the 16th International Joint Conference

on Artificial Intelligence - Volume 2, IJCAI’99, pages 968–973, San Francisco, CA,

USA, 1999. Morgan Kaufmann Publishers Inc.

Dana Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Ya-

man. SHOP2: An HTN planning system. Journal of Artificial Intelligence Research,

20:379–404, 2003.

Dana Nau, Malik Ghallab, and Paolo Traverso. Automated Planning: Theory & Prac-

tice. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

Bibliography 359

Dana Nau, Okhtay Ilghami, Fusun Yaman, Ugur Kuter, H?ctor Munoz-Avila, Dan Wu,

J. William Murdock, and Tsz-Chiu Au. Applications of SHOP and SHOP2. IEEE

Intelligent Systems, 20:34–41, 2005.

Dana Nau. Current Trends in Automated Planning. AI Magazine, 28(4):43, 2007.

Bernhard Nebel and Jana Koehler. Plan Modification versus Plan Generation: A

Complexity-Theoretic Perspective. In Proceedings of the Thirteenth International

Joint Conference on Artificial Intelligence (IJCAI-93, pages 1436–1441. Morgan

Kaufmann, 1992.

Raz Nissim and Ronen I. Brafman. Multi-agent A* for Parallel and Distributed Sys-

tems. In Proceedings of the 11th International Conference on Autonomous Agents

and Multiagent Systems - Volume 3, AAMAS ’12, pages 1265–1266, Richland, SC,

2012. International Foundation for Autonomous Agents and Multiagent Systems.

Raz Nissim and Ronen I. Brafman. Distributed Heuristic Forward Search for Multi-

agent Planning. Journal of Artificial Intelligence Research (JAIR), 51:293–332,

2014.

Raz Nissim, Ronen I. Brafman, and Carmel Domshlak. A general, fully distributed

multi-agent planning algorithm. In Wiebe van der Hoek, Gal A. Kaminka, Yves

Lespérance, Michael Luck, and Sandip Sen, editors, 9th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto, Canada,

May 10-14, 2010, Volume 1-3, pages 1323–1330. IFAAMAS, 2010.

Ingrid Nunes. Improving the design and modularity of bdi agents with capability re-

lationships. In Fabiano Dalpiaz, Jrgen Dix, and M.Birna van Riemsdijk, editors,

Engineering Multi-Agent Systems, volume 8758 of Lecture Notes in Computer Sci-

ence, pages 58–80. Springer International Publishing, 2014.

Oliver Obst. Using a planner for coordination of multiagent team behavior. In

Rafael H. Bordini, Mehdi M. Dastani, Jurgen Dix, and Amal El Fallah Seghrouchni,

editors, Programming Multi-Agent Systems, volume 3862 of Lecture Notes in Com-

puter Science, pages 90–100. Springer Berlin Heidelberg, 2006.

Jakub Ondráček, Ondřej Vaněk, and Michal Pěchouček. Solving Infrastructure Mon-

itoring Problems with Multiple Heterogeneous Unmanned Aerial Vehicles. In Pro-

ceedings of the 2015 International Conference on Autonomous Agents and Multi-

Bibliography 360

agent Systems, AAMAS ’15, pages 1597–1605, Richland, SC, 2015. International

Foundation for Autonomous Agents and Multiagent Systems.

Lin Padgham and Patrick Lambrix. Formalisations of capabilities for BDI-agents.

Autonomous Agents and Multi-Agent Systems, 10(3):249–271, 2005.

Héctor Palacios and Héctor Geffner. Compiling Uncertainty Away: Solving Confor-

mant Planning Problems using a Classical Planner (Sometimes). In Proceedings,

The Twenty-First National Conference on Artificial Intelligence and the Eighteenth

Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006,

Boston, Massachusetts, USA, pages 900–905, 2006.

Massimo Paolucci, Onn Shehory, Katia Sycara, Dirk Kalp, and Anandeep Pannu.

A Planning Component for RETSINA Agents. In NicholasR. Jennings and Yves

Lesprance, editors, Intelligent Agents VI. Agent Theories, Architectures, and Lan-

guages, volume 1757 of Lecture Notes in Computer Science, pages 147–161.

Springer Berlin Heidelberg, 2000.

Simon Parsons and Mark Klein. Towards Robust Multi-Agent Systems: Handling

Communication Exceptions in Double Auctions. In 3rd International Joint Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS 2004), 19-23 August

2004, New York, NY, USA, pages 1482–1483. IEEE Computer Society, 2004.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

Michal Pěchouček and Vladimı́r Mařı́k. Industrial deployment of multi-agent tech-

nologies: review and selected case studies. Autonomous Agents and Multi-Agent

Systems, 17(3):397–431, 2008.

Michal Pěchouček, Simon G. Thompson, Jeremy W. Baxter, Graham S. Horn, Koen

Kok, Cor Warmer, Rene Kamphuis, Vladimir Mařı́k, Pavel Vrba, Kenwood H. Hall,

Francisco P. Maturana, Klaus Dorer, and Monique Calisti. Agents in Industry: The

Best from the AAMAS 2005 Industry Track. IEEE Intelligent Systems, 21(2):86–95,

March 2006.

Michal Pěchouček, Martin Rehák, Petr Charvát, Tomas Vlček, and Michal Kolář.

Agent-Based Approach to Mass-Oriented Production Planning: Case Study. IEEE

Bibliography 361

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

37(3):386–395, May 2007.

Damien Pellier, Humbert Fiorino, and Marc Métivier. Planning When Goals Change:

A Moving Target Search Approach. In Yves Demazeau, Franco Zambonelli,

Juan M. Corchado, and Javier Bajo, editors, Advances in Practical Applications

of Heterogeneous Multi-Agent Systems. The PAAMS Collection - 12th International

Conference, PAAMS 2014, Salamanca, Spain, June 4-6, 2014. Proceedings, volume

8473 of Lecture Notes in Computer Science, pages 231–243. Springer, 2014.

Diego Rodrigues Pereira, Luciano Vargas Gonçalves, Gracaliz Pereira Dimuro, and

Antionio Carlos da Rocha Costa. Constructing BDI plans from optimal POMDP

policies, with an application to AgentSpeak programming. In Proc. of Conf. Lati-

noamerica de Informática, CLEI, volume 8, pages 240–249, 2008.

Andre H. Pereira, Luis Gustavo Nardin, and Jaime Simao Sichman. Coordination of

Agents in the RoboCup Rescue: A Partial Global Approach. Agent Systems, their

Environment and Applications, Workshop and School of, 0:45–50, 2011.

Ronald P. A. Petrick and Fahiem Bacchus. A knowledge-based approach to planning

with incomplete information and sensing. In Malik Ghallab, Joachim Hertzberg,

and Paolo Traverso, editors, Proceedings of the Sixth International Conference on

Artificial Intelligence Planning and Scheduling (AIPS-2002), pages 212–221, Menlo

Park, CA, April 2002. AAAI Press.

Ronald P. A. Petrick and Fahiem Bacchus. Reasoning with conditional plans in the

presence of incomplete knowledge. In Proceedings of the ICAPS-03 Workshop on

Planning under Uncertainty and Incomplete Information, pages 96–102, Trento,

Italy, June 2003. Università di Trento.

Ronald P. A. Petrick and Fahiem Bacchus. PKS: Knowledge-based planning with

incomplete information and sensing. In Proceedings of the System Demonstration

session at ICAPS 2004, June 2004. http://www-rcf.usc.edu/

Ronald P. A. Petrick and Mary Ellen Foster. Knowledge-level planning for task-based

social interaction. In Workshop of the UK Planning and Scheduling Special Interest

Group (PlanSIG 2012), Middlesbrough, United Kingdom, December 2012.

Bibliography 362

Alexander Pokahr, Lars Braubach, Jan Sudeikat, Wolfgang Renz, and Winfried

Lamersdorf. Simulation and Implementation of Logistics Systems based on Agent

Technology. In Hamburg International Conference on Logistics (HICL08): Logis-

tics Networks and Nodes, pages 291–308, 2008.

Martha E. Pollack and Marc Ringuette. Introducing The Tileworld: Exerimentally

Evaluating Agent Architectures. Technical Report 489, AI Center, SRI International,

333 Ravenswood Ave., Menlo Park, CA 94025, May 1990.

Martha E. Pollack. Plans As Complex Mental Attitudes. In Intentions in Communica-

tion, pages 77–103. MIT Press, 1990.

John L. Pollock. Planning Agents, pages 53–79. Springer Netherlands, Dordrecht,

1999.

Stephen T. Polyak and Austin Tate. Rationale in Planning: Causality, Dependencies,

and Decisions. Knowl. Eng. Rev., 13(3):247–262, October 1998.

Thomas Preisler and Wolfgang Renz. Scalability and Robustness Analysis of a Multi-

Agent based Self-healing Resource-flow System. In Maria Ganzha, Leszek A. Ma-

ciaszek, and Marcin Paprzycki, editors, FedCSIS, pages 1261–1268, 2012.

Louise Pryor and Gregg Collins. Planning for Contingencies: A Decision-based Ap-

proach. Journal of Artificial Intelligence Research (JAIR), 4(1):287–339, May 1996.

Anand S. Rao and Michael P. Georgeff. An Abstract Architecture for Rational Agents.

In Bernhard Nebel, Charles Rich, and William R. Swartout, editors, 3rd Interna-

tional Conference on Principles of Knowledge Representation and Reasoning (KR

’92), pages 439–449, Cambridge, MA, USA, 25-29 October 1992. Morgan Kauf-

mann. Proceedings.

Anand S. Rao and Michael P. Georgeff. BDI Agents: From Theory to Practice. In

Proceedings of The First International Conference on Multi-Agent Systems (ICMAS-

95), pages 312–319, 1995.

Glen A. Reece and Austin Tate. Synthesizing Protection Monitors from Causal Struc-

ture. In Kristian J. Hammond, editor, AIPS, pages 146–151. AAAI, 1994.

Glen A. Reece, Austin Tate, David I. Brown, Mark Hoffman, and Rebecca E. Burnard.

The PRECiS Environment. In Proceedings of the National Conference on Artificial

Bibliography 363

Intelligence (AAAI-93) ARPA-RL Planning Initiative Workshop, Washington, DC,

1993.

Nico Roos and Cees Witteveen. KI 2005: Advances in Artificial Intelligence: 28th

Annual German Conference on AI, KI 2005, Koblenz, Germany, September 11-14,

2005. Proceedings, chapter Diagnosis of Plan Execution and the Executing Agent,

pages 161–175. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

Earl David Sacerdoti. A Structure for Plans and Behavior. PhD thesis, Stanford, CA,

USA, 1975. AAI7605794.

Maria J. Santofimia, Xavier del Toro, Pedro Roncero-Sánchez, Francisco Moya,

Miguel A. Martinez, and Juan C. Lopez. A qualitative agent-based approach to

power quality monitoring and diagnosis. Integrated Computer-Aided Engineering,

17(4):305–319, 2010.

Sebastian Sardina and Lin Padgham. Goals in the Context of BDI Plan Failure and

Planning. In Proceedings of the 6th International Joint Conference on Autonomous

Agents and Multiagent Systems, AAMAS ’07, pages 7:1–7:8, New York, NY, USA,

2007. ACM.

Sebastian Sardina, Lavindra de Silva, and Lin Padgham. Hierarchical Planning in BDI

Agent Programming Languages: A Formal Approach. In Proceedings of the Fifth

International Joint Conference on Autonomous Agents and Multiagent Systems, AA-

MAS ’06, pages 1001–1008, New York, NY, USA, 2006. ACM.

Michael Schillo and Klaus Fischer. Holonic Multiagent Systems. KI, 17(4):54, 2003.

Michael Schillo, Hans-Jürgen Bürckert, Klaus Fischer, and Matthias Klusch. Towards

a Definition of Robustness for Market-style Open Multi-agent Systems. In Proceed-

ings of the Fifth International Conference on Autonomous Agents, AGENTS ’01,

pages 75–76, New York, NY, USA, 2001. ACM.

Marcel Schoppers. Universal Plans for Reactive Robots in Unpredictable Environ-

ments. In John P. McDermott, editor, IJCAI, pages 1039–1046. Morgan Kaufmann,

1987.

Bibliography 364

Nathan Schurr and Milind Tambe. Defence Industry Applications of Autonomous

Agents and Multi-Agent Systems, chapter Using Multi-Agent Teams to Improve the

Training of Incident Commanders, pages 151–166. Birkhäuser Basel, Basel, 2008.

Martijn Schut, Michael J. Wooldridge, and Simon Parsons. On Partially Observable

MDPs and BDI Models, pages 243–259. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2002.

Murat Sensoy, Daniele Masato, Timothy J. Norman, Martin J. Kollingbaum, Chris

Burnett, Katia P. Sycara, and Jean Oh. Agent Support for Policy-Driven Mission

Planning Under Constraints. In Proactive Assistant Agents, Papers from the 2010

AAAI Fall Symposium, Arlington, Virginia, USA, November 11-13, 2010, 2010.

Nazaraf Shah, Kuo-Ming Chao, Nick Godwin, Anne James, and Chun-Lung Huang.

Data Engineering Issues in E-Commerce and Services: Second International Work-

shop, DEECS 2006, San Francisco, CA, USA, June 26, 2006. Proceedings, chapter

A Sentinel Based Exception Diagnosis in Market Based Multi-Agent Systems, pages

258–267. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Clauirton Siebra and Austin Tate. An Investigation into the Use of Collaborative Con-

cepts for Planning in Disaster Response Coalitions. In Proceedings of the IEEE

Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Appli-

cations, DIS ’06, pages 253–258, Washington, DC, USA, 2006. IEEE Computer

Society.

Lavindra Silva and Lin Padgham. AI 2004: Advances in Artificial Intelligence: 17th

Australian Joint Conference on Artificial Intelligence, Cairns, Australia, December

4-6, 2004. Proceedings, chapter A Comparison of BDI Based Real-Time Reasoning

and HTN Based Planning, pages 1167–1173. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005.

Gerardo I. Simari and Simon Parsons. On the Relationship Between MDPs and the

BDI Architecture. In Proceedings of the Fifth International Joint Conference on

Autonomous Agents and Multiagent Systems, AAMAS ’06, pages 1041–1048, New

York, NY, USA, 2006. ACM.

Dhirendra Singh, Sebastian Sardia, Lin Padgham, and Stphane Airiau. Learning con-

text conditions for BDI plan selection. In Wiebe van der Hoek, Gal A. Kaminka,

Bibliography 365

Yves Lesprance, Michael Luck, and Sandip Sen, editors, AAMAS, pages 325–332.

IFAAMAS, 2010.

Munindar P. Singh. Know-how. In Anand S. Rao and Michael J. Wooldridge, editors,

Foundations of Rational Agency, Applied Logic Series, pages 105–132. Kluwer,

1999.

David Šišlák, Martin Rehák, Michal Pěchouček, Milan Rollo, and Dušan Pavlı́ček.

Software Agent-Based Applications, Platforms and Development Kits, chapter A-

globe: Agent Development Platform with Inaccessibility and Mobility Support,

pages 21–46. Birkhäuser Basel, Basel, 2005.

David Šišlák, Premysl Volf, and Michal Pěchouček. Large-scale Agent-based Simula-

tion of Air-traffic. In Proceedings of the Twentieth European Meeting on Cybernet-

ics and Systems Research, 2010.

David Sislak, Premysl Volf, Stepan Kopriva, and Michal Pěchouček. AgentFly: Scal-

able, High-Fidelity Framework for Simulation, Planning and Collision Avoidance

of Multiple UAVs, 2012.

Paul R Smart. Holistan revisited: Development of a demonstration scenario for future

military coalition operations. March 2008.

David E. Smith and Daniel S. Weld. Conformant Graphplan. In Proceedings of the

Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applica-

tions of Artificial Intelligence, AAAI ’98/IAAI ’98, pages 889–896, Menlo Park,

CA, USA, 1998. American Association for Artificial Intelligence.

Ronald D. Snyder, Douglas C. Mackenzie, and Raymond S. Tomlinson. Robustness

infrastructure for multi-agent systems. In In Open Cougaar, 2004.

Shirin Sohrabi, Jorge A. Baier, and Sheila A. McIlraith. HTN Planning with Pref-

erences. In Proceedings of the 21st International Jont Conference on Artifical In-

telligence, IJCAI’09, pages 1790–1797, San Francisco, CA, USA, 2009. Morgan

Kaufmann Publishers Inc.

John Sokolowski. Enhanced military decision modeling using a multiagent system

approach. In Proceedings of the Twelfth Conference on Behavior Representation in

Modeling and Simulation, Scottsdale, AZ, pages 179–186. Citeseer, 2003.

Bibliography 366

Tran Cao Son and Phan Huy Tu. On the Completeness of Approximation Based Rea-

soning and Planning in Action Theories with Incomplete Information. In Patrick

Doherty, John Mylopoulos, and Christopher A. Welty, editors, KR, pages 481–491.

AAAI Press, 2006.

Tran Cao Son, Phan Huy Tu, Michael Gelfond, and A. Ricardo Morales. Conformant

Planning for Domains with Constraints: A New Approach. In Proceedings of the

20th National Conference on Artificial Intelligence - Volume 3, AAAI’05, pages

1211–1216. AAAI Press, 2005.

Frédéric Souchon, Christophe Dony, Christelle Urtado, and Sylvain Vauttier. Soft-

ware Engineering for Multi-Agent Systems II: Research Issues and Practical Ap-

plications, chapter Improving Exception Handling in Multi-agent Systems, pages

167–188. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

Katia P. Sycara. Multiagent systems. AI Magazine, 19:79–92, 1998.

Kartik Talamadupula, David Smith, William Cushing, and Subbarao Kambhampati.

A Theory of Intra-Agent Replanning. ICAPS 2013 Workshop on Distributed and

Multi-Agent Planning (DMAP), 2013.

Milind Tambe. Tracking dynamic team activity. In National Conference on Artificial

Intelligence(AAAI96), 1996.

Austin Tate, Jeff Dalton, and John Levine. Generation of Multiple Qualitatively Differ-

ent Plan Options. In Reid G. Simmons, Manuela M. Veloso, and Stephen F. Smith,

editors, AIPS, pages 27–35. AAAI, 1998.

Austin Tate, John Levine, and Jeff Dalton. Multi-perspective planning – using do-

main constraints to support the coordinated development of plans. Technical Report

AFRL-IF-RS-TR-1999-60, Air Force Research Laboratory, Rome, NY, USA, April

1999.

Austin Tate, John Levine, Peter Jarvis, and Jeff Dalton. Using AI planning technology

for army small unit operations. In Steve A. Chien, Subbarao Kambhampati, and

Craig A. Knoblock, editors, Proceedings of the Fifth International Conference on

Artificial Intelligence Planning Systems, Breckenridge, CO, USA, April 14-17, 2000,

pages 379–386. AAAI, 2000.

Bibliography 367

Austin Tate, Jeff Dalton, Clauirton de Siebra, J. Stuart Aitken, Jeffrey M. Bradshaw,

and Andrzej Uszok. Intelligent Agents for Coalition Search and Rescue Task Sup-

port. In Proceedings of the Nineteenth National Conference on Artificial Intelli-

gence, Sixteenth Conference on Innovative Applications of Artificial Intelligence,

July 25-29, 2004, San Jose, California, USA, pages 1038–1039, 2004.

Austin Tate. Generating Project Networks. In Proceedings of the 5th International

Joint Conference on Artificial Intelligence - Volume 2, IJCAI’77, pages 888–893,

San Francisco, CA, USA, 1977. Morgan Kaufmann Publishers Inc.

Austin Tate. Intelligible AI planning - generating plans represented as a set of con-

straints. In Research and Development in Intelligent Systems XVII, pages 3–13.

Springer, 2001.

John Thangarajah, Lin Padgham, and James Harland. Representation and Reasoning

for Goals in BDI Agents. In Proceedings of the Twenty-fifth Australasian Confer-

ence on Computer Science - Volume 4, ACSC ’02, pages 259–265, Darlinghurst,

Australia, Australia, 2002. Australian Computer Society, Inc.

John Thangarajah, Sebastian Sardina, and Lin Padgham. Measuring Plan Coverage and

Overlap for Agent Reasoning. In Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’12, pages

1049–1056, Richland, SC, 2012. International Foundation for Autonomous Agents

and Multiagent Systems.

Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Niranjan

Suri, and Andrzej Uszok. Semantic Web Languages for Policy Representation

and Reasoning: A Comparison of KAoS, Rei, and Ponder. In Dieter Fensel, Ka-

tia Sycara, and John Mylopoulos, editors, The Semantic Web - ISWC 2003, volume

2870 of Lecture Notes in Computer Science, pages 419–437. Springer Berlin Hei-

delberg, 2003.

Kentaro Toyama and Gregory D. Hager. If at First You Don’t Succeed... In Proceedings

of the Fourteenth National Conference on Artificial Intelligence (AAAI-97, pages 3–

9, 1997.

Gabriela Lindemann-Von Trzebiatowski and Ines Miinch. The Role Concept for

Agents in MultiAgent Systems. In Modelling Artificial Societies and Hybrid Orga-

Bibliography 368

nizations. Workshop at KI2001, the Joint German/Austrian Conference on Artificial

Intelligence, 2001.

Hudson Turner. Polynomial-length planning spans the polynomial hierarchy. In In

Proc. of Eighth European Conf. on Logics in Artificial Intelligence (JELIA02, pages

111–124. Springer, 2002.

Adelinde Uhrmacher and William Swartout. Agent-Oriented Simulation. In Moham-

mad S. Obaidat and Georgios I. Papadimitriou, editors, Applied System Simulation,

pages 215–239. Springer US, 2003.

Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, Renia Jeffers, Austin Tate,

Jeff Dalton, and Stuart Aitken. KAoS Policy Management for Semantic Web Ser-

vices. IEEE Intelligent Systems, 19(4):32–41, July 2004.

Wiebe van der Hoek and Michael Wooldridge. Towards a Logic of Rational Agency.

Logic Journal of the IGPL, 11(2):135–159, 2003.

Roman van der Krogt and Mathijs de Weerdt. The two faces of plan repair. In Pro-

ceedings of the Sixteenth Belgium-Netherlands Conference on Artificial Intelligence

(BNAIC-04), pages 147–154, 2004.

Roman van der Krogt and Mathijs de Weerdt. Coordination through Plan Repair. In

Proceedings of the Fourth Mexican International Conference on Artificial Intelli-

gence (MICAI-05), pages 264–274, 2005.

Regis Vincent, Bryan Horling, and Victor Lesser. Experiences in Simulating Multi-

Agent Systems Using TAEMS. The Fourth International Conference on MultiAgent

Systems (ICMAS 2000), July 2000.

Steven Wark, Andrew Zschorn, Don Perugini, Austin Tate, Patrick Beautement, Jef-

frey M Bradshaw, and Niranjan Suri. Dynamic agent systems in the CoAX Binni

2002 experiment. In Information Fusion, 2003. Proceedings of the Sixth Interna-

tional Conference of, volume 1, pages 205–212, July 2003.

Max Waters, Lin Padgham, and Sebastian Sardina. Evaluating Coverage Based Inten-

tion Selection. In Proceedings of the 2014 International Conference on Autonomous

Agents and Multi-agent Systems, AAMAS ’14, pages 957–964, Richland, SC, 2014.

International Foundation for Autonomous Agents and Multiagent Systems.

Bibliography 369

Gerhard Wickler, Stephen Potter, and Austin Tate. Using I-X Process Panels as In-

telligent To-Do Lists for Agent Coordination in Emergency Response. In Interna-

tional Journal of Intelligent Control and Systems (IJICS), Special Issue on Emer-

gency Management Systems, 2006.

Gerhard Wickler, Stephen Potter, Austin Tate, Michal Piechouicek, and Eduard Sem-

sch. Planning and Choosing: Augmenting HTN-Based Agents with Mental Atti-

tudes. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on

Intelligent Agent Technology, Silicon Valley, CA, USA, November 2-5, 2007, pages

222–228, 2007.

Gerhard Wickler, Michal Pěchouček, Antonin Komenda, Jiri Vokrinek, and Austin

Tate. Multi-Agent Planning with Decommitment. In Proceedings of Knowledge

Systems for Coalition Operations (KSCO 2009), 2009.

David E. Wilkins. Representation in a Domain-independent Planner. In Proceedings

of the Eighth International Joint Conference on Artificial Intelligence - Volume 2,

IJCAI’83, pages 733–740, San Francisco, CA, USA, 1983. Morgan Kaufmann Pub-

lishers Inc.

David E. Wilkins. Recovering From Execution Errors in SIPE. Technical Report 346,

AI Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, Jan

1985. Supersedes TN 341. SRI Project 8871. Air Force contract F49620-79-C-0188.

David E. Wilkins. Can AI Planners Solve Practical Problems? Comput. Intell.,

6(4):232–246, January 1991.

Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. Declarative

and procedural goals in intelligent agent systems. In International Conference on

Principles of Knowledge Representation and Reasoning. Morgan Kaufman, 2002.

Michael J. Wooldridge, Nicholas R. Jennings, and David Kinny. A Methodology for

Agent-oriented Analysis and Design. In Proceedings of the Third Annual Confer-

ence on Autonomous Agents, AGENTS ’99, pages 69–76, New York, NY, USA,

1999. ACM.

Michael J. Wooldridge. Multiagent systems. chapter Intelligent Agents, pages 27–77.

MIT Press, Cambridge, MA, USA, 1999.

Bibliography 370

Michael J. Wooldridge. Introduction to multiagent systems. John Wiley & Sons, Inc.,

New York, NY, USA, 2002.

Shengnan Wu, Larry Shuman, Bopaya Bidanda, Matthew Kelley, Ken Sochats, and

Carey Balaban. Agent-based discrete event simulation modeling for disaster re-

sponses. In IIE Annual Conference. Proceedings, page 1908. Institute of Industrial

Engineers-Publisher, 2008.

Haiping Xu, Xiaoqin Zhang, and Rinkesh J. Patel. Developing role-based open multi-

agent software systems. Technical report, International Journal of Computational

Intelligence Theory and Practice (IJCITP, 2007.

Ping Xuan. Techniques for Robust Planning in Degradable Multiagent Systems. In

Paul Scerri, Rgis Vincent, and Roger Mailler, editors, Coordination of Large-Scale

Multiagent Systems, pages 311–340. Springer US, 2006.

Sung Wook Yoon, Alan Fern, and Robert Givan. FF-Replan: A Baseline for Prob-

abilistic Planning. In Proceedings of the Seventeenth International Conference on

Automated Planning and Scheduling, ICAPS 2007, Providence, Rhode Island, USA,

September 22-26, 2007, page 352, 2007.

Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. Proba-

bilistic Planning via Determinization in Hindsight. In Proceedings of the 23rd Na-

tional Conference on Artificial Intelligence - Volume 2, AAAI’08, pages 1010–1016.

AAAI Press, 2008.

Sung Wook Yoon, Wheeler Ruml, J. Benton, and Minh Binh Do. Improving deter-

minization in hindsight for on-line probabilistic planning. In Ronen I. Brafman,

Héctor Geffner, Jörg Hoffmann, and Henry A. Kautz, editors, ICAPS, pages 209–

217. AAAI, 2010.

F.Benjamin Zhan and Xuwei Chen. Agent-Based Modeling and Evacuation Plan-

ning. In Daniel Z. Sui, editor, Geospatial Technologies and Homeland Security,

volume 94 of The GeoJournal Library, pages 189–208. Springer Netherlands, 2008.

Reinier Zwitserloot and Maja Pantic. Agent Frameworks, volume 1, pages 15–21.

2005.

	Introduction
	Background and Context
	Motivating Example
	Research Objectives
	Hypothesis
	Contributions
	Thesis Structure

	Motivating Domain
	Domain and Environment Properties
	Example IPC Domains
	Space Domains
	Transport Domains

	Example Multiagent Experimentation Domains
	Tileworld
	Truckworld
	Pacifica / PRECiS
	Blogohar
	Robocup Rescue

	The Cargoworld
	Perturbation
	Entity types

	Summary

	Agent Systems
	Agents and Multiagent Systems
	Multiagent Systems Approach

	The Belief-Desire-Intention Approach
	BDI Mental States
	Maintenance Goals
	The BDI Agent Reasoning Cycle
	Runtime Planning In BDI Agents

	Mental States for Multiagent activity
	Conclusion

	Agent Robustness Strategies
	Defining Robustness
	Failure Diagnosis
	Sentinel Monitoring and Exception Handling
	Role Filling Approaches
	Replication
	Conclusion

	Planning
	Planning and Plan Execution
	Classical Planning
	Hierarchical Task Network (HTN) Planning

	Multiagent Planning
	Private/Public Actions
	Partial Global Planning
	Generalized PGP and TÆMs

	Conclusion

	Plan Robustness under Uncertainty
	Preventing Failure in Uncertain Environments
	Conformant Planning
	Contingent Planning
	Markov Decision Processes
	Continual Planning

	Handling Plan Activity Failure
	Reactive Plan Repair and Replanning
	Plan Execution Monitoring
	Determinization with Replanning

	Conclusion

	Behavioural Design
	The Cargoworld environment
	Domain Predicates and Operations
	Failure Sources

	Agents within a Cargoworld MAS
	CAMP-BDI Behaviour
	Normal Agent Behaviour
	Behaviour to prevent Preconditions Failure
	Behaviour to prevent Non-deterministic Failure
	Distributed Maintenance Behaviour

	Summary

	CAMP-BDI Supporting Architecture
	Mental State Components within the BDI agent Model
	Capabilities
	Existing Approaches towards Capability Modelling
	Capability Model
	Typology
	Matching capabilities to activities
	Confidence estimation
	Calculating Plan Confidence

	Maintenance Policies
	Contents
	Matching to Activities
	Merging Policies

	Contracts
	CAMP-BDI specific fields
	Usage and Execution
	Contract Policies

	Conclusion

	The CAMP-BDI Maintenance Algorithm
	CAMP-BDI Agent Reasoning Cycle
	Maintenance Tasks
	Agenda Formation
	Task Consolidation

	Task Handling
	Forming Planning Operator Sets From Capabilities
	The Maintenance Planner Component
	Acceptable Plan Criteria
	Plan Insertion

	Preconditions Task Handling
	Effects Task Handling
	Running Example
	Preconditions Maintenance Task handling
	Effects Maintenance Task handling
	Effects Maintenance Task consolidation and handling
	Iterative Scope expansion in Maintenance

	Summary

	Distributed Maintenance
	Introduction
	Approach
	Synchronization and Communication Requirements
	Reasoning Cycle Methods

	Information sources in Distributed Maintenance
	External Capabilities
	Dependency and Obligation Contracts
	Maintenance Policies
	Forming and Updating Contracts

	Maintaining Obligations
	Obligation Maintenance Cost
	Maintaining Joint Obligations

	Maintaining Plans containing Dependencies
	Example Distributed Maintenance Behaviour
	Summary

	Experimental Evaluation
	Implementation
	Implementation of the Cargoworld Simulator
	Implementation of Experimental Systems

	Experimental Design
	Experimental Geographies
	Key Metrics
	Experimental Protocol

	Experimental Parameters
	Summary

	Experimental Results
	Delivery Success Rate
	Average Activity Success Rate
	Average Delivery Cost (Activities per Goal)
	Planning Operations Per Goal
	Planning Time Costs
	Messaging Costs
	Discussion
	Goal Success Rates and Activity Costs
	Planning Costs
	Messaging Costs
	Summary of Results
	Applicability of the CAMP-BDI approach

	Conclusion

	Applicability of CAMP-BDI
	General applicability
	Space Domains
	Transport Domains
	MAS Disaster Response Domains
	Further Industrial Application Domains
	Conclusion

	Conclusion
	Contributions
	Discussion
	Achievement of Research Aims and Objectives
	Relationship and dependencies between CAMP-BDI and BDI
	Requirements and Potential Generalization

	Related Work
	Further Work
	Asynchronous Maintenance
	Heterogeneous Planning
	Communications Optimizations
	Execution Context Prediction

	Appendices
	Cargoworld Simulator Screenshots
	World A
	World B

	Experimental Results
	Average Goal Achievement
	World A – Average Goal Achievement
	World B – Average Goal Achievement

	Average Activity Success Rate
	World A – Average Activity Success Rate
	World B – Average Activity Success Rate
	World A – Differences between CAMP-BDI.Speed and other Approaches
	World B – Differences between CAMP-BDI.Speed and other Approaches

	Average Delivery Cost
	World A – Average Delivery Cost
	World B – Average Delivery Cost
	World A – Differences between CAMP-BDI.Speed and other Approaches
	World B – Differences between CAMP-BDI.Speed and other Approaches
	Differences between CAMP-BDI.Quality and other Approaches

	Planning Operations Per Goal
	World A – Average Planning Operations Per Goal
	World B – Average Planning Operations Per Goal
	World A – Differences between CAMP-BDI.Speed and other Approaches
	World B – Differences between CAMP-BDI.Speed and other Approaches
	Differences between CAMP-BDI.Quality and other Approaches

	Planning Time Costs
	World A – Average Planning Operation Time
	World B – Average Planning Operation Time
	World A – Differences between CAMP-BDI.Speed and other Approaches
	World B – Differences between CAMP-BDI.Speed and other Approaches

	Messaging Costs
	World A – Average Messaging Costs
	World B – Average Messaging Costs
	World A – Absolute Messaging Costs
	World B – Absolute Messaging Costs
	World A – Absolute Message count differences with increasing nrisk
	World B – Absolute Message count differences with increasing nrisk
	Messaging Costs including updatedContract
	Messaging Costs excluding updatedContract

	Publications
	Bibliography

