Using Expressive and Flexible Action
Representations to Reason about Capabilities for

Intelligent Agent Cooperation

Gerhard Jiirgen Wickler

Ph.D.

University of Edinburgh
1999

Abstract

The aim of this thesis is to address the problem of capability brokering.
A capability-brokering agent receives capability advertisements from problem-
solving agents and problem descriptions from problem-holding agents. The main
task for the broker is to find problem-solving agents that have the capabilities to
address problems described to the broker by a problem-holding agent. Capability
brokering poses two problems: representing capabilities, for advertisements, and
matching problems and capabilities, to find capable problem-solvers.

For the representation part of the problem, there have been a number of
representations in Al that address similar issues. We review various logical rep-
resentations, action representations, and representations for models of problem
solving and conclude that, while all of these areas have some positive features
for the representation of capabilities, they also all have serious drawbacks. We
describe a new capability description language, ¢DL, which shares the positive
features of previous languages while avoiding their drawbacks. CDL is a decoupled
action representation into which arbitrary state representations can be plugged,
resulting in the expressiveness and flexibility needed for capability brokering.

Reasoning over capability descriptions takes place on two levels. The outer
level deals with agent communication and we have adopted the Knowledge Query
and Manipulation Language (KQML) here. At the inner level the main task is to
decide whether a capability description subsumes a problem description. In CDL
the subsumption relation for achievable objectives is defined in terms of the logical
entailment relation between sentences in the state language used within ¢cDL. The
definition of subsumption for performable tasks in turn is based on this definition
for achievable objectives. We describe algorithms in this thesis which have all
been implemented and incorporated into the Java Agent Template where they
proved sufficient to operationalise a number of example scenarios.

The two most important features of CDL are its expressiveness and its flexib-
ility. By expressiveness we mean the ability to express more than is possible in
other representations. By flexibility we mean the possibility to delay decisions re-
garding the compromises that have to be made to knowledge representation time.
The scenarios we have implemented illustrate the importance of these features
and we have shown in this thesis that ¢DL indeed possesses these features.

Thus, cDL is an expressive and flexible capability description language that
can be used to address the problem of capability brokering.

il

v

Acknowledgements

This work has been performed under a studentship funded as part of the O-Plan
project. The O-Plan project is sponsored by the Defense Advanced Research Pro-
jects Agency (DARPA) and Air Force Research Laboratory (Rome), under grant
number F30602-95-1-0022. The O-Plan project is monitored by Dr. Northrup
Fowler 111 and Mr. Wayne Bosco. The U.S. Government and the University of
Edinburgh are authorised to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation hereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing official policies or endorsements, either express or im-
plied, of DARPA, Air Force Research Laboratory, the U.s. Government, or the
University of Edinburgh.

I am also very grateful for the supervision I have received during my work
on this thesis. My principal supervisor was Austin Tate, who has overseen my
work for the whole period. Other supervisors included Alan Bundy, Louise Pryor,
Julian Richardson, and Brian Drabble, who were involved at various stages of this
thesis. Apart from my supervisors I have also received support from various other
people at the Department of Artificial Intelligence and the Artificial Intelligence
Applications Institute at the University of Edinburgh. Amongst these, I am
particularly grateful to Steve Polyak who, amongst other things, was the first to
read and comment on this thesis. Needless to say, any remaining mistakes are
my own.

vi

Declaration

I hereby declare that I composed this thesis entirely myself and that it describes
my own research.

Gerhard Wickler
Edinburgh
April 28, 1999

Vil

viii

Contents

Abstract

Acknowledgements

Declaration

1

Introduction: Capability Brokering

1.1 The Problem of Capability Brokering
1.2 Capability Brokering in Context
1.3 Criteria for Successo Lo

Capability Brokering: A Literature Survey

2.1 Software Agents
2.2 Modelling Capabilities with Logics
2.3 Actions in ATl Planning
2.4 Models of Problem Solving

Scenarios, Agents, and Messages

3.1 The Initial Scenario Lo
3.2 Inter-Agent Messages
3.3 More Complex Scenarios

A Capability Description Language: CDL

4.1 Problems for Capability Representations
4.2 Achievable Objectives
4.3 Performable Actions L oL
4.4 Other Properties oo
4.5 Examples

Algorithms and Implementation of cDL

5.1 Basic Capability Evaluation
5.2 Extended Capability Evaluation
5.3 Capability Retrieval in JAT

ix

iii

vii

12

15
15
28
39
52

65
65
72
79

85
85
91
106
114
117

6 Further Experiments and Results
6.1 Variations on the Expressiveness Scenario
6.2 Variations on the Flexibility Scenario
6.3 Performance Issues

7 Expressiveness of CDL
7.1 Why more Expressiveness?
7.2 Expressiveness of AR Languages
7.3 c¢bpL: An AR1 Language

8 Flexibility of cDL
8.1 Why Flexible Action Representations?
8.2 Defining and Implementing Flexibility

9 Related Work and Evaluation
9.1 Comparison with other Brokers

9.2 cbpL: Expressiveness and Flexibility
9.3 Other Domains oo

10 Conclusions
10.1 Possible Extensions
10.2 Summary

179
180
189
196

203
203
209
220

227
227
234

Chapter 1

Introduction: Capability
Brokering

The aim of this thesis is to address the problem of capability brokering.
For this purpose we will define a new capability description language
and show that it has two desirable properties: it is expressive and
highly flexible. The first step towards this goal must be a definition of
the problem addressed in this thesis. The contribution of this chapter
will be a characterisation of the problem of capability brokering and

its context, as well as criteria for a successful solution.

1.1 The Problem of Capability Brokering

In this section we will define the problem of capability brokering for
intelligent software agents, especially those that may be based on Al

planning technology. This is the main problem addressed in this thesis.

1.1.1 Rational Agents and Communication

One approach to achieving artificial intelligence is the rational agent approach
[Russell and Norvig, 1995, page 7]. In this approach, the field of Al is viewed as
the study and construction of rational agents. But what is a rational agent? Un-

fortunately there is no agreed answer to this question as yet. For example, Russell

1

2 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

and Norvig describe an agent as an entity that perceives and acts. Rationality

means that it acts to achieve its goals, given its beliefs.

A more precise characterisation of what an agent is can be found in
[Wooldridge and Jennings, 1995, page 116]. They identify four necessary proper-

ties of an agent which most definitions of agency seem to agree on:

e autonomy
e social ability
e reactivity

e pro-activeness

Social ability, the property we will be most concerned with, means that an
agent interacts with other agents (possibly humans) via some kind of agent com-
munication language. Pro-activeness means that an agent should be able to ex-
hibit goal-directed behaviour by taking the initiative. Pro-activeness corresponds
to rationality in Russell and Norvig’s characterisation above. Taken together,
pro-activeness and social ability imply that an agent should communicate not
with just any other agent, but specifically with those agents that can help it
achieve its goals. For an agent to achieve this behaviour, it will be necessary to
first find these other agents that can help it achieve its goals. Finding such agents

is part of the problem we are addressing in this thesis.

This problem is very similar to what [Davis and Smith, 1983, page 76] have
called the connection problem in distributed problem solving. One assumption
they are making is that the set of agents that exist is fixed. We will assume
here that an agent exists in a dynamic environment with other agents. As the
environment changes new agents might come into existence or existing agents
might disappear. Agent autonomy means that an agent has to operate without
the direct intervention of humans, i.e. that it has to find out by itself about other

agents that exist, specifically, agents that can help it achieve its goals.

1.1. THE PROBLEM OF CAPABILITY BROKERING 3

[Genesereth and Ketchpel, 1994, page 51] distinguish two basic approaches
to the connection problem: direct communication, in which agents handle their
own coordination and assisted coordination, in which agents rely on special sys-
tem programs to achieve coordination. Only the latter approach promises the

adaptability required to cope with the dynamic environment we envisage.

[Decker et al., 1997] have recently described a solution space to the connec-
tion problem based on assisted coordination. The special system programs for
coordination are called middle-agents in their analysis. They identify nine differ-
ent types of middle-agents depending on which agents initially know about cap-
abilities and preferences of agents. By a preference they mean meta-knowledge
about what types of information have utility for a requester. In a solution to
the connection problem in which capabilities are initially known to the provider
and the middle-agent only, and in which preferences are initially known to the
requester and the middle-agent only, the middle-agent is what they call a broker.
Capability brokering is the main problem addressed in this thesis.

The best known work in AI on agent communication is probably the
Knowledge-Sharing Effort [Fikes et al., 1991, Neches et al., 1991]. Part of this
effort involved the development of the Knowledge Query and Manipulation Lan-
guage (KQML), a high-level agent communication language which we will describe
in more detail in section 2.1.2.3. KQML, like most approaches to the connec-
tion problem, advocates assisted coordination through facilitators and mediators.
While the support offered by KQML for this task is still an active research issue,
especially for more complex agents [Kuokka and Harada, 1995b], the communic-
ation protocol outlined in the language definition does define the basic behaviour

a broker must exhibit.

1.1.2 Defining the Problem

Achieving the basic broker behaviour is what the problem of capability brokering

is all about.

4 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

Definition 1.1 The task of capability brokering is to assist other agents in

finding agents that can solve a given problem.

Capability brokering involves communication between different agents. For
a specific instance of this problem we shall distinguish three different types of

agents according to the roles they play for this problem instance:

1. The Problem-Solving Agents (PSAs): These agents provide the general cap-
abilities that may be called upon by other agents in order to solve their
problems. A PSA has to advertise its capabilities to the broker agent (see

below) and apply these capabilities when requested to do so by other agents.

2. The Problem-Holding Agents (PHAs): These agents have a problem that
they wish to have solved by utilising the capabilities of the PSAs. For an
instance of the connection problem there is usually only one PHA involved.
A PHA has to describe the problem to the broker agent (see below) and wait

for the broker to recommend agents that can help.

3. The Broker: The broker matches the problems of the PHA to the capabilities
of the PSAs such that the problems can be solved. It receives capability
advertisements from the PSAs and stores them. On receipt of a problem
description from a PHA it will use the stored capability descriptions to
retrieve one or more PSAs that can solve the given problem. Finally, the
broker has to either inform the PHA about the PSAs found or manage the

solution of the problem for the PHA by interacting with the PSAs directly.

The basic exchange of messages between the different agents that has to take
place for capability brokering is illustrated in figure 1.1. Since capabilities are
meant to be known by the PSA and the broker initially, it is necessary that the
PSAs first advertise their capabilities to the broker. Only once a capability has
been advertised to the broker can it be used to address the problem of some PHA.

At the time of brokering, problems are meant to be known by the PHA and the

1.1. THE PROBLEM OF CAPABILITY BROKERING 5

PSA PSA [PSA PSA

1. capability
descriptions

4. use caphilities

-—————
broker > orobiem PHA

description ‘

3. agent names (PSAS)

Figure 1.1: Basic message flow in capability brokering

broker and thus, the PHA has to inform the broker about its problem as it arises.
If a capability has been advertised to the broker that can be used to address
the given problem then the broker should retrieve this capability and inform the
PHA about this capability and the agent that has it. Finally, the PHA can use
the information from the broker to ask the PSA with the necessary capability to

tackle its problem.

As far as the broker is concerned, there are two relatively independent sub-

problems to capability brokering described in the above message exchange:

e Capability Storage: The broker has to store the capability descriptions
received by the PsAs. The most important question here is how capabilities

can be described or represented in a way that is useful to the broker.

e Capability Retrieval: The broker has to find PsAs that have the capab-
ilities required to solve the given problem. The most important question

here is how capability descriptions can be reasoned about.

Not all of the messages outlined above necessarily have to occur in this order.
The broker should receive at least some capability advertisements from PSAs
before it receives a problem from a PHA, but this is not a necessary condition.

In fact, capability advertisements from new PSAs could be sent at any time,

6 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

i.e. they need not be ordered with respect to the other messages. The remaining
messages, the problem description, the reply by the broker, and the utilisation of
the capability by the PHA, have to be synchronised though.

To summarise, the problem of capability brokering as defined in definition 1.1

is to achieve the behaviour of the broker outlined in the message exchange schema

above.

1.2. CAPABILITY BROKERING IN CONTEXT 7

1.2 Capability Brokering in Context

In this section we will characterise several types of context for capab-
ility brokering; we will look at the various combinations of these types
and evaluate each in turn to come up with the context for capability
brokering that will be used in this thesis. This discussion will clarify

what the problem of capability brokering is.

1.2.1 Types of Context

Capability descriptions only make sense in some context. Firstly, there needs
to be an agent which has a capability that one wants to describe, even if this
agent is only an abstraction in some cases. Capability descriptions are about
certain entities. Secondly, there needs to be an agent that wants to evaluate this
capability description, be it the described agent for reflective purposes or another

agent. We have called these two groups of agents PSAs and PHAs respectively.

The different agents are not the only context for a capability description
though. We will now look at additional kinds of context in which capability

descriptions can be found.

1.2.1.1 Common Languages and Expressiveness

We will make the assumption here that it is a necessary prerequisite for agents to
be able to communicate with each other in order to be able to work together. If
the PHA and the PSA “speak” a common language then communication is possible
in principle. A more general condition could be to require them to speak equally
expressive languages and to necessitate the existence of a translator. We see the
ability to communicate in a certain language as (a trivial) part of a capability

description.

8 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

1.2.1.2 Compile-Time vs. Run-Time Evaluation

Suppose the PHA is looking for a PSA that it wants to use in future to solve
a certain type of problem, i.e. the search is done only once. We will call the
evaluation of capability descriptions in this context evaluation at compile-time.
If the PHA is seeking a PSA every time is has a problem then we will call this

evaluation at run-time.

This distinction has two major effects on the capability description required.
Firstly, for evaluation at run-time there is a specific problem instance available.
To make use of this in the evaluation process the capability description must
include sufficient detail and can be expected to use mainly domain terminology.
A capability description intended for evaluation at compile-time might have a
different emphasis, i.e. it might contain more general information. Secondly,
the efficiency with which one expects the description to be evaluable can be
very different. Evaluation at compile-time may be slow as it is only done once.
Evaluation at run-time may, for example, need to be faster than the average time

it takes for the PSA to succeed or fail in an attempt to solve the problem at hand.

1.2.1.3 Agents with or without Domain Knowledge

Another distinction has to be made according to the type of PSA the capability
description describes: agents with or without domain knowledge. For example, a
general diagnostic agent does not have any domain-specific knowledge whereas a

medical diagnostic agent does.

The difference we would expect to see in the respective capability descriptions
for agents with or without domain knowledge is linked to the terminology used.
Descriptions of agents with domain knowledge will contain domain terminology;
they will focus on what problems the agent can address. Descriptions of agents
without domain knowledge cannot include domain terminology; they will focus

on how the problem is being solved.

1.2. CAPABILITY BROKERING IN CONTEXT 9

1.2.1.4 Coarse-Grained vs. Fine-Grained Agents

Finally, a PSA may be capable of solving the given problem completely. This
is what we call a coarse-grained agent as the problem grain-size it deals with is
the whole problem. If the agent only contributes a small step towards a solution
we will call this a fine-grained agent, as the problem grain-size it deals with is
very small. For example, an Al planner deals with a planning problem all at
once whereas a temporal constraint manager only deals with some part of this

problem. Notice that grain-size depends on the actual problem.

We expect to see that the main effect of this distinction in capability descrip-
tions lies again in the efficiency with which an evaluation is possible. Small steps
require relatively little time and the evaluation hence may need to be relatively
fast. But this is not the only effect; capability descriptions of fine-grained agents
must also include information about expected utility to aid the decision as to

whether the agent should be applied or not.

1.2.2 Combinations of the Criteria

What will a meaningful context for capability description and assessment look
like in terms of the above criteria? To answer this question, we will look at
different ways to combine the values the above criteria can take. We will not
consider expressiveness as the values this dimension can take are not known.
Grainedness is a dimension with a spectrum of values from complete problem

solvers to primitive inference actions and we will mainly consider these extremes.

e Evaluation at compile-time:

— Choosing from coarse-grained agents:

Whether or not the agent has domain knowledge is not important here.
The context here is that we are trying to select a problem solver from

a set of agents that can all individually deal with the type of problem

CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

we expect to have. This selection is to be made only once, i.e. for a
number of future problems.

Why do we need formal capability descriptions in this context? Firstly,
it seems questionable to develop a formal capability model for an agent
if this is only to be used for the initial choice. Secondly, as the exact
problems to be dealt with are unknown at the time the capability
description is evaluated, a realistic decision will often be based on
rather subjective criteria that are hard to model. We think that a

formal capability description in this context would offer little benefit.

— Choosing from fine-grained agents:

Again, the availability of domain knowledge is not important for the
argument here. In this context, the aim is to assemble a system from
the known capability components.

In general this context resembles the task of automatic programming.
Whereas it is a very worthwhile aim for capability descriptions, it
seems that it is also too ambitious at this point. Solving the problem
of automatic program generation is unlikely to be achieved solely by
developing better capability description languages. This context would

only be reasonable under certain assumptions about the solution.
e Evaluation at run-time:

— Choosing from agents without domain knowledge:
We will immediately dismiss this context as it seems unlikely to us that
there will be intelligent agents, be it components or complete problem

solvers, that do not have at least some domain knowledge at run-time.
— Choosing from agents with domain knowledge:

x Choosing from fine-grained agents:
The context here is that we have a PHA with a problem at hand

and a PSA that might potentially contribute to the solution of this

1.2. CAPABILITY BROKERING IN CONTEXT 11

problem. The aim of the capability description at this point must
be to aid in the decision as to whether this primitive inference
action should be applied next or not.

This context very much resembles the decision a search controller
is frequently faced with. Unfortunately, it appears that only highly
relevant and efficiently evaluable capability descriptions would be
useful here. As a generic capability description language is unlikely

to fulfill these criteria, this context does not seem promising.

* Choosing from coarse-grained agents:
The context here is again that we have a PHA with a problem
at hand, but this time we want to use the capability description
of other agents to chose one of them that can solve our problem
rather than just contribute to the solution. We believe that this is
a promising context for the development of a capability description

language.

The most fruitful context for the development of a capability description
framework by far seems to be the context in which the evaluation of the capab-
ility description takes place at run-time, the agents to choose from have domain

knowledge, and are coarse-grained, i.e. can solve the given problem.

12 CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

1.3 Criteria for Success

In this section we will discuss what it means to successfully address
the problem of capability brokering. The criteria for success described
here will be used for a critical evaluation of the work presented in this

thesis in chapters 6 and 9.

Addressing the problem of capability brokering means developing a broker
agent that shows the behaviour outlined above. That is, it has to process cap-
ability advertising messages and store described capabilities. Later, when a re-
quest to recommend a PSA for a given problem arrives, the broker has to search
through the capabilities previously advertised to find an appropriate capability
for the problem and forward this capability to the PHA. To show that a broker
actually achieves this behaviour, our first criterion for success shall be that we

can implement a working prototype of such a broker.

More specifically, we shall outline a number of scenarios in chapter 3 that
describe the messages the broker has to process and generate. We expect the
working prototype of the broker to be able to cope with all of these scenarios.
Furthermore, the broker should also be able to cope with at least a significant
portion of variations of these scenarios to show some degree of robustness. How-
ever, we do not expect the prototype implementation to be fully debugged and

tested or have a well developed user interface.

To be potentially useful in a realistic environment, it will be necessary for the
broker to satisfy certain performance criteria. Most critical here is the time it
takes the broker to respond to a request from a PHA, i.e. the capability retrieval
time. The question is what a reasonable response time is. This depends on the
time the PSA will take to solve the given problem. If the capability retrieval time
is at least an order of magnitude faster than the time the PsA will take to solve
the problem, the response time should be adequate. This shall be our criterion

for success regarding broker performance.

1.3. CRITERIA FOR SUCCESS 13

The criteria for success up to now have all been concerned with the practical
aspect of the work presented in this thesis. There is, however, a more theoretical

side and criteria for success in this respect need to be defined, too.

The theoretical part of the work described in this thesis centres around the two
properties we expect our capability description language to have: expressiveness
and flexibility. Fzpressivenessis a property that has been defined in a number of
ways for different representations. To show that our capability description lan-
guage is expressive we thus need to compare it to other knowledge representation
languages that were designed for the representation of similar types of entities.
Our criterion for success here is that our language should be at least as expressive

as most other languages in its class.

The story is quite different for the other property we claim our language to
have: flexibility. As far as we know there has never been an attempt to formally
define what is meant by flexibility. In fact, there are very few languages that have
this property. The main problem here is not how to define flexibility though, but
how to implement a language that has this property. There are a number of
issues arising in this context and our criterion for success here shall be that our
language addresses these issue in a way that compares favourably with other

flexible languages.

Finally, we need to say a few words about the brokering mechanism. We have
already defined one related criterion for success: performance, but this shall not
be enough. We also want to compare our broker with other generic brokers and
we expect that our broker should offer at least those features offered by the other
brokers that are required for capability brokering and our scenarios. This shall

be our final criterion for success.

14

CHAPTER 1. INTRODUCTION: CAPABILITY BROKERING

Chapter 2

Capability Brokering: A
Literature Survey

At this point the general problem of capability brokering that is to be
addressed in this thesis has been described and discussed. Our aim
15 to address this problem with a new capability description language
that will be expressive and highly flexible and can be used to reason
about capabilities. The next step towards this goal will be to investigate
how previous approaches to representing generic capabilities attempted
to do so. The contribution of this chapter will be a broad review of
approaches to representing and reasoning about knowledge similar to

the capability knowledge we need to represent.

2.1 Software Agents

In this section we will look at work in the wider area of intelligent soft-
ware agents and, more specifically, at approaches to capability broker-

ing found there.

An overview of this section, which provides a conceptualisation of the rela-
tionships between the different sub-fields and approaches/systems described in
this section, is given in figure 2.1. The figure also contains cross-links to other

areas. The most important work for this thesis reviewed in this section includes:

15

16 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

| 211DAI 211
—_—
2.1.2 2.1.2 Intelligent Software Agents 2.1.1 Classical DAI
(micro-level) (macro-level)
2.1.1 CONTRACT NET 2.1.1ETHER
2121Languages 21.2.1Architectures 2.1.2.1 Theories I T S
: g Y SRR i, 111 Connection problem
" 2122 Communication \
2122CYC 2122 KSE 2.1.3 Brokering 2.1.3
2.1.2.2KIF 2122KQML 2.1.3 Search engines 2.1.3 Knowledge-based brokers
51JAT 2.2.2 Modal logics 2.3.2 Ontologies
2.3 Planning 2.2.3 Meta-Knowledge 2.2.1 FOPL — subfield

—= system/approach
""" related work

Figure 2.1: Overview of this section

the connection problem defined in the work on the CONTRACT NET; the generic
agent communication language KQML; and the brokers described at the end of this

section. These areas are also highlighted in figure 2.1 to stress their importance.

2.1.1 Distributed Al

Intelligent software agents are often seen as part of a wider area of Distributed
Artificial Intelligence (DAI) [Bond and Gasser, 1988, Chaib-Draa et al., 1992,
Jennings, 1996], which motivates us to briefly consider this area first. DAI is
the subfield of AI that is interested in concurrency in AI computations. Its main
concerns have been distributed problem solving, i.e. how the task of solving a par-
ticular problem can be divided amongst a number of available problem solvers,
and multi-agent systems, i.e. how a collection of autonomous intelligent agents
can coordinate their knowledge, goals, skills, and plans jointly to take action or

to solve problems.

DAT has not been very concerned with the problem of capability brokering. As
pointed out in [Wooldridge and Jennings, 1995, page 142], the classical emphasis
in DAI has mostly been on the macro-level, i.e. on social phenomena and the

emergent behaviour of a group of problem solvers. This level is of little interest

2.1. SOFTWARE AGENTS 17

to us in this thesis. Research in intelligent software agents emphasises the micro-
level, i.e. the architecture and theories of individual agents. The latter is where
the problem of capability brokering has been addressed previously and at which

we will look in section 2.1.2.

Two architectures that grew out of DAI are worth mentioning here. Firstly,
there is the CONTRACT NET [Smith, 1977, Davis and Smith, 1983]. In the CON-
TRACT NET architecture a given problem is first decomposed into sub-problems.
These sub-problems are treated as contracts and a process consisting of con-
tract announcement, bidding, and contract awarding is used to distribute prob-
lem solving. This process of negotiation, i.e. the extensive and explicit use of
communication to distribute the problem (cf. section 2.1.2.2), was an important
contribution of this work. Another contribution was the definition of the connec-
tion problem [Davis and Smith, 1983, page 76] which is essentially the problem

we are addressing in this thesis (cf. section 1.1.1).

Secondly, there is ETHER [Kornfeld, 1979, Kornfeld, 1981], a pattern-directed
invocation formalism for parallel problem solving. ETHER provides a PLANNER-
like language where procedure invocation is driven by pattern matching. Unlike in
previous approaches, control over the distribution is not in the hands of the user.
Instead, the patterns are used to distribute the problem-solving process. The
basic mechanism for the distribution is by broadcasting of patterns. Nowadays
virtually all generic brokers use patterns to distribute the problem-solving process
(cf. sections 2.1.3 and 9.1), but the specifics of ETHER are not used anymore which

is why we will not look at it any further.

2.1.2 Intelligent Software Agents

Intelligent software agents have recently received a lot of attention within Al
[Russell and Norvig, 1995, Bradshaw, 1997, Huhns and Singh, 1998]. However,
the definition of agent is elusive, i.e. there is still considerable lack of consensus

on what exactly an agent is or what the research questions are that need to be

18 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

addressed. An overview of possible definitions of agency and a comprehensive
structuring of the field has been presented in [Wooldridge and Jennings, 1995]
and we shall mostly adopt their approach. They distinguish agent theories, agent

architectures, and agent languages as the three major subfields of agent research.

2.1.2.1 Languages, Architectures and Theories

Firstly, the subfield of agent languages is mainly concerned with tools that al-
low one to program hardware or software computer systems using the concepts
developed in agent theories as outlined below. Such tools include, for example,
the Agent Behaviour Language [Wavish, 1992], the agent-oriented programming
paradigm [Shoham, 1993], or Concurrent METATEM [Fisher, 1994]. As this area
is not concerned with the representation of and reasoning about capabilities, we
shall not dwell on it here. We have, however, chosen the Java Agent Template
(JAT) to implement the agents to be presented in this thesis and we will describe
JAT in section 5.3 in only as much detail as necessary. The particular choice of
JAT is of little relevance as none of the tools mentioned above support brokering

of capabilities in any way.

Secondly, the subfield of agent architectures is concerned with issues sur-
rounding the construction of computer systems that satisfy the properties spe-
cified by agent theories (below). The classical approach in Al is the deliber-
ative architecture based on the physical symbol system hypothesis, i.e. an ar-
chitecture that contains an explicitly represented, symbolic model of the world
[Newell and Simon, 1976, Russell and Norvig, 1995]. The main alternative to the
deliberative approach is the reactive approach based on the so-called subsump-
tion architecture [Brooks, 1986, Brooks, 1991]. Finally, a number of hybrid ap-
proaches to agent architectures have also been attempted. However, none of these
architectures explicitly supports capability brokering. Since deliberative agents
will need to take well-planned actions it is often assumed that such an agent

should be based on AI planning technology [Wooldridge and Jennings, 1995, page

2.1. SOFTWARE AGENTS 19

131]. We will look at AI planning more closely in section 2.3 and at existing agents

using a planner specifically in section 2.3.4.

Finally, formal agent theories are essentially specifications for agents where
an agent is described as an intentional system that has beliefs, desires, etc.
[Seel, 1989]. Agent theories can be seen as representational frameworks for
such attitudes. The dominant approaches are based on modal logics (cf. sec-
tion 2.2.2) and meta-languages (cf. section 2.2.3). The former lead to the ad-
option of the possible worlds semantics which has been used to define what
it means for an agent to know something and to reason about knowledge and
belief [Hintikka, 1962, Kripke, 1963]. Various alternatives were also developed
to avoid the problem of logical omniscience [Levesque, 1984, Konolige, 1986].
Similarly, but to a lesser extent, there have been logics of goals or desires
[Cohen and Levesque, 1990, Wooldridge, 1994]. Although these approaches have
addressed many attitudes of agents, there remains the problem of integrating
them into one framework for an all-embracing agent theory. The issue in agent
theories we shall be most concerned with here is that of agent communication

which also addresses the connection problem.

2.1.2.2 Agent Communication

At least two major efforts are currently under way which both assume knowledge

sharing to be the key to successful agent communication and cooperation.

The first effort addressing the agent communication problem is the CYC pro-
ject [Guha and Lenat, 1990, Guha and Lenat, 1994, Lenat, 1995]. The basic idea
here is that agents need to have a large amount of commonsense knowledge be-
fore they can intelligently work together. Since the CyC researchers believe that
commonsense knowledge cannot be learned automatically without having a large
body of it in the first place, most of the work in Cyc has been on hand coding
such knowledge and on developing large ontologies using micro-theories. We shall

return to the issue of ontologies in section 2.3.2.

20 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

The second major effort addressing the agent communication problem is
the ARPA Knowledge Sharing Effort [Fikes et al., 1991, Neches et al., 1991,
Genesereth and Ketchpel, 1994]. They envisage a generic agent communication
language as consisting of three parts: the vocabulary, the inner language which
carries the content that is being communicated, and the outer language which
represents mainly the speech act that this message represents. The vocabulary
is to be defined within one or more ontologies that will be shared by the commu-
nicating agents [Gruber, 1993b, Gruber, 1993a, Farquahar et al., 1996]. Again,
we shall return to the issue of ontologies in section 2.3.2. A generic knowledge
representation language called KIF [Genesereth, 1991, Genesereth et al., 1992] to
and from which all other content languages should be translatable has been sug-
gested for the content to be communicated, including the content of messages

about capabilities (cf. section 2.1.3).

2.1.2.3 The Knowledge Query and Manipulation Language

Research on the outer language mentioned above (section 2.1.2.2) has resulted
in the definition of the Knowledge Query and Manipulation Language (KQML)
[Finin et al., 1992, Finin et al., 1997, Labrou and Finin, 1997]. All the agents de-
scribed in this thesis use KQML for inter-agent communication and, hence, it is

necessary to describe KQML in some detail at this point.

The syntax of KQML is simply based on a balanced parenthesis list. The first
element in this list represents the performative of this message!. The performative
indicates the type of speech act this message is. For example, the performative
ask indicates a question being asked and the performative tell indicates a state-
ment being made. For each performative in KQML there is also a protocol that
defines with which type of messages other agents should reply to this message,

if any.2 For example, there should always be a reply to an ask-message and the

! In the literature on KQML and speech acts the term performative is sometimes also used to
refer to the whole message.
2 There is currently no agreed formal semantics for KQML available [Cohen and Levesque, 1995].

2.1. SOFTWARE AGENTS 21

performative of this reply message should be tell. Although there is a set of
predefined performatives in KQML it is not meant to be binding. Agents may
choose to use this set or invent their own performatives. They may also choose
not to implement certain predefined performatives. However, if a predefined per-
formative is used it should be used with the protocol for this performative defined

in the KQML specification.

The performative is followed by a number of keyword-value pairs. Again,
there is a number of predefined keywords like :sender or :content that all have
a fairly obvious meaning. For example, the value following the keyword :sender
should be the name of the agent sending this message and the value following
the keyword :content should be the actual content of the message. The content
of a KQML message is meant to be opaque to the message, i.e. an interpreter is
not supposed to inspect the content while interpreting the message. However,
in interpreting a KQML message it is necessary to decide where the content ends
and thus, it is necessary to look at the content at least for this. There are also
a number of fairly obvious constraints between the different parts of a KQML
message. For example, if the language field names a specific content language

then the content should be in this language.

KQML, like most approaches to the connection problem, advocates assisted
coordination through agents called facilitators and mediators. A facilitator in
KQML is an agent that performs various useful communication services. One of the
main services offered by a facilitator is to help other agents find appropriate clients
and servers. How client and server agents can find the facilitators is a problem
to which KQML does not prescribe a solution. Neither is the mechanism to be
used by the facilitators to find appropriate servers for clients specified in KQML.
However, there are a number of related performatives and protocols for these
performatives that can be seen as the definition of an interface to the facilitators.
This interface definition is one of the most important contributions of KQML as far

as capability brokering is concerned. Some of the most important performatives

22 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

e advertise: With this performative the sender informs the receiver
(which should be the facilitator) that the sender is willing and able
to process certain messages. KQML specifies that the processable mes-
sage being advertised is given as the content of this message, i.e. the
content is a KQML message again. Furthermore, the performative of the
content message should be one of a limited set and there are certain
basic constraints on the sender and receiver of the advertisement and
embedded message. No reply message is required.

e subscribe: With this performative the sender informs the receiver
(which should be the facilitator) that it wants to be updated every time
that the would-be response to the content message is different from the
last response to the sender of this message. Thus, like for advertise
the content must be a KQML message and similar constraints apply. In
response, the facilitator should send one reply to the embedded message
immediately and further messages as they occur.

e recommend-one: With this performative the sender informs the re-
ceiver (which should be the facilitator) that it wants to know about one
agent that has advertised that it will process the message given as the
content of this message. The expected reply to this message is a mes-
sage with the performative forward, the content of which should be an
advertising message. The content of this recommend-one message and
the advertise message should be identical.

e recommend-all: This performative is like recommend-one, only that
the reply should name all the agents that have advertised to process the
given content message.

e broker-one: Again, this performative is like recommend-one in its form.
The difference is that with this performative the sender asks the facilit-
ator to find an agent that can process the given message and then send
it the given message. If there will be a reply to this message, this reply
should be forwarded to the sender of the broker-one message.

e recruit-one: Again, this performative is like recommend-one in its
form. The difference is that with this performative the sender asks
the facilitator to find an agent that can process the given message and
then send it the given message. The difference to broker-one is that
any reply should go directly to the sender of the recruit-one message
rather than through the facilitator.

Table 2.1: KQML facilitation performatives [Labrou and Finin, 1997]

2.1. SOFTWARE AGENTS 23

for brokering in KQML are described in table 2.1. As mentioned above, all the
agents described in this thesis use KQML for inter-agent communication and thus,
many example messages using these performatives will follow in the remainder of

this thesis.

One issue worth noting at this point is that KQML requires the content of an
advertisement to be identical to the content of the capability-seeking message.
This is very restrictive and, as we shall see, most existing brokers ignore this part

of the KQML specification and provide a more sophisticated matching service.

2.1.3 Brokering Agents

Returning to the connection problem, which is the main problem of capability
brokering, [Genesereth and Ketchpel, 1994] distinguish two basic approaches to
this problem: direct communication, in which agents handle their own coordina-
tion and assisted coordination, in which agents rely on special system programs
to achieve coordination. ETHER and the CONTRACT NET, both described in sec-
tion 2.1.1, fall into the first category. The facilitation approach defined in KQML
falls into the second category and this is currently the dominant approach in

intelligent agent research.

Before we turn to a survey of existing brokers that facilitate assisted co-
ordination, it is also worth noting that a kind of brokering has been per-
formed on the Internet for some time now by search engines [Witten et al., 1994,
Howe and Dreilinger, 1997]. However, most search engines match requests, usu-
ally only consisting of a few keywords, to text pages on the Internet. The match-
ing is essentially based on a reverse word frequency count algorithm?® and can
hardly be called knowledge-based. This is not the kind of brokering we are inter-

ested in here.

Various terms have been used for the special system programs on which as-

sisted coordination relies, some of which we have used in this review, e.g. facil-

3 Actually, there are also other techniques which are being used in search engines, but none of
them is based on what can be considered an understanding of the retrieved document.

24 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

preferences
wnitially capabilities initially known by
known by
. provider +
provider only Prov1der + middle +
middle agent
requester
requester only (broadcaster) “front-agent” maftchmaker/

yellow-pages

requester +

middle agent anonymizer broker recommender
requester + rod /
i introducer
middle + blackboard arbitrator
bodyguard

provider

Table 2.2: Middle-agent roles; from [Decker et al., 1997, page 579]

itator or broker. [Decker et al., 1997] have recently suggested a categorisation
of what they call middle-agents. They use the term middle-agent to mean any
special system program used in assisted coordination. They distinguish different
kinds of middle-agents according to where preference and capability knowledge
resides. Preferences are meta-knowledge about what types of information have
utility for a requester and capabilities are meta-knowledge about what types of
requests can be serviced by a provider. The table summarising their categorisa-
tion is repeated here in table 2.2. According to this categorisation, in a scenario
in which the capabilities of problem-solving agents are initially only known to the
provider and the middle-agent and the problem of the problem-holding agent are
initially only known to the requester and the middle-agent, the middle-agent is

called a broker.

Brokers are the kind of middle-agent we are most interested in looking at in
this thesis. We shall now briefly review some brokers that use explicit represent-
ations as the basis for brokering. A detailed comparison of these brokers with the

broker developed in this thesis will follow in section 9.1.

2.1. SOFTWARE AGENTS 25

2.1.3.1 The aABsI Facilitator

One of the earliest middle-agents that can be considered to be a broker in
the above sense is the Agent-Based Software Interaction (ABSI) facilitator
[Singh, 1993a, Singh, 1993b]. This broker is meant to be used in a system of
agents operating in the ABSI architecture [Genesereth and Singh, 1993] and is
based on a variant of an early specification of KQML [Finin et al., 1993]. For the
facilitator to perform its brokering service, agents must first notify the facilitator
of the KQML messages they can process, i.e. they must advertise their capabilities.
One important restriction imposed by the ABSsI facilitator is that agents must not
advertise that they can handle a message which they might subsequently fail to

process.

The ABsI facilitator provides performatives for package forwarding, informa-
tion monitoring, and content-based routing. Content-based routing is basically
what we have called capability brokering in section 1.1.2. Of the KQML broker-
ing performatives described in table 2.1, the ABSI facilitator essentially supports
advertise and broker-one. Capabilities are represented by KQML messages as
defined in the KQML specification. The content of these capability-representing
KQML messages must be in KIF. For capability retrieval, the content of a
capability-seeking message and the capability advertisement need not be identical
for them to match, as the KQML specification would require. Instead a kind of uni-
fication defined by meta-descriptions in the KIF manual [Genesereth et al., 1992]
is used to match capabilities and preferences. Additionally, a Prolog-based in-
ference engine can be used to evaluate additional conditions on the matched

meta-variables.

2.1.3.2 SHADE and COINS

Two other brokers based on the KQML protocol are the SHADE and COINS match-
makers [Kuokka and Harada, 1995a, Kuokka and Harada, 1995b]. These brokers

are implemented entirely as a declarative rule-based program within the MAX

26 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

forward-chaining agent architecture [Kuokka, 1990]. As opposed to the ABsI fa-
cilitator, it is assumed that SHADE and COINS will make false positive and false
negative matches. Thus, part of the work on these brokers was on addressing the

problem of recovery after such a false match.

Both, SHADE and COINS, support the full range of KQML performatives de-
scribed in table 2.1 and more. The difference between SHADE and COINS lies
in the capability representations they can handle. In both cases, capabilities
are represented as KQML messages, but SHADE works over a formal, logic-based
content language and COINS operates over free-text information. Thus, COINS
is effectively what we have called a search engine above. SHADE expects either
KIF [Genesereth et al., 1992] or MAX [Kuokka, 1990] augmented to support string
patterns as terms for its content language. MAX is more appropriate for repres-
enting highly structured data such as objects or frames. The actual matching of
capabilities and preferences is performed by a Prolog-like unification algorithm.
Advertisements and requests must match based solely on their content; there is
no knowledge base against which inference is performed. Limited inference for

future versions is envisaged though.

2.1.3.3 InfoSleuth

The aim of the InfoSleuth project [Bayardo et al., 1997, Nodine and Unruh, 1997,
Nodine et al., 1998] is to develop technologies that operate on heterogeneous in-
formation sources in an open, dynamic environment. To achieve this flexibil-
ity and openness, InfoSleuth integrates agent technology, ontologies, information
brokerage, and Internet computing. InfoSleuth’s architecture is comprised of a
network of cooperating agents communicating in KQML. One of these agents
is the broker agent which receives and stores capability advertisements from all
other InfoSleuth agents. The task of the broker agent is to provide a semantic
match-making service that pairs agents seeking a particular service with agents

that can perform that service.

2.1. SOFTWARE AGENTS 27

Minimally, every agent must advertise to the broker its location, name, and
the language it speaks. Queries must be in KQML using KIF as the content lan-
guage and “InfoSleuth” as the ontology. Matching is performed as an intersection
function between the user query and the data resource constraints in the capabil-
ity advertisement. The way this works is that KIF sentences, that are the content
of capability advertisements and user queries, are translated into the deductive

database language LDL++ [Zaniolo, 1991] and maintained in such a database.

Most Important Issues Here

e The work on the CONTRACT NET described in section 2.1.1 gave us the

connection problem which is basically the problem addressed in this thesis.

e The inter-agent communication language KQML described in section 2.1.2.3
is probably the most advanced language for this purpose and used for all

agents developed in this thesis.

e The KQML-based brokers described in section 2.1.3 perform essentially the
same task as the broker that will be described in this thesis and a detailed

comparison will follow in section 9.1.

28 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

2.2 Logics

221 224
........... // \

1221FOPL: 2.2.4 Terminological logics

:2.2.1 Situation Calculus ' 2.2.1 Ability o ©2.2.4 Expressiveness -
..... -............4...... 2.3.20ntolog|es '...........-:4........
2.2.2 / 6 Expressiveness of CDL

2.2.2 Advanced logics

) W \ 223

2.2.2 Non-monotonic ~ 2.2.2 Modal 2.2.2 Dynamnic

- 2.2.3MetaKnowledge
21.2.2KIF 24.12ML2 e ' 2.2.3.1 Typologies 2.2.3.1 Applications
2.3.1 Planning formalisms 2.1.2.1 Agent theories 2.2.3.2 Search control 2.2.3.1 Competence

& T

2.2.3.2 Applications 2.2.3.3 Learning

—® subfigd N

= system/approach ©2.2.3.3 Utility Problem’
...... rdatwwork

Figure 2.2: Overview of this section

2.2 Modelling Capabilities with Logics

In this section we will look at how some logics have been or could be

used to represent the capabilities of intelligent agents.

An overview of this section, which provides a conceptualisation of the relation-
ships between the different sub-fields and approaches/systems described in this
section, is given in figure 2.2. The most important areas for our work introduced
here are: first-order logic which can be seen as a generic knowledge representa-
tion formalism and has been used to represent actions in the situation calculus;
representations for meta-level knowledge and the closely connected utility prob-
lem; and the theory of expressiveness developed for terminological knowledge

representations.

2.2.1 First-Order Predicate Logic

A generic knowledge representation formalism such as first-order predicate lo-

gic (FOPL) [Chang and Lee, 1973, Loveland, 1978, Gallier, 1986] might well have

2.2. MODELLING CAPABILITIES WITH LOGICS 29

turned out to be sufficient for representing and reasoning about capabilities,
i.e. what we want to do in this thesis. Advantages of FOPL include its well-defined
semantics and the fact that it is probably the best-researched knowledge repres-
entation formalism in AT and beyond. This is certainly good enough a reason for
us to begin our review of logics as capability representations with FOPL. Further-
more, KIF (cf. section 2.1.2.2), which is supported as a content language by most

brokers (cf. section 2.1.3), is essentially a variant of FOPL.

Representations of capabilities in FOPL have been attempted in early ap-
proaches to reasoning about actions, e.g. [Green, 1969]. One of these early ap-
proaches is the situation calculus [McCarthy and Hayes, 1969, Shanahan, 1997]
which has actually been an active topic of Al research for more than three decades
now. However, its main concern has not been with reasoning about capabilities
but with reasoning about actions in general, which can be seen as a much broader

area than reasoning about capabilities for brokering.

Very briefly, the ontology of the situation calculus is made up of situations
which can be thought of as snapshots of some world; fluents, which take on
different values in different situations and can be thought of as time-varying
properties; and actions, which can be executed to change the value of fluents. The
atomic formula Holds(f, s) is used to denote that the fluent f is true in situation
s. Note that the fluent f, although it might look like an atomic formula, is a
term, i.e. it represents an object in the domain represented. The function term
Result(a, s) is used to denote the situation obtained by executing the action a
in the situation s. Sentences in first-order logic called effect axioms can now be

written to represent the effects and preconditions of actions.

Unfortunately the effect axioms alone turn out to be epistemologically in-
adequate and further so-called frame axioms are needed in the representation,
leading to the frame problem in AI [Hayes, 1974, page 69], [Shanahan, 1997].
Furthermore, the representation of fluents as objects in the domain seems counter-

intuitive. In summary, the strong point of the situation calculus has traditionally

30 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

been the theoretical framework it provides for the representation of actions based
on a well-defined semantics.* A number of more direct action representations
which also address the frame problem have been proposed in ATl and we shall re-
view some of them in section 2.3.1. Still, the situation calculus remains a highly
expressive action representation with probably the clearest semantics of any such

representation.

McCarthy and Hayes’ original work was not limited to the representation
of and reasoning about actions and their effects, but also included the general
concept of ability [McCarthy and Hayes, 1969, pages 470-477]. In this work, they
have attempted to formalise what it means for an agent to be able to do some-
thing by defining a predicate can(p, 7, s) meaning “agent® p can bring about the
condition 7 in situation s.” The interesting result here is, as they point out,
that it is not at all clear what this proposition means. However, although highly
relevant for the epistemological underpinnings of our work, we shall not go into

the philosophical problems entailed here.

2.2.2 Advanced Logics

Since we have mentioned the situation calculus and the frame problem, it is
also worth noting that there is a group of logics that have been mainly de-
veloped to address this problem. These logics are referred to as nonmono-
tonic logics [Ginsberg, 1987, Brewka, 1991], [Davis, 1990, section 3.1]. The
classic approaches here are Default Logic [Reiter, 1980] and Circumscription
[McCarthy, 1980b, McCarthy, 1980a]. However, as these approaches address the
problem by changing the inference mechanism rather than fundamentally chan-
ging the representation, they are of little interest to us and we shall not look at

them further here.

4 Recent work described in [Gruninger and Fox, 1994, Gruninger et al., 1997] addresses some
practical aspects of reasoning with a formal situation calculus.

® They are looking at a world of interacting discrete finite automata for which we will use the
term agent here.

2.2. MODELLING CAPABILITIES WITH LOGICS 31

Many approaches to agent theories (cf. section 2.1.2.1) are based on modal lo-
gics [Chellas, 1980, Chagrov and Zakharyaschev, 1997], [Davis, 1990, section 2.7]
and the possible worlds semantics [Hintikka, 1962, Kripke, 1963] and thus, we
shall have a look at these logics next. Agent theories are specifications of agents.
These specifications can be used by agents to reason about other agents. Our

aim is to reason about the capabilities of other agents.

A modal logic augments a calculus, e.g. predicate calculus, with a number of
operators, called modal operators, that take sentential arguments. Modal oper-
ators are usually non-extensional, i.e. they do not commute with quantifiers, or
are referentially opaque. The semantics of a modal language is based on Kripke
structures which consist of a collection of possible worlds, connected by an access-
ibility relation. We say a possible world W is accessible from a possible world
W, in a Kripke structure if they are connected by the accessibility relation. In
each possible world, a sentence in modal logic can be either true or false, i.e. a

sentence may have different truth values in different possible worlds.

For example, in propositional modal logic the truth values of propositions can
vary across different possible worlds. Propositions can be connected with the
usual connectives (e.g. negation, conjunction, disjunction) to form more complex
sentences. The only syntactical extension is the introduction of usually two new,
dual types of sentences: OA (necessarily A) and A (possibly A), where A is
again a sentence in modal logic. The informal semantics is that OA is true in
a possible world W if and only if A is true in every possible world accessible
from W and that A is true in a possible world W if and only if A is true in at
least one possible world accessible from Y. Other modal operators may also be

defined.

Modal logics have been used in agent theories mostly to reason about the
knowledge of other agents [Wooldridge and Jennings, 1995, section 2]. This is
done by interpreting OA as a modal knowledge operator, i.e. an agent knows A if

in every world that is consistent with its knowledge, A is true. Reasoning about

32 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

knowledge using modal logics was probably first comprehensively integrated into

a framework for reasoning about actions by [Moore, 1985].

A further extension of modal logics are dynamic logics [Harel et al., 1982,
Harel, 1984]. Dynamic logics were developed to reason about programs and their
executions. Syntactically, the only change from normal modal logic is that OA is
replaced by [a]A and O A is replaced by () A, where « is a program. A program
implicitly defines an accessibility relation, i.e. only those worlds are accessible
that are possible states after the execution of the program. [«]A is then defined
as true in W if and only if A is true in every possible world accessible from W
with the accessibility relation defined by «, i.e. if A is necessarily true after the

execution of «.

A program is a sequence of performable actions and thus, programs can be
seen as capability descriptions. This means that dynamic logics are the first
logics introduced here that explicitly include capabilities in the form of programs
in their ontology. However, representing knowledge in and automated reasoning
over dynamic logics has proven not very practical and thus, we shall not pursue

this path any further.

2.2.3 Meta-Level Knowledge

Experiments in [Larkin et al., 1980, Chi et al., 1981], and other work described in
[Barr, 1979, Anderson, 1981], have shown that experts in a field often do not have
more domain knowledge than novices, but instead they use this knowledge more
efficiently; they have more meta-knowledge. Being an expert in a domain means
to be more competent in this domain or, to be more capable of solving problems
in this domain. Thus, there is a strong correlation between the availability of
meta-knowledge and capability or competence in a domain. Similar arguments
can be found in [Laske, 1986, Lecoeuche et al., 1996, VanLehn and Jones, 1991].
We have argued in [Wickler and Pryor, 1996] that available meta-knowledge can

be re-used for competence assessment. The emphasis here is on the re-use aspect

2.2. MODELLING CAPABILITIES WITH LOGICS 33

which would make this approach very attractive to our aims as it could save us a
lot of work. Thus, we shall now look at meta-knowledge and its representations

to see whether this knowledge can be re-used for capability brokering.

2.2.3.1 Types of Meta-Level Knowledge

A number of classifications of meta-level knowledge have been attempted. For
example, an early classification by [Davis and Buchanan, 1977] distinguishes
schemata for reasoning about objects, function templates for reasoning about
functions, rule models for reasoning about inference rules, and meta-rules for
reasoning about strategies. In [Lenat et al., 1983] there is not so much a categor-
isation of meta-knowledge, but instead they give a number of examples where
such knowledge is being used. These examples include meta-knowledge: for rule
selection; to record needed facts about knowledge; for rule justifications; to de-
tect bugs; etc. The last example they give concerns meta-knowledge to describe a
program’s abilities. Unfortunately they do not describe a representation for this
type of meta-knowledge. Similarly, [Maes, 1986 argues that meta-level know-
ledge is needed for introspection and classifies it by the tasks it is needed for,
e.g. in assumption-based reasoning, in learning, in handling inconsistent, incom-
plete, and uncertain knowledge etc. This shows that there is a need for explicit

meta-knowledge in knowledge-based systems.

There are also a number of ezamples of systems that have used explicit meta-
knowledge for a number of purposes. For example, [Filman et al., 1983] describe
several experiments using meta-language and meta-reasoning to solve problems
involving belief, heuristics, and points of view; [Attardi and Simi, 1984] describe
a meta-language for reasoning about logical consequence; [Ginsberg, 1986] de-
scribes a meta-level framework for the construction of knowledge base refinement
systems; [Haggith, 1995] describes a framework for reasoning about conflicts in
knowledge bases. Many other systems using explicit meta-knowledge do exist

(cf. [Maes and Nardi, 1988]). This illustrates the availability of meta-knowledge

34 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

in knowledge-based systems.

Of particular interest to us is work on using meta-knowledge for competence
assessment [VoB et al., 1990] as this is directly related to capability retrieval.
One of their aims was to develop a system that knows when it cannot solve a
given problem without having to fail in an attempt to solve it. For this task
they extended their problem solver with a number of reflective modules that
performed some simple tests. The representation of knowledge in the reflective
modules is procedural rather than declarative though, and the modules work for
configuration tasks only. Furthermore, competence assessment was internal to the
developed system and no external broker-like agent could perform the competence

assessment.

Up to this point, there have been few approaches which use meta-knowledge to
represent capabilities and certainly no solution that could be used for capability

brokering, as we had hoped.

2.2.3.2 Search Control Knowledge

Although many different uses for meta-level knowledge have been suggested there
has been one area where the use of meta-knowledge has had the largest impact:
search control [Davis, 1980, Bundy and Welham, 1981, Georgeff, 1982]. The idea
here is that spending some time on where one is going to search in a large search
space is more efficient than just searching. As mentioned above (page 32), experts
in a domain often distinguish themselves from novices not by having more relevant
domain knowledge, but by using it more efficiently. This suggests that the kind
of meta-knowledge that is strongly correlated to capability knowledge as we need
to represent it is, in fact, search control knowledge. Thus, we shall now look
at search control knowledge to see whether this knowledge can be re-used for

capability brokering.

There are a number of domains for which search control knowledge has been

found and employed. For example, [Bundy et al., 1979] describe a system that

2.2. MODELLING CAPABILITIES WITH LOGICS 35

uses meta-level inference to solve mechanics problems; [Wilkins, 1982] uses meta-
knowledge to control search in chess; [Minton et al., 1985] have used explicit
search control knowledge in parsing; [Murray and Porter, 1989] have used know-
ledge to control search for consequences of new information during knowledge
integration. Planning is of particular interest to us (cf. section 2.3.1) and there
are a number of planners that use sophisticated search control techniques®. For
example, [Tate, 1975] describes in his Ph.D. thesis how the structure of a given
goal and its sub-goals can be exploited to control search; [Croft, 1985] examines
in his work what exactly the choice points are during planning and develops
heuristics to control search at these points; [Fox et al., 1989] view planning as a
constraint satisfaction problem and develop the concept of problem texture that

is meant to aid in controlling search.

Thus, there exists a large body of search control knowledge that might
be re-usable as capability knowledge. However, a closer inspection of the ap-
proaches described above reveals that the search control knowledge is often built
into the system to maximise efficiency, i.e. it is represented only implicitly. In
[Wickler and Pryor, 1996] we have attempted to re-use this implicitly represen-
ted search control knowledge to assess competence. However, our aim here is an
explicit capability representation and the implicitness of the above search control
knowledge is unlikely to provide us with insights as to how to represent capabil-

ities.
2.2.3.3 Learning Search Control Knowledge

What we are looking for at this point are systems that contain explicitly repres-
ented search control knowledge that can be re-used for capability brokering. Most
systems that learn search control knowledge belong to this group. This is because
techniques from symbolic machine learning are often aimed at constructing an

explicit representation of what they are trying to learn. If this learned search

6 To avoid confusion here, the term meta-planning has been introduced by [Wilensky, 1981]
but does not refer to the use of explicit meta-knowledge to control search in planning.

36 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

control knowledge could be re-used for capability brokering it would have the
added advantage that we would not even have to find the knowledge ourselves.

Thus, we shall now look at systems that learn search control knowledge.

Two general problem-solving architectures have been used to investigate
this possibility: SOAR [Laird et al., 1987, Rosenblum et al., 1993] and PRODIGY
[Minton et al., 1989, Carbonell et al., 1992, Veloso et al., 1995]. The basic learn-
ing algorithms in SOAR are chunking and learning from outside guidance
[Golding et al., 1987]. In PRODIGY explanation-based learning has been applied
to learn explicit search control rules [Minton and Carbonell, 1987]|. Explanation-
based learning is a technique that has also recently been applied to learn-
ing search control rules for a SNLP-like planner [Kambhampati et al., 1996].
The results described there are rather promising as far as the speed-up over
SNLP ([McAllester and Rosenblitt, 1991], cf. section 2.3.1.2) is concerned. Sim-
ilarly, [lThrig and Kambhampati, 1997] describe the successful application of
explanation-based learning to a case-based planner. Inductive learning of
search control rules has been described in [Leckie and Zukerman, 1991], and
[Eskey and Zweben, 1990] describe their work on leaning search control know-
ledge for the closely related scheduling problem. This shows that there is suffi-
cient work in this area to provide a large body of explicit search control knowledge

that might be re-usable as capability representations.

However, the fact that explicit search control knowledge can slow down
problem-solving has not gone unnoticed [Etzioni and Minton, 1992]. The more
search control rules have been learned, the more time it takes to evaluate all of
them. Early approaches to this wutility problem have just counted how often a
specific search control rule was fired and deleted it if the success-rate went be-
low a certain threshold [Minton et al., 1987]. Later approaches attempted to ap-
proximate the learned search control knowledge to save time [Chase et al., 1989].
[Wefald and Russell, 1989] have even tried to theoretically define when a search

control rule has no benefit. [Kambhampati et al., 1996] have avoided the utility

2.2. MODELLING CAPABILITIES WITH LOGICS 37

problem by only learning provably correct rules, which are not very many.

As far as capability descriptions are concerned, forgetting or approximat-
ing search control knowledge means having a less accurate capability description.
Considering the advantages of this approach, i.e. no need for a new representation
or the manual development of new knowledge, this inaccuracy seems acceptable.
However, there are more worrying results that question the usefulness and thus,
the availability of explicit search control knowledge in the long term. Specific-
ally, [Ginsberg, 1996a] has looked at a number of problems to which AT systems
have been applied and found that, consistently, the most efficient approaches use
relatively uninformed search. Why this is the case is not of much interest to us
here, but this problem, which is ultimately rooted in the utility problem, has lead

us to abandon the re-use approach argued for in this section.

2.2.4 Terminological KR Languages

By a terminological knowledge representation language we mean any formalism
for defining and reasoning about concepts in the mould of [Brachman, 1979] and
KL-ONE [Brachman and Schmolze, 1985]. Such systems are of little direct relev-
ance here as there has not been a comprehensive attempt to represent capability
knowledge in such a formalism. That is not to say that it is not possible though.
The reason why we want to mention these languages here is that these formalisms
provide the framework for the definition of ontologies to which we will return in
section 2.3.2. For example, Ontolingua [Gruber, 1992] can be seen as rooted in

terminological KR languages.

A final word concerns the expressiveness of terminological KR languages. As
expressiveness is a claim we would like to make for the capability description
language we will introduce in this thesis, it is worth noting that there has been
a formal attempt to define the expressiveness for terminological KR languages in
[Baader, 1996]. Baader even claims that this kind of approach is generalisable to
other types of KR languages and we shall return to this work in chapter 7.

38 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY
Most Important Issues Here

e The capability description that we will present in this thesis uses first-
order predicate logic to describe states and the situation calculus is an
important action representation that could be used in Kir-based brokers

(cf. section 9.1).

e Although reusing meta-knowledge initially looked like a very promising ap-
proach to capability representations because it potentially allows the re-use
of a large existing body of knowledge, recent results related to the utility
problem discussed in section 2.2.3.3 indicate that this approach is not de-
sirable. However, capability knowledge is still meta-knowledge and thus,

this area is still important.

e Finally, the formalisation of a notion of expressiveness in [Baader, 1996] is
relevant to our own claim that the capability description language presented

in this thesis is expressive.

2.3. ACTIONS IN Al PLANNING 39

— = subfidd 23 Adtionsin p'a"”'”g\ 3:3.2 Flexibility Seenario
—I= system/approach - .
L re'ate:W:’fk jes: 2.3.2 2.3.3 Processes 233 | i2
o £ > o/ T
2.3.2 Ontolingua 2.3.2 Foundations 233QPT 2.3.3 Process Handbook 2.3.4PHOENIX 234 UWL
2.3.3IDEF3 2.3.4 Plan execution
o - 2.3.2 Concepts
4.2.1 Capabilities A
221FOPL .. 43PeformebleTasks e 2122 Knowledge Sharing ~ 2.1.2.3KQML
231Act|on repraentanons 221
2.3.1.1 Situation cdcul us 2 313 D|qunct|ve representations 2.3.1.5 Real world planners
2313 SAT 2.3.1.3 Refinement 2315SIPE 23.150-Plan
231 2 Classical repreﬁnta(lons 2.3.1.4 Contingencies ** - ..'42.3.1.6 Shared action representations
2312 Complexny 2.3.1.4 Warplan-C 2.3.1.4. Cassandra - 12316 SPAR 123.1.6 PDDL:
2314 CNLP '
2.3.1.2 UCPOP
2.4.1.3 Planning PSM 2.3.2 Ontologies

Figure 2.3: Overview of this section

2.3 Actions in AI Planning

In this section we will review approaches to action representations in
Al planning, the area we see most closely related to capability model-

ling.

An overview of this section, which provides a conceptualisation of the rela-
tionships between the different sub-fields and approaches/systems described in
this section, is given in figure 2.3. The figure also contains cross-links to other
areas. The most important areas reviewed here are: classical non-hierarchical
action representations, including the STRIPS representation and ADL, on which
our capability description language will be based; flexible representations for the
communication about actions such as SPAR and PDDL; work on ontologies of
actions which provides the basis for the representation of capabilities as perform-
able actions; and work on existing agents based on Al planning technology as our

broker will also use a planner.

40 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

2.3.1 Action Representation Formalisms

There are two reasons why action representations as used by Al planners are of
particular importance for our work. Firstly, a primitive action, one of the inputs
to the classical planning problem [Tate et al., 1990, page 28], can be interpreted
as the representation of a capability (cf. section 4.2.1). The second reason for our
interest in action representations and Al planning is more complex. As pointed
out before, intelligent agents are often assumed to use a planner to determine a
course of action that achieves a given objective [Wooldridge and Jennings, 1995,
page 131]. Thus, it is plausible to assume that, for a given objective to be
achieved, there exists a planning problem that has a solution if the agent believes
it is capable of achieving this objective. This planning problem is characterised
by the objective to be achieved, the initial state of the world as perceived by the
agent, and the actions the agent believes it can perform. Under this assumption,
the problem of capability assessment for an agent may be reduced to the plan

existence problem.

2.3.1.1 First-Order Logic and the Situation Calculus

The planning problem was first addressed in Al e.g. in [Green, 1969] and in
the situation calculus [McCarthy and Hayes, 1969, Shanahan, 1997]." Both of
these approaches did not devise a new representation for actions but used first-
order predicate logic to represent world states, actions, and their effects. Using
first-order logic led to a number of problems, most notably, the frame problem
[Hayes, 1974, page 69], [Shanahan, 1997]. Although there has been considerable
progress towards representations of actions in first-order logic that avoid the
frame problem, it can by no means be considered solved. Since we have already
discussed first-order logic as a capability representation in section 2.2.1, we shall

not go into more detail at this point.

T The earliest Al system addressing this problem was probably Gps [Newell and Simon, 1963].

2.3. ACTIONS IN Al PLANNING 41

2.3.1.2 Classical Non-Hierarchical Representations

One of the earliest systems in Al to address the planning problem using a
task specific representation was the STRIPS system [Fikes and Nilsson, 1971,

Fikes et al., 1972]. The STRIPS representation of actions basically consists of:

e an action pattern: the identifier of the action and some variables describ-

ing the parameters;

e a precondition formula: a formula that must be true before this action

can be applied;

e an add list: a list of formulae that will be true as a result of this action;

and

e a delete list: a list of formulae that will no longer be true as a result of

this action.

In the original definition of the STRIPS representation, the different formulae
in the representation were allowed to be full first-order logic and a resolution
theorem prover was used to reason about world states. However, in a later de-
scription [Nilsson, 1980, chapter 7] only conjunctions of literals are permitted,
which greatly simplifies the planning process. This later version is what is now
generally referred to as the STRIPS representation. The significant advance of
this representation over the situation calculus is the STRIPS assumption: only
what is mentioned in the representation changes when an action is performed,

i.e. anything that is not listed in the add or delete list will not change.

One interesting aspect of the STRIPS representation is that there was no
formal semantics defined for STRIPS for a rather long time. In a classic pa-
per, [Hayes, 1974] pointed out that many representations in AI suffered from this
problem, and that formalisms that have no semantics should not be considered

representations. Still, it was not until [Lifschitz, 1986] that a semantics for STRIPS

42 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

was formally defined. Lifschitz also illustrates how the first intuitive approaches
are not always quite the right definitions. It has to be said, though, that the
STRIPS representation proved to be an extraordinarily successful action repres-
entation. There are still planners being developed today that use exactly this

representation.

The sTRIPS planner on the other hand suffered from many problems that
were addressed in a number of subsequent systems, mostly following the STRIPS
approach [Georgeff, 1987, Allen et al., 1990, Tate et al., 1990]. The final incarn-
ation of a planner in the mould of STRIPS is probably the partial-order causal-link
planner sNLP [McAllester and Rosenblitt, 1991]. However, there has been no sig-
nificant advance in the representation of actions used by these systems, and this

is the aspect we are most interested in here.

One of the more serious limitations of the STRIPS representation is its express-
iveness. For example, the situation calculus is considered a much more expressive
representation. It was not until [Pednault, 1989] that a serious attempt at ex-
ploring the middle ground between these two approaches was made. The result
of this work was the new action description language (ADL) that combined the
expressiveness of the situation calculus with the STRIPS assumption to retain the
best of both worlds. The underlying idea in ADL was to exploit the fact that effect
axioms in the situation calculus all more or less have the same syntactical format.
Pednault used this pattern to define ADL and how ADL expressions should be ex-
panded into situation calculus formulae. In this way, the semantics of ADL was
grounded in the situation calculus but the syntax looked much more like STRIPS

with precondition, add, and delete formulae.

What Pednault did not do was design a planner for ADL. Although one
could translate the representation into first-order logic and reason about it with
a theorem prover, this was clearly not the intention. The first planner that
was based on a restricted version of ADL was UCPOP [Penberthy and Weld, 1992,

Barrett et al., 1995]. The basic extension of UCPOP’s version of ADL over the

2.3. ACTIONS IN Al PLANNING 43

STRIPS representation was the introduction of conditional effects. Effects are
the union of add and delete lists and conditional effects are effects that only
occur if certain secondary preconditions hold before the action is executed. Also,
conditional effects can occur any number of times with different instantiations for
a given action instance. By restricting the domains of all variables to known, finite
domains it was possible to extend the basic SNLP algorithm to handle conditional

effects.

Complexity of sTRIPS Planning As we have mentioned above, one of the
reasons why we are interested in Al planning is because the capability assessment
problem may be reduced to the plan existence problem. [Bylander, 1994] has
shown that the problem of determining whether a given instance of the planning
problem has any solution is, even for propositional STRIPS, a PSPACE-complete
problem. Thus, assessing capability via plan existence is not a promising route

as far as capability retrieval is concerned.

An investigation into whether and why different types of planning algorithms
are more efficient than others can be found in [Barrett and Weld, 1994]. In the
course of this work, they defined the complexity of a planning problem. We could
potentially use such a complexity measure to estimate whether a plan will be
found within given resources, i.e. to address the plan existence problem. However,
the complexity of the benchmark problems they used was given in terms of the
length of the shortest plan solving them, i.e. in general, the complexity was only

known once the problem was solved.
2.3.1.3 Disjunctive Representations

In [Kautz and Selman, 1992] a new approach to planning has been suggested.
Instead of refining a partial plan through search they have reformulated the plan-
ning problem as a satisfiability problem to which they applied their stochastic
hill climbing algorithm GSAT [Selman et al., 1992]. The difficult task here is the

reformulation. [Blum and Furst, 1995] independently found such a reformulation

44 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

that led to a significant increase in performance over conventional planners as
demonstrated by their planner, Graphplan. This new formulation was later im-
proved and combined with Walksat, an evolution of GSAT, to give even better

results [Kautz and Selman, 1996].

Why is it that these satisfiability planners could so drastically outperform all
deductive partial-order causal-link approaches? This question has been addressed
in [Selman, 1994, Kambhampati, 1997] and they suggest that the essential differ-
ence lies in the fact that the representations used by satisfiability planners are cap-
able of representing a new kind of disjunction in plans, i.e. sets of plans that con-
tain disjunctions of actions to be included in the final plan. As a response to this
finding there are now some deductive planners that also use disjunctive represent-
ations, e.g. Cops [Ginsberg, 1996b|, ucPoP-D [Kambhampati and Yang, 1996,
or Descartes [Joslin and Pollack, 1996]. However, they do not seem to have the

performance of satisfiability planners yet.

As far as action representations are concerned, these new planners can be
considered a step backwards rather than forward. All the actions the satisfiability
planners can reason about are strictly propositional, a limitation that stems from
the satisfiability algorithm used. Thus, this work is of little interest to us. The
above planners do however reason about disjunction in plans and, as far as plan
representations are concerned, this presents a significant advance. This is not an

issue here though.

2.3.1.4 Contingencies

An interesting extension of the STRIPS-based action representations presented
this far has been introduced in contingency planning. Essentially, the idea here is
that certain actions may have several alternative outcomes. The first planner to
address this problem was Warplan-C [Warren, 1976]. The representation used by
Warplan-C was again based on the STRIPS representation. The major difference

was that several alternative sets of effects can be specified for an action, each

2.3. ACTIONS IN Al PLANNING 45

of which is given a contingency label. Each set of effects was represented as an
add and a delete list, as it would be for a normal STRIPS action. The number
of contingencies was assumed to be small and not all actions were expected to
lead to contingencies. There has also been some work on extending O-Plan (see
below) to deal with contingencies [Secker, 1988], but the current version does not

contain any such extension.

A more recent contingency planner is CNLP [Peot and Smith, 1992], which is
basically a non-linear version of Warplan-C. The underlying action representation
did not change from Warplan-C though. A variant of CNLP’s algorithm has been
used in the Cassandra planner [Pryor and Collins, 1996] which, like ucPoP, also
handles conditional effects. In Cassandra’s action representation the different
contingencies were represented as conditional effects, where the contingency label
can be seen as a secondary precondition of the different effects in the different

contingencies.

Effectively, contingencies can be seen as introducing disjunctions into effects,
thus significantly extending the expressiveness of the representation. Thus, these

representations are of great interest to us.

2.3.1.5 Real World Planners

Most of the planners mentioned this far are research vehicles and have not been
applied to realistic domains. However, there are at least two planners that
have been used outside a research environment: O-Plan [Currie and Tate, 1991,
Tate et al., 1994, Tate, 1995] and siPE [Wilkins, 1988]. Both these systems are
quite similar in that they support a very rich representation to support planning

in realistic domains.

The O-Plan planner essentially consists of: a set of knowledge sources which
can address different types of flaws or issues in a plan; a set of constraint man-
agers to evaluate different types of constraints in a plan; and a controller for

these modules. The openness of O-Plan means new modules can be added

46 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

to the planner without too much effort. The representation used by O-Plan
is based on the <I-N-OVA> constraint model of activity [Tate, 1996a] which
views a plan as a set of constraints on possible behaviour. The actual action
representation language used in O-Plan is called O-Plan Task Formalism (TF)
[O-Plan TF, 1997, Tate et al., 1998]. O-Plan TF is primarily based on a hierarch-
ical model of action expansion. The representation of primitive actions, the aspect
we are most interested in, has a great degree of richness, allowing for a number
of constraint types in the representation, e.g. complex temporal constraints, re-
source constraints, etc. The ability to add new constraint managers as required
gives O-Plan the high flexibility needed for realistic domains. Another interest-
ing aspect of the O-Plan planner is that is has been modelled as a CommonKADS

problem-solving method [Kingston et al., 1996] (cf. section 2.4.1.3).

When it comes to modelling realistic domains, the richness offered by the
representations of these real world planners presents a significant advance over
the earlier STRIPS-based representations. However, our aim in this thesis is not to
develop a broker for an extremely rich domain which might require the features
offered by O-Plan TF or SIPE’s representation in its capability representations.
What we are aiming for is expressiveness and flexibility and whether more richness
necessarily means more expressiveness is an open question. The most interesting
aspect of these planners for our work is the openness of O-Plan which gives it its

flexibility.

2.3.1.6 Shared Action Representations

Part of the current movement towards knowledge sharing and shared represent-
ations (cf. section 2.1.2.2) involves the development of shared action representa-
tions. In section 2.1.2.3, we have already looked at KQML which can be considered
one such language, as a KQML expression represents an action. At least two other
efforts with the aim of standardising a common action representation that facil-

itates knowledge sharing are currently under way. We will look at these next.

2.3. ACTIONS IN Al PLANNING 47

One of the latest proposals is the Shared Planning and Activity Representation
(SPAR) [SPAR, 1997, Tate, 1998]. The principal scope of SPAR is to represent past,
present, and possible future activity and the command, planning, and control pro-
cesses that create and execute plans meant to guide or constrain future activity.
It can be used descriptively for past and present activity and prescriptively for
possible future activity. The way SPAR aims to facilitate knowledge sharing is not
only through a language with an open syntax, but also by providing an ontology
of fundamental concepts for representing and reasoning about actions. A brief

look at the SPAR ontology will follow in section 2.3.2.

Another shared action representation is the Planning Domain Definition Lan-
guage (PDDL) that was developed as a common format for all competitors in the
ATPS’98 planning competition [Ghallab et al., 1998]. The scope of PDDL is far
more limited than SPAR: PDDL was only aiming for a representation that covers
the representations used by competing planning algorithms. One of the interest-
ing features of this language is that it contains explicit flags for different exten-
sions to the basic language that have to be set in a problem description if the
according extension is used. A planner not supporting these extensions can then
simply check these flags to see whether it can generate plans for the described

problems.

Both representations are only meant as an interlingua and not as representa-
tions which are reasoned over directly. Still, both these languages, and KQML, as
well, offer very interesting features that our capability representation must also

have, such as SPAR’s openness and flexibility.

2.3.2 Ontologies of Actions

A logic only defines the syntax and semantics for a representation, but it is the
ontology that defines the vocabulary. Approaches to knowledge sharing therefore
agree on the need for shared ontologies (cf. section 2.1.2.2). Thus, we too will

need a shared ontology of actions to represent and reason about capabilities

48 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

(cf. section 4.3). One of the best known languages for defining sharable ontologies
is Ontolingua [Gruber, 1992], which has been defined as part of the knowledge
sharing effort. Methodological issues for developing ontologies are discussed in

[Gruber, 1993a, Fernandez et al., 1997, Gomez-Pérez, 1998].

Foundations for sharable ontologies of actions are described in [Tate, 1996b].
According to Tate, an ontology can be composed of four major parts. Firstly,
there is the meta-ontology which contains fundamental ontological elements used
to describe the ontology itself. Secondly, there is the top level ontology which
is the minimal ontology used as a framework by all detailed ontologies. Thirdly,
there is a library of shared ontological elements which may be shared across
a number of detailed ontologies but need not be included. Finally, there are
the detailed ontologies which build on the top level ontology and may include

ontologies from the library.

A fundamental question is which concepts the different parts of a shared on-
tology of actions should contain. There are a number of such ontologies that
have suggested different concepts, mostly for the meta-ontology and the top
level ontology. For example, ontologies of actions were defined in the Process
Interchange Format (PIF) [Lee et al., 1996, Lee et al., 1998], the Enterprise on-
tology [Uschold et al., 1996, Uschold et al., 1998], the Core Plan Representation
(cpPRr) [Pease and Carrico, 1997], the Shared Planning and Activity Represent-
ation (SPAR) [SPAR, 1997], and recently in work on models of problem solving
[Gennari et al., 1998] (cf. section 2.4.2). The SPAR ontology, for example, defines
concepts for entities, environments, activities, actions, events, time points, ob-
jects, agents, locations, calendars, relationships, activity constraints, world mod-
els, plans, processes, objectives, issues, etc. Concepts are related to each other in
a semantic network style representation and each concept is defined by a semi-

formal description.

Although we believe an ontology of actions to be a considerable aid for the

representation of capabilities, the development of such an ontology is beyond the

2.3. ACTIONS IN Al PLANNING 49

scope of this thesis. Our capability description language does, however, provide
a framework for the representation of and reasoning about ontologies of actions

(cf. section 4.3).

2.3.3 Process Modelling

One of the drawbacks of STRIPS-based action representations, as described above,
is that they are insufficient for reasoning about processes. This is because they
only refer to two states, the one just before the described action and the one just
after the action has been completed. Processes cannot be described adequately
in this way. A first attempt to reason about simultaneous, interactive processes,
characterised by a continuum of gradual change, that may be activated involun-
tarily, and that take up time, was proposed in [Hendrix, 1973]. This line of work
ultimately lead to the Qualitative Process Theory (QPT) [Forbus, 1984]. Not only
does QPT handle all the above difficulties, it also can be used to come up with

useful conclusions even when not all the quantities for a given process are given.

The IDEF3 process capture method has been used to model processes of a dif-
ferent kind [Mayer et al., 1992, Lydiard, 1996]. IDEF3 is part of the IDEF family
of methods funded by the US Air Force to provide modelling support for sys-
tems engineering and enterprise integration. The IDEF3 method allows different
user views of temporal precedence and causality relationships associated with
enterprise processes to be captured. The information is presented in a series of
diagrams and text, providing both a process-centred view of a system, via the
Process Flow Network, and an object-centred view of a system via the Object
State Transition Network. This method can tolerate incomplete and inconsistent
descriptions and is flexible enough to deal with the incremental nature of the

information acquisition process.

[Malone et al., 1997] describe a novel theoretical and empirical approach to
tasks such as business process redesign, enterprise modelling, and software devel-

opment. The project involves collecting examples of how different organisations

50 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

perform similar processes, and organising these examples in an on-line process
handbook. The handbook is intended to help people redesign existing organisa-
tional processes, invent new organisational processes, learn about organisations,
and automatically generate software to support organisational processes. A key
element of the work is an approach to analysing processes at various levels of
abstraction, thus capturing both the details of specific processes as well as the

“deep structure” of their similarities.

Although the above approaches to process modelling present various interest-
ing ideas, we have chosen not to include a model of processes in our capability

representation as the scenarios we envisage do not require such an extension.

2.3.4 Agents Planning with Capabilities

Although it has been argued that deliberative agents should be based on Al
planning technology [Wooldridge and Jennings, 1995, page 131], most existing
agents are not. The earliest agents based on a planner are probably found in
[Cohen et al., 1989]’s PHOENIX system which includes planning agents that oper-

ate in the domain of situated forest fire management.

We have argued at the beginning of this section (page 40) that the capability
assessment problem may be reduced to the plan existence problem under certain
assumptions. One of these assumptions was that there will be no problems during
the execution of a plan, but we know that this assumption is overly optimistic.
Early work that can be seen as the foundation for a planning agent’s architec-
ture is presented in [Ambros-Ingerson and Steel, 1988], which describes IPEM, a
clear and well-defined framework for the integration of planning, plan erecution,
and execution monitoring. More recent work in the area of plan execution and

opportunity recognition with reference features is described in [Pryor, 1996].

Probably the most noteworthy agents that do use a planner are the intel-
ligent, softbots developed at the University of Washington [Etzioni et al., 1993,
Weld, 1996, Etzioni, 1997]. One of the most interesting aspects of this work for us

2.3. ACTIONS IN Al PLANNING 51

is the action representation used by the softbots. They found that sTRIPS-based
representations lack certain essential features that they needed for their Internet
softbots. The action representation language they have developed to model op-
erating system commands, UWL [Etzioni et al., 1992], has two major extensions
over conventional languages. Firstly, it allows the modelling of information gath-
ering through goals of the type (find-out [literal). Secondly, one can specify for
certain conditions to remain unchanged by an action with a (hands-off con-
dition) goal expression. Arguably, the former is subsumed by reasoning about
knowledge as discussed in section 2.1.2 and the latter is a side effect of having to

refer to objects by their properties.

Although the agents presented in this thesis will use a planner to reason
about their actions, our main concern is with the capability reasoning performed
by the broker, prior to the assignment of tasks to problem-solving agents. Hence,

problems occurring during plan execution are not addressed in this thesis.

Most Important Issues Here

e Primitive actions in classical non-hierarchical action representations (sec-
tion 2.3.1.2) like STRIPS and ADL form the basis for the capability descrip-

tion language presented in this thesis (cf. chapter 4).

e Furthermore, our capability description will be open like the O-Plan rep-
resentation giving it flexibility (cf. chapter 8), it will allow for the repres-
entations of ontologies of actions like the SPAR ontology (cf. section 4.3),
and it will allow for the flagging of language properties similar to PDDL

(cf. section 4.4).

e A planner is used by the PSAs to determine a course of action, but the
resulting issues concerning plan execution are not addressed in this thesis.
A planner is also used by the broker to combine capabilities of various PSAs

to solve a given problem (cf. section 3.3.2).

52 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

2.4 Models of PS
iy B
24.1 2.4.1.1 Knowledge acquisition / 242 2.4.2 PROTEGE
241KADS " 242PSM descriptions

2411 Layers 24.11Library of PSMs. .- o

1241.41ndexing © .. 243HPKB 243
2.4.1.4 Early approaches : 2.4.15 Brokering PSMs 2.4.1.3 Planning PSM 2.4.3 PSM descriptions
2.4.1.4 Stiite of problem types 7241518 (24151BROW: -~ /2.4.1.3 Task decomposition ||’ 24.3 [Doyle, 1997] 2.4.3[Aitkin et al., 1998]:
... 24.13Knowledgeroles : — = subfidd
T S —=> system/approach
B I related work
2.3.1 Action Representations 2.3.2 Ontologies of Actions B ¢ important

Figure 2.4: Overview of this section

2.4 Models of Problem Solving

In this section we will review approaches to modelling problem-solving

methods.

An overview of this section, which provides a conceptualisation of the relation-
ships between the different sub-fields and approaches/systems described in this
section, is given in figure 2.4. The most important areas reviewed here are the
various representations used to describe problem-solving methods which can be
seen as reasoning capabilities and the approaches to the indexing problem which
resembles the capability retrieval problem. Furthermore, we shall return to the

brokers for problem-solving methods in section 9.1.

2.4.1 KADS-Based Approaches

We were interested in models of problem solving to investigate whether these mod-
els can be seen as capability models and thus, can be used for capability brokering.
One of the largest and longest-running projects that deals with the modelling

of problem-solving methods is the KADS project [Wielinga and Breuker, 1986,

2.4. MODELS OF PROBLEM SOLVING 53

Breuker and Wielinga, 1989, Wielinga et al., 1992].> Therefore, we shall now

look at the KADS representation of models of problem-solving.

2.4.1.1 The kKADS Methodology

The KADS methodology is a tool for knowledge acquisition and the building of
knowledge-based systems (KBSs). Knowledge acquisition is a constructive process
in which the knowledge engineer uses data about the behaviour of an expert to
make design decisions regarding a KBS to be built. In this view, a KBS is an
operational model that is the result of knowledge acquisition. The process of
knowledge acquisition consists of knowledge elicitation, knowledge interpretation,

and formalisation.

The KADS methodology’s first principle is that the knowledge acquisition pro-
cess should result in a number of intermediate models. These are: the organisa-
tional model, the application model, the task model, the model of cooperation,
the model of expertise, the conceptual model, and the design model. The or-
ganisational model and the application model are models of the environment the
KBS is meant to be used in and the problem it is meant to address. The task
model specifies how the function of the system is to be achieved and contains
the task decomposition. The model of cooperation assigns tasks and sub-tasks to
agents. The model of expertise specifies the problem-solving expertise required to
perform the problem-solving tasks assigned to the system at the knowledge-level
[Newell, 1982]. The conceptual model is an abstract description of the objects
and operations the KBS should know about. Finally, the design model is a high-
level specification of the KBS, the operationalisation of which should be the KBS

itself.

The model that we are most interested in here, as it appears to be the closest
to a capability model, and that has received the most attention within the KADS

community is the model of expertise. KADS suggests a decomposition of this

8 The title of the project was changed to CommonKADS in later years.

54 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

model according to the types of knowledge it contains into several layers:

e The domain layer: The domain knowledge embodies the conceptualisa-
tion of the domain for a particular application in the form of the domain
theory. It contains concepts, properties, and relations between concepts

and their properties.

e The inference layer: The inference knowledge embodies primitive infer-
ence actions over the domain knowledge, also referred to as the knowledge
sources. Domain knowledge is mapped into the meta-classes or knowledge
roles that represent the generic input and output of the inference actions by
the domain view. The inference structure describes the flow of knowledge

between the inference actions similar to a data flow diagram.

e The task layer: The task knowledge embodies the control knowledge
needed to perform reasoning at the inference layer. This includes knowledge

of how the overall task is to be decomposed into subtasks.

e The strategic layer: The strategic knowledge determines what goals are
relevant to solve a particular problem. However, this layer was dropped in

KADS-1I/CommonKADS.

One of the key issues in the KADS methodology is that it strongly advoc-
ates the re-use of knowledge, which is to be achieved through a library of such
knowledge. The library is divided into two parts: the domain division, which is
concerned with generic and re-usable domain knowledge, and the task division,
which contains the description of the interpretation models or models of problem-
solving. An interpretation model is a model of expertise with an empty domain
layer, i.e. it is a domain-independent description of a problem-solving method
(psMm) [Benjamins et al., 1997]. These are exactly the models we are interested

in.

2.4. MODELS OF PROBLEM SOLVING %)

2.4.1.2 Descriptions of PsMs

The KADSs library contains a number of generic PsSMs that represent the ex-
perience gained in many years of knowledge engineering [Breuker et al., 1987,
Breuker and Van de Velde, 1994]. The description of each PSM in the library
consists of three parts: a verbal description, a conceptual description, and a
formal description. The verbal description is a description in natural language.
The conceptual description uses a frame-like language derived from the Concep-
tual Modelling Language cML [Wielinga (ed) et al., 1994, chapter 3]. The formal

description which exists only for a few PSMs is given in ML? (see below).

For each PsMm the conceptual description defines functions which are essentially
the primitive inference actions, function structures which are more or less the
inference structures, and a control structure which is the control regime applied
in this PsM. The conceptual description of a function consists of a description
of the dynamic input and output knowledge roles of this function, the static
knowledge roles it accesses, its goal, a specification of the relation between input
and output, and an operation type which is the type of primitive inference this
function performs. The function structure is a collection of the functions this
structure is composed of. The control structure is a specification of the control
flow over these functions including how the overall task accomplished by this PsM

is to be decomposed.

Although the conceptual description contains the right kind of knowledge to
be considered a capability representation, it also allows for informal content in
many places. Thus, it can not be used as is for automated brokering, but it

provided us with insights for designing our own capability representation.

Formal Specifications of Models of Expertise ML? is a formal specification
language based on KADS models of expertise [van Harmelen and Balder, 1992,
Aben, 1995]. It allows different levels of formalism for domain, inference, and task

layer. The domain layer is to be specified essentially in typed first-order logic.

56 ~CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

The inference layer extends this by allowing the reification of expressions, i.e. a
form of meta-expressions, and reflective reasoning about these named expressions.
Finally, the specification of the task layer is to be defined in Quantified Dynamic
Logic (cf. section 2.2.2). While this formalism is certainly powerful, it has been
“claimed that highly trained mathematicians are needed to write, to understand

and to verify a formal specification” [Aben, 1995, page 20].

2.4.1.3 Planning as a PsM

As we have pointed out in section 2.3.1, planning is one area of particular interest
to us because the ability to generate a plan to solve a given problem can be
interpreted as the capability of solving this problem. Thus, we will have a brief
look at the PsM for planning described in the CommonKADS library of PSMs now

[Valente, 1994, Valente, 1995, Barros et al., 1996].

The first step in the description of a PSM is the identification of the know-
ledge roles. For the planning task, four dynamic and two static roles have been
identified. The dynamic knowledge roles are the current state, the goal, the plan,
and the conflicts. The current state is a description of the initial state of the
world, and the goal is a set of conditions to be achieved in a future state of the
world. The plan consists of a set of plan steps, ordering constraints, variable
bindings, and causal links (cf. section 2.3.1). The conflicts represent the discrep-
ancy between the conditions in the goal and what the plan achieves. The static
knowledge roles are the world description and the plan description. The world
description consists of the state description, e.g. fluents in the situation calculus
(cf. section 2.2.1), and the state changes, effectively the possible actions in the
domain. The plan description comprehends the optional plan structure, a hier-
archical decomposition of the actions, and the plan assessment knowledge used

to evaluate plans.

The task decomposition for the planning PSM is summarised in figure 2.5.

Tasks are represented by ellipses in this figure and PSMs are represented by boxes.

2.4. MODELS OF PROBLEM SOLVING S7

Propose-Critique-Modify
propose critique modify
expansio plan plan

causal-link ordering

critiquel N
based MTC-based selection
test for consistency interaction
unachieved critique critique
godls :
linear random smart goal-driven current-state MTC-based || constraint causal-link MTC-
sel " | select select select goal-test goal-test propagation based based

ect | -
hierarchical smart
select select

Figure 2.5: Task-Method Decomposition; from [Barros et al., 1996, page 15]

For example, the planning task can be addressed with a propose-critique-modify
PSM which leads to three sub-tasks: propose expansion, critique plan, and modify
plan that have to be performed in this order. Each of these tasks can again be

addressed by some PSM until no further decomposition is possible.

It has been shown that this PSM description does describe, at the knowledge
level, the problem-solving behaviour of many modern planners. However, it is
difficult to see how this description can be used to decide whether a planner will
be able to find a solution for a given planning problem, i.e. how this description

can be used to assess capability.

2.4.1.4 Indexing PswMs in the Library

During the knowledge acquisition process the knowledge engineer might identify
a PSM from the CommonkADS library [Breuker and Van de Velde, 1994] as ap-
propriate for the task at hand and then use the respective model from the lib-
rary to focus the knowledge acquisition process, e.g. by attempting to elicit do-
main knowledge to fill relevant knowledge roles and by defining the domain view

[Brazier et al., 1995]. Thus, the retrieval of an appropriate model from the lib-

58 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

rary, also referred to as the indexing problem, is an important step in the KADS
methodology, just as it is for capability brokering. However, it is also expected
that the model from the library will need further refinement before it can be
transformed into the design model. This refinement process is called knowledge
differentiation in KADS. It is worth noting at this point that the resulting model,

the design model, is not meant to be operational in KADS.

One approach to the indexing problem in KADS was the definition of a tax-
onomy of generic tasks which is supposed to help the knowledge engineer to
identify an appropriate PsM in the library [Breuker and Van de Velde, 1994, page
59]. The idea was for the knowledge engineer to follow one path down a hier-
archy that ends in the most specific PSM suitable for the task at hand. How-
ever, in practise this turned out not to be so simple. Another approach tried
in the KADS project was the indexing of PSMs in the library with task features
[Aamodt et al., 1993] for which they have suggested a quite elaborate list of such
features. However, this approach also proved insufficient for certain types of

problems.

The latest insight seems to be to take a more indirect approach. The basic
argument in [Breuker, 1997] is that one is given a problem and different kinds
of PsMs might be able to solve this problem. The PsSM selection mechanism
should reflect this by providing a suite of problem types and associating a number
of PsMs with each problem type. The selection amongst these could then be
by assumptions made by the PsMm, by the domain, or by the depth with which
the PsM has been modelled. Another, recent criticism of the original indexing
mechanism is that it is based only on yes/no distinctions and does not allow

gradual refinement [van Harmelen and ten Teije, 1998].

Since we can not use the KADS representation for PSMs to represent capab-
ilities, we also can not use their indexing. However, we have tried to take into
account the lessons learned from their work, specifically, the approach to indexing

PSMs by the problems they solve.

2.4. MODELS OF PROBLEM SOLVING 59
2.4.1.5 Brokering for psuMs

There are currently at least two approaches in progress that attempt to address
the indexing problem with a broker. Naturally, we are interested in this work as

the problem addressed is very similar to our problem.

1B, the Intelligent Broker [Fensel, 1997, Decker et al., 1998], currently under
research at the University of Karlsruhe is one such broker. The aim of this
broker is not to facilitate agent cooperation, as it is for the brokers described in
section 2.1.3, but to find a PSM for a given task on the Internet. Unlike most other
brokers reviewed in this chapter, 1B is not based on KQML. The approach assumes
the availability of an ontology of PSMs which is used for the description of PSMs
and which the broker can use for its search. The ontology of PSMs they envisage
does not yet exist but might well be based on the taxonomy of PsMs described in
the KADS library of expertise models [Breuker and Van de Velde, 1994, page 59].
The language in which they intend to describe PsMs and on which their ontology
will be based is not finished yet. This language will be called the Unified Problem-
solving Method description Language (UPML), but only a draft specification exists
[Fensel et al., 1998a, Fensel et al., 1998b]. Another task envisaged for this broker
is the adaption of the selected PsM to the actual task which requires mapping

entities in the given problem to the roles of the PsM.

Another project that is closely related to the work on IB is the ESPRIT-
funded project IBROW? that started in January 1998 [Benjamins et al., 1998,
Armengol et al., 1998]. The aim here, too, is to develop a broker that can select,
configure, and adapt knowledge components from large libraries on the Internet.
For selecting a problem-solving method from a library, the broker will reason
about characteristics of the PsSM, in particular about their competence and re-
quirements. For this purpose PSMs will have to be described in some language.
Although no such language has been selected or proposed yet, it is envisaged
that an ontology will be at the heart of the approach. Furthermore, as the people

involved with the IBROW? project are largely the same as for the 1B framework

60 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

it is quite possible that the two systems and PsM description languages will be

very similar.

2.4.2 PROTEGE

The PROTEGE system [Musen, 1989, Eriksson et al., 1995] addresses a problem
very similar to the problem addressed in KADs and thus, we are interested in

PROTEGE for very similar reasons.

PROTEGE provides a knowledge engineering environment in which a developer
can specify tasks and select PsMs from a library of re-usable methods. Developers
must identify, at least partially, the task of the system they are designing before
they can select and custom tailor preexisting methods. This task-analysis leads
to a system-role description in terms of the domain for the system, which serves
as the basis for the selection of PsMs that accomplish the task and for the con-
figuration of the selected methods for the task instance. In PROTEGE, methods
are actions that accomplish tasks. Methods can delegate problems as subtasks
to be solved by other methods. They use the term “mechanism” for primitive
methods that cannot be decomposed. In addition to supporting the development
of problem solvers for knowledge-based systems, PROTEGE generates domain-
specific knowledge acquisition tools that elicit the expertise required by the PSMs

to perform the latter’s task.

For psm selection, they believe that it will be difficult to make a comprehensive
list of factors to consider. However, they do identify a set of recurring factors that
are applicable to most tasks. This list of common factors includes the input and
output of the task, the domain knowledge available, the solution quality required,
the computational time and space complexity, and the flexibility of the method.
Once a method has been selected it needs to be configured. This is largely a
matter of selecting mechanisms or methods for a method’s subtasks and defining

the mapping between method terms and domain terms.

An essential part of the method description language developed in PROTEGE

2.4. MODELS OF PROBLEM SOLVING 61

is the method ontology which includes definitions of all the objects required by the
pPsM. Ideally, developers of PsMs would share a framework for defining inputs and
outputs. [Gennari et al., 1998] have begun to develop a “foundation ontology”
for developers of PsMs. In this ontology, a PSM must have a name and a textual
description. Furthermore, it contains ontology frames for input and output, a
list of subtasks, and a list of constraints across the inputs and output but not
among inputs or outputs. The latter are located inside the ontology frame for
inputs and outputs, together with key classes and functions in this frame, and
the API used which contains information about the ways in which the PsM makes
run-time queries for additional information. Subtasks again come with a textual
description, inputs, outputs, constraints between those, and information as to
whether this subtask is required and whether it has a default implementation.
The lowest level of detail in their method description language is the choice of
a formal language for expressing the axioms that represent the requirements of
the method. The current suggestion is that this language will be based on KIF

[Genesereth, 1991, Genesereth et al., 1992].

To summarise, not only are the problems addressed by KADS and PROTEGE
very similar, but so are the approaches. Methods in PROTEGE correspond to
models of expertise in KADS. Both approaches are based on a library of PsMs and
the description languages they use are essentially informal. Furthermore, both
approaches address the indexing problem and suggest that an ontology will be
the key to the solution. Thus, virtually all of our comments on KADS also apply

to PROTEGE.

2.4.3 The vPKB Program

The DARPA-funded High Performance Knowledge Bases (HPKB) program is a
research programme to advance the technology of how computers acquire, rep-

resent and manipulate knowledge [Cohen et al., 1998].° The approach taken in

9 cf. http://www.teknowledge.com/HPKB/

62 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

HPKB is quite similar to the approach in KADS again. One of its aims is to
speed up the development of knowledge-based systems significantly. One way to
achieve such a goal is through the enablement of knowledge reuse, including the
reuse of PSMs. This might ultimately lead to the fully automated configuration
of knowledge-based systems. For this purpose they are interested in developing a
language for describing PsMs and a number of groups are currently working on a
proposal for such a language. For example, the latest work on PROTEGE is one

of the inputs to the HPKB effort.

[Doyle, 1997]’s proposal for a PsM description language was one of the earli-
est contributions for the HPKB program. According to his proposal, a capability
description should include: the task addressed by the method; the method onto-
logy; the contextual properties; the behavioural properties; the cognitive proper-
ties; relationships to other methods; relationships to implementations; and other
annotations. However, as this proposal was still an early draft we shall not go

into detail here.

Another interesting input to this part of the HPKB program is the language
proposal described in [Aitken et al., 1998]. They suggest that a PSM can be viewed
as a process or action. In this case process or action representations from Al plan-
ning might also work for pSMs. We have reviewed process modelling techniques
in section 2.3.3 and we have looked at action representations in section 2.3.1. As
a result of this view, the language they propose characterises a PSM or capability
in three parts. Firstly, there is the competence of the capability. This includes
the goal or objective, the problem type the PsMm addresses, a generic solution, the
solution components (conclusion, argument structure, and case model), solution
properties, and the rationale which can be a textual description of when and why
the PSM might be used. Secondly, there is the configuration of the capability.
This includes the method ontology, the domain theory consisting of field, onto-
logy /mapping, and representation, and the sub-methods. The third and last part

is the PSM process which includes the environment, the resource constraints, the

2.4. MODELS OF PROBLEM SOLVING 63

actor constraints, various world constraints, and sub-activities.

Compared to KADS or PROTEGE, HPKB is still in its infancy. The language
proposals are all draft and indicate types of knowledge to be represented rather
than defining actual languages. Thus, we can only take these initial ideas into

account when designing our own capability description language.

Most Important Issues Here

e Knowledge engineering with models of problem solving is often based on
a library of psms. This library contains at least semi-formal descriptions
of PsMs and it is the description languages suggested by the different ap-

proaches we are most interested in.

e Especially KADS and KADS-related work has been concerned with the in-
dexing problem for their library. The indexing problem is closely related to

the capability retrieval problem and thus, we must learn from their work.

64 CHAPTER 2. CAPABILITY BROKERING: A LITERATURE SURVEY

Summary

In this chapter we reviewed various approaches to representing and reasoning
about capabilities. In section 2.1 we looked at software agents, the area in which
most of the work on brokering has taken place to date. This area has been
mostly concerned with the reasoning aspect of capability brokering. This work
introduced us to the agent communication language KQML that all agents de-
veloped for this thesis will use. The scenarios presented in the following chapter

will illustrate our use of KQML.

The remaining sections in this chapter described approaches which were
mostly related to the representation aspect of capability brokering. In section 2.2
we looked at the way various logics could have been used to represent capability
knowledge. In section 2.3 we looked at how representations of actions, which
are very similar to capabilities, have been encoded in ATl systems. Finally, in
section 2.4 we looked at models of problem solving methods to see whether these

models represent capability information, and if so, how it was represented.

In chapter 4 we shall describe our capability description language. In sec-
tion 4.1 we shall identify several characteristics which we want our capability
description language to have. We will then evaluate the approaches we reviewed
in this chapter with respect to these characteristics before proceeding with the

definition of our own language.

Chapter 3

Scenarios, Agents, and Messages

At this point the general problem of capability brokering has been de-
scribed and previous approaches to representing generic capabilities
have been discussed. Our aim is to define a new capability descrip-
tion language that will be expressive and highly flexible and can be
used to reason about capabilities. The next step towards this goal will
be to define several scenarios that illustrate the expected behaviour of
the different agents involved. The most interesting of these scenarios
will be presented in section 3.3. The contribution of this chapter will
be a clear definition of the expected problem-solving behaviour and a
characterisation of the knowledge that needs to be represented in the

message exchanges described.

3.1 The Initial Scenario

In this section we will present an example domain and a simple, ini-
tial scenario involving several agents that play different roles. This

domain and scenario will reoccur throughout the thesis.

3.1.1 The Domain: Pacifica

Before we describe our example domain it is worthwhile saying what we mean

by domain and scenario. By a scenario we mean a reasonably short outline of

65

66 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

~ < _ Abyss

HR
AN
N\

Pacifica

Figure 3.1: A Map of Pacifica

an episode in the life of several agents. The environment in which these agents
exist is what we call the domain. In other words, a scenario is a kind of informal

script and its domain are the surrounding conditions.

Almost all the scenarios presented in this thesis take place on an island called
Pacifica' which constitutes the domain for our scenarios. Figure 3.1 gives a basic
map of Pacifica. The initial agents that exist on Pacifica (represented by EC,
H1, H2, and PP) will be described in section 3.1.2 below.

There are five cities on Pacifica which are called Abyss, Barnacle, Calypso,
Delta, and Exodus for simplicity. All five cities are connected by one major road
which goes through all the cities and makes up the infrastructural backbone of
the island. According to this road Barnacle can be seen as central and Delta and

Exodus as the remote extremes on the island.

! The idea to use Pacifica as a sample domain has been inspired by the PRECiS Environment
[Reece et al., 1994] where this imaginary island state proved to be a very illustrative domain.

3.1. THE INITIAL SCENARIO 67

3.1.2 Agents on Pacifica

3.1.2.1 The Problem-Solving Agents

We will first describe those agents on Pacifica that play the role of problem-solving
agents (PSAs) in the initial scenario, i.e. agents that provide the general capabil-
ities that may be used by other agents to solve their problems (cf. section 1.1.2)2.
These agents are all real agents in the real world. In our scenarios every real
agent will have an equivalent software agent that represents the real agent and
acts towards other software agents as if it had the capabilities of the real agent.
This mechanism simplifies the integration of real agents into an electronically

brokered world.

Now, there are three PSAs on the island based in different cities (cf. figure 3.1).

These are:

1. an engineering company represented by the ec-agent,
2. a hospital represented by the hl-agent, and

3. a second hospital represented by the h2-agent.

The first PSA is a hypothetical engineering company that is based in Barnacle
and marked as EC in the map. The engineering company employs two engineers
that have a truck available that they can use to drive to the other places on the
island. Once at a given location with their truck they can repair any type of

machine.

The software agent representing the engineering company, the ec-agent, knows
the basic map of the island described above. It also knows its own capabilities
and that the other agents on Pacifica exist. However, it does not know what
the capabilities of the other agents are. The ec-agent uses a planner to plan

the actions necessary to complete a given task. Figure 3.2 describes the actions

2 Further psas shall be introduced for the more complex scenarios as we need them.

68 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

schema drive_to;

;33 g0 to the place where something is to be repaired:
vars 7?place = 7{type Place}, 7place2 = ?{type Place};
expands {drive_to ?place};
conditions

only_use_for_query {Has Location ECTruck ?place2} = true;
;33 add reachability condition here
effects
{Has Location ECTruck 7place2} = false,
{Has Location ECTruck ?place} = true;
end_schema;

schema repair;
;33 repair a machine:
vars ?machine = 7{type Machine}, ?place = 7{type Place};
expands {repair ?machine};
conditions
only_use_for_query {Has Location ?machine ?place} = true,
achieve {Has Location ECTruck ?place} = true;
effects
{Is ?machine Broken} = false;
end_schema;

Figure 3.2: Actions available to the ec-agent

available to the planner used by the ec-agent in O-Plan-TF® [O-Plan TF, 1997].

Note that this description indirectly describes the capabilities of the ec-agent.

The next PSA to be described here is the first hospital which is based in
Calypso and marked as H1 in the map. This hospital employs several doctors
and the usual support staff. The hospital also has an ambulance that can be used
to drive to the other places on Pacifica to fetch injured people. Only once the

injured people are at the hospital can their injuries be treated.

The software agent representing this PSA, the h1l-agent, knows the basic map
of Pacifica, its own capabilities, and that the other agents exist. It is not aware of

their capabilities though. Like the ec-agent the h1l-agent uses a planner to plan

3 There are alternative ways of representing these actions and our representation is not meant
to be the most efficient.

3.1. THE INITIAL SCENARIO 69

schema fetch_patient;
;33 drive an ambulance to wherever the patient is, load the
;33 patient, and return to hil:
vars 7patient = ?{type Person}, ?place = ?{type Place};
expands {fetch 7patient};
conditions
only_use_for_query {Has Location ?patient ?7place} = true;
;33 add reachability condition here
effects
{Has Location ?patient ?place} = false,
{Has Location ?patient H1} = true;
end_schema;

schema treat_patient;
;33 treat a patient that is at the hospital:
vars ?patient = ?{type Person};
expands {treat 7patient};
conditions
achieve {Has Location ?patient H1} = true;
effects
{Is 7patient Injured} = false;
end_schema;

Figure 3.3: Actions available to the h1-agent

its actions and figure 3.3 describes the actions available to it in O-Plan-TF.

The final PSA described here, the second hospital represented by the h2-agent
is almost identical to the first hospital except for that it is based in Abyss. It has
knowledge equivalent to the hl-agent’s knowledge and the capabilities of these
two agents are virtually the same. Thus, we will omit the description of the

actions available to its planner here.

3.1.2.2 The Broker

As we have mentioned in the descriptions of the PSAs above, none of these agents
actually knows the capabilities of the other PSAs. The broker is the agent that
has the knowledge about the capabilities of the different PSAs and, on request, it

can find a PSA that can solve a given problem. This is all the broker needs to do

70 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

in our scenarios.

The broker can be seen as a PSA, too, but we prefer to use the term PSA
only for agents that solve problems at the domain level like the agents described
above. The broker solves a problem at the meta-level, the problem of capability

brokering.

3.1.2.3 The Problem-Holding Agent

The final agent for the initial scenario is the power plant on Pacifica. The power
plant is located in Delta and marked as PP on the map. The power plant
supplies the island with electricity. It has a number of generators that generate
the electricity and employs a few people that look after the generators during

normal operation.

The power plant is represented by the pp-agent. It might be a PSA in other
scenarios but for the initial scenario discussed here it is the problem-holding
agent (PHA), i.e. the agent that has a problem it wants solved by utilising the
capabilities of the PSAs (cf. section 1.1.2). Thus, there is no need to describe the

capabilities of the pp-agent here in detail.

3.1.3 Script for the Initial Scenario

Now, suppose that there has been an accident at the power plant in which a gasket
on one of the generators broke and let steam escape. Unfortunately an employee
of the plant had been near the generator while this happened and suffered some

burns. So there are two problems to be dealt with here:

e a person has suffered burns and needs treatment; and

e a generator is now malfunctioning and needs to be repaired.

The script for the initial scenario is as follows:

3.1. THE INITIAL SCENARIO 71

Example 3.1 (Initial Scenario) Like the PSAs, the pp-agent does not know
the capabilities of the other agents on the island. However, it does know that
other agents exist and specifically, that the broker can find PSAs that can deal
with a given problem. Thus, the first thing that has to happen is that the pp-
agent contacts the broker to ask for agents that can deal with its problems. Note
that this assumes that the broker somehow already knows the capabilities of the

different PSAs.

Now the broker has to look through its data base of agents and capabilities to
find PSAs with sufficient capabilities to solve the problems described by the PHA.
If the broker manages to find such PSAs it has to inform the PHA about these
agents. In the initial scenario the broker will find that the ec-agent can repair the

generator and that the hl-agent can deal with the injured person.*

With the knowledge of which PSAs can solve the PHA’s problems the pp-agent
can now contact the ec-agent and the hl-agent and ask them to actually solve

the problems.

Finally, the ec-agent and the hl-agent can go ahead and solve the given prob-
lems. For this initial scenario we shall assume that there were no further com-
plications and all the PSAs have to do after completing their tasks is to report

success back to the PHA.

As mentioned above, for the scenarios we will describe in this thesis the power
plant shall be our PHA. The problem that this agent has will be largely the same
for all the scenarios that are going to be presented. The main differences between

the different scenarios will be in the capability descriptions for the different agents.

4 Alternatively, the broker could recommend the h2-agent to deal with the injured person, but
only one agent is required to address this part of the problem.

72 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

3.2 Inter-Agent Messages

In this section we will show what the messages look like that the dif-
ferent agents will need to exchange. These messages are expressed in
a high level communication language. We have chosen KQML for this
purpose. This section will also show what knowledge the messages
will need to contain, i.e. what needs to be represented in capability

descriptions.

As pointed out in section 1.1.1, social ability is one of the key features of an
intelligent agent. Hence, we will now have a closer look at the different mes-
sages the agents described in section 3.1.2 will need to exchange to achieve the

behaviour described in the initial scenario.

We feel that the communication between software agents has to be in some
formal language and we have chosen KQML as the high-level agent communication
language (cf. 2.1.2.3). This is mainly because: KQML is one of the best under-
stood languages for this purpose; it is very general by allowing arbitrary content
languages; and there is software available that embeds KQML into a number of

environments.

3.2.1 Capability Advertisement Messages

The starting point for the message exchange is a situation in which all agents
are on-line, i.e. ready to communicate with each other, but they do not know
about most of the other agents. Specifically, they do know about the broker, but
they do not know about the problem-solving capabilities of the PSAs. Hence, as
a first step the PsAs have to tell the broker about their capabilities. Here are
the messages we would expect the PSAs to send to the broker advertising their

capabilities:

3.2. INTER-AGENT MESSAGES 73

(advertise
:sender ec
:receiver ANS
:ontology capabilities
:language KQML
:content (achieve
:receiver ec
:ontology 0OPlan
:language CDL
:content (<machine fully functional>)))

(advertise
:sender hil
:receiver ANS
:ontology capabilities
:language KQML
:content (achieve
:receiver hl
:ontology 0OPlan
:language CDL
:content (<injured people treated>)))

(advertise
:sender h2
:receiver ANS
:ontology capabilities
:language KQML
:content (achieve
:receiver h2
:ontology OPlan
:language CDL
:content (<injured people treated>)))
Message contents describing capabilities are informal here and are only meant
to illustrate what kind of knowledge needs to be represented in our capability
description language. The complete messages will be described in section 4.2.5

together with our capability description language CDL.

Let us first look at the outer part of these KQML messages. The performative
of all these messages must be advertise. With a message with this performative
the sender tells the receiver that it is capable of processing messages of a certain
type. The sender in each case must be the respective agent that is advertising

the capability with this message. The receiver must be the Agent Name Server

74 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

(ANs). This is because we envisage the broker as an extension of an ANS that

supplies agent addresses not only by name but also by capability.

For the agents to share knowledge about capabilities they must have at least
one shared ontology which has to be named in the KQML message.> The ontology
in our examples in called capabilities. The content language is again KQML,
i.e. there is a KQML message inside a KQML message. This inner KQML message

is given in the content field.

The specification for KQML prescribes that the content field in an advert-
isement message should contain the KQML message the advertiser commits to
processing with this advertisement, i.e. the content of the advertisement and any
future message to be processed must be identical [Labrou and Finin, 1997, page
19]. This approach is extremely limited and most existing brokers have extended
it to allow the content of the advertisement to be a generalisation of the actual

messages the PSA commits to processing.

The performative of the inner message is achieve in all three cases.® With
messages of this type the sender asks the receiver to make something true in its
physical environment. Thus, the capability of making a given condition true is
what is being advertised here. There is no sender specified in the inner message
as this will be the agent requesting the achievement at some later stage. The
receiver must be the advertising agent, i.e. the sender of the outer message. The
ontology specified in the inner messages is OPlan for all of our PsAs. This is only
because all of our PSAs use the O-Plan planner to plan their actions. In general

any ontology the PSA knows about can be specified here.

We have chosen to allow for a new capability description language that appears
in the content of the inner message of the capability advertisement. This language

is called ¢DL and will be described in chapter 4 in detail. At this point we are

> The Java Agent Template which is the basis for the implementation of our agents makes a
rather unusual use of the ontology field in a KQML message. The details will be explained in
section 5.3.

6 An extension that allows a second performative “perform” in the inner message will be
described in section 4.3.

3.2. INTER-AGENT MESSAGES I6)

only interested in illustrating how this language fits into KQML and how it can
be used to make the initial scenario work. Thus, the message contents describing

capabilities are only given informally here.

At the heart of this content must be a description of the condition the PsaA
can make true. For example, the content of the inner message of the capability
advertisement of the ec-agent must say that it can achieve the condition that
a machine is fully functional. It will also often be necessary to qualify such an
achievable condition with an applicability condition and we will allow this in CDL.
For example, the engineering company can only achieve fully functional states for
machines. Achievable conditions amended with applicability conditions will be

the core of capability descriptions in CDL.

Another important issue arises from a comment made in section 3.1.2, namely
that operators available to a PSA’s planner already provide an indirect capability
description for this agent (cf. section 2.3.1). However, this might not describe
the capabilities the agent wants to advertise. For example, a hospital with an
ambulance surely can drive a person from one place to another besides back
to the hospital but will normally not want to provide this capability to other
agents (i.e. a hospital is capable of providing a taxi service but will not actually
offer to do so). Thus, capability descriptions will not necessarily describe actual

capabilities, only selected advertised capabilities.

3.2.2 Messages for the Initial Scenario

After receiving the above messages the broker will be aware of these three agents’
capabilities. This is the starting point for the initial scenario. The next step is the
power plant informing the broker of the problem at hand and asking for agents
that can deal with this problem. KQML has a number of performatives that allow
for this kind of message. We shall only look at one of those here: recommend-one.
With this type of message an agent asks the broker to find exactly one agent that

can deal with the problem described in the content of this message. For our

76 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

example 3.1 there will be two messages describing the two parts of the problem:

(recommend-one
:sender pp
:receiver ANS
:ontology capabilities
:language KQML
:content (achieve
:sender pp
:language CDL
:content (<generator fully functional>))

(recommend-one
:sender pp
:receiver ANS
:ontology capabilities
:language KQML
:content (achieve
:sender pp
:language CDL
:content (<injured person treated>))

The performative of the outer message is recommend-one and the sender is
the pp-agent, the PHA in the initial scenario. The receiver is the ANS which
is the brokering agent as explained above. As in the capability advertisement
messages the ontology specified in the outer message is capabilities and the

content language is KQML.

The inner message in the content field is the message the pp-agent wants
a PSA to process. The performative is achieve because the pp-agent wants
some condition to be made true. The sender given in the inner message must
be the same agent that is sender in the outer message, i.e. the agent seeking
the capability. Finally, the content language is ¢DL and the content must be a

description of the condition to be achieved in CDL.

The content of the inner message is basically a description of the problem.
Where the ¢DL expression in the capability advertisement contained an achiev-
able condition, the CDL expression in the capability seeking message contains the

condition to be achieved. For example, the power plant wants the condition in

3.2. INTER-AGENT MESSAGES 77

which its generator is fully functional to be made true. There is also the equival-
ent of qualification here. Namely, conditions which are required by the capability
seeker to be true can be used as applicability conditions in the capability advert-
isement (e.g., requiring that the object is a generator that is to be made fully
functional). Conditions to be achieved, amended with conditions provided will

be the core of problem descriptions in CDL.

The next step is for the broker to find a capability of a PSA that matches
the given task description. How exactly this finding and matching work will be
described in chapter 5. For now, let us assume that the broker found the ec-agent
and the hl-agent as PSAs capable of dealing with the described problems. The
broker should now forward the capability descriptions of these agents to the PHA

as follows:

(forward
:sender ANS
:receiver pp
:ontology capabilities
:language KQML
:content (achieve
:receiver ec
:ontology OPlan
:language CDL
:content (<machine fully functional>)))

(forward
:sender ANS
:receiver pp
:ontology capabilities
:language KQML
:content (achieve
:receiver hil
:ontology OPlan
:language CDL
:content (<injured people treated>)

Forwarding of messages in KQML is done with the forward performative. The
sending and receiving agents should be obvious and ontology and language are as

before. The content field should be the content of the message that advertised the

78 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

capability in the first place. Note that it is necessary to include in this message

the name of the PSA so that the PHA will be able to find it subsequently.

Now the pp-agent should be able to use the forwarded capability advertise-
ments to formulate messages to the respective PSAs asking them to perform their

capabilities on its problems. The according messages should look as follows:

(achieve
:sender pp
:receiver ec
:ontology OPlan
:language CDL
:content (<generator fully functional>))

(achieve
:sender pp
:receiver hil
:ontology 0OPlan
:language CDL
:content (<injured person treated>))

There is very little protocol for what should happen next in KQML and we
do not intend to fully specify it here. Much of the following message exchange

obviously depends on the exact nature of the problem and how the PSAs get on

with solving it.

3.3. MORE COMPLEX SCENARIOS 79

3.3 More Complex Scenarios

In this section we will introduce some more interesting agents and
scenarios that will be used in the thesis to highlight the usefulness
of the two properties of the capability description language: express-
weness and flexibility. This section constitutes a magjor part for the

motivation for the work described in this thesis.

3.3.1 Expressive Capability Descriptions

The two hospitals on Pacifica are based in Calypso and Abyss and their capability
descriptions for the initial scenario are virtually identical. One way of adding
complexity to the initial scenario to make it more interesting is to divide the
island such that one hospital deals with problems in one part and the other
hospital deals with problems in the other part of Pacifica. The map of Pacifica
(figure 3.1) suggests that the first hospital should deal with cases in Calypso
and Delta and the second hospital should deal with cases in Abyss and Exodus.

Barnacle lies between the two hospitals and may be served by both.

Such a change would not show in the achievable conditions in the capability
descriptions of the two hospitals. It would, however, alter their qualifications, the
conditions for applicability of their advertised capabilities. For example, the CDL
expression in the capability advertisement for the first hospital should represent
that it can achieve states in which injured people in Barnacle, Calypso, or Delta
have been treated. In terms of expressiveness, this capability description requires
CDL to be able to handle disjunctions in conditions which were not necessary in

the initial scenario. Disjunctions require a greater expressiveness of CDL.

To make the scenario even more complex, suppose that Pacifica is somewhere
off the coast of Iceland where the weather is often inclement. The first hospital
has an ambulance, but if there is snow or ice on the roads then snow chains

need to be fitted to the ambulance before it can fetch injured people. Thus, one

80 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

applicability condition for the first hospital’s capability is to have snow chains.
This condition is itself conditional, and its condition is disjunctive.” If we want
the capability description for the first hospital to reflect this additional condition

we need even more expressiveness in CDL.

For the following scenario, let the problems at the power plant be as before:
a broken generator and an injured person. Also, let the broker know that the
weather is bad, i.e. there may be ice or snow on the roads, and that the first
hospital’s ambulance has snow chains. Then the script for the ezpressiveness

scenario is as follows:

Example 3.2 (Expressiveness Scenario) The first thing that has to happen
15 that the pp-agent contacts the broker to ask for agents that can deal with its

problems.

Now the broker has to look through its data base of agents and capabilities to
find PSAs with sufficient capabilities to solve the problems described by the pp-

agent. As before, the engineering company can deal with the broken generator.

For the injured person the two hospitals are potential PSAs. However, the
second hospital does not serve Delta where the power plant is based. The first
hospital does, and since its ambulance has snow chains its capability is applicable.
Thus, the broker finds the first hospital as capable of dealing with the injured
person. According messages will be sent to the pp-agent.

With the knowledge of which PSAs can solve the PHA’s problems the pp-agent
can now contact the ec-agent and the hl-agent and ask them to actually solve
the problems.

Finally, the ec-agent and the h1l-agent can go ahead and solve the given prob-

lems.

Obviously, a number of variations can be generated from this scenario by

varying the road conditions and availability of snow chains to the first hospital’s

" The formal representation of this capability in ¢DL will be shown in section 4.5.1.

3.3. MORE COMPLEX SCENARIOS 81

ambulance, or by dropping the splitting of the island between the two hospitals.
The scenario above is one of the most interesting cases, since the conditional
applicability condition has to be evaluated, but which part of the disjunctive
condition holds, ice or snow on the road, is unknown. The expressiveness of CDL
will be discussed in chapter 7. The way that some of the approaches described
in chapter 2 would have represented the first hospital’s capability and performed

in this scenario will be discussed in chapter 9 in detail.

3.3.2 Flexible Capability Descriptions

For the following scenario let us ignore the engineering part of the problem of the
power plant and just look at the injured person. The PSAs that can deal with
this problem in principle are the two hospitals. For this scenario we shall change
their capabilities slightly and introduce a new PSA: an ambulance service. These

agents will advertise the following capabilities:

e the first hospital/h1l-agent: The main capability of this hospital is that it
can treat injured people. However, it does not have an ambulance in this
scenario and thus, an applicability condition is now that the injured people

to be treated must be at the hospital. The hospital is in Calypso.

e the second hospital/h2-agent: The main capability of this hospital is also
that it can treat injured people. It has an ambulance to transport injured
people from Abyss, Barnacle, or Exodus to the hospital in emergencies.
Delta and Calypso are considered too far away and the ambulance cannot

be spared for such a long time.

e the ambulance service/as-agent: The main capability of this agent is that it
can transport injured people; it cannot treat them. The ambulance service
has an ambulance that can be used only to transport people between any

two places. The ambulance is based in Delta.

82 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

What is interesting in this scenario is that the different PSAs require different
expressiveness in their capability descriptions. The second hospital has a dis-
junctive applicability condition: injured people must be in Abyss, Barnacle, or
Exodus. The first hospital and the ambulance service do not need disjunctions

and thus, require a less expressive capability representation.

Let us look at the broker next. The broker accepts and stores capability
descriptions from the PSAs. On receipt of a request from a PHA it will try to
find agents the capabilities of which it knows about to solve the given problem.

Suppose the broker has two options here:

1. Find a single agent that can solve the problem. The broker checks for all
PSAs whether they alone have the required capability. Inferences over the
capability descriptions are limited and thus the broker can do this for any

agent.

2. Find a sequence of agents that can solve the problem. Suppose that the
broker has a simple planner built in that it can use to generate partial-
order plans involving the capabilities described to it. However, this planner
can only handle simple capability descriptions in C¢DL that do not involve

disjunctive conditions.

The fact that the broker has two different ways of finding a solution to the
given problem is crucial for this scenario. With these two options the broker
has the flexibility to exploit the inferences it can make about less expressive

representations.

The final change concerns the way the PHA wants the problem handled. For
this scenario it will ask the broker to manage the solution of its problem rather
than recommending a PSA the PHA has to contact itself. The script for the

flexibility scenario is as follows:

3.3. MORE COMPLEX SCENARIOS 83

Example 3.3 (Flexibility Scenario) The first thing which happens is that the

pp-agent contacts the broker to ask it to deal with its problem, the injured person.

Now the broker has to look through its data base of agents and capabilities to
find PSAs with sufficient capabilities to solve the problems described by the pp-
agent. It will first look for single agents that can deal with the problem. The
broker works out that the hl-agent cannot help because it requires the injured
person to be at the hospital. Similarly, the h2-agent does not have the necessary
capabilities because its applicability conditions state that the injured person must
be at Abyss, Barnacle, or Exodus. Finally, the as-agent cannot treat people at
all. Hence the broker has failed with its first option to find a single agent that is

capable of solving this particular problem.

The broker will now try its second option, finding a plan involving the cap-
abilities of several agents. In the example this means the broker will exclude the
h2-agent from its planning attempt to find agents to solve the problem because
of the disjunction in its applicability condition, i.e. because this capability corres-
ponds to an operator with a disjunctive precondition which cannot be handled by
the broker’s planner. Only the hl-agent and the as-agent remain and the broker
should be able to work out that their combined capabilities suffice to solve the

problem.

The broker can now contact the different PSAs involved in this plan and mon-
itor the execution. The as-agent and the hl-agent can go ahead and solve the

given problem. Finally the broker reports success to the pp-agent.

This scenario illustrates the flexibility of ¢DL because the broker knows what
kinds of inferences it will want to make and can look at the CDL descriptions
to see whether the inferences are supported. Thus capability descriptions may
use different levels of expressiveness which will restrict the inferences the broker
can make. This trade-off is not surprising. The flexibility of cDL stems from

the fact that it allows arbitrary expressiveness in its descriptions and works out

84 CHAPTER 3. SCENARIOS, AGENTS, AND MESSAGES

what inferences it needs to make and whether this is possible only when this is

required.

This scenario could be extended to one where the broker has several more
planning algorithms (or other methods) available which could be applied de-
pending on the inferences supported by the expressiveness used within the CDL
descriptions of different agents, e.g. a planner which could cope with disjunctive

preconditions.

It is also worth noting that in the above scenario the availability of the h1-
agent is crucial for the successful solution of the problem. Due to the disjunction
in the capability description of the h2-agent the broker cannot generate plans
involving this agent, i.e. it cannot combine the as-agent and the h2-agent to solve
the given problem. This could be easily fixed though if the h2-agent advertised
the additional capability to treat patients that are at this hospital.

Obviously, a number of further variations can be generated from this scenario
by changing the capability descriptions of the three PSAs. The scenario above is
one of the most interesting cases though as it involves different levels of express-
iveness for the different agents’ capability descriptions, resulting in a problem
that illustrates the need for a flexible capability description language. The flexib-
ility of ¢DL will be discussed in chapter 8. The way that some of the approaches
described in chapter 2 would have performed in this scenario will be discussed in

chapter 9 in detail.

Chapter 4

A Capability Description
Language: CDL

At this point we have looked at the knowledge we need to represent in
the messages exchanged during capability brokering and several areas
of Al that need to represent similar knowledge. Our aim is to define a
new capability description language that will be expressive and highly
flexible and can be used to reason about capabilities. In the next step
towards this goal we will define our new capability description lan-
guage, CDL, that will be used for capability brokering. The contribution
of this chapter will be the definition of the different aspects of CDL,

including its syntax and various examples to illustrate the language.

4.1 Problems for Capability Representations

In this section we will look at problems with approaches to representing
capabilities, described in chapter 2, when they are used for capability
brokering. We will also highlight crucial ideas that we will adopt for
our capability description language. This section sets the frame for

the capability language that follows.

In the previous chapter we outlined a number of scenarios that involve the

representation of and reasoning about the capabilities of various problem-solving

85

86 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

agents (PsAs). Furthermore, we have described how the broker we envisage is
supposed to respond to various messages from other agents (cf. section 3.2). What
we have omitted in this description is a definition of the format of the capability
representations which are the content of the capability advertisement messages.
The new Capability Description Language, CDL, presented in this thesis provides

this.

4.1.1 Desirable Characteristics for CDL

The first step towards a new capability description language must be a charac-

terisation of the properties or attributes we want this language to have.

The two most important properties we want our capability description lan-
guage to have are expressiveness and flexibility. These are exactly the proper-
ties the expressiveness scenario (example 3.2) and the flexibility scenario (ex-
ample 3.3) are meant to illustrate and thus, ¢DL must have these properties to

allow for the realisation of these scenarios.

Our aim is to use CDL for brokering. When designing a knowledge represent-
ation language it is important to take into account what kind of reasoning one
wants to perform over this language. Thus, another characteristic we would like
CDL to have is that it is similar to languages which have been used for capabil-
ity brokering successfully, as this would indicate that CDL, too, can be used for
brokering. Likewise, since capabilities can be seen as actions one can perform
(cf. section 4.2.1), we would also expect CDL to be similar to representations that

have been used to represent and reason about actions.

As we expect the broker to perform its services autonomously, it is important
that the capability representations are in some formal language; CDL must have
this attribute. Finally, every representation must have a semantics to qualify as
a representation in the first place [Hayes, 1974], so we shall pay attention to this

property as well.

4.1. PROBLEMS FOR CAPABILITY REPRESENTATIONS 87

‘ H 2.1 brokers ‘ 2.2 logics ‘ 2.3 action reps. ‘ 2.4 models of PSMs ‘

expressive medium high medium high
flexible (yes) no some no
brokered yes no (yes) (yes)
actions no no yes (yes)
formal yes yes yes (no)
semantics (yes) yes (yes) no

Table 4.1: Properties of different approaches
4.1.2 Preliminary Evaluation

Given this characterisation of desirable properties for CDL, we can now evaluate
the approaches described in chapter 2 to identify which of them have the above
properties. The results of this preliminary evaluation are summarised in table 4.1.
For simplicity, we have only listed the four general areas described in sections 2.1
to 2.4. Each of these areas comprises a number of approaches and the table
obviously over-generalises and thus, should be seen as a table of general trends
rather than an exact evaluation. A more detailed comparison of CDL with other

approaches will follow in chapter 9.

The highest expressiveness can be found in logics and models of problem solv-
ing.! Classical first-order predicate logic [Chang and Lee, 1973, Loveland, 1978,
Gallier, 1986] has been used to represent many different kinds of knowledge and
can thus be considered an expressive representation. However, many other logics
offer still more expressiveness to allow the representation of highly complex cir-
cumstances (cf. section 2.2.2). Models of problem solving often allow natural lan-
guage as at least an aspect of their representation which accounts for their high
expressiveness (cf. section 2.4.1.2). Most action representations (section 2.3.1)
have only restricted expressiveness as they were designed to be used in forma-
tion of plans which in itself is a very complex process. There are, however, some
action representations that offer more expressiveness, e.g. ADL [Pednault, 1989).

The representations used by the brokers we have described in section 2.1.3 are

L'A more elaborate discussion of the expressiveness of ¢DL will follow in chapter 7.

88 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

more difficult to classify as they are vague on what exactly the representation of
capabilities they use will look like. Closer inspection reveals that, although they
mostly allow KIF [Genesereth, 1991, Genesereth et al., 1992] as at least one pos-

sible content language, the restrictions imposed are rather severe (cf. section 9.1).

The highest flexibility of the representations we have looked at can be found
in brokers and in some action representations®. Most brokers are based on KQML
(cf. section 2.1.2.3) which specifies that capabilities are to be described as KQML
messages that can be processed. Thus, the capability description language is
KQML, a language designed to have an opaque content which is expressed in a
language specified at the wrapper level. In practise though, most brokers only
allow a very limited range of languages that can be used as content in capab-
ility descriptions in KQML (cf. section 2.1.3). Most action representations (sec-
tion 2.3.1) have very little flexibility, but there are a few noteworthy exceptions,
e.g. SPAR [SPAR, 1997, Tate, 1998]. Like KQML, these languages allow the plug-
ging in of different content languages which gives them their flexibility. Logics
(section 2.2), although they provide a wide range of formalisms do not individu-
ally have this flexibility. Finally, models of problem solving (section 2.4) usually
allow for some parts of their representations to be natural language descriptions

and thus, cannot be considered flexible.

The next aspect we have looked at is whether the representation has been
used for brokering. Obviously, the KQML-based representations described in sec-
tion 2.1.3 satisfy this criterion, but they are not the only ones. Action represent-
ations (section 2.3.1), in fact, can also be seen as having been used for brokering,
as a planner that uses these representations at some point also needs to retrieve
an action that can achieve a given effect. This is essentially the task performed
during capability retrieval. A similar case could be made for the situation calculus
(section 2.2.1) which is based on first-order logic, but it is really the ontology of

the situation calculus that facilitates brokering, not the underlying representation.

2 A more elaborate discussion of the flexibility of ¢pL will follow in chapter 8.

4.1. PROBLEMS FOR CAPABILITY REPRESENTATIONS 89

Thus, we are inclined to say that logics have not been used for brokering, allowing
for exceptions. Models of problem solving (section 2.4) are again a borderline case
as there are now several projects underway that are aimed at building brokers
for problem-solving methods (Psms) (cf. section 2.4.1.5). However, neither their

representations nor their brokering mechanisms are defined yet.

The obvious representations that have been used for representing and reason-
ing about actions are, of course, the action representations (section 2.3.1). Models
of problem solving (section 2.4) have also been used to represent and reason about
actions, but the actions are usually restricted to the reasoning actions performed
by some expert system. Still, reasoning about actions is what these represent-
ations were designed for. Brokering representations (section 2.1.3) and logics
(section 2.2) both have also been used to represent and reason about actions, but

this is not what they were specifically designed for.

As for the formality of the representation, the only area that does not qualify
here are models of problem solving (section 2.4) because they usually allow for
natural language as one aspect of their representation. As usual, there are excep-
tions, e.g. ML? (cf. section 2.4.1.2). However, ML? is so heavily logic-based that
one could well count it into this area anyway. Closely related is the question of
semantics. The area that has been most concerned with formal semantics is logics
(section 2.2) in which almost every formalism has a well-defined formal semantics,
otherwise it does not qualify as a logic. The semantics of action representations
(section 2.3.1) and KQML (section 2.1.2.3) have also been defined to some degree,
but there remain questions [Kuokka and Harada, 1995b] and descriptions are of-
ten informal. Finally, models of problem solving (section 2.4) which are based on

natural language fail here.

For the capability description language described in this chapter we want to
retain the ideas behind these approaches that made them perform well in certain

respects. In summary, we want our representation:

e to preserve the structure found in action representations;

90 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

e to benefit from the expressiveness of highly powerful logics and the well-

defined formal semantics that comes with them;

e to retain the flexibility of KQML by allowing for opaque content languages

and to use the communication approach to brokering;

e to be formal to allow for autonomous brokering.

4.2. ACHIEVABLE OBJECTIVES 91

4.2 Achievable Objectives

In this section we will define the core of our capability description
language. This will include basic concepts, syntazr, and examples to

Wllustrate the language.

Since we want to base our capability description language cDL, which is to
be presented in this chapter, on the structure found in action representations as
used for Al planning, it is probably worth first asking what the difference between

an action and a capability is.

4.2.1 Capabilities and Actions

Most action representations in Al are representations that describe how the state
of the world changes when an action is performed and what needs to be true
before that action can be executed. Capability descriptions need to convey very
much the same knowledge, i.e. what changes a capability can bring about and
what needs to be true for that capability to be applicable. There are two major

differences though:

e Level of description: An action is less abstract than a capability in the
sense that we would expect all its parameters to be instantiated for its ex-
ecution. However, Al planning systems use operator schemata rather than

instantiated actions as input, i.e. they effectively use capability descriptions.

e Modality: A capability is an action that can be performed (in theory),
i.e. it has a different modality. But this is implicitly what an AI planner
usually assumes when it generates a plan; that the operator schemata it
instantiates and inserts into the plan represent capabilities of some agent

(cf. [McCarthy and Hayes, 1969, pages 470-477]).

Despite these differences, the knowledge contained in action representations

and capability descriptions is very similar because both representations basically

92 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

represent the same types of entities. Thus, the language for representing such
entities should be very similar, too, and we have already mentioned that cDL will

inherit the structure of action representations.

However, there are some further differences between actions and capabilit-
ies. For example, capability descriptions, as we envisage them, do not require
hierarchical decompositions which are used in many modern planners (cf. sec-
tion 2.3.1.5) unless the description is meant to also express how to perform a
capability. Thus, we will base ¢DL mostly on non-hierarchical action representa-
tions (cf. section 2.3.1.2). Another difference is that the representations used by
Al planners are usually not only concerned with actions, but also with represent-
ing plans of actions. ¢DL will not be concerned with the representation of plans.
Other differences come with the requirements connected to the intended usage of
the representation. Propositional STRIPS planning is already a PSPACE-complete
problem [Bylander, 1994] and thus, a more complex action representation is not
practical for planning. Other tasks like capability retrieval or assessment have a
different complexity and thus, allow for different complexity in the representation.

The flexibility of CDL is meant to address this issue.

4.2.2 The Knowledge in Capability Representations

We are now in a position to describe the knowledge contained in a CDL capability
representation. The core CDL representation for achievable objectives is based on
a classical, non-hierarchical operator description (cf. section 2.3.1.2) and consists

of the following parts:

e Inputs: This part of the capability representation specifies the objects an
agent possessing this capability receives as inputs to this capability. How
these inputs will be used is unspecified here. This part of the representa-
tion will be a syntactically defined expression containing symbolic variables

which the actual inputs will have to match.

4.2. ACHIEVABLE OBJECTIVES 93

e Outputs: This part of the representation specifies the objects that will be
the outputs this capability generates. Again, this will be a syntactically
defined expression containing symbolic variables the actual outputs will

have to match.

e Input Constraints: This part of the capability representation defines the
constraints that are expected to hold in the situation before this capability
can be performed, i.e. the constraints for the capability to be applicable.
Free variables in these constraints can only be from the syntactic expression

which describes the inputs.

e Output Constraints: This part of the representation defines the con-
straints that are expected to hold in the situation after this capability has
been performed. Free variables in these constraints can be from the syn-

tactic expressions which describe the inputs or outputs.

e Input-Output Constraints: This part of the representation defines the
constraints across input and output situations that must hold. Free vari-
ables in these constraints can be from the expressions describing the inputs

or outputs.

The first difference between this representation and classical non-hierarchical
representations for operators like the STRIPS representation is that there is no
identifier for the capability. We believe that the introduction of such an action
name at this point would not be epistemologically adequate as described by the
knowledge representation hypothesis [Smith, 1982]: the action name might help
a human reader of a capability description to understand the capability but is not
necessary for reasoning about the capability. We will, however, introduce action

identifiers into CDL at a later stage when we have a reason to do so (cf. section 4.3).

The next difference between capability descriptions in ¢DL and STRIPS-like
operator descriptions is that cDL distinguishes two types of parameters: inputs

and outputs. Parameters are essentially the objects involved in the performance

94 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

of a capability and must all be instantiated for the execution of a specific action
instance. CDL distinguishes input objects, i.e. objects that exist in the situation
before the capability is applied, and output objects, i.e. objects that exist only
in the situation that results from the application of this capability in the input
situation. Output objects do not exist in the input situation, but input objects
may or may not exist in the output situation. The reason for introducing this
distinction in CDL is that it simplifies the matching of capabilities and problems

slightly (cf. section 5.1.2.2).

For example, consider the capability of sorting the elements in a list. The list
itself is an input object to this capability. If the sorting is performed by modifying
the given list then there is no output object to this capability. Otherwise there
will be an output object, namely the new, ordered list that exists in the output

situation only.

Input constraints in CDL directly correspond to the precondition formula in
classical non-hierarchical action representations. In accordance with modern
planning formalisms (cf. section 2.3.1.5) we prefer to view the precondition for-
mula as a constraint on the situation in which the capability can be applied.
Notice that input constraints may only mention objects from the inputs as these
are the only objects that exist in this situation. Output constraints in CDL cor-
respond to a combined add and delete list, i.e. to the effects of an action, and
represent constraints on the situation that results from the application of this
capability. Postconditions that would occur in the delete list in a STRIPS-like
representation will be negated in the output constraints in ¢DL. Finally, output
constraints may mention objects that exist in the output situation, i.e. objects

from inputs or outputs.

For example, in the list sorting capability mentioned above, the fact that all
elements of the given list to be sorted must be elements of the domain of the
ordering relation used is a constraint on the input situation, and the fact that

the output list is ordered is a constraint on the output situation.

4.2. ACHIEVABLE OBJECTIVES 95

The final set of constraints mentioned above are the input-output con-
straints which correspond roughly to secondary preconditions and effects in
ADL [Pednault, 1989] or ucPOP [Penberthy and Weld, 1992, Barrett et al., 1995].
These constraints do not refer to only one situation like the input and output con-
straints but are constraints across both of these situations. This type of constraint
allows one to refer to objects that have different properties in different situations

and to expresses a condition on the properties in these different situations.

Returning to the list sorting example where sorting is performed by modifying
the original list, one constraint that one must express is that input and output
lists contain the same elements. If we sorted by generating a new list we might
be able to express this constraint as separate input and output constraints, but
if we modified the list this constraint cannot be expressed by referring to one
situation only. In the input situation we can only refer to the unsorted list and

in the output situation we can only refer to the now ordered list.?

4.2.3 Decoupling the Representation

At this point we know what the knowledge is we need to represent in ¢DL. The
next obvious question is what language to use to express the different constraints
in. As mentioned above, our aim is to inherit the expressiveness and well-defined
semantics of logics (section 2.2) in CDL, but we also want to retain the flexibility

of KQML (cf. section 2.1.2.3).

4.2.3.1 Integral Action Representations

At heart, many knowledge representation languages are state representation lan-
guages, i.e. they implicitly assume the world to be in exactly one state or situation

at any given time. That is, unless otherwise stated, a set of sentences in such a

3 Input-output constraints are not required in our example scenarios and thus, we shall only
return to them in section 5.2.1 where a slightly modified version of the initial scenario will
be introduced.

96 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

language is assumed to refer to the same implicit situation. Knowledge repres-
entation languages usually also assume that there exist a number of objects in
this implicit situation and that certain relations hold between these objects in
this situation. The logics described in section 2.2 mostly fall into this category of
knowledge representation languages with the notable exception of dynamic logic
[Harel et al., 1982, Harel, 1984]. Thus, these logics would qualify as languages

which can be used to express constraints on single situations.

Using state representation languages to reason about actions has proven dif-
ficult. The most commonly used knowledge representation language that makes
the above assumptions is first-order logic [Chang and Lee, 1973, Loveland, 1978,
Gallier, 1986]. It is possible to represent and reason about actions in first-order
logic as demonstrated by the situation calculus (cf. section 2.2.1), but this leads
to a number of problems; most prominently the frame problem. Hence the devel-
opment of specific action representation languages such as the STRIPS representa-
tion, which avoids the frame problem by making the STRIPS assumption, i.e. noth-
ing changes that is not mentioned in the operator description [Tate et al., 1990,
page 37]. By adopting the structure of such action representations we have also

adopted this convenient approach to the frame problem.

In most conventional action representation languages such as STRIPS, the state
representation language is an integral part of the overall representation language.
We shall call such languages integral action representations. For example, STRIPS
[Nilsson, 1980, chapter 7] only allowed conjunctions of positive literals in the input
and output constraints of its representation. However, it is relatively trivial
to extend the state language to allow for more complex formalisms, e.g. horn
clauses, full first-order logic, modal logics, etc. However, with an integral action
representation we have to commit to one of these languages and every new state
representation language defines a new action representation. It is this inflexibility
that we seek to avoid in CDL as it is not clear which would be the right state

language for describing arbitrary agent capabilities.

4.2. ACHIEVABLE OBJECTIVES 97
4.2.3.2 Decoupled Action Representations

To allow the arbitrary combination of action and state representation we will
define the action representation language independent from the state represent-
ation language. We shall call this a decoupled action representation, i.e. a full
action representation consists of a decoupled action representation combined with
a state representation language. Syntactically, decoupling will be achieved using
an approach similar to the way KQML allows content expressions to be in some in-
dependent content language (cf. section 2.1.2.3), i.e. by having a field that names
the content language and one that holds exactly one expression in this language
as a sub-expression of the wrapper. ¢DL will also allow the nomination of a
state language in which the different types of constraints are to be expressed,
except that there will be several sub-expressions in the named content language
in cDL. By decoupling the action from the state representation, cDL will achieve

the same, high flexibility that KQML provides.

The obvious advantage of such a decoupled action representation over its
conventional, integral counterpart is that it allows one to plug different state
representation languages into the same decoupled action representation language,
i.e. it has flexibility. Thus, whether we are using CDL for states with conjunctions
of literals or with full first-order logic plugged in, we are still using the same
decoupled action representation. Decoupling of action representations also allows
us to compare action representations at two different levels. For example, a
decoupled version of STRIPS would be a different action representation from CDL
even with the same state representation language, as STRIPS does not allow for

input-output constraints.

Defining a decoupled action representation language in this KQML-like way is
not the difficult part though. The problem is how to reason over such a combined
language, e.g. with a broker. We shall return to the question of how to reason
about CDL in chapter 5 and some problems with the implementation of decoupled

languages shall be discussed in chapter 8.

98 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

<cdl-descr> ::= (capability
:state-language <name>
:input (<param-spec>+)
:output (<param-spec>+)
:input-constraints (<constraint>+)
:output-constraints (<constraint>+)
:io-constraints (<constraint>+)

<param-spec> (<name> <term>)

<term> = <constant> | <variable> |
(<constant> <term>+) |
<variable> = 7<name>
<constant> = <name>
<constraint> ::= << expression in state-language >>

Figure 4.1: Syntax of core CDL in BNF

4.2.4 Syntax of the c¢pL Core

We are now in a position to define the syntax of the core of the capability descrip-
tion language cDL. A number of extensions of this syntax will be described in the
following sections. The syntax will be based on a KQML-like balanced parenthesis

list and the BNF of CDL is given in figure 4.1.

A capability description in CDL begins with an open bracket “(”, which is
followed by the word capability, indicating that this is the description of a
capability held by some agent. This is followed by a number of keyword-value
pairs as in KQML. The keyword :state-language must be followed by a state
language identifier. Although the BNF does not indicate this, all but the first
keyword-value pair are optional in ¢DL. Even the state language specification
could be omitted if there were no constraints specified for this capability, but this
does not appear to be a useful capability. The remainder of the ¢DL description

specifies the keyword-value pairs for the inputs, the outputs, and the various

4.2. ACHIEVABLE OBJECTIVES 99

types of constraints explained above.

Both inputs and outputs are lists of parameter specifications similar to the
parameters of a STRIPS-like operator description. A parameter specification in
CDL is a pair consisting of an identifier <name>, and a term. The identifier
specifies which role [Brachman, 1979] this parameter plays for this capability. The
term specifies the object that will fill this role. In capability descriptions these
terms will usually be variables or function terms containing variables. Thus, the
specification of the role filler in a parameter specification in CDL is not dissimilar
from the specification of the arguments in the definition of a Prolog predicate.
The main difference is that arguments are explicitly named by the role name.

This allows one to specify the parameters to this capability in an arbitrary order.

For example, the specification :input ((BrokenMachine ?machine)) for the
inputs of the capability of the engineering company in the initial scenario specifies
that there is just one input parameter to this capability, that this parameter plays
the role of the BrokenMachine for this capability, and that the object that will
fill this role is represented by the variable ?machine in the constraints of this

capability description.

Finally, the BNF of CDL specifies that the various types of constraints in the
capability description will in fact be lists of constraint expressions, but it does not
define the syntax for them. Of course, this is because this is the point where CDL
allows the plugging in of an independent state description language, i.e. the syntax
of CDL is open at this point because CDL is a decoupled action representation.
The only indication of what the constraints will look like is given as the value
of the state-language field which names the language in which all constraints
have to be expressed. Thus, the syntax of ¢DL is described completely at this

point.

However, to be able to actually write capability descriptions in CDL it is, of
course, necessary to define at least one state language that can be used to represent

the constraints in a CDL description. For the capability descriptions in the initial

100 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

<formula> = (<quant> <c-form>) | <c-form>
<quant> = (<quantifier> <varspec>+)
<quantifier> ::= forall | exists
<varspec> = <variable>
<c-form> = <literal> |
(not <formula>) |
(and <formula> <formula>+) |
(or <formula> <formula>+) |
(implies <formula> <formula>) |
(iff <formula> <formula>) |
(xor <formula> <formula>) |
<literal> ::= <constant> |
(= <term> <term>)
(<constant> <term>+)

Figure 4.2: Syntax of FOPL in BNF

scenario we have implemented a language that is essentially first-order predicate
logic [Chang and Lee, 1973, Loveland, 1978, Gallier, 1986]. The syntax of this
language resembles a subset of KIF [Genesereth, 1991, Genesereth et al., 1992]
and is given in figure 4.2. We shall not describe the meaning of the different

syntactical categories here as they are all fairly intuitive.

One caveat here is that the syntax of the state language refers back to the
syntax of CDL for the definition of terms. This is because we allow terms in the
parameter specifications of ¢DL descriptions and in the content language. Thus,
terms are shared across the wrapper and the content level of ¢cbL. However,
the underlying assumption made by CDL at this point is that the state language
will consist of expressions that relate objects to each other and these objects are
described by sub-expressions called terms. We believe this to be very reasonable

since most knowledge representation languages are based on a semantics that

4.2. ACHIEVABLE OBJECTIVES 101

satisfies this assumption. An exception is propositional logic and it is not clear
to us what the parameter specification in a propositional action representation
could mean. Thus, we believe the sharing of terms between CDL and its content

language to be acceptable.

However, the above definition of ¢DL and its content language requires more
than the state language to consist of expressions that relate objects to each other,
it requires a shared syntax for terms. This problem could easily be addressed by
defining a separate term definition language that has to be plugged into the de-
coupled action representation just like the state language. Although this would
allow for even greater flexibility in the action representation, we believe that the
added complexity in the expressions is not worth the effort because most know-
ledge representation languages have epistemologically very similar term specific-
ations anyway. Hence we have chosen to implement CDL with a shared syntax

for terms as described above.

4.2.5 Examples from the Initial Scenario

Now that we have defined the core of CDL it is time to look at some simple
examples that illustrate how capabilities can be represented in cDL. All the
examples in this section are the content of KQML messages required for the initial

scenario as described in section 3.2. Further examples will follow in section 4.5.

4.2.5.1 Capability Advertisements

The first group of messages required for the initial scenario are the capability
advertisement messages with which the problem-solving agents (Psas) inform
the broker of their capabilities. We have already described these KQML messages
at the wrapper level in section 3.2.1. The content describing the actual capability
was only given informally at this point simply because CDL was not yet defined.

Now we are in a position to specify the content formally. The first PSA we present

102 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

which advertises a capability is the engineering company represented by the ec-

agent. The content of its capability advertisement in CDL is as follows:

(capability
:state-language fopl
:input ((BrokenMachine ?machine))
:input-constraints (
(elt ?machine Generator)
(Is ?machine Broken)
(Has Location ?machine Pacifica))
:output-constraints (
(not (Is 7machine Broken))))

This cDL expression represents a capability and uses the content language
fopl to represent constraints on states. It expects just one object as input which
plays the role BrokenMachine for this capability. To be able to apply this cap-
ability three constraints must hold in the situation before the capability can be
performed: the object represented by the variable ?machine must be a gener-
ator: (elt ?machine Generator); it must actually be broken: (Is ?machine
Broken); and it must be on Pacifica: (Has Location ?machine Pacifica). As
a result of the application of this capability the given ?machine will no longer be
broken: (not (Is ?machine Broken)), i.e. this constraint will hold in the state

after the capability has been performed. This CDL expression does not specify

any outputs or input-output constraints.

Similarly, the content of the KQML message that is the capability advertise-

ment of the hl-agent will be expressed as:

(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(Has Location ?person Pacifica))
:output-constraints (
(not (Is ?person Injured))))

This capability description also uses the content language fopl and it ex-

pects one input which plays the role InjuredPerson. Furthermore, three con-

4.2. ACHIEVABLE OBJECTIVES 103

straints must hold in the input situation: the object represented by the variable
7person must be a person: (elt ?person Person); the person must be injured:
(Is ?person Injured); and the person must be on Pacifica: (Has Location
?person Pacifica). After the application of this capability the person will not
be injured: (not (Is 7person Injured)). The second hospital represented by
the h2-agent advertises an identical capability and there is no need to repeat this

message here.

4.2.5.2 Messages for the Initial Scenario

The first pair of messages in the initial scenario are the messages with which the
power plant represented by the pp-agent asks the broker to recommend PSAs that
can solve its problem. The problem itself consists of two parts, a broken generator
and an injured person. Hence the pp-agent has to send the two messages already
described in section 3.2.2 to the broker. As before, the content was left informal
at this point in the description and shall be given here. However, the contents
of these messages are not capability descriptions but problems. We will use ¢DL
to represent problems, too, only that these have to begin with the word task
instead of capability. Thus, the message that describes the engineering part of
power plant’s the problem is expressed as:
(task
:state-language fopl
:input-constraints (
(elt generatorl Generator)
(Is generatorl Broken)
(Has Location generatorl Pacifica))

:output-constraints (
(not (Is generatorl Broken))))

This ¢DL expression describes a problem using fopl as the state descrip-
tion language. There are three constraints given that hold in the input situ-
ation: generatorl is a generator: (elt generatorl Generator); it is broken:

(Is generatorl Broken); and it is on Pacifica: (Has Location generatorl

104 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

Pacifica).? The only constraint on the situation that should hold after the
sought for capability has been applied is that generatorl should no longer be

broken: (not (Is generatorl Broken)).

Notice that, the input and output constraints in this problem are almost
identical to the ones in the capability advertisement of the ec-agent. The reason
for this is simply that, here, we are trying to illustrate what CDL expressions
look like, not how the matching works. More interestingly, notice that problem
specifications in CDL usually do not specify any parameters. In this example, it
is the task of the broker to work out that generatorl has to play the role of the
BrokenMachine for the ec-agent’s capability to be applicable to this problem.

The content of the message describing the second part of the pp-agent’s prob-
lem is quite similar to the above:
(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Pacifica))

:output-constraints (
(not (Is JohnSmith Injured))))

Again, the state language is fopl and the input constraints specify that
JohnSmith is a person, injured, and on Pacifica. The only output constraint
the seeked capability has to satisfy is that JohnSmith must not be injured after

the application of the capability.

The next set of messages in the initial scenario are from the broker to the pp-
agent. KQML specifies that these messages forward the capability advertisement
from the PSA that can solve the described problem to the problem-holding agent
(PHA). Thus, the content that has again been informal in section 3.2.2 is, in fact,

exactly the same as in the capability advertisements described in section 4.2.5.1.

4 We are aware that this representation might not be epistemologically adequate, but as an
illustrative example for ¢DL it will do for now.

4.2. ACHIEVABLE OBJECTIVES 105

Finally, the PHA, the pp-agent in the initial scenario, can send messages to
the PsAs asking them to solve the two parts of the problem. Again, the necessary
KQML messages have been described with an informal content in section 3.2.2.
The content of these messages is the same problem description that was originally
sent to the broker, but as this part of the communication is not strictly part of
the capability brokering process, other message formats are conceivable at this

point.

106 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

4.3 Performable Actions

In this section we will extend CDL to allow for the representation of
performable actions which will be based on the description of achiev-
able objectives. This will include basic concepts, syntax, and examples

to illustrate the language.

4.3.1 Achieving Objectives or Performing Actions?

Every capability can be described as achieving an objective or as performing an
action. For example, the sorting capability mentioned before can be described
as achieving a state in which the elements of the given list are ordered. Altern-
atively, it can be described as sorting the list, i.e. the performance of an action
of type sorting on the given list. The former description can be regarded as an
objective-centred description and the latter is an action-centred description. Nat-
ural language allows us to describe every capability in both ways, although some
descriptions might sound awkward to us. Performing an action can be described
as achieving a state in which the action has been performed. Achieving an ob-
jective can be described as performing an action of type achieving for the given

objective. Thus, both descriptions are effectively equivalent.

In the core of cDL described above we have chosen to represent capabilities
through objectives they can achieve. Now is the time to briefly reflect on this
decision.

Capabilities and actions are usually described by werbs in natural language
because these are things we can do. In fact, most verbs describe actions. The
fact that we use this major syntactic category to communicate about capabilities
and actions is because it usually is the way we think about these entities. If this
is the case then an action-centred description of capabilities can be considered
a more direct representation. This in turn can be interpreted as evidence that
we should have based CcDL on performable actions. However, in classical non-

hierarchical action representations the verbs describing the actions usually take

4.3. PERFORMABLE ACTIONS 107

the place of the action name, but in section 4.2.2 we have argued that such
an action name does not add to the representation of an action in terms of
its objectives. Furthermore, in [Hayes, 1974, section 2| it was argued that the
so-called directness of a representation is a questionable concept that does not

indicate whether a representation is adequate or not.

However, there is further evidence that we should have based our capability
representation on performable actions rather than achievable objectives: most
modern planners (cf. section 2.3.1) do not use explicit goals in the statement of
a planning problem. Instead, they accept an incomplete plan as input, i.e. a
complex description of an action. The task for the planner is to refine the given
plan until it contains no more flaws. Thus, at this level of description there is
no mention of objectives at all. Objectives do however occur in plans as the pre-
conditions of actions or as flaws. Thus, modern planners use an action-centred
representation. While this representation is convenient for the planning pro-
cess itself, it does require a rather awkward specification of a planning problem
[Tate et al., 1990, page 28]: every plan contains at least two dummy steps at the
very beginning and end which do not represent actual actions that are part of
the plan. Thus, the reason for the action-centred view in planning lies in the

planning process and not in the epistemological adequacy of this view.

If every action can be described in both ways, we still need to explain why we

have chosen to base our capability representation on achievable objectives.

One answer is that we have chosen to adopt the deliberative agent architecture
(cf. section 2.1.2.1) which assumes that every action performed by an agent is goal-
directed, i.e. first there is the objective, then there is the action. Furthermore, it is
sometimes meaningful to talk about objectives for which there are no capabilities
that will achieve them, but ultimately every capability of an agent can be assumed
to have some objective, even if this objective or motive is difficult to pin down
as it is for altruistic actions. Thus, we consider achievable objectives as more

fundamental than performable actions and have based capability descriptions in

108 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

CDL on objectives.

A second argument for achievable objectives as the basis of ¢DL can be found
in work on the indezing problem for libraries of PSMs (cf. section 2.4.1.4). The
indexing problem is very similar to the capability retrieval problem faced by
our broker and thus, the experience gained there is relevant to our work here.
The initial approach to the indexing problem was to form a hierarchy of PSms
[Breuker and Van de Velde, 1994, page 59]. Nodes in this hierarchy are labelled
with actions that characterise the capability this class of Psms performs. Thus,
this approach can seen as based on an action-centred representation. This ap-
proach turned out to be inadequate for the indexing problem though. A later
approach was to associate PSMs with the problems they can solve [Breuker, 1997].
The problem to be solved was described in terms of objectives that need to be
achieved. Thus, this improved approach can be seen as based on an objective-
centred representation and is now considered more appropriate for a problem very

similar to the problem addressed in this thesis.

Partially, the problem is that natural language is misleading when it is used to
express tasks with verbs. For example, when we want our generator to be repaired
and give this as the action to be performed to the engineering company, we do
not really mean that we want the agent to necessarily perform an action of type
repairing. What we are really interested in is getting the generator into a fully
functional state, i.e. this is our objective. Thus, we have decided to base capability
representations in CDL on achievable objectives as described in section 4.2, but

we shall provide for a capability description based on performable actions, too.

4.3.2 Extending the Syntax

To think of capabilities in terms of performable actions as opposed to achievable
objectives has one major advantage: one can define a new capability in terms of
other, more primitive capabilities. For example, suppose the broker knew the

description of a general sorting action. If a new agent now wants to advertise

4.3. PERFORMABLE ACTIONS 109

the capability that it can sort lists of integers, and this new agent is aware of the
broker already knowing about the description of a sorting action, then the new
agent could advertise its integer sorting capability based on the description of the
sorting action already known to the broker. All the new agent needs to do in this
case is refer to the broker’s existing description of a sorting action and modify it
by stating the additional constraint that the elements of the given list must all

be integers.

The knowledge the broker would need to achieve this kind of behaviour is
effectively an ontology of actions (cf. section 2.3.2). It is conceivable that a
broker knowing about a number of primitive actions in an ontology would be
much easier to communicate with, as it would not be necessary to represent
every new capability completely from scratch. In fact, the two brokers for Psms
described in section 2.4.1.5 both consider an ontology of actions to be at the heart

of their brokering mechanism.

Thus, we shall now extend CDL to allow for the representation of performable
actions. If the broker has an ontology of actions and another agent wants to
define a new capability in terms of an action in this ontology, it needs to be able
to refer this action in the ontology in some way. For this purpose we need to

introduce two new keyword-value pairs into the capability representation in CDL:

e a capability identifier: this field allows the specification of a unique
action name for a capability, i.e. exactly what we have argued as being

epistemologically inadequate above; and

e a capability inheritance link: this field allows the naming of an action

from which this capability will inherit the description.

The extended syntaz of CDL that includes these fields is given in figure 4.3. The
syntactic categories not mentioned there have not changed from the definition in
figure 4.1. The :action field is used to specify the name of this action, i.e. the

name that can be used in future to refer to this action description, e.g. to inherit

110 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

<cdl-descr> ::= (<ctype>
:state-language <name>
:action <name>
:isa <name>
:input (<param-spec>+)
:output (<param-spec>+)
:input-constraints (<constraint>+)
:output-constraints (<constraint>+)
:io-constraints (<constraint>+)

<ctype> ::= capability | task

Figure 4.3: Syntax of cDL including performable tasks in BNF

its description. The :isa field is used to specify from which action this action

inherits, i.e. of which action it is a specialisation.

When a new capability description inherits from an action description in the
broker’s action ontology, the description of the new capability is effectively a de-
scription of how to modify the inherited action description inherited from to ob-
tain the new capability description. We shall call a ¢DL expression that describes
a capability by inheriting from some action a modification description. Without

further extending the syntax, three principal types of modification possible are:

e New parameters: The modification description can specify additional

parameters for input and output in the inheriting capability description.

e Instantiated parameters: The modification description can give values
for parameters defined in the description inherited from, i.e. these paramet-

ers are instantiated in the inheriting description.

e New constraints: The modification description can specify additional
input, output, or input-output constraints involving all the new parameters

as well as inherited parameters.

4.3. PERFORMABLE ACTIONS 111

4.3.3 Examples

To illustrate modification descriptions and the inheritance mechanism outlined
above we shall now look at some simple examples. The following examples rep-
resent a minor extension of the initial scenario described in example 3.1. The
first thing we need is an ontology of actions known to the broker. For simplicity,
we shall describe only one action in this ontology: a moving action. This action
will be described as follows:
(capability

:action move

:state-language fopl

:input ((Thing ?thing) (From ?pl) (To 7p2))

:input-constraints (

(Has Location ?thing 7pl))
:output-constraints (

(not (Has Location ?thing 7pl))
(Has Location 7thing ?7p2)))

The three parameters are the object that is to be moved (?thing), the place
from where it is to be moved (?p1), and the place to which it is to be moved
(?p1). The sole constraint on the input situation is that the thing to be moved
is at the place from where it is to be moved: (Has Location ?thing ?pl). The
output constraints state that ?thing will not be at the initial location anymore
after the action has been performed: (not (Has Location 7thing 7p1)); and
that it will be at the location it was to be moved to: (Has Location ?thing
7p2). The name of this action is given as move. We shall now assume that
this action description is known to the broker before it receives any capability

advertisements.

Now, suppose the second hospital also wants to advertise the capability that it
can move patients to the hospital. Of course, this could be done by simply defining
a new capability, but it can also be described as a modification of the moving
action already known to the broker. Thus, the h2-agent could send a second

capability advertisement message to the broker with the following content:

112 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

(capability
:isa move
:state-language fopl
:input ((To Hospital2) (Ambulance ?a))
:input-constraints (
(elt ?thing Person)
(Is ?thing Injured)))

This cDL description first states that it inherits from the move action in the
broker’s action ontology. This action is modified by instantiating the input para-
meter (To 7p2) to Hospital2, i.e. the capability can only move objects to this
hospital. The description also adds one more input parameter, the Ambulance
that is to be used in the application of this capability. Thus, the three input para-
meters of the new capability described here are the object to be moved (i.e. the
patient) and the place it is to be moved from, both inherited from the move
action, and the ambulance with which the patient is to be moved. The capabil-
ity description also extends the input constraints, specifying that the object to
be moved must be a person: (elt ?thing Person); and that this person must
be injured: (Is ?thing Injured). It also inherits the input constraint, (Has
Location ?thing ?7pl), and the first output constraint, (not (Has Location
?thing 7p1)), from the move action. The second output constraint, however,
is modified to (Has Location ?7thing Hospital2) because the input parameter
To, which is represented by the variable ?p2 in the description of move, has been

instantiated to Hospital2 in the input of the modification description.

The new capability can be matched against problems by the broker just like
any other capability. For example, a request to recommend an agent that can

deal with the following problem would result in the retrieval of this capability:

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Pacifica))
:output-constraints (

(Has Location JohnSmith Hospital2)))

4.3. PERFORMABLE ACTIONS 113

Modification descriptions not only apply to new capabilities but also to task
descriptions. It is possible in CDL to define tasks by inheriting from actions in
the broker’s ontology. Thus, another way of specifying the above problem would

be the following:

(task
:isa move
:state-language fopl
:input ((Thing JohnSmith) (From PowerPlant) (To Hospital2))
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)))
This cDL expression states that the PHA is looking for an agent that can move
JohnSmith from PowerPlant to Hospital2 where JohnSmith is a person: (elt

JohnSmith Person); and he is injured: (Is JohnSmith Injured).

As can be seen from these examples, the specification of a problem by inherit-
ing from an action usually involves the specification of at least some of the input
parameters. Previous problems had been described in terms of input and output
constraints only, and it was the task of the broker to fill the different roles of a
capability to decide whether the described capability can solve the given prob-
lem. While this seems to complicate the description of a problem, inheritance
does in fact simplify the description by inheriting the constraints that come with
the specified action. The way that different types of problems and capabilities

will be matched against each other will be described in section 5.2.3.

114 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

<cdl-descr> ::= (<ctype>
:state-language <name>
:action <name>
:isa <name>
:properties (<name>+)
:input (<param-spec>+)
:output (<param-spec>+)
:input-constraints (<constraint>+)
:output-constraints (<constraint>+)
:io-constraints (<constraint>+)

<ctype> ::= capability | task

<param-spec> (<name> <term>)

<term> = <constant> | <variable> |
(<constant> <term>+) |
<variable> = ?<name>
<constant> = <name>
<constraint> ::= << expression in state-language >>

Figure 4.4: Final syntax of CDL in BNF

4.4 Other Properties

In this section we will show how an agent advertising its capabilities
can be represented in CDL and we describe additional properties which

are required to accomplish this.

The final extension of CDL concerns the fact that there are a number of simple
properties that an agent might have and which it might want to include in the
capability description. For example, an agent might want to advertise that its
problem-solving behaviour is complete, i.e. that, if there is a solution to a problem,
this agent will find it. This information can be added to a capability description
in ¢DL simply through a list of propositional symbols attached to the capability

description. Syntactically this extension leads to another, optional keyword-value

4.4. OTHER PROPERTIES 115

pair with the keyword :properties. This keyword must be followed by a non-
empty list of propositions. The complete and final syntax of ¢cDL including this
extension is given in figure 4.4.

To illustrate this feature of cDL let us reconsider the new capability of the
second hospital described in the previous section, namely that it can move pa-
tients to the hospital. It also advertises the original capability described in the
initial scenario, namely that it can treat injured people. Now, the h2-agent can-
not be certain that its original capability will have the described result, i.e. that
the person the capability has been applied to will no longer be injured. How-
ever, the h2-agent might be certain that it can at least get an injured person to
the hospital, i.e. it might consider its problem-solving behaviour complete with
respect to this capability. To state this in its capability advertisement, the h2-
agent could use the properties feature. The modified capability description for

its second capability would thus look as follows:

(capability
:isa move
:properties (complete)
:state-language fopl
:input ((To Hospital2) (Ambulance ?a))
:input-constraints (
(elt ?7thing Person)
(Is ?thing Injured))))

Note that the properties are properties of the PSA and thus, they should not
be expressed as part of the input or output constraints. Task descriptions in CDL
can also mention properties, and there the properties are interpreted as properties
that the PSA for the described problem must have. For example, the following

task description would require the capability described above:

(task
:isa move
:properties (complete)
:state-language fopl
:input ((Thing JohnSmith) (From PowerPlant) (To Hospital2))
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)))

116 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

Properties can be used to express various facts about the PSA. In the above
example they have been used to represent the completeness of the problem-solving
behaviour of the PsA. Other useful information the property list may convey is
the content languages the PSA can handle. Although ¢DL would detect a PSA
not being able to handle a given problem anyway, the properties are a far more
efficient way of testing this. There is also a certain similarity between this feature
of ¢DL and the explicit naming of used extensions in PDDL [Ghallab et al., 1998].
However, the property list introduced here refers to properties of the agent while
the named extensions in PDDL refer to properties of an expression in PDDL. This
is handled automatically in CDL as the reasoning that can be performed over a
given state language will automatically determine the reasoning the broker can

perform.

4.5. EXAMPLES 117

4.5 Examples

In this section we will show how the scenarios introduced in chapter 3
and the agents involved in them can use CDL to represent their cap-
abilities. The content of the messages described in section 3.3 will be

given in CDL here.

4.5.1 Expressiveness Scenario

The first scenario we will look at is the expressiveness scenario described in sec-
tion 3.3.1. The agents for this scenario are the same as for the initial scenario. The
complexity of this scenario essentially lies in the expressions required to represent
certain constraints: The first hospital only treats patients from Barnacle, Calypso,
or Delta, and the second hospital only treats patients from Abyss, Barnacle, or
Exodus. Thus, both hospitals require disjunctions in their applicability condi-
tions. The capability description of the second hospital was complicated even
further by the fact that it requires snow chains for its ambulance if there is snow

or ice on the roads.

The first messages of interest to us again are the capability advertisements.
As the capability of the engineering company remains unchanged, so does its

capability advertisement message:

(advertise
:sender ec
:content
(achieve
:receiver ec
:ontology OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((BrokenMachine ?machine))
:input-constraints (
(elt ?machine Generator)
(Is ?machine Broken)

118 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

(Has Location ?machine Pacifica))
:output-constraints (
(not (Is ?machine Broken)))))
:ontology capabilities
:receiver ANS
:language KQML)

The next PSA advertising its capabilities is the h1l-agent. One way of express-
ing the condition that the person to be treated must be in Barnacle, Calypso, or
Delta, is simply to add this as a new disjunctive input constraint. Since we are
using first-order logic as the state language within the CDL expression describing
the first hospital’s capability, this presents no problem. The complete capability

advertising message for the hl-agent is expressed as:

(advertise
:sender hil
:content
(achieve
:receiver hil
:ontology OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(or (Has Location ?person Barnacle)
(Has Location ?person Calypso)
(Has Location ?7person Delta)))
:output-constraints (
(not(Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

An alternative way of advertising this capability avoiding first-order logic
would be to describe it as three separate capabilities, one for each of the disjuncts

in the disjunctive input constraint (cf. [Russell and Norvig, 1995, page 383]).

4.5. EXAMPLES 119

The next capability advertiser is the second hospital. We will express the
condition that the injured person must be in Abyss, Barnacle, or Exodus with
a disjunctive input constraint, as we did for the first hospital. However, there
is one more condition to represent for this hospital, namely that its ambulance
must have snow chains if there is snow or ice on the road. In first-order logic,
this can be represented as an implication with a disjunction as its left hand side.

The resulting capability advertisement message is shown here:

(advertise
:sender h2
:content
(achieve
:receiver h2
:ontology 0OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?7person Injured)
(or (Has Location ?person Abyss)
(Has Location ?person Barnacle)
(Has Location 7person Exodus))
(implies (or(on Road Ice) (on Road Snow))
(have Ambulance SnowChains)))
:output-constraints (
(not(Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

The next message in this scenario comes from the power plant which asks
the broker to recommend a PSA that can deal with the engineering part of its
problem. This message is the same as in the initial scenario and the complete
message is shown below:

(recommend-one

:sender pp
:content

120 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

(task
:state-language fopl
:input-constraints (
(elt generatorl Generator)
(Is generatorl Broken)
(Has Location generatorl Pacifica))
:output-constraints (
(not (Is generatorl Broken))))
:ontology capabilities
:receiver ANS
:language CDL)

As in the initial scenario, in reply to this request the broker will forward the
capability advertisement of the ec-agent to the pp-agent. This is because this
was the only capability advertisement matching the described problem. Note that
the content of this message is generated from the internal representation of the
broker which uses unique names for all variables. The complete reply message is

expressed as:

(forward
:sender ANS
:content
(achieve
:receiver ec
:ontology 0OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((BrokenMachine ?machine_3))
:input-constraints (
(elt ?machine_3 Generator)
(Is ?machine_3 Broken)
(Has Location ?machine_3 Pacifica))
:output-constraints (
(NOT(Is ?machine_3 Broken)))))
:ontology agent
:receiver pp
:language KQML)

The more interesting part of the problem is, of course, the injured person.

The next message from the pp-agent to the broker describes this problem to

4.5. EXAMPLES 121

the broker. There are two minor differences between this message and the cor-
responding message in the initial scenario. Firstly, the location of the injured
person is given as Delta here. This should render only the hl-agent capable of
solving the problem for the pp-agent. Secondly, the performative for this message
is recommend-all, i.e. the pp-agent wants to know about all PSAs that can deal
with the described problem. We have made this change to illustrate that only the
first hospital has the desired capability. Thus, the complete message is expressed

as:

(recommend-all
:sender pp
:content
(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
:output-constraints (
(not(Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

In reply to this message the broker will first forward the capability advertise-
ment of the hl-agent to the pp-agent, thereby indicating that this agent will be

capable of solving the given problem. The complete message is given below:

(forward
:sender ANS
:content
(achieve
:receiver hl
:ontology OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((InjuredPerson ?person_4))
:input-constraints (
(elt ?person_4 Person)

122 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

(Is 7person_4 Injured)
(OR (Has Location ?person_4 Barnacle)
(Has Location ?person_4 Calypso)
(Has Location ?person_4 Delta)))
:output-constraints (
(NOT(Is ?person_4 Injured)))))
:ontology agent
:receiver pp
:language KQML)

If the broker found the h2-agent also capable of solving the pp-agent’s prob-
lem, it should also forward its capability description to the pp-agent at this point.
However, since the injured person is in Delta the second hospital’s capability
description should not match the problem and thus, the capability description
should not be forwarded. The final message from the broker to the pp-agent in
reply to the described problem indicates that all the matching capability descrip-
tions have been forwarded at this point. This is done with the following simple
KQML message:

(eos
:sender ANS

:ontology agent
:receiver pp)

While this concludes the expressiveness scenario from the broker’s point of
view, there remains the additional condition of the second hospital which has
not been used for this scenario. Thus, we have decided to alter the problem
description slightly to test the brokering for the h2-agent’s capability. Although
the power plant is located at Delta, we have moved the injured person in the
problem description to Exodus. Furthermore, we have added the knowledge that
there is ice on the road and that the ambulance has snow chains. The resulting
problem description is given in the following message:

(recommend-all

:sender pp

:content
(task

4.5. EXAMPLES 123

:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Exodus)
(on Road Snow)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

Since this problem description does satisfy all the second hospital’s input
constraints the broker should forward the capability description to the PHA, the
power plant. The first hospital’s capability is not applicable here because of the
injured person’s location. Thus, there will be two reply messages from the broker

to the pp-agent which will be expressed as:

(forward
:sender ANS
:content
(achieve
:receiver h2
:ontology OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((InjuredPerson ?person_5))
:input-constraints (
(elt ?person_5 Person)
(Is ?person_5 Injured)
(OR (Has Location ?person_5 Abyss)
(Has Location 7person_5 Barnacle)
(Has Location ?person_5 Exodus))
(IMPLIES (OR(on Road Ice) (on Road Snow))
(have Ambulance SnowChains)))
:output-constraints (
(NOT(Is ?person_5 Injured)))))
:ontology agent
:receiver pp
:language KQML)

124 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

(eos
:sender ANS
:ontology agent
:receiver pp)

4.5.2 Flexibility Scenario

The second scenario we want to look at in this section is the flexibility scenario
described in section 3.3.2. For this scenario we have decided to ignore the en-
gineering part of the power plants problem. The complexity of this scenario lies
in the fact that different agents use differently expressive state languages. With
capabilities using the less expressive state language, the broker will still be able
to form plans involving those agents’ capabilities. Otherwise the broker can only

determine whether an agent will be able to solve the given problem alone.

The first messages we need to look at in this scenario are again the capability

advertisements, beginning with that of the hl-agent:

(advertise
:sender hil
:content
(achieve
:receiver hil
:ontology 0OPlan
:language CDL
:content
(capability
:state-language lits
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?7person Injured)
(Has Location ?person Hospitall))
:output-constraints (
(not(Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

There are two important changes in the capability advertisement of the first

hospital compared to the previous scenarios. Firstly, the injured person must

4.5. EXAMPLES 125

be at the hospital for the capability to be applicable in this scenario. This is
reflected in the final input constraint. The underlying reason for this restriction
is the assumption that the first hospital has no available ambulance in this scen-
ario. Secondly, the content language used within CDL is specified as 1its in this
message. The reason for this is that all the constraints specified in this capability
description are literals only, i.e. there was no need for full first-order logic in this
capability description. Whereas we have defined the syntax of first-order logic in
figure 4.2, we have not yet defined the language specified in this message: 1lits.
The broker will be in the position in which it has never seen this language before.
Thus, it will send a message to the sender of the original message containing the
unknown language asking it where to find this language. This message will be
expressed as:
(evaluate
:sender ANS
:content
(ask-resource
:type language
:name lits)
:ontology agent

:receiver hi
:language KQML)

Now, since the hl-agent used this language in its capability advertisement we
can safely assume that it knows the language in this scenario. Thus, it can tell

the broker where to find this language with the responding message below:®

(evaluate
:sender hil
:content
(tell-resource
:type language
:value (http://www.dai.ed.ac.uk/students/gw/jat/classes
JavaAgent .resource.fopl.LitLObject)
:name lits)
:ontology agent

5> The treatment of languages as resources managed by an agent based on the Java Agent
Template will be explained in section 5.3.1 in detail.

126 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

:receiver ANS
:language KQML)

The second hospital still uses fopl as the content language in its CDL cap-
ability description language, and, as for the previous scenarios, we shall assume
that the broker knows where to find this language. The reason why the h2-agent
still uses first-order logic as its state language is the final input constraint. As
in the expressiveness scenario, this hospital will only transport injured people
from Abyss, Barnacle, or Exodus to the hospital for treatment. This is expressed
as a disjunction and thus, it requires first-order logic. The complete capability

advertisement message of the h2-agent is shown here:

(advertise
:sender h2
:content
(achieve
:receiver h2
:ontology 0OPlan
:language CDL
:content
(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?7person Injured)
(or (Has Location ?person Abyss)
(Has Location ?person Barnacle)
(Has Location ?7person Exodus)))
:output-constraints (
(not(Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

The last capability advertisement comes from a new agent which we have
introduced for this scenario: an ambulance service. Essentially, the capability
the as-agent advertises is that it can transport injured people from any place to

any other place. Since this capability is again reasonably simple, it also is based

on lits as the state language within ¢DL. The actual message looks as follows:

4.5. EXAMPLES 127

(advertise
:sender as
:content
(achieve
:receiver as
:ontology OPlan
:language CDL
:content
(capability
:state-language lits
:input ((InjuredPerson ?person) (From ?pl) (To ?p2))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(Has Location ?person 7pl))
:output-constraints (
(not (Has Location ?person 7pl))
(Has Location 7person 7p2))))
:ontology capabilities
:receiver ANS
:language KQML)

Notice that on receipt of this message the broker should not need to ask the
sending agent where to find the state language 1its, as it already knows where to
find this language from the communication following the capability advertisement
of the hl-agent.

Thus, the next message in this scenario will be the problem description from

the pp-agent:

(broker-one
:sender pp
:content
(task
:state-language lits
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
:output-constraints (
(not(Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

128 CHAPTER 4. A CAPABILITY DESCRIPTION LANGUAGE: CDL

This problem is essentially the same as in the previous scenarios. The only
important difference is the performative used here: broker-one. With this per-
formative the PHA does not ask the broker to recommend PSAs that can solve the
described problem as before, but to manage the solution of the problem for the

PHA.

As described in section 3.3.2, the broker actually has several mechanisms
for brokering available. The first mechanism, to find a PSA that can solve the
described problem is the one we have used up to now. This is also the first
mechanism the broker will try here. However, none of the PSAs the broker knows
about have advertised a capability that matches the described problem, i.e. none
of the PSAs has the capability to solve the described problem on its own. In this
case the broker will try its second mechanism: finding a plan. This mechanism
will only be invoked with the broker-one performative as a plan cannot be the
reply to a recommendation performative in KQML. In this example the broker
will find a plan that involves firstly, applying the as-agent’s capability to move
the injured person to the first hospital, and secondly, applying the hl-agent’s
capability to treat the patient.

The messages to the PSA to execute this plan are not included here simply
because the current implementation does not provide a plan execution framework.
Partially the reason for this is the fact that this would not add to the actual
brokering process that is the focus of this thesis, and partially it is because KQML
and JAT specifically do not provide sufficient support for such a framework. For

a review of work on agents that execute plans see section 2.3.4.

Chapter 5

Algorithms and Implementation
of CDL

At this point we have defined the capability description language CDL
that will be used to represent general capability knowledge. Our aim
18 mow to show that CDL can be used to reason about capabilities as il-
lustrated in our scenarios and that it is indeed expressive and flexible.
The next step towards this goal will be to show how specific problems
can be evaluated against capability descriptions in CDL. The contri-
bution of this chapter will be the description of the algorithm used to
perform this evaluation and its integration into the agent framework

chosen for the implementation.

5.1 Basic Capability Evaluation

In this section we will show how simple capability descriptions in CDL
are represented internally and can be evaluated against simple task

descriptions.

5.1.1 Internal Representation

The broker and cDL are both implemented in the object-oriented programming

language Java [Eckel, 1997, Campione and Walrath, 1998]. CDL expressions are

129

130 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

handled as objects in this implementation. Thus, we will first have a brief look
at the structure of CDL descriptions, i.e. what other objects constitute a CDL

description.

Definition 5.1 (cpL Description) A capability description of a capability C in
CDL is a tuple < AC,SC, idC, sup®, I€,0°,CS,CE, CS,, P¢ = where: A is the
agent that has capability C; S€ is the name of the state language used within this
capability description; id® is the identifier of this capability; sup® is the identifier
of the action from which this action inherits; IC is a set of ic input parameter

specifications: {IS,... IS }; OF is a set of je output parameter specifications:

) ZC
{OF,...,05.}; CF is a set of ke input constraints: {Cf,,...,Cf }; C§ is a set
of lc output constraints: {CGy,...,CE,.}; Cfp is a set of me input-output con-
straints: {CSy, .. ., CICOmC}; and ﬁnally, PC€ is a set of ne properties of capability

C: {P,... PCY.

The agent A¢, which has the capability C, is represented by its name as
part of the capability description. The state language S¢ is an instance of the
class Language, a special resource provided by the Java Agent Template (JAT)
described in section 5.3. Note that this feature of Java, the explicit representation
of the class of an object as an object itself, allows the reflective reasoning over the
state language within a CDL expression which is necessary to permit the plugging
in of arbitrary, opaque state languages (cf. section 4.2.3). The identifier id® of
this capability can be used to refer to this description in future, and the identifier
sup® names the action of which this capability description is a specialisation

(cf. section 4.3.2). Both these identifiers may be undefined.

The inputs I¢ and outputs O° are both potentially empty sets of parameter
specifications, where a parameter specification consists of a role name and a
term describing the object that will play this role for the described capability
C (cf. section 4.2.4). The input constraints C¢, the output constraints C§, and

the input-output constraints C¢, are all sets of objects that belong to the class

5.1. BASIC CAPABILITY EVALUATION 131

specified in S¢, which is, as mentioned above, a specialisation of the JAT Language
class. Any of the sets of constraints may be empty. Finally, there is the set PC¢
of properties associated with this capability, as explained in section 4.4, where a

property is represented by a propositional symbol.

This concludes the introduction of the internal representation used for cDL

expressions and we will now turn to the problem of reasoning over CDL.

5.1.2 Capability Evaluation

We will first consider the slightly restricted case where capabilities are represented
as achievable objectives (cf. section 4.2) and are not allowed to have input-output
constraints. Task descriptions shall only contain input constraints and output
constraints here. Note that these restrictions are not severe, as most other cap-
ability and task descriptions can be reduced to such a representation. How this
can be done will be shown in the extensions of the basic capability evaluation

algorithm that will follow in section 5.2.

5.1.2.1 Basic Capability Subsumption

The essential question the capability evaluation has to answer is whether a cap-
ability represented by the ¢DL description C can be used to solve a problem
represented by the ¢DL description 7. We will say that capability C subsumes
task 7 if this is indeed true, i.e. if the capability represented by C can be used to
solve the problem described by 7. Now, capability C subsumes a task 7 if:

1. in the situation that is the result of performing C, all the output constraints

of T (C}) are satisfied, i.e. if the capability achieves the desired state; and

2. in the situation that precedes the performance of C, all the input constraints

of C (C¥) are satisfied, i.e. if the capability is applicable.

132 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

We will refer to these conditions as the output match condition and the input
match condition respectively. Both conditions rely on a notion of certain con-
straints being satisfied in a given situation, but we cannot say anything about
these constraints since we do not know the state languages in which they are

expressed.

To be able to formally define what we mean by a capability subsuming a
task (cf. definition 5.2) we will thus make the assumption that there is a model-
theoretic semantics defined for every state language we will encounter. As poin-
ted out in [Hayes, 1974], knowledge representation languages that do not have
a formal semantics do not really represent anything, and thus, we consider this
assumption very reasonable. Assuming that there exists a model-theoretic se-
mantics, we can easily associate models with situations and we have defined
constraints as expressions in the state language. Thus, we can define that a con-
straint is satisfied in a situation if the model corresponding to the situation is a

model of the expression representing the constraint.

The next problem is that situations are never explicitly mentioned in the
capability or in the task description. However, a model-theoretic semantics es-
sentially defines a mapping from expressions in a given state language into the
power set of models for this language. An expression in the language is mapped
to the set of all models in which this expression is considered true. Thus, the in-
put constraints C7 of the task 7 define a set of models, one of which corresponds
to the actual situation before the capability is to be applied. The input match
condition is obviously satisfied if every model of the task’s input constraints C7
is also a model of the capability’s input constraints C¢. Similarly, the output
constraints CJ, of the task 7 define a set of models, all of which correspond
to situations in which the objective has been achieved, and the output match

condition is obviously satisfied if every model of CS is also a model of CJ.

For simplicity, one can define the meta-relation = between expressions as the

subset relation of the models of the related expressions. This meta-relation can

5.1. BASIC CAPABILITY EVALUATION 133

capability description

input constraints output constraints

input match condition output | | match condition

input constraints output constraints

task description

Figure 5.1: Matching Capabilities and Tasks

now be used to define subsumption as illustrated in figure 5.1 graphically. Notice
that this meta-relation, defined in this way, also relates expressions in different
languages as long as they have a model-theoretic semantics. However, the meta-
relation = has to be defined for each state language individually. Most of the
capability descriptions given as examples in this thesis use first-order predicate
logic (FOPL) as the state language and a definition of the meta-relation = for

FOPL will follow in section 7.3.3.

We are now in a position to formally define when a restricted capability de-

scription subsumes a task description in CDL:

Definition 5.2 (Subsumption for Achievable Objectives (1)) Let C be a

capability description in CDL containing: an input specification I¢ contain-

ing the variables vy,...,vy; input constraints C¢ = {CY,,.. .,Cfckc}; and out-
put constraints C5 = {C§,,...,Cq.}. Let T be a task description in CDL
containing: input constraints C] = {CITl,...,CITkT}; and output constraints

cl =107, .. -anlT}- We will say that C subsumes T if and only if there

exists a substitution o for the variables vy,. .., v, such that:
cl Eo(CY) (input match condition)
and

o(C§) =l (output match condition)

134 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

Perhaps a little surprising is the requirement of the substitution o in this defin-
ition. The substitution o accounts for the fact that capability descriptions in CDL
are parametrised, i.e. they contain free variables in the input constraints and in
the output constraints. These variables must be declared in the input and output
specification of the capability, effectively rendering the capability description an
action schema. For the actual performance of the capability C these variables
must be instantiated, and this is what the substitution o allows for. However,
the definition does not require the variables to be mapped to ground terms by the
substitution. This is to allow for reasoning about partially instantiated capabil-
ities, i.e. this feature can be used to extend the above definition to capabilities

subsuming other capabilities rather than tasks.

Perhaps also surprising is the fact that only variables occurring in the input
specification (vy,...,v,) need to be substituted in the above definition. This is
because variables occurring in the output specification only play a role in the
output match condition. However, one could easily extend the above definition
to also require the output specification to unify with all the corresponding outputs
in the task description. It is not clear though what the benefit of this would be,
since outputs in task and capability description will usually be variables only. As
it stands, the output specification allows one to introduce additional free variables

into the output constraints of the capability description.

One of the most important features of this definition is the fact that is does
not mention which state language s to be used in CDL. It only requires certain
types of reasoning to be performable in the language S¢: firstly, one must be
able to build conjunctions of expressions in this language and secondly, the meta-
relation = must be defined in the state language used. Virtually all knowledge
representation languages have conjunctions built in since a sequence of assertions
is usually interpreted as the conjunction of the asserted expressions. The meta-
relation = should also be defined as part of the semantics of the language as

argued above.

5.1. BASIC CAPABILITY EVALUATION 135

outKB < new KnowledgeBase(S¢)
for c € {C§,,...,C§,} do
assert(outKB, c)
o« evaluate(outKB, Ch A ... NCE,_, {v1,...,v4})
if 0 is undefined then
return false

inKB < new KnowledgeBase(S°)
for c € {C],,...,C],} do
assert(inKB, c)
for c € {Cf,,....Cf,,} do
if not evaluate(inKB, o(c)) then
return false

return true

Figure 5.2: Subsumption algorithm (1)

5.1.2.2 The Basic Algorithm

The basic algorithm used to evaluate capability subsumption is a straightforward
implementation of definition 5.2 above. The pseudo-code version of this algorithm

is given in figure 5.2.

The algorithm first attempts to create an empty knowledge base, outKB, for
expressions in the state language S¢. This is also the first point where reflective
reasoning is necessary. If it cannot be decided at this point which the appropriate
knowledge base class for the state language S¢ is, or the creation of an empty
knowledge base of this type fails for any other reason, the capability will not be
considered to subsume the task. Note that this is basically the mechanism for
all function calls that involve reflective reasoning. The underlying assumption we
are making here is that a certain type of reasoning is needed for the capability
subsumption test and if this type of reasoning is not supported by S¢ then the
test has failed.

The next step in the algorithm asserts all the output constraints C5,, .. ., C(C)lc

136 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

of capability C in the knowledge base outKB. It is assumed that every knowledge
base provides assertion in its functionality and thus, this step does not require
reflective reasoning to test for the existence of this functionality. The next step
is to evaluate the conjunction of the output constraints Cp,,...,C%, of task
T. This step requires reflection again as it is not guaranteed that the required
function is defined. If it is defined it will attempt to derive the query (second
argument) from the knowledge base (first argument). If this succeeds it will
return a substitution for the variables {vy,...,v;} (third argument) as they need
to be instantiated for the derivation. The next step in the algorithm tests whether
the returned substitution o is defined, i.e. whether such a substitution could be

found; if not, the test will fail.

The algorithm up to this point implements essentially the output match condi-
tion. Assuming that the function evaluate used by the algorithm implements the
desired behaviour, we know that for the substitution o: o(C§;)A...Ac(C§,,) E
CIN... A C’ng because this is exactly the substitution we have extracted from

the derivation.

The remainder of the algorithm implements the input match condition and is
quite similar to the test for the output match condition. First an empty know-
ledge base, inKB, for expressions in S°¢ is created. Next the input constraints
cl,..., C’flT from task 7 are asserted in this knowledge base. Finally, the input
constraints Cf,,...,Cf, of capability C are evaluated against inKB. However,
as opposed to the output match condition, the constraints are evaluated one by
one. The reason for this is that it simplifies the code slightly. Before the eval-
uation the constraints have to be instantiated with the substitution o to reflect
the input match condition. If there is an instantiated input constraint o(C¢,) for
n € {1...lc} that cannot be derived from inKB then the subsumption test has
failed.

Otherwise it succeeded and the capability C can be used to solve the problem

described by 7.

5.1. BASIC CAPABILITY EVALUATION 137

Soundness and Completeness It is fairly easy to see that this algorithm is
sound, assuming the soundness of the evaluation procedure for the knowledge
base for expressions in state language S¢, i.e. that if the algorithm returns true
then the capability C subsumes task 7 as outlined in definition 5.2. However,
it is not complete because it does not backtrack over the substitution o. If
the input match condition part of the algorithm fails it might be possible to
attempt a different derivation leading to a different substitution for the output
match condition, etc. We have chosen not to implement this option for two
reasons: firstly, it increases the complexity of the algorithm without benefit in
the scenarios we envisage, and secondly, it still requires the completeness of the
evaluation function to make this algorithm complete, which is not the case in our
implementation. Furthermore, in some state languages the substitution is unique

if one exists and thus, backtracking over the substitution would be superfluous.

5.1.2.3 An Example from the Initial Scenario

It is now time to look at an example illustrating the above definitions and the
algorithm. The capability and task descriptions in the initial scenario all satisfy
the restrictions introduced above, i.e. that capabilities are represented as achiev-
able objectives without input-output constraints and that tasks only consist of
input constraints and output constraints. For example, the capability advertised

by the engineering company was:

(capability
:state-language fopl
:input ((BrokenMachine ?machine))
:input-constraints (
(elt ?machine Generator)
(Is ?machine Broken)
(Has Location ?machine Pacifica))
:output-constraints (
(not (Is ?machine Broken))))

The engineering part of the pp-agent’s problem which this capability descrip-

tion must match was described as follows:

138 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

(task

:state-language fopl
:input-constraints (

(elt generatorl Generator)

(Is generatorl Broken)

(Has Location generatorl Pacifica))
:output-constraints (

(not (Is generatorl Broken))))

To test whether the ec-agent’s capability subsumes the described task, the
algorithm in figure 5.2 will first create a knowledge base (outKB) containing the
output constraints of the ec-agent’s capability:

(NOT (Is ?machine_3 Broken))

In this example outKB contains just this one constraint. The index of the
variable ?machine_3 is part of the internal representation of the broker again
(cf. section 4.5.1). In the next step the conjunction of all the output constraints
of the task is evaluated against outKB to obtain the substitution o:

(NOT (Is generatorl Broken))

As there is just one output constraint, the expression contains just this one
constraint. The third parameter in the call to evaluate is the set of variables in
the input parameter specification of the ec-agent’s capability:

[?machine_3]

The variable ?machine_3 is the only variable in the input specification in this
example. The call to evaluate succeeds and returns the substitution:

[generatorl->[?machine_3]]

The test whether this substitution is defined succeeds and completes the out-

put match condition, i.e. we have now established that under substitution o:

(not (Is generatorl Broken)) = (not (Is generatorl Broken))

The next step in our algorithm generates the knowledge base for testing the
input match condition (inKB) and initialises it with the input constraints from

the task:

5.1. BASIC CAPABILITY EVALUATION 139

(elt generatorl Generator)
(Is generatorl Broken)
(Has Location generatorl Pacifica)

Next the input constraints from the ec-agent’s capability description are one
by one instantiated with the substitution ¢ and evaluated against inKB:
(elt generatorl Generator)

(Is generatorl Broken)
(Has Location generatorl Pacifica)

Since none of the evaluations fails all the above constraints will be tested and,

as a result, the input match condition under o is established:

(elt generatorl Generator)A
(Is generatorl Broken)A =
(Has Location generatorl Pacifica)
(elt generatorl Generator)A
(Is generatorl Broken)A
(Has Location generatorl Pacifica)

With output and input match condition successfully verified, we know now

that the ec-agent’s capability subsumes the described task and the algorithm

returns true.

140 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

5.2 Extended Capability Evaluation

In this section we will show how more complex capability descriptions
containing input-output constraints, performable actions, and proper-

ties can be evaluated against task descriptions in CDL.

5.2.1 Input-Output Constraints

In this section we will consider capabilities with input-output constraints (cf. sec-
tion 4.2.2), i.e. capabilities which are represented as achievable objectives and task

descriptions which shall only contain input constraints and output constraints.

5.2.1.1 Subsumption with Input-Output Constraints

The question the capability evaluation has to answer is still whether a capability
represented by CDL description C can be used to solve a problem represented
by ¢DL description 7. In section 5.1.2.1 we have used the input and output
match conditions to define what it means for capability C to subsume task 7.
Essentially, these conditions require the input constraints to be satisfied in the
input situation and the output constraints to be satisfied in the output situation,

i.e. we had to evaluate constraints on situations to test for subsumption.

Ideally, we could just extend the input and output match conditions to account
for the input-output constraints. However, whereas the input constraints and
the output constraints are constraints on situations, the input-output constraints
are constraints across situations, i.e. they are fundamentally different from the
constraints discussed in section 5.1.2. There we could define a constraint to be
satisfied in a situation if the model corresponding to the situation was a model
of the expression representing the constraint. Unfortunately this approach is not

applicable here.

To keep the definition of the subsumption relation independent from the state

language used within the capability description, we want to retain the approach

5.2. EXTENDED CAPABILITY EVALUATION 141

of using the model-theoretic semantics of the state language to define the sub-
sumption relation. However, input-output constraints potentially contain vari-
ables from the output specification which represent objects that only exist in
the output situation. Hence, any model of the input situation will not mention
properties or relations involving these objects. If we interpret models in the usual
way, i.e. anything not mentioned is false, then the satisfiability of an input-output
constraint may not depend on the relations mentioned in it. This is not what we
want. To address this problem we would need to be able to distinguish the parts
of the input-output constraint that refer to the input situation from the parts

that refer to the output situation.

To illustrate this problem, let us revisit the list sorting capability £ from
section 4.2.2. If ?1ist1 represents the list to be sorted in the input specification
I* and ?1ist2 represents the sorted list in the output specification O* then one

input-output constraint we need to express in C'%, is:

((forall ?x) (implies (member ?x 71listl) (member 7x 71ist2)))

This suggests that literals containing variables from I* refer to the input
situation and literals containing variables from O* refer to the output situation,
but this is not the case in general. In fact, if the sorting capability £ sorted by
modifying the given list, it becomes obvious that the above constraint cannot be
interpreted as intended without further assumptions. One solution would be to
annotate parts of the constraint with the situation they refer to, but this is against

the spirit of a decoupled action representation with an opaque state language.

The approach we have chosen in CDL assumes that every input-output con-
straint consists of two parts which are connected by an implication. The left hand
side or precondition will be interpreted as a constraint on the input situation and
the right hand side or conclusion will be interpreted as a constraint on the output
situation. Note that this is essentially also the way secondary effects are imple-
mented in UCPOP [Penberthy and Weld, 1992, Barrett et al., 1995]. The advant-

age of this approach is that it allows us to define capability subsumption in terms

142 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

of models again. The disadvantage of this approach is that every input-output
constraint has to be expressed as an implication with the two sub-expressions
referring to input and output situation respectively. With this approach we can

define capability subsumption as follows:

Definition 5.3 (Subsumption for Achievable Objectives (2)) Let C be a
capability description in CDL containing: an input specification I¢ containing the
variables vy, ..., v; input constraints C¢ = {CY,, .. .,C’fkc}; output constraints
Co ={C6,,...,C8,,}; and input-output constraints Cfy, = {Cfoy, ..., Cfome. }-

each of which having the form LS — RS forn € {1...m¢}. Let T be a task

description in CDL containing: input constraints C] = {CITI,...,CITkT}; and
output constraints C5 = {CP,,...,C%, }. We will say that C subsumes T
if and only if there exists a substitution o for the variables vy, ..., v, such that:

CcT E o(C%) (input match condition)

and

a(CE) Na(RY) = Ch (output match condition)

and

Vne{l...me}:if o(CS) A (0(RE) — o(RS)) B CF and 0(CS) A o(RC) = CL
then C] | o(LS) (input-output match condition)

The input match condition in this definition stays unchanged from defini-
tion 5.2: the task’s input constraints have to make all of the capability’s input
constraints true. The output match condition is changed to reflect that there are
now additional constraints on the output situation described in the capability:
the capability’s output constraints in conjunction with the right hand sides of
all the input-output constraints have to make the task’s output constraints true.
The third condition, the input-output match condition, is new here. Essentially it
says that, if the right hand side of the nth input-output constraint was necessary
to satisfy the output match condition, then the task’s input constraints also have

to make the left hand side of the nth input-output constraint true.

5.2. EXTENDED CAPABILITY EVALUATION 143

for c € {Cfp,,...,Cfop,} do
assert(outKB, conclusionOf(c))

Figure 5.3: Subsumption algorithm (2)

for c € {Cfp,...,Cfopm,} do
if usedInProof(outKB, conclusionOf(c)) then
if not evaluate(inKB, o(premiseOf(c))) then
return false

Figure 5.4: Subsumption algorithm (3)
5.2.1.2 The Algorithm

We will now present the modifications to the algorithm described in figure 5.2
that are necessary to test for the extended conditions of the subsumption relation
defined above (definition 5.3).! As the input match condition does not change,
no modification of the algorithm is necessary for this condition. The extended
output match condition can be implemented by asserting the right hand sides of
all the input-output constraints into outKB before the task’s output constraints
are evaluated. The additional pseudo-code that implements these assertions is

given in figure 5.3.

Note that this extension requires reflective reasoning again to extract the
right hand side or conclusion from an input-output constraint. Of course, this
will only be possible if the state language allows the representation of implications
and provides a function to extract the right hand side from the implication. If
extraction of the conclusion fails, the capability will be considered not appropriate

for the task and return false.

! The complete pseudo-code for the capability subsumption test including all the extensions
presented in this section will be given in section 5.2.4.

144 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

The input-output match condition from definition 5.3 can be implemented as
described by the pseudo-code in figure 5.4. This code has to be added after the

initialisation of inKB.

For efficiency reasons this is not a straight forward implementation of the
definition of the input-output match condition. The function assumes that the
proof that was generated to verify the output match condition is somehow re-
tained in outKB. It also assumes there to be a function that can inspect this proof
to find out whether a given expression that has been asserted in outKB has actu-
ally been used in the proof. The function usedInProof(outKB, conclusionOf(c))
in figure 5.4 tests for each input-output constraint whether its conclusion has
been used in the proof. If so, the left hand side is evaluated against inKB to
find whether it can be satisfied. If it cannot be satisfied, the capability does not

subsume the task.

As before we do not backtrack over the substitution generated from the output
match condition. Our implementation also does not extend the set of variables
in the substitution to allow for additional free variables in the input-output con-
straints. Such variables are allowed in UCPOP’s action representation in the form
of a possible universal quantification over each input-output constraints. How-
ever, the domains of these variables must be declared in the representation and
these domains must be finite and all elements must be known, effectively reducing

the expressiveness to the ground case again.

5.2.1.3 An Example

None of the original scenarios described in chapter 3 requires input-output con-
straints in the representation. Therefore, to illustrate the extension of the al-
gorithm for this feature, we will describe a slightly modified capability for a

hospital from the initial scenario here.

The capability of the new hospital has input constraints identical to the two

hospitals in the initial scenario: the given parameter ?person must be a person;

5.2. EXTENDED CAPABILITY EVALUATION 145

that person must be injured; and the location of this injured person must be on
Pacifica. The sole output constraint, too, is identical to that of the hospitals in
the initial scenario: the given person will no longer be injured. The only new
condition here is the input-output constraint that states that if the injury is severe

then the injured person will have to go to hospital:

(capability

:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (

(elt ?person Person)

(Is ?person Injured)

(Has Location ?person Pacifica))
:output-constraints (

(not (Is ?person Injured)))
:io-constraints (

(implies

(Is Injury Severe) (Has Location ?person Hospital))))

Note that the left hand side of this implication, (Is Injury Severe), isa con-
straint on the input situation and the right hand side, (Has Location ?7person

Hospital), is a constraint on the output situation.

Next we will need a problem that requires the input-output constraint of this

capability:

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Pacifica)
(Is Injury Severe))
:output-constraints (
(not (Is JohnSmith Injured))
(Has Location JohnSmith Hospital)))

In this problem description the person John Smith is injured, on Pacifica, and
most importantly, the injury is severe. In the state desired by the problem holder

John Smith should no longer be injured and he should be in hospital.

146 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

To test whether the above capability subsumes the described problem, the
algorithm first creates an appropriate knowledge base for expressions in the state
language (cf. figure 5.2). Next the output constraints of the capability will be
asserted in this knowledge base. Now the right hand sides of the input-output
constraints will also be asserted (cf. figure 5.3) before any evaluation takes place.
The resulting knowledge base looks as follows:

(NOT (Is ?person_3 Injured))
(Has Location ?7person_3 Hospital)

The call to evaluate for the output match condition takes three parameters
(cf. figure 5.2). The first parameter is the knowledge base. The second parameter

is the query, the conjunction of the output constraints of the task, in this example:

(AND (NOT (Is JohnSmith Injured)) (Has Location JohnSmith Hospital))

The third and final parameter is the list of variables from the input specific-

ation of the capability:

[?person_3]

In this example, the call to evaluate succeeds and returns the following sub-

stitution o:

[JohnSmith->[?person_3]]

As this substitution is defined, the output match condition has now succeeded.
The next step in the algorithm is to test the input match condition. This begins
with the construction of a new knowledge base and initialising it with the task’s
input constraints (cf. figure 5.2). In this example this knowledge base will contain
the following statements:

(elt JohnSmith Person)
(Is JohnSmith Injured)

(Has Location JohnSmith Pacifica)
(Is Injury Severe)

5.2. EXTENDED CAPABILITY EVALUATION 147

Now the input match condition can be tested by evaluating all of the capab-
ility’s input constraints against this knowledge base. These constraints are:
(elt JohnSmith Person)

(Is JohnSmith Injured)
(Has Location JohnSmith Pacifica)

Since none of these evaluations fails, the input match condition succeeds.
What remains to be tested is the input-output match condition. In this example
there is only one input-output constraint, so the loop in figure 5.4 will only have
one iteration. In this, the algorithm will first test whether the conclusion of
the input-output constraint has been used in the proof for the output match

condition. The conclusion is:

(Has Location ?person_3 Hospital)

Since this statement was necessary to satisfy the output match condition
the algorithm will continue to evaluate the left hand side of the input output
constraint against the knowledge base used for the evaluation of the input match

condition. The instantiated query for this example is:

(Is Injury Severe)

This evaluation will succeed and since this was the only input-output con-
straint to be tested and this condition concludes the capability subsumption test

in definition 5.3, the algorithm will return true.

5.2.2 Properties

The next extension to the subsumption test is concerned with the properties of
agents described in section 4.4. The representation of such properties is quite
simple in CDL as it only allows for a list of propositional symbols. In a capability
description, these propositions are interpreted as true for the capability holding

agent, and in a task description they are interpreted as propositions required

148 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

if PT ¢ P€ then
return false

Figure 5.5: Subsumption algorithm (4)

to be true for the sought for agent. Thus, in both cases they are interpreted
as conjunctions of propositions and the extension of definition 5.3 for capability

subsumption is straight forward:

Definition 5.4 (Subsumption for Achievable Objectives (3)) Let C be a
capability description in CDL containing an input specification I¢, input con-
straints C$, output constraints C§, input-output constraints CS,, and property
specifications P¢. Let T be a task description in CDL containing input constraints

CT ,output constraints CJ, and property specifications PT. We will say that C
subsumes T if and only if C subsumes T (definition 5.3) and P° = PT.

The relation = in the new condition of this definition is the usual relation for
propositional logic. Thus, the algorithm that tests for capability subsumption can
be extended with the pseudo-code described in figure 5.5 to account for properties
of agents. This pseudo-code can be added at the very beginning of the algorithm
described this far.

Since property lists in capability and task descriptions represent conjunctions

of properties, the test can be reduced to a subset test at this point.

For example, in section 4.4 we have described an additional capability for the
h2-agent in the initial scenario: the h2-agent can move patients to the hospital.
As opposed to the capability to treat patients, the h2-agent advertised its moving
capability as complete by specifying the properties:

:properties (complete)

5.2. EXTENDED CAPABILITY EVALUATION 149

The problem description in section 4.4 also contains this property specification
in its description, i.e. it can only be addressed by a PSA with a complete problem-

solving behaviour. Obviously, the two property specifications match.

5.2.3 Performable Actions

In this section we will look at performable actions as described in section 4.3 and

how these can be integrated into the framework.

5.2.3.1 Capabilities as Performable Tasks

Our aim is to design an algorithm that decides whether a capability represented by
DL description C can be used to solve a problem represented by CDL description
T. Up to now we have assumed that the capability as well as the task are
described in terms of achievable objectives (cf. section 4.2). Now we also want
to allow for capabilities or tasks to be described in terms of performable actions
(cf. section 4.3). The most complex and interesting cases here are the ones in
which the representation is mized, i.e. where a capability is described in one way,
e.g. as a performable action, and the task is described in the other way, e.g. as

an objective to be achieved.

In section 4.3.1 we have already mentioned one erample where this mixing
of representations would be useful: suppose that in the initial scenario, the pp-
agent specified the engineering part of the problem not as an objective to be
achieved, i.e. the generator must not be broken, but as an action to be performed,
i.e. repairing the generator. In this modified example the broker would need to
be able to match the capability described by an achievable objective to a problem

described as an action to be performed.

An essential insight here is that even if the problem is specified as an action
to be performed, the underlying problem is normally an objective to be achieved.
For example, given the modified problem above which is described as an action

of type repairing by the pp-agent, the intended aim of this action is surely not to

150 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

find another agent that can perform a repairing action, but to have its generator
in a state where it is working as intended. Thus, a problem description that is

an action to be performed need not necessarily be taken literally.

Furthermore, if, for example, the generator was not broken but had run out
of fuel, and the problem was described as a repairing action to be performed, we
would surely expect any reasonable PSA not to perform a repairing action but a
refuelling action. Similarly, if the problem was a broken gasket then the action we
want the PSA to perform is a repairing of the generator, but it was not specified
as a replacing of the gasket. Repairing and replacing are different actions that,
in general, do not subsume each other. Thus, even if problem and capability
are described as performable actions, it is not necessarily the case that an action

addressing the problem is necessarily of the type described in the problem.

Thus, our approach to reasoning about capabilities and tasks represented as
performable actions will be to instantiate these representations into equivalent
specifications of achievable objectives by inheriting the parameter specifications
and constraints from a description of the action in an ontology and modifying
them, and then test for capability subsumption as described above.? As described
in section 4.3.2, there are three ways in which an inheriting capability description
can modify the capability it inherits from: it can bind parameters to values, it
can add new parameters, and it can add new constraints. To treat newly bound

parameters we will need the following definition:

Definition 5.5 (Parameter-unifying substitution) Let PS and PS® be
parameter specifications of capabilities C1 and Cy, i.e. they can be either input or

output specifications. Let each parameter specification have the form < R, F =3

2 Note that this instantiation may lead to inappropriate behaviour of the PSA, but so may
just performing the specified action. The underlying problem here is that communication
assumes a shared model but there is no reasonable way to ensure that this is indeed the case.
The approach we would suggest is to equip the communicating agent with commonsense
knowledge and user modelling facilities to detect misunderstandings, but this is beyond the
scope of this thesis.

3 cf. <param-spec> in figure 4.1 and its explanation in section 4.2.4

5.2. EXTENDED CAPABILITY EVALUATION 151

where R is a role name and F' is a term that describes the role filler. A substitu-
tion o is a parameter-unifying substitution for PS¢ and PS® if and only
if:

VR: (< R,F“ =€ PSA < R, F® =€ PS®) = o(F“) = o(F®)

Essentially, this defines a parameter-unifying substitution between two para-
meter specifications as one in which every role unifies with all those terms that
are role fillers for this role. Our intention is to use a parameter-unifying substitu-
tion between an action’s parameter specification and its super-action’s parameter
specification to instantiate the action. The following definition formalises this

notion:

Definition 5.6 (Capability instantiation) Let C be a capability description
of a performable action in CDL. Let o be a parameter-unifying substitution for
I¢ and I*"° as well as for O° and O’ Then the capability description C' is
the instantiation of C if and only if A® = A€, S¢ = S€, id® and sup® are
undefined, I¢ = o(I¢)Ua (I*°), O = ¢(O°)Ua (0%, C§' = U(C’IC)UJ(C;WC),
CS = o(CS) U a(CE°), and finally CS,) = o(CS,) U o(C39°).

In this definition, the identifier of the instantiated capability id® is undefined
because its CDL description will only be generated for the subsumption test and
is not available subsequently. The identifier of the super-action sup® must be
undefined because the cDL description C' is no longer a modification description
of the action sup®. The input and output parameter specifications of C' are the
unions of the respective parameter specifications of C and its super-action sup®,
instantiated with the parameter-unifying substitution. By the instantiation of a
parameter specification < R, F' > under substitution ¢ we mean the parameter
specification < R,o(F) ». Note that, since I¢ and OF are sets, and since
parameter specifications that occur in I and I**?°, or O¢ and O**?°, with the
same role name will be instantiated to the same parameter specification under the

. !
parameter-unifying substitution o, each role name can occur only once in I¢ and

152 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

if sup® is defined then

return subsumes(instantiate(C), T)
if sup” is defined then

return subsumes(C, instantiate(T))

Figure 5.6: Subsumption algorithm (5)

O Finally, the various constraints of C’ are simply the union of the respective

instantiated constraints of C and sup® under the substitution o.

5.2.3.2 The Instantiation Algorithm

Now we have to incorporate capability instantiation into the existing algorithm.
This will be done by instantiating the given capability and task before the usual
subsumption test is performed. For this purpose, the pseudo-code in figure 5.6
has to be inserted at the very beginning of the subsumption test, even before the

test for the properties.

This pseudo-code calls the function instantiate which instantiates the given
CDL description as shown above. The pseudo-code for this function is given in

figure 5.7.

This algorithm first tests whether the super-action sup® of the given capab-
ility description is defined. If this is not the case, i.e. if the given capability is
already described in terms of achievable objectives, a copy of the given capab-
ility will be returned. Otherwise a new capability description is initialised with
the instantiated super-action of the given capability. This part of the algorithm
deals with actions that inherit from actions which are themselves described as a

performable action.

Now, at this point C’ is a copy of the capability description of the super-action
sup® described in terms of achievable objectives. The algorithm now modifies C’

to obtain the instantiation of C. First, the capability holder is set to AC, the

5.2. EXTENDED CAPABILITY EVALUATION

function cpL-description instantiate(C)

if sup® is undefined then
return copy(C)
C' + instantiate(sup®)

A€ — AC
sup® ,id"" «— undefined
P¢ « pYyPe

0 < empty substitution
amend(I€, 1€, o)
amend(O°,0°, o)

Cf « o(C7)Ua(CF)
CH « o(CE) Ua(CE)
Cio + 0(Cfp) U a(Chp)

return C'

Figure 5.7: Capability instantiation

153

154 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

function amend(PS¢, PS¢, o)

for < R, F¢ =c PS¢
if 3 < R, F¢ =c PS® then
o« unify(F¢, F¢, o)
PS¢ < PS“— < R,FC' ~
PSY « PS+ < R, 0(F°) »
else
PS¢ « PS®+ < R, F¢ »~

Figure 5.8: Amending parameter specifications

capability holder of C. Next the action identifier and the super-action of C’
are declared undefined. Then the properties of C are added to the properties
already in P¢. Note how this part of the algorithm almost exactly mirrors the

corresponding part of definition 5.6.

The next part of the algorithm amends the parameter specifications and adds
the new constraints. First, an empty substitution o is created. This substitu-
tion will be modified to become the parameter-unifying substitution mentioned
in definition 5.6. This will be done in the function amend which takes two sets
of parameter specifications, PS¢ and PSC, and a substitution o as arguments.
The substitution will be modified to become a parameter-unifying substitution
for PS¢ and PS¢ and the first set of parameter specifications PS¢ will be mod-
ified to become o(PSC) U o(PSC). After calling amend for the input and out-
put parameter specifications the substitution o will be the parameter-unifying
substitution. Now this substitution can be used to instantiate and add all the
constraints to the respective sets. Finally, the capability description C’ represents

the instantiation of C and can be returned.

What remains to be described is the function amend. The pseudo-code for

this function is given in figure 5.8.

This function loops over the parameter specifications in the second given set

5.2. EXTENDED CAPABILITY EVALUATION 155

PSC. For each parameter specification < R, F¢ = with role name R and role
filler term F°, the algorithm tests whether there is a parameter specification
< R,F¢ > in the first set PSC, i.e. whether there is a parameter specification
for the same role name. This represents the case where a parameter from the
super-action is bound to a value. If so, the algorithm extends the given sub-
stitution o such that the two terms that are the role fillers, F€ and F€, are
unified under o. Then the old parameter specification < R, F'C' = is replaced by
the instantiated parameter specification < R, o(F€) = in PS®. If there was no
parameter specification with the same role name, the parameter is an additional

parameter for the inheriting action. In this case the new parameter specification

< R, F¢ > just has to be added to PS¢,

This concludes the description of amend and the algorithm for the capability

subsumption test.

5.2.3.3 An Example

We will now illustrate the capability instantiation algorithm and how it is used
within the capability subsumption test with an example introduced in sec-
tion 4.3.3. In this example the broker knows about an ontology of actions. For our
illustration of the algorithm it will be necessary to define this ontology first. For
simplicity this ontology contains only one action, a moving action M, represented

by the following ¢DL description:

(capability
:action move
:state-language fopl
:input ((Thing ?thing) (From ?p1) (To 7p2))
:input-constraints (
(Has Location ?7thing 7p1l))
:output-constraints (
(not (Has Location ?thing ?7pl))
(Has Location ?7thing 7p2)))

Notice that this capability is specified in terms of achievable objectives, but it

provides an action name, move, that can be used to inherit from this description.

156 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

For example, the second hospital from the initial scenario uses this capability
description to describe a capability C, the capability to move injured people to

the hospital:

(capability
:properties (complete)
:isa move
:state-language fopl
:input ((To Hospital2) (Ambulance 7a))
:input-constraints (
(elt ?thing Person)
(Is ?thing Injured)))
Now suppose the pp-agent sends the following problem description 7 to the

broker, asking for an agent that can deal with this problem:

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Pacifica))
:output-constraints (

(Has Location JohnSmith Hospital2)))

When the broker receives this problem it will eventually test whether the
capability C advertised by the h2-agent subsumes the task 7. The algorithm
that tests for capability subsumption starts with the pseudo-code in figure 5.6,
i.e. it will first test whether the super-action of the capability sup® is defined.

In this example it is, and thus the algorithm will proceed by instantiating the

capability description of C.

To instantiate C, the instantiation algorithm described in figure 5.7 will first
test whether the given capability description has a super-action, i.e. whether it is
indeed described as a performable action. In our example, the super-action is M,
i.e. it is defined. Thus the algorithm will proceed by initialising the capability
description C' with the instantiation of M, which is effectively a copy of M since
move does not have a super-action. Next, the agent, super-action, action name,

and properties of C' will be modified and a new, empty substitution is created.

5.2. EXTENDED CAPABILITY EVALUATION 157

In the next step the input parameter specifications of C' will be amended. These

are:

[(Thing ?thing_0), (From ?pl_1), (To ?p2_2)]

Note that in this example these are exactly the input parameter specifications
from the move action M. These will be amended with the input parameter

specifications from the h2-agent’s capability description C, which are:

[(To Hospital2), (Ambulance 7a_4)]

The first of these parameter specifications, (To Hospital2), is an example
of a new binding that is introduced by C. The second parameter specification,
(Ambulance 7a_4) represents an additional parameter introduced by C. Since
there are no output parameter specifications in C or its super-action M, the

second call to amend has no effect. Thus, the parameter-unifying substitution is:

[Hospital2->[?p2_2]1]

This substitution can now be used to instantiate constraints from C and M for
the capability description C', as described in figure 5.7. The resulting, instantiated
capability description is:

(capability
:properties (complete)
:state-language fopl
:input (
(Thing ?thing_0) (From ?pl_1) (To Hospital2) (Ambulance 7a_4))
:input-constraints (
(Has Location ?thing 0 7pl_1)
(elt ?thing_O Person)
(Is ?thing_ O Injured))
:output-constraints (
(NOT (Has Location ?thing_ 0 ?pl_1))
(Has Location 7thing_O Hospital2)))

Note that this is a capability description in terms of achievable objectives
and this description can now be used for the subsumption test outlined in sec-

tions 5.1.2 to 5.2.2.

158 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

function boolean subsumes(C, T)

if sup® is defined then

return subsumes(instantiate(C), T')
if sup” is defined then

return subsumes(C, instantiate(T))
if PT ¢ P¢ then

return false

outKB < new KnowledgeBase(S®)
for c € {C§,,...,C§,} do
assert(outKB, c)
for ¢ € {Cfy,,...,Clo,. } do
assert(outKB, conclusionOf{c))
o « evaluate(outKB, CH A ... NCE, ., {v1,...,u})
if 0 is undefined then
return false

inKB < new KnowledgeBase(S°)
for c € {C],,....C],} do
assert(inKB, c)
for c € {Cf,,....Cf,.} do
if not evaluate(inKB, o(c)) then
return false

for c € {Cfp,,...,Clpp,} do
if usedInProof(outKB, conclusionOf(c)) then
if not evaluate(inKB, o(premiseOf(c))) then
return false

return true

Figure 5.9: Final version of the subsumption algorithm

5.2. EXTENDED CAPABILITY EVALUATION 159

5.2.4 The Subsumption Algorithm

The final version of the capability subsumption test that incorporates all the

functions described in the previous sections is given in figure 5.9.

5.2.4.1 Capability Evaluation in the Expressiveness Scenario

Before we turn to the integration of the capability subsumption test into a cap-
ability retrieval algorithm (cf. section 5.3), we will look at one more example:
the expressiveness scenario (example 3.2). The most interesting capability in this
scenario was advertised by the h2-agent: it can treat injured people from Abyss,
Barnacle, or Exodus, but if there is snow or ice on the road, the ambulance needs
snow chains for this capability to be applicable. The ¢DL description for this

capability was given in section 4.5.1 as follows:

(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is 7person Injured)
(or
(Has Location 7person Abyss)
(Has Location ?person Barnacle)
(Has Location 7person Exodus))
(implies (or (on Road Ice) (on Road Snow))
(have Ambulance SnowChains)))
:output-constraints (
(not (Is ?person Injured))))

The problem description we want to look at here has also been introduced in
section 4.5.1. It is the last problem description there, but the one which will be
subsumed by the above capability description. In this problem the injured person
is in Exodus, there is snow on the roads, and the ambulance has snow chains.

The problem description in CDL was:

160 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Exodus)
(on Road Snow)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))

The capability subsumption test (cf. figure 5.9) begins with the instantiation
of capability and task, but in this example, both are already described in terms of
achievable objectives, and thus, no instantiation needs to take place. Next is the
test for properties which succeeds because neither capability nor task mention
any properties. The next step then is the output match condition. To test this
condition, the algorithm first creates a knowledge base for the capabilities output
constraints and the conclusions of any input-output constraints. In this example,

this knowledge base will contain only one expression:

(NOT (Is ?person_3 Injured))

Next the query for this knowledge base is generated as the conjunction of all

the task’s output constraints, and again there is only one in this example:

(NOT (Is JohnSmith Injured))

The third argument for the call to evaluate is the set of variables we want to

know the substitution for:

[?person_3]

Now the query can be evaluated and the function evaluate returns the following

substitution with which the query could be derived:

[JohnSmith->[?person_3]]

5.2. EXTENDED CAPABILITY EVALUATION 161

The next part of the algorithm is for the input match condition. For this
purpose, the algorithm creates another knowledge base and initialises it with the
task’s input constraints:

(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Exodus)

(on Road Snow)
(have Ambulance SnowChains)

The capabilities input constraints are now evaluated against this knowledge
base. The first two input constraints from the capability description are trivially
true again as they are elements of the knowledge base:

(elt JohnSmith Person)
(Is JohnSmith Injured)

The next input constraint states that the injured person must be either in
Abyss, Barnacle, or Exodus:
(0R

(Has Location JohnSmith Abyss)

(Has Location JohnSmith Barnacle)
(Has Location JohnSmith Exodus))

Again this evaluation succeeds because the injured person is in Exodus in this
example. Finally the conditional input constraint of this capability remains to
be tested:

(IMPLIES

(OR (on Road Ice) (on Road Snow))
(have Ambulance SnowChains))

Again, it can be seen fairly easily that this follows from the input knowledge
base. Thus, as there are no input-output constraints to be evaluated, the capab-

ility subsumption test succeeds.

162 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

5.3 Capability Retrieval in JAT

In this section we will show how the Java Agent Template was used to
implement the agents described in this thesis. We will also describe
how the broker reacts to different message types it may receive and

how it retrieves capabilities.

5.3.1 The Java Agent Template

The Java Agent Template (JAT)* is implemented as a library of classes written in
the programming language Java [Eckel, 1997, Campione and Walrath, 1998] that
provides the developer of software agents with a number of useful objects. In

particular, JAT provides:

e JavaAgent.agent: a number of classes for the convenient implementa-
tion of software agents. These classes include the agent template, several
classes for concurrent message sending, receiving, and buffering, a resource

manager, and a special agent called the Agent Name Server (ANS).

e JavaAgent.resource: a number of resource classes an agent might need.
The most important resource for us is the KQML message class. Other
resources include languages and interpreters which can both be managed

by the resource manager that comes with an agent.

e JavaAgent.context: a number of classes that represent the context in
which an agent is embedded. These classes include the low level context in-
terface for communication with other agents and various graphical interface

objects for the GUI. These classes are not of much interest to us.

All the agents presented in this thesis have been implemented using JAT.
Ideally, we would not have modified the JAT code in order to improve the re-

usability of the code developed for this thesis. In fact, we have made a few

4 JAT is available on the WWW at URL: http://cdr.stanford.edu/ABE/JavaAgent.html

5.3. CAPABILITY RETRIEVAL IN JAT 163

modifications to JAT, namely ones to remove bugs or to change the interface
slightly. Thus, our code should still work, for the most part, with JAT in its
standard form. However, while JAT is still available on the WWW, it is not
supported anymore and its successor, JATLite’ is not compatible with JAT and

it has not been tested with our agents.

5.3.1.1 JAT Agents

A JAT agent has two groups of functions it can perform: it can process KQML

messages (cf. section 2.1.2.3) and manage different types of resources.

An agent can process KQML messages in two ways. Firstly, it provides a func-
tion sendMessage which takes a KQML message and transmits it to the receiver
named in the message. Secondly, it starts a separate thread that constantly mon-
itors the socket associated with this agent for incoming messages. When the agent
receives a message it passes this message to an appropriate interpreter that can
deal with it. Both, incoming and outgoing messages are buffered to make sure
the agent will not be deadlocked by the communication with other agents. KQML
messages are treated as resources in JAT and will be described in more detail in

section 5.3.1.2.

Apart from sending and receiving messages an agent also manages a set of
resources. Any Java class can be managed as a resource by an agent. The
resource manager of an agent will just associate the URL where this class can
be obtained with the class name. For some special resource classes the resource
manager does more than this though. For example, a special type of resource is
an interpreter that can deal with messages received by the agent. Other special
types of resources are languages and addresses. Resources will be described in

more detail below.

When a JAT agent is created it first attempts to initialise itself. For this

purpose, it is given a file as one of its parameters which contains a number

® See URL: http://java.stanford.edu/ for information on JATLite.

164 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

of KQML messages that the agent will load and interpret before it processes any
other messages. These messages must provide the agent with all the information it
needs to process future messages from other agents. For example, a message from
the initialisation file might inform the agent where to find a certain interpreter for
processing messages. During the initialisation the agent will also automatically
send a message to a special facilitation agent telling it this agent’s name and

address.

One special agent that is defined as part of JAT is this facilitation agent:
the Agent Name Server (ANS). The purpose of this agent is to associate agent

addresses with names and provide this information to other agents on request.

5.3.1.2 JAT Resources

One of the most important resource types managed by an agent is the inter-
preter. When an agent receives a KQML message it extracts the ontology slot
value from this message and asks the resource manager whether an interpreter
for this ontology is known. In other words, the ontology of a message determ-
ines the interpreter this message will be passed on to in JAT. Note that this is
a rather unusual notion of ontology (cf. section 2.3.2). If the resource manager
knows of an interpreter class that is associated with the given ontology then a
new interpreter of this type will be created in a separate thread, and the message
will be given to this interpreter object for processing. For this purpose, every
interpreter provides a function interpretMessage that takes a KQML message
and an agent, the receiver of this message, as arguments. Note that by creating
a new interpreter as a separate thread for every message received, no message
can deadlock the agent. Unfortunately it also means that processing of messages

happens in parallel, i.e. not necessarily in the order in which they are received.

One interpreter defined in JAT which is known to every agent by default is
the AgentInterpreter. Messages that name the ontology agent will be passed

to this interpreter. The reason this interpreter must be provided to every agent

5.3. CAPABILITY RETRIEVAL IN JAT 165

is simply due to the fact that all agents must be able to interpret messages from
the initialisation file. The messages this interpreter understands are all related
to the management of resources. Messages to this interpreter must have the
performative evaluate and the content language must be KQML. A number
of different performatives are allowed for the content KQML message, the most
important is tell-resource with which the resource manager of the receiving
agent can be informed of the name and location of a new resource, for example,

an interpreter class.

Other types of resources are addresses and languages. Addresses are associated
with agent names so that KQML messages can just name the receiver of the
message and the function sendMessage can retrieve the agent’s address from the
resource manager. KQML messages also allow the naming of the language that
is used in the content of a message and languages are also resources managed
by an agent. Notice that CcDL uses the same mechanism and thus, can also use
the resource manager to retrieve unknown languages. Every language provides a
function parseString which takes a string and parses it into an object that is
an instance of this language class.® Note that it is up to the interpreter to call

this function to parse the content of a given KQML message.

One of the languages provided with JAT is KQML (cf. section 2.1.2.3) and
every agent knows about this language by default, just like it knows about the
AgentInterpreter for much the same reasons. A KQML message in JAT consists
essentially of a performative and a number of field-value pairs. The performative
can be an arbitrary name, i.e. it is not restricted to the predefined performatives in
the KQML definition [Labrou and Finin, 1997]. Field names can also be arbitrary,
but every complete KQML message must contain at least the following: :sender,
:receiver, :ontology, :language, and :content. The support for further field

names in JAT’s implementation of KQML is rather limited.

6 Those who have used object-oriented programming languages like Java will know that creating
a new object in this way is not possible, and the implementation of this functionality is in
fact rather messy.

166 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL
5.3.2 The cDL Interpreter

In our implementation the broker is an ANS that knows about an interpreter
that deals with all capability brokering related messages, the ¢DL interpreter. In
JAT incoming messages are passed on to an interpreter according to the ontology
named in the message. KQML messages that name the ontology capabilities are
passed to a new CDL interpreter for processing. A CDL interpreter understands
most of the KQML brokering performatives described in table 2.1. The only

difference is that the content must be in ¢DL rather than KQML.

5.3.2.1 Loading an Ontology of Actions

One additional performative provided by the CDL interpreter is load-ontology
which can be used to tell the broker about an ontology of actions. Descriptions
of capabilities and tasks as performable actions can inherit from this ontology
of actions once it has been loaded by the broker. Note that this ontology is
not an ontology in the JAT sense, i.e. it is not an interpreter. The content of a
load-ontology message should be the URL pointing to the ontology. On receipt
of this message the CDL interpreter will open the URL and read a number of
CDL expressions describing capabilities. For each CDL expression read, the broker
parses this expression into an object of type CDL description and associates this
object representing a capability description with its action name in a hash table

for future reference.

5.3.2.2 Capability Advertisements

Once the broker is initialised and has loaded the ontology it is ready to receive
the capability advertisements from the PSAs. Messages advertising capabilities
must be addressed to the CDL interpreter by naming the ontology capabilities,
and they must have the performative advertise. The content of such a message
must be a KQML message again, the message the advertising agent claims it can

process. The performative of this content must be either achieve or perform

5.3. CAPABILITY RETRIEVAL IN JAT 167

function recommendOne(A, T)

for c e V¢
if subsumes(c, T)
sendMessage("forward ...")
return
sendMessage("sorry ...")

Figure 5.10: Essential Capability Retrieval

and its content must be a CDL expression. The performative should be achieve
if the cDL expression describes a capability as an achievable objective, and it
should be perform if the CDL expression describes a performable action. Note

that perform is not a standard KQML performative.

On receipt of such a message the CDL interpreter will extract the CDL ex-
pression from the message, parse it into an object of type CDL description, and
add it to the list of capabilities known to this broker. Storing capabilities in a
flat list is obviously inefficient for retrieval. However, as it was beyond the scope
of this thesis to develop a large number of agents, we have chosen this simple

representation. Scaling issues are discussed in section 6.3.

5.3.2.3 Brokering

The brokering performatives provided by the CDL interpreter are fairly similar.
All of them provide essentially the functionality associated with the performat-
ive recommend-one. On receipt of a message with this performative the CDL
interpreter calls the function recommendOne which is given as pseudo code in

figure 5.10.

This function takes two arguments: A, the agent seeking the capability; and
T, the cDL description of the problem the capability is being sought for. The

function recommendOne will go through the vector of all the capability descrip-

168 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

tions that have been advertised previously, represented in the algorithm as V¢,
and tests for each capability whether it subsumes the given task 7. If so, a mes-
sage forwarding the capability holding agent’s capability description will be sent
to A. If no subsuming capability was found the function sends a message to A

indicating that no agent capable of solving the given problem was found.

If the performative of the capability seeking message was recommend-all
then the function recommendAll will be called by the cDL interpreter. This is like
recommendOne, only that it does not return after the first matching capability has
been found. Instead it will keep forwarding all matching capability descriptions
to A, followed by a message indicating the end of this stream of messages. If no

matching capabilities were found only one message to that effect will be sent.

In analogy to recommendOne and recommendAll the CDL interpreter has two
functions brokerOne and brokerAll which are called for messages with the per-
formatives broker-one and broker-all respectively. According to the KQML
specification, the only difference between recommending and brokering should be
that, instead of forwarding the capability description to the capability seeker, the
broker manages the solution of the problem. This is done by sending the content

of the matching capability advertisement to the capability advertiser.

Our implementation of brokerOne does more than the above though. If the
broker fails to find a single agent that has a capability that subsumes the given
task, the broker will attempt to find a plan involving the capabilities of several
agents that can address the described problem. The planner is a rather simple,
sNLP-like, partial-order, causal link planner [McAllester and Rosenblitt, 1991],
implemented in Java. The task’s input constraints and output constraints
are used to specify the problem and capabilities are translated into operator
schemata. However, preconditions and effects of operators are limited to lists
of literals and any capability description from which these cannot be extracted,
e.g. because it uses a state language which is too powerful, it cannot be trans-

formed into an operator schema.

5.3. CAPABILITY RETRIEVAL IN JAT 169

The reason why this planning is only implemented for the broker-one per-
formative is simply that recommendation-based performatives expect an agent
capability as reply, not a plan. Once a plan has been generated by the CDL in-
terpreter, the broker could proceed by managing the execution of this plan and
dealing with various problems that might occur during the execution until the
given problem has been solved. However, as this is beyond the brokering problem
addressed in this thesis, we have chosen not to implement the plan execution

phase.”

5.3.3 An Example: The Flexibility Scenario

We will now look at the messages necessary to implement the flexibility scenario
(example 3.3) to illustrate what was discussed above. All the messages listed
are from the broker’s perspective and are taken from its trace. The first set of
messages are the ones the broker receives from its initialisation file. The first of
these messages is the same for all agents, telling them the fixed address of the
broker:
(evaluate
:sender init-file
:content
(tell-resource
:type address
:name ANS
:value hera.dai.ed.ac.uk:5001)
:ontology agent

:receiver ANS
:language KQML)

This message is somewhat superfluous for this agent, but it is sent all the
same in JAT. The next message is more interesting, telling the broker the loca-
tion of the Java class for CDL interpreters and associating them with the name

capabilities:

" For a brief review of work related to planning agents and plan execution see section 2.3.4.

170 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

(evaluate
:sender init-file
:content
(tell-resource
:type interpreter
:name capabilities
:value (http://www.dai.ed.ac.uk/students/gw/jat/classes
JavaAgent .resource.cdl.CDLInterpreter))
:ontology agent
:receiver ANS
:language KQML)

Now the broker knows about the CDL interpreter and can process messages
that mention the ontology capabilities. The next message, however, mentions
the ontology agents, i.e. it is for the AgentInterpreter again, and tells the broker
where to find another resource, namely the state language we have been using in
most CDL expressions:

(evaluate
:sender init-file
:content
(tell-resource
:type language
:name fopl
:value (http://www.dai.ed.ac.uk/students/gw/jat/classes
JavaAgent .resource.fopl.FOPLFormula))
:ontology agent
:receiver ANS
:language KQML)

The last message from the initialisation file for the broker is actually a message
to the CDL interpreter. With this message the broker is told to load an action
ontology from the given URL:

(load-ontology
:sender init-file
:content
http://www.dai.ed.ac.uk/students/gw/jat/sc/actions.cdl
:ontology capabilities
:receiver ANS
:language URL)

The ontology that is being loaded contains only one capability description,

the one for the moving action mentioned above. As this capability description

5.3. CAPABILITY RETRIEVAL IN JAT 171

plays no role in the flexibility scenario, we will not repeat it here. However, it
is worth noting that this capability uses the state language made known to the
broker in the previous message, i.e. this message was actually necessary at this

point.

Now the broker is ready to receive capability advertisements from the various
PSAs. The first agent to advertise its capability in this scenario is the hl-agent,
but before the capability advertisement is sent, it has to tell the broker its address:

(evaluate
:sender hil
:content
(tell-resource
:type address
:name hl
:value hobby.dai.ed.ac.uk:38197)
:ontology agent
:receiver ANS
:language KQML)

This message is followed by the capability advertisement. The rather lengthy
appearance of this message is due to the fact that this message contains all wrap-
per layers omitted in previous descriptions.

(advertise
:sender hil
:content
(achieve
:receiver hil
:ontology OPlan
:language CDL
:content
(capability
:state-language lits
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(Has Location ?person Hospitall))
:output-constraints (
(not(Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

172 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

Note that this capability advertisement names the state language as lits.
When the CDL interpreter gets this message, extracts the string representing the
CDL expression, and attempts to parse it, it will ask the resource manager of
the broker for this language. A language named lits, however, is unknown to
the broker at this point and thus, the broker will send a message to the agent
advertising the capability using this language value to inquire where to find this

language:

(evaluate
:sender ANS
:content
(ask-resource
:type language
:name 1lits)
:ontology agent
:receiver hil
:language KQML)

Next the hl-agent, which advertised the capability and thus presumably
knows where the language called 1its can be found, sends this language’s URL

to the broker:

(evaluate
:sender hil
:content
(tell-resource
:type language
:value (http://www.dai.ed.ac.uk/students/gw/jat/classes
JavaAgent .resource.fopl.LitLObject) :name lits)
:ontology agent
:receiver ANS
:language KQML)

This convenient handling of languages as resources is one of the prime features

of ¢DL and contributes to its flexibility.

The next messages are from the h2-agent informing the broker of this agent’s
address and advertising its capability. To keep this example short, we will only

repeat the content of the capability advertisement here:

5.3. CAPABILITY RETRIEVAL IN JAT 173

(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (

(elt ?person Person)

(Is ?person Injured)

(or (Has Location ?7person Abyss)
(Has Location ?person Barnacle)
(Has Location ?person Exodus)))

:output-constraints (
(not(Is ?person Injured))))

The final agent to advertise its capability in this scenario is the new agent,
the ambulance service. Again, we have omitted the message telling the broker

the as-agent’s address and give only the content of the capability advertisement
here:

(capability
:state-language lits
:input ((InjuredPerson ?person) (From ?pl) (To ?p2))
:input-constraints (
(elt 7?person Person)
(Is 7person Injured)
(Has Location ?person 7pl))
:output-constraints (
(not (Has Location ?person 7pl))
(Has Location 7person 7p2)))

Next, the pp-agent tells the broker its address, and this message is followed

by a request to manage the solution of the described problem:

(broker-one
:sender pp
:content
(task
:state-language lits
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
:output-constraints (
(not(Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

174 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

Note that the performative here is broker-one. When the CDL interpreter
gets this message it will first try to find one agent that can solve the described
problem. For this purpose it will test for each capability it knows about to
determine whether it subsumes the given task. The capability description of the

h1l-agent will fail because of its last input constraint:

(Has Location JohnSmith Hospitall)

This input constraint cannot be satisfied by the input constraints in the task
description. The next capability tested is that of the h2-agent. Again, this
capability fails on one of its input constraints:

(OR (Has Location JohnSmith Abyss)

(Has Location JohnSmith Barnacle)
(Has Location JohnSmith Exodus))

The problem here is that John Smith, the injured person, is located in Delta.
The final capability tested is that of the as-agent which fails on the output match
condition. Since no capability subsuming the problem could be found, the cDL
interpreter will attempt to plan. The first step towards planning is the generation
of operator schemata from the capability description. The capability of the h1-
agent can be transformed into the following operator:

(op [?person_3]
:preconds [
(elt ?person_3 Person),
(Is ?person_3 Injured),
(Has Location ?person_3 Hospitall)]

reffects [
(NOT (Is 7person_3 Injured))])

The transformation of the h2-agent’s capability into an operator fails because
of its disjunctive input constraints. Thus, the h2-agent’s capability cannot be
part of the plan. Finally, the transformation of the as-agent’s capability into an

operator succeeds:

5.3. CAPABILITY RETRIEVAL IN JAT 175

(op [?person_5, 7pl_6, 7p2_7]
:preconds [
(elt ?person_5 Person),
(Is ?person_5 Injured),
(Has Location 7person_5 ?7pl_6)]
reffects [
(NOT (Has Location ?person_5 7pl_6)),
(Has Location ?person_5 ?p2_7)]1)

The next step is the generation of an initial partial plan from the problem
description. This will succeed as the problem description is straight-forward.
This incomplete plan will then be completed by the sNLP-like planner and again,
this will be successful. The resulting plan is the rather trivial action sequence of
getting the injured person to the second hospital and then instructing the second

hospital to treat the injured person.

5.3.4 Problems with JAT

While we feel that using JAT for the implementation of our agents has saved
considerable effort, it also brought with it some problems. This is only to be
expected though as JAT is only intended to be a research vehicle. One of the
problems with JAT is rooted in the way the class Language is implemented. All
languages managed by a JAT agent’s resource manager must be derived from this
class. However, due to the non-abstract implementation of this class in Java, not
every class can be derived from the JAT Language class. Ultimately this may lead
to mismatches during brokering as the reflective reasoning may not find certain
functionality required in the subsumption test. We shall return to an example

where this problem actually occurred in section 6.2.

Another potential problem with JAT lies in the way received messages are
processed. To prevent deadlocks messages are processed in parallel. However,
there are situations when this is not desirable. For example during the initialisa-
tion of an agent, it receives several messages from the initialisation file (cf. sec-

tion 5.3.1.1). One of these messages tells it where to find a given interpreter and

176 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

a subsequent message is directed to this interpreter. Processing these messages
out of order would lead to failure, but with parallel message processing there is
no guarantee that these messages will be processed in order. This never caused

a problem during our experiments though.

Another potential problem is the way the resource manager loads Java classes
as resources from remote hosts. This constitutes a major security risk. Later
versions of JAT are addressing this problem, but are not compatible with the
version we have used. Finally, as already mentioned, JAT is a research vehicle

and the lack of robustness has caused occasional problems.

5.3. CAPABILITY RETRIEVAL IN JAT 177

Summary

In this and the previous chapter we described our capability description language
and several algorithms to reason over this language. Basic capabilities are de-
scribed in terms of achievable objectives in ¢DL (cf. section 4.2). The algorithm
that tests whether such a capability can be used to address a problem is based
on the notion of capability subsumption as defined in section 5.1. An alternative
to describing capabilities in terms of achievable objectives is to describe them as
performable actions and an extension of CDL to deal with this notion is described
in section 4.3. Reasoning over such capabilities is performed through instanti-
ation (cf. section 5.2.3). A final feature of the language concerns agent properties.
Both, representation and algorithms have been extensively illustrated using the
examples from the scenarios presented in chapter 3. Thus, the definition of CDL
and description of the algorithms used by our broker to reason about capabilities

is now complete.

178 CHAPTER 5. ALGORITHMS AND IMPLEMENTATION OF CDL

Chapter 6

Further Experiments and Results

At this point we have defined CDL, an expressive and flexible action
representation that can be used to represent and reason about capabil-
ities of intelligent agents. Our aim in defining this formalism was to
address the problem of capability brokering. The next step will be to
conduct further experiments with the broker by exploring variations on
the scenarios described in section 3.3. The contribution of this chapter

will be a summary of the practical results achieved in this thesis.

Ideally, an evaluation of ¢DL and our broker would involve the implementa-
tion of a large number of different scenarios, with agents that have interestingly
different capabilities and which require a number of interestingly different state
description languages that the broker does not initially know. Furthermore, the
broker should not only be equipped with just the current mechanisms we de-
scribed in this thesis to address given problems (finding a single agent or finding
a plan). Only if cDL and our broker proved fit in such a wide range of scenarios
could we claim that we have achieved the goal of providing a generic capability
description language and broker suitable for all possible eventualities. However,
such an effort is beyond the scope of this thesis. Furthermore, there are limita-
tions to CDL we are aware of, some of which we have pointed out throughout this

thesis and some of which we will discuss as possible extensions in section 10.1.

179

180 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

While an exhaustive evaluation of ¢DL and our broker is not possible in this
thesis, we can modify the existing scenarios to provide us with further interesting
and relevant examples. Since these variations were not directly considered during
the design and implementation of CDL and the broker, they constitute a limited
but worthwhile evaluation of the generality and robustness of the language and the
brokering mechanisms. The initial scenario was only meant to illustrate the basic
communication and thus, we shall only consider variations of the more interesting

scenarios in this chapter, i.e. the expressiveness and flexibility scenarios.

6.1 Variations on the Expressiveness Scenario

In this section we will present further interestingly different variations
of the expressiveness scenario (example 3.2) to illustrate the generality

of our broker as well as some limitations.

To keep the evaluation challenging we will mainly look at minor variations of
the problem description in the expressiveness scenario that should result in major
changes in the behaviour of the broker, i.e. in failure or success in retrieving an
appropriate PSA. The underlying assumption here is that, if the broker can cope
well with minor differences in the problems, then it will also be able to distinguish
problems with major differences. In fact, the two parts of the problem in the
initial scenario, the broken generator and the injured person, represent problems
with major differences and our broker coped with these easily.

In the expressiveness scenario (cf. section 3.3.1) the two hospitals have di-
vided the island such that each hospital only deals with emergencies in its half.
Barnacle, however, which lies between the two hospitals, is served by both. These
conditions are expressed as disjunctive input constraints in the capability descrip-
tions of the two hospitals. Additionally, the second hospital has an input con-
straint expressing that it needs snow chains if there is ice or snow on the roads.
As the capability description for this hospital is essential for this evaluation, it is

repeated here from section 4.5.1:

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO

(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (

(elt ?7person Person)

(Is ?person Injured)

(or (Has Location ?7person Abyss)
(Has Location ?person Barnacle)
(Has Location ?person Exodus))

(implies (or (on Road Ice) (on Road Snow))
(have Ambulance SnowChains)))

:output-constraints (
(not (Is ?person Injured))))

181

The part of the problem concerning the injured person was communicated to

the broker by the pp-agent with the following message (cf. section 4.5.1):

(recommend-all
:sender pp
:content
(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
:output-constraints (
(not (Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

This message asks the broker to recommend all agents that can deal with the

problem described. In this problem, there is an injured person to be treated, and

the location of this person is Delta. In response to this message the broker will

first recommend the hl-agent, which is the only hospital dealing with patients in

Delta, by forwarding its capability description to the pp-agent.! The second mes-

sage with which the broker will reply to the above request is a message indicating

that it will recommend no further agents:

! We will not include messages forwarding capability descriptions here as these are rather

lengthy and do not add to the evaluation.

182 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

(eos
:sender ANS
:ontology agent
:receiver pp)

The performative eos is short for “end of stream”, a standard KQML perform-

ative, indicating that this is the last in a stream of messages.

There are two relatively trivial variations on this problem we want to consider
next. Firstly, we can ask the broker to recommend one agent that can solve the
problem but we omit the input-constraint which requires the person to actually
be injured. This results in the following problem description:?

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Has Location JohnSmith Delta))

:output-constraints (
(not (Is JohnSmith Injured))))

In reply to this problem the broker only sends one message which indicates
that there is no problem-solving agent (PSA) that can solve this problem:
(sorry
:sender ANS

:ontology agent
:receiver pp)

Like the eos performative, the sorry performative is a standard KQML per-
formative. It is sent in reply to a request for which no satisfactory answer could
be found. Here, it indicates that no PSA with appropriate capabilities is known to
the broker. This reply might perhaps be a little surprising as the goal, JohnSmith
not injured, is easily achieved given that he is not injured in the first place. How-
ever, both hospitals state as an input constraint that the given person must be

injured and thus, their capabilities are not applicable.

2 For brevity, we shall omit the outer part of the problem-describing messages in this section.
The performative used will be mentioned in the paragraph preceding the problem description.

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 183

The second rather trivial variation is one where we ask the broker to recom-
mend one agent that can make the given injured person injured, i.e. we drop the

negation in the output constraint:

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Delta))
:output-constraints (

(Is JohnSmith Injured)))

Again, one might suspect that every agent should be capable of not causing
a change, but no agent in this scenario has advertised a capability that has a
matching output constraint and thus, the broker will reply with a sorry message
again.

Apart from these trivial variations, the most obvious interesting variation on
the expressiveness scenario is the location of the injured person. Due to the way
the island is split between the two hospitals, the places of interest are Calypso or
Delta, which are only served by the hl-agent, Abyss or Exodus, which are only
served by the h2-agent, and Barnacle, which is served by both hospitals. We
have already described the behaviour of the broker for the Delta case. Thus, we
shall move the injured person to Exodus next and ask the broker to recommend
all agents that can deal with this problem. We shall also add input constraints
to the problem to account the effect of the conditional input constraint of the

h2-agent’s capability. The resulting problem description is as follows:

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Exodus)
(on Road Snow)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))

184 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

In reply to this message the broker first forwards the capability description
of the h2-agent to the pp-agent, thereby indicating that this agent is capable of
solving the given problem. The second message from the broker is an eos message
indicating that no other PSAs with the desired capabilities could be found. As
we would expect, the first hospital is not mentioned in the replies as it does not

deal with patients in Exodus.

The third interestingly different option for the location of the injured per-
son in this scenario is Barnacle. Again, we shall include the input constraints
which account for the conditional input constraint of the h2-agent in the prob-
lem description and ask the broker to recommend all agents capable of solving

this problem:

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Barnacle)
(on Road Snow)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))

In reply, the broker first forwards the capability description of the first hos-
pital, then the capability description of the second hospital, and finally, it sends
an eos message concluding its reply. Notice that the applicability of the first
hospital’s capability is not affected by the additional input constraints in the

problem description.

The next group of interestingly different variations concern the conditional
input constraint of the second hospital. To begin with a simple example, let the
patient be at Exodus, let the ambulance have snow chains, and let there be both,
ice and snow on the road. Now we can ask the broker to recommend one agent

for this problem:

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 185

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Exodus)
(on Road Snow)
(on Road Ice)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))

Our broker does not get confused by the fact that both conditions of the h2-
agent’s conditional input constraint are satisfied and correctly recommends this

agent to the pp-agent.

The next variation we have considered omits all information about the present
road conditions, i.e. we have deleted the respective input constraints from the
problem description to the broker. Thus, we have asked the broker to recommend
all agents that are capable of addressing the following problem:

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Barnacle)
(have Ambulance SnowChains))
:output-constraints (
(not (Is JohnSmith Injured))))

In this case the broker first recommends the h1l-agent which serves Barnacle
and is unaffected by the road conditions anyway. Next the broker recommends
the h2-agent. The reason for this is simply that the availability of snow chains
suffices to show that its conditional input constraint will be satisfied. Finally, the
broker sends the eos message as before. If we move the patient to Exodus and
ask the broker to recommend one PSA, the broker correctly replies by forwarding
the h2-agent’s capability description only.

As an alternative to omitting information about the road conditions, we shall

now consider the case where we do not provide snow chains to the ambulance.

186 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

The problem description does, however, mention that there is snow on the road.
Again, we ask the broker to recommend all agents for the following problem
description:

(task
:state-language fopl
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Barnacle)
(on Road Snow))
:output-constraints (
(not (Is JohnSmith Injured))))

For this problem the broker only recommends the hl-agent, followed by an
eos message. The reason for this is that the conditional input constraint of
the h2-agent causes its capability to be inapplicable for the problem described.
Similarly, if we move the patient to Exodus and ask the broker to recommend one
agent that can address this problem, the reply by the broker is a sorry message.
However, if we change the road conditions by providing the information that
there is neither ice nor snow on the road, i.e. if we negate the respective input
constraints in the problem description, the broker will correctly recommend the

h2-agent by forwarding its capability description to the pp-agent.

Finally, we shall return to the scenario in which we do not provide information
about the road conditions in the problem description, and neither do we mention
the availability of snow chains. Thus, we will ask the broker to recommend all
agents that can deal with the following problem:

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Barnacle))
:output-constraints (

(not (Is JohnSmith Injured))))

The reply by the broker to this request might seem a little surprising at first:
it only forwards the capability description of the hl-agent followed by an eos

6.1. VARIATIONS ON THE EXPRESSIVENESS SCENARIO 187

‘ recommend ‘ location ‘ SNoOw ‘ chains ‘ other ‘ reply
all Delta no no - hl, eos
one Delta no no not injured Sorry
one Delta no no make injured Sorry
all Exodus | yes yes - h2, eos
all Barnacle | yes yes - h1, h2, eos
one Exodus | yes yes - h2
one Exodus | yes yes ice h2
all Barnacle | no yes - hl, h2, eos
one Exodus no yes - h2
all Barnacle | yes no - hl, eos
one Exodus | yes no - Sorry
one Barnacle | no no no Snow or ice h2
all Barnacle | no no - hl, eos
all Exodus no no - Sorry

Table 6.1: Variations on the expressiveness scenario

message. Similarly, if we move the patient to Exodus, the reply will be a sorry
message. The reason for the inapplicability of the h2-agent’s capability is the
conditional input constraint: if no snow chains are available, the broker has to
prove that there is neither snow nor ice on the road in order to show that the
capability is applicable. This cannot be shown here. The underlying reason for
this behaviour is that our implementation of the state language used, fopl, does
not adopt the closed world assumption, i.e. the fact that we have not mentioned
that there is snow on the road only means that we do not know whether there is
snow or not. Given that the weather conditions on our island are often bad this

behaviour is appropriate.

The variations on the expressiveness scenario that have been described in
this section are summarised in table 6.1.> The first column indicates whether
the performative was recommend-one or recommend-all. The second column
gives the location of the injured person. The third and fourth column indicate

whether (on Road Snow) and (have Ambulance SnowChains) were specified as

3 The order of the table rows reflects the order in which variations have been described in this
section.

188 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

input constraints in the problem description. The fifth column indicates any other
variations that might have been specified, the details of which were described in
the above discussion. The final column gives the replies by the broker, where

“h1” stands for the forwarding of the h1l-agents capability description, etc.

In summary, it can be said that we were quite satisfied with all the responses
generated by the broker. Furthermore, all of these messages were generated in

one session, indicating some robustness of the implementation.

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 189

6.2 Variations on the Flexibility Scenario

In this section we will present further interestingly different variations
of the flexibility scenario (example 3.3) to illustrate the generality of

our broker as well as some limitations.

In the flexibility scenario (cf. section 3.3.2), the capability advertised by the
hl-agent was changed such that the first hospital could only treat patients at
the hospital, i.e. patients cannot be transported to the hospital. The h2-agent
still only treats patients in Abyss, Barnacle, or Exodus, but its conditional input
constraint has been dropped for this scenario. Finally, a new PSA was introduced
in this scenario: the ambulance service. The capability advertised by the as-
agent is that it can transport patients from any place on Pacifica to another, in

particular, to a hospital.

One of the most interesting message exchanges in this scenario takes place
before the pp-agent asks the broker for any help, namely when the hl-agent
advertises its capability (cf. section 4.5.2):

(advertise
:sender hil
:content
(achieve
:receiver hil
:ontology OPlan
:language CDL
:content
(capability
:state-language lits
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(Has Location ?person Hospitall))
:output-constraints (
(not (Is ?person Injured)))))
:ontology capabilities
:receiver ANS
:language KQML)

190 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

At this point the broker sees the state language named 1its for the first time.
This is a very important point in this scenario, as it illustrates the flexibility
of ¢pL. Since the broker does not know this language it sends a message to
the capability advertiser, the h1l-agent, asking it where to find the language in

question; lits in this example:

(evaluate
:sender ANS
:content
(ask-resource
:type language
:name 1lits)
:ontology agent
:receiver hil
:language KQML)

In reply to this request from the broker, the h1l-agent supplies the Java class
that corresponds to the state representation language lits, which is managed
as a resource of type language by the hl-agent’s resource manager as explained
in section 5.3.1. The actual message supplies the URL of the Java class to the

broker:

(evaluate
:sender hil
:content
(tell-resource
:type language
:value (http://www.dai.ed.ac.uk/students/gw/jat/classes
JavaAgent .resource.fopl.LitLObject)
:name lits)
:ontology agent
:receiver ANS
:language KQML)

On receipt of this message the broker will attempt to load the class and then
continue interpreting the capability advertisement of the hl-agent. To create
variations of this scenario that would result in a different exchange of messages
at this point, it would be necessary to implement further state representation

languages, as each resource will only be requested once by the broker. We have

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 191

implemented only two different state languages, so no interesting variations can

be generated at this point.

We can, however, vary the problem description as we did for the expressive-
ness scenario above. For example, up to now we have discussed only problem
descriptions based on the broker-one performative in the flexibility scenario.
The recommendation performatives used in the other scenarios also work here.
For example, the following message from the pp-agent uses the performative
recommend-one:

(recommend-one
:sender pp
:content
(task
:state-language lits
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
routput-constraints(
(not (Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

The broker does not know of any single agent which can deal with this prob-
lem. This is mainly due to the location of the patient at Delta and the inability

of the broker to plan a solution, because the performative used is recommend-one

(cf. section 5.3.2.3). Thus, the broker has to reply with a sorry message:

(sorry
:sender ANS
:ontology agent
:receiver pp)
As for the expressiveness scenario, we may generate variations of this problem
by moving the patient to another location. We have tested this variation with
Barnacle and Exodus, still using the recommend-one performative. In both cases

the broker correctly responds by forwarding the capability description of the h2-
agent to the pp-agent.

192 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

Using the recommend-one performative is not very interesting as far as flex-
ibility is concerned. Thus, we shall now return to the broker-one performative
which opens the possibility for the broker to plan solutions. Only with this
performative can we hope to illustrate flexibility. As broker-one will be the
performative for all remaining messages we shall, as before, drop the outer part
of the messages. Again, the first set of variations are concerned with the location

of the patient. This was Delta in our original example:

(task

:state-language lits
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Delta))
:output-constraints (

(not (Is JohnSmith Injured))))

The reasoning processes which the broker will go through on receipt of this
message have been discussed and explained in detail in section 5.3.3. Essen-
tially, the broker fails in its attempt to find a single agent that can deal with the
described problem as is and thus attempts to generate a plan involving the capab-
ilities of several agents. This succeeds and the plan consists of first transporting

the patient to the first hospital and then treating him there.

Locating the injured person at Barnacle or Exodus results in quite different
behaviour for the broker. In both of these cases the broker can find a single
agent that can solve the whole problem, the h2-agent. Thus, the broker will not
attempt to find a plan to solve the given problem. Instead of forwarding the
h2-agent’s capability description to the pp-agent, however, the broker now asks
the h2-agent to solve the given problem. This is due to the performative being
broker-one, which asks the broker to manage the solution of the problem, even
if there is a single agent capable of solving the whole problem. Thus, the broker

sends the following message to the h2-agent:

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO

(achieve
:sender ANS
:content
(task
:state-language lits
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Barnacle))
:output-constraints (
(NOT (Is JohnSmith Injured))))
:ontology OPlan
:receiver h2
:language CDL)

193

As a final variation, we have considered the case where the location of the

injured person is Hospitall. The hardly surprising result of this change is that

the broker finds the h1l-agent as the problem solver capable of tackling the given

problem and sends it a message virtually identical to the one above, except for

the location of the patient and the receiver.

Another interesting variation of this scenario which was not explored in the

expressiveness scenario is to change the state language in the problem description.

In the original version of the problem only conjunctions of literals are used and

the according state language specified was 1its. Since this is a subset of first-

order logic we may change the specification of the state language to fopl. For

the original problem this results in the following description:

(task

:state-language fopl
:input-constraints (

(elt JohnSmith Person)

(Is JohnSmith Injured)

(Has Location JohnSmith Delta))
:output-constraints (

(not (Is JohnSmith Injured))))

The result of this variation is rather interesting: the broker replies to the

pp-agent with a sorry message, i.e. it fails to help with the described problem.

Clearly, the broker cannot find a single agent that can solve this problem as

194 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

‘ performative ‘ location ‘ state language ‘ response ‘
recommend-one Delta lits SOrTYy
recommend-one | Barnacle lits forward h2
recommend-one | Exodus lits forward h2

broker-one Delta lits plan: as, hl
broker-one Barnacle lits h2
broker-one Exodus lits h2
broker-one Hospitall lits hl
broker-one Delta fopl SOrTYy
broker-one Barnacle fopl h2
broker-one Exodus fopl h2
broker-one Hospitall fopl hl

Table 6.2: Variations on the flexibility scenario

it is only the state language that has been changed from the original problem
description, not the problem itself. But in this version the broker subsequently
fails to find the planned solution. Given that reflection is used to reason about
whether certain inferences over the state language expressions need to be made
or not, this result is perhaps surprising. Even a closer inspection of the algorithm
does not reveal why planning fails for this problem. In fact, the problem here lies
in the implementation of JAT, which requires all languages which are managed
by a JAT agent’s resource manager to inherit from a class provided by JAT. The
actual problem is rooted in the way this JAT class is implemented and cannot be

changed easily (cf. section 5.3.4).

Less interesting or less surprising are the results of changing the location of
the injured person to Barnacle, Exodus, or Hospitall. In all of these cases the
responses by the broker are the same as those for the case with 1its as the state

description language.

The variations of the flexibility scenario that have been described here are
summarised in table 6.2. The first column indicates whether the performative
was recommend-one or broker-one. The second column gives the location of the

injured person. The third column names the state language specified. The final

6.2. VARIATIONS ON THE FLEXIBILITY SCENARIO 195

column indicates how the broker responded to the given problem. Details are

described and discussed above.

In summary, it can be said that we were again satisfied with all the replies
generated by the broker. The only exception was the example involving the state
language specified as fopl and the patient in Delta, but the underlying problem

is rooted in JAT and is not indicative of a limitation in our thesis approach.

196 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

6.3 Performance Issues

In this section we will reflect on some performance issues: how ex-
pressiveness and flexibility affect broker performance and how our ap-
proach might scale up if the number of problem-solving agents was

increased drastically.

The first question regarding performance issues we have to answer is, of course,
how fast the broker actually replies to a request by the problem holder. Unfor-
tunately this question is also rather difficult to answer. We have implemented
all the agents and scenarios described in this thesis, but they are rather small in
number and thus, a generalisation might be questionable. However, developing a

large number of agents and scenarios was beyond the scope of this thesis.

For the scenarios we have tested, the response times for the broker
to find an appropriate problem solver were virtually instantaneous in

all examples.

The broker, the problem-solving agents, and the problem-holding agent are
all implemented in Java [Eckel, 1997, Campione and Walrath, 1998] using the
Java Agent Template (cf. section 5.3.1). The broker was running on a Sun Sparc
station 5 for all scenarios and the various other agents were run on additional Suns
on the same LAN. Thus, the response time of the broker includes the time for
communication between the different machines, the loading of new Java classes
at run time, and the actual retrieval of a capability performed by the broker.
Of these, the capability retrieval time is the most interesting for us and we shall

analyse this in more detail next.

6.3.1 Complexity of Capability Subsumption

At the heart of capability retrieval is the capability subsumption test and thus,

we shall now have a closer look at the complexity of the algorithm performing

6.3. PERFORMANCE ISSUES 197

outKB + new KnowledgeBase(S°)
for c € {C§,,...,C&,} do
assert(outKB, c)
o evaluate(outKB, Ch, N ... NCE,, {v1,...,v})
if 0 is undefined then
return false

AN S

7: inKB < new KnowledgeBase(S°)
8: for c € {C],,...,C],} do

9: assert(inKB, c)

10: for c € {Cf,,...,Cf,.} do

11: if not evaluate(inKB, o(c)) then
12: return false
13: return true

Figure 6.1: Basic capability subsumption algorithm

this test. The most basic form of this algorithm, for capabilities described as
achievable objectives, without input-output constraints, inheritance, or proper-
ties, was described in figure 5.2 in section 5.1.2.2 and is repeated here for easier

reference in figure 6.1 with line numbers.

The algorithm begins with the creation of an empty knowledge base for the
capability’s output constraints (line 1). We will assume that this can be done in
constant time. Similarly, we will assume that the assertion of a single constraint
into a knowledge base will take constant time, which may not always be the case
but is true for our implementation. Thus, asserting all constraints (lines 2-3)

takes linear time in the number of constraints.

In the next step, a sentence representing the conjunction of the task’s out-
put constraints is evaluated against the knowledge base (line 4). Obviously, the
complexity of this operation depends on the state language used and how the
interpreter for the state language performs this test. Normally, one would ex-

pect this evaluation to be rather complex, and thus, expensive. For example,

198 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

our implementation of first-order logic uses skolemization and resolution theorem
proving [Loveland, 1978] to test whether a given sentence follows from the know-
ledge base. This operation is so complex that it cannot even be analysed in terms
of its time complexity: the problem is undecidable. However, our implementation
avoids this problem by generating only a limited number of clauses. What this
means for the subsumption test is that there might be capabilities that could be
used to address a given problem, but due to their complex description the broker
is unable to show this. We believe this behaviour to be quite reasonable. For the
complexity of the evaluation this means that it can be performed in time expo-
nential in the number of literals in the capability and task description. This time
may be required for the transformation of a formula into skolemized conjunctive

normal form.

The second part of this algorithm is similar to the first. It consists of the
creation of a knowledge base (line 7) followed by the assertion of several sentences
(lines 8-9). Then each of the capability’s input constraints are evaluated in turn
(lines 10-12). Again the evaluation is the crucial step here. This gives us the

following complexity result:

Let ¢ be the number of constraints involved in the evaluation of task 7
against capability C. Let the evaluation of a single constraint against
a knowledge base be O(e(£))* where L is the language in which the
constraints are expressed. Then the overall complexity of the al-
gorithm for the basic subsumption test described in figure 5.2/6.1
is in O(e(L)c).

The basic algorithm has been extended in several ways to account for various
other features of cDL. For example, the extension for input-output constraints
is described in section 5.2.1 and implemented by the algorithm extensions de-

scribed in figures 5.3 and 5.4. The first part asserts further constraints in the

4 Note that e(£) may be undefined as it would be for unrestricted resolution.

6.3. PERFORMANCE ISSUES 199

output knowledge base and the latter performs further evaluations against the
input knowledge base. So far, this does not affect the overall complexity of the
algorithm. However, the second part of the extension also includes a test of
whether a given constraint has been used in the derivation of some sentence. We
will make the additional assumption here that this test of whether a sentence
has been used in a derivation takes less time than the actual derivation. This
means the complexity of the subsumption algorithm remains unchanged by the

extension for input-output constraints.

The next extension concerns the properties which are effectively propositions
and thus, could be handled as constraints. The extension for the algorithm was
described in figure 5.5. The subset test mentioned can be performed in time linear
in the number of properties. If we count properties as constraints, this extension

again does not affect the complexity of the algorithm.

The final extension deals with capabilities and tasks described as performable
actions. The extension to the basic algorithm was described in figure 5.6 in sec-
tion 5.2.3. What this adds to the algorithm described thus far are two potential
capability instantiations. The algorithm for instantiation of CDL descriptions,
be they capabilities or tasks, was described in figure 5.7. At the heart of this
algorithm is the amending of sets of parameter specifications (cf. figure 5.8). Let
there be p parameter specifications, each no longer than f symbols. Adding or
deleting parameter specifications from a set may take time linear in p and unify-
ing two role fillers may require time f2. Thus, the time complexity for amending
a set of parameter specifications is in O(p(p + f?)). For simplicity we shall now
assume that f is a constant limiting the length of parameter specifications and
that there are more constraints in a CDL description than parameter specifica-
tions. Thus, the complexity for the function amend is in O(c?) where ¢ is the
number of constraints involved. This is also the complexity for instantiating a
CDL description from a single, other description. However, in a hierarchy of cap-

abilities of depth h a CDL description may inherit from up to A CDL descriptions

200 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

due to the single inheritance mechanism.

This gives us the following result for the time complexity of the final version of
the capability subsumption test given in figure 5.9 under the assumptions outlined

above:

Let ¢ be the number of constraints involved in the evaluation of task
T against capability C. Let the hierarchy of capabilities on which 7T
and C may be based be no deeper than h. Let the evaluation of a
single constraint against a knowledge base be in O(e(L)) where L is
the language in which the constraints are expressed. Then the overall
complexity of the algorithm for the basic subsumption test described

in figure 5.9 is in O(e(L)c + ¢*h).

6.3.2 Scaling Issues

The problem with the analysis thus far is that it is only for the performance
of a single subsumption test. We know, however, that such a test is very fast
in practice and that the parameters that affect its complexity are not the ones
that will increase in a more realistic scenario. The parameter that will increase,
presumably by several orders of magnitude, in a more realistic scenario is the
number of problem-solving agents available, and thus the number of capabilities

the broker knows about.

Our implementation is very inefficient in this respect. Capabilities are stored
in a linear list and when the broker attempts to find an agent capable of solving a
particular problem, it goes through this list one by one applying the subsumption
test once for every capability in the list. For a capability descriptions this results
in O(a) capability subsumption tests, which is not satisfactory. The reason why
we have implemented such a rather trivial algorithm at this point is simply due
to the fact that there are only very few capabilities which have been described to
the broker in our scenarios and developing large scenarios where the number of

capabilities would make a difference were beyond the scope of this thesis.

6.3. PERFORMANCE ISSUES 201

Furthermore, there are well known techniques for addressing this problem,
which is closely related to the problem of memory organisation described in
[Charniak and McDermott, 1985, page 396]. The basic approach there is to find
necessary criteria that can be easily evaluated and which indicate whether a
call to evaluate might succeed. One simple but highly efficient technique is to
extract all the predicates from the output constraints of a capability descrip-
tion. We could store these in a hash table that associates a predicate with all
the capability descriptions using this predicate in one of its output constraints.
Now, a task description mentioning some predicates in its output constraints
could only be addressed by a capability which mentions at least one of these
predicates in its output constraints. Since hash table access is very fast (de-
pending on the hash function), this method would significantly improve the
complexity of our capability retrieval algorithm. Of course, there can still be
a large number of capabilities mentioning a given predicate, but in this case one
can use the arguments to the predicate that are not variables to refine hashing

(cf. [Charniak and McDermott, 1985, section 7.2.1]).

Another interesting question one might ask in this context is how the express-
iveness used in the state language affects the performance of capability retrieval.
It should be clear at this point that this does not depend on the number of
capabilities the broker knows but only affects the time for a single capability
subsumption test. Specifically, greater expressiveness in the state description
language may only increase the function e(L), i.e. the time taken up by the func-
tion ewvaluate. The exact amount by which greater expressiveness increases the
complexity of this function depends on the state description languages in ques-
tion. Thus, there is a price to pay for expressiveness here, but this price does not
depend on the number of capabilities known by the broker and is no worse than

in any other reasoning task involving the more expressive language.

Similarly, we can ask how flexibility affects the performance of capability

retrieval. Again, it should be clear that this is not a scaling issue as the number

202 CHAPTER 6. FURTHER EXPERIMENTS AND RESULTS

of capabilities is independent of their flexibility. Flexibility does, however, affect
the performance of a single capability subsumption test. This is because our
algorithm cannot rely on the fact that certain functionality is actually provided
by the state description language, and thus, it uses reflective reasoning to test
for the existence of this functionality every time it needs to use it. This takes up
a constant amount of time and is done for every call to evaluate, i.e. the overall
cost is O(¢) and does not affect the complexity of the subsumption test. The only
time when flexibility may make a noticeable difference in performance is when
the broker receives a new capability description involving a new state language
and this language has to be loaded from a remote host. This may take some time,

but obviously does not affect the capability retrieval time.

To summarise, expressiveness is a major factor affecting the complexity of
the capability subsumption algorithm and thus, the capability retrieval time, but
flexibility causes hardly any increase in this complexity. The important parameter
we would expect to scale up is the number of capabilities known to the broker.
However, the complexity of the subsumption algorithm does not depend on this

parameter.

Chapter 7

Expressiveness of CDL

At this point we have described our capability description language
CDL which can be used to represent the content of messages required
for capability brokering. We also have shown how CDL can be used for
capability retrieval. Our aim now is to show that CDL has two desirable
properties: it is expressive and flexible. The next step towards this goal
will be to describe what we mean by expressiveness. The contribution
of this chapter will be a description of our concept of expressiveness
of action representations and its application to CDL. A comparison
of the expressiveness of CDL with that of other action representations

will follow in section 9.2.1.

7.1 Why more Expressiveness?

In this section we will discuss why expressiveness is one of the prop-
erties we want in CDL. We will use the more complex scenarios (from
section 3.3) to illustrate this point along with providing a more theor-

etical argument.

Up to this point we have simply assumed that expressiveness is a desirable
property for our capability description language. But clearly, expressiveness

comes at a price: usually the complexity of the algorithms required to reason

203

204 CHAPTER 7. EXPRESSIVENESS OF CDL

about the language increases with the expressiveness of the language. Thus, it is
important to make sure that a language provides only as much expressiveness as
required for a given class of problems in order to maintain heuristic adequacy. Of
course, it is equally important to provide sufficient expressiveness in order to be
able to represent problems in this class with epistemological adequacy. We will
now outline why we believe that capability descriptions of realistic agents require

an expressive action representation language, like CDL.

7.1.1 The Expressiveness Scenario Revisited

One of the scenarios introduced in section 3.3 exactly addresses the question of
why we need more expressiveness; the expressiveness scenario (example 3.2). The
very idea behind this scenario is to illustrate the need for an expressive capability
description language. We will now look at this scenario again to see whether we

really need this expressiveness.

In the expressiveness scenario, the fact that the first hospital only treats people
from Barnacle, Calypso, or Delta was represented as a disjunctive input con-
straint. Expressing this constraint in a less expressive representation, e.g. one
that allows only conjunctions of literals, would be possible by representing the
capability as three separate capabilities, one for each disjunctive case. A second
applicability condition in this scenario was for the ambulance to have snow chains
if there is ice or snow on the roads. This condition was represented as an input
constraint that is an implication with a disjunctive precondition. But an implic-
ation can be rewritten as a disjunction in first-order logic and thus, the same

technique as before can be applied.

This technique of replacing one capability description with disjunctive input
constraints by several capability descriptions raises problems though. Firstly, if
one kept splitting capabilities with disjunctive input constraints then a capability
description with k disjunctive preconditions, each having n disjuncts, would result

in n* separate capability descriptions. There is a second, more worrying concern

7.1. WHY MORE EXPRESSIVENESS? 205

in this example though: we only know that the weather is bad, meaning there is
either ice or snow on the roads, but we do not know which. Given this knowledge,
the splitting of capability descriptions according to disjunctive input constraints is
not epistemologically adequate, as the separate capability descriptions cannot be
applied whereas the capability with the disjunctive input constraint is applicable.
Thus, the expressiveness scenario does indeed require at least the expressiveness

of disjunctive input constraints.

Disjunctions in input constraints are not the only reason why we need an
expressive capability description language though. Looking at the capability
description of the hl-agent in the initial scenario (cf. section 4.2.5), the last

input constraint was given as:

(Has Location 7person Pacifica)

This only states that the injured person has to be on Pacifica. However, to
actually apply the described capability the hl-agent will need to know where
exactly to find the injured person, i.e. it needs to know a more precise location
than “on Pacifica.” Thus, we could easily argue that knowledge preconditions (in
this example the knowledge where to find the injured person) and thus the ability
to reason about knowledge are required here. Reasoning about knowledge can
be performed in modal logics (cf. section 2.2.2). Thus, one could argue that the
expressiveness of modal logics is required in this scenario, which is greater than

what we have used this far.

Furthermore, while the input constraint which states that the person has
to be on Pacifica is too general with respect to the person’s location, the input
constraint that we need to know where exactly the injured person is, is too specific.
In fact the hl-agent only needs to know roughly where the injured person is, not
exactly where. For example, within a city an address may be sufficient as the

patient’s location; at the power plant we might need more specific information

! Note that, for example, a contingency planner could deal with this situation, but the resulting
plan would be rather awkward with two identical branches.

206 CHAPTER 7. EXPRESSIVENESS OF CDL

depending on the size of the plant. However, to apply its capability the h1l-agent
will not need to know where exactly in a flat with a given address the patient is.
But what does that mean for cDL? It means that the representation will have to
be expressive enough to somehow represent qualitative input constraints on space,

i.e. it would require greater expressiveness again.

It is not difficult to think of further examples that require the representation
of further different kinds of knowledge which, in turn, might require more ex-
pressiveness. Thus, for a generic capability description language to be able to

represent all of the above examples, we need expressiveness.

7.1.2 Conciseness of Capability Descriptions

The above examples have illustrated the need for a capability description language
to be expressive. A property we expect of descriptions of capabilities in such a
language is conciseness. In this section we will argue that the need for conciseness
in a capability description is a contributing factor for the need for expressiveness
in a capability description language. The need for conciseness in a capability

description has at least two reasons:

e Conciseness of a capability description implies a relatively short expression
representing the capability. Shorter expressions mean less communication
overhead and thus, may facilitate more efficient overall problem-solving

behaviour.

e Conciseness also means the description should not contain unnecessary de-
tail or redundant information. It is likely that such an expression can be
reasoned about more efficiently, resulting in more efficient overall problem-

solving behaviour again.

For example, let us look at an agent acting in the Blocks World with the
four basic capabilities described by the actions stack, unstack, pick-up, and put-

down as defined in [Nilsson, 1980, chapter 7]. Another capability of this agent

7.1. WHY MORE EXPRESSIVENESS? 207

is to perform any sequence of these actions. While this presents a capability
description for this agent, it is arguably not a concise description. It is not short
because it contains the full descriptions of all the primitive actions the agent
can perform. It also contains the information necessary to derive a sequence of
actions necessary to achieve a given goal which is not necessary for brokering,

i.e. it contains redundant information.

There are at least two principal ways of achieving conciseness in a capability

description: abstraction in the description and expressiveness in the language.

Abstraction has been employed in many areas of Al such as planning, machine
learning, or natural language understanding. [Russell and Norvig, 1995, page 62]
describe abstraction as the process of removing detail from a representation. Note
that this is much stronger than what we have described above: a concise repres-
entation should not contain unnecessary detail or redundant information. Thus,
abstraction is a process that can be used to achieve conciseness in a representa-
tion. For example, a more abstract capability description for the Blocks World
agent mentioned above would be that it can achieve a state in which any block

is to be on top of another.

FExpressiveness of a language can be described as the potential to represent
certain circumstances in this language that cannot adequately be represented in
a less expressive language. But expressiveness not only gives us the possibility
to say more, it may also give us the possibility to represent the same facts more
concisely. For example, a capability with a disjunctive input constraint may be
replaceable by several capability descriptions that are identical except for one
of their input constraints. Even if this replacement does not lead to problems
as described above, the expression of the capability with a disjunctive input
constraint is obviously more concise. Thus, a more expressive language can allow

for a more concise representation.

While the above shows that expressiveness of a description language is one

possible way of achieving conciseness of representations in this language, it does

208 CHAPTER 7. EXPRESSIVENESS OF CDL

not mean that we necessarily need more expressiveness. However, if we want our
capability description language to be generic, we have to provide for the cases

where such expressiveness is required.

7.2. EXPRESSIVENESS OF AR LANGUAGES 209

7.2 Expressiveness of AR Languages

In this section we will introduce a (fairly lightweight) theoretical frame-
work that defines what we mean by the expressiveness of action rep-

resentation languages and allows for comparisons of such formalisms.

Up to now we have used the term expressiveness in a rather loose fashion.
Thus, one of the main claims of this thesis, that CDL is an expressive action
representation, is rather ill-defined at this point. Perhaps surprisingly, there does
not seem to exist an agreed definition of what it means for an action representation

to be expressive. Informally, one can define expressiveness as follows:

Definition 7.1 (Expressiveness) A knowledge representation language is ex-
pressive if it is possible to represent certain circumstances in this language that

cannot be adequately represented in a less expressive language.

This notion has been used in [Baader, 1996] to formalise the concept of ez-
pressiveness for terminological knowledge representation languages.? Baader also
claims that the underlying idea can be used to define the expressiveness of other
representation languages. Thus, we shall now have a brief look at his definition

of expressiveness.

7.2.1 Expressiveness of KR Languages

The first step towards a formalisation of the above definition of expressiveness is
the definition of the knowledge representation languages one wants to consider.
To this effect Baader defines the class of KR1 languages as [Baader, 1996, page
40]:

Definition 7.2 (KR language based on first-order logic) Assume that we

have countably many variable symbols and countably many predicate symbols of

2 By a terminological KR language, Baader means any language based on Brachman’s ideas
about concept structure such as KL-ONE [Brachman, 1979, Brachman and Schmolze, 1985].

210 CHAPTER 7. EXPRESSIVENESS OF CDL

any arity. In addition we assume that we have a binary predicate symbol for
equality which has to be interpreted as equality in all models. Let FO denote
the set of all first-order formulae that can be built out of these symbols. A KR1

language (KR language based on first-order predicate logic) L consists of:

1. A subset L of the power set of FO, i.e. a set of sets of formulae.

2. A model-restriction function Mod;, that maps each set I' € L to a subclass

Mody,(T') of all first-order models of T.

According to this definition, a KR1 language basically consists of a language
in which every expression must be a set of first-order formulae and a model-
restriction function that maps expressions in this language into their models.
In terminological logics, the languages Baader is interested in, a set of concept

descriptions I' € L is often called a T-Box.

In this definition every expression I' in the language L of a KR1 language
L must be a set of formulae in first-order predicate logic (FOPL). Allowing the
syntax of FOPL only here might seem rather restrictive at a first glance. However,
one way of defining the semantics for a new knowledge representation language L'
is to define an equivalence semantics [Winston, 1992, page 20]. This defines how
a sentence in the new language can be transformed into another language which
already has an accepted semantics, thus indirectly adopting the semantics of this
other language for the new language L. Any language that has an equivalence
semantics based on FOPL can thus be considered a language of a KR1 language.

Languages that cannot be transformed into FOPL are excluded though.

The second part of a KR1 language, the model-restriction function Mody,
defines the models of an expression I' € L. It maps an expression I' to only a
subclass of all first-order models of I' to allow for T-Boxes that contain cycles
and require a fixed-point semantics [McDermott and Doyle, 1980].

Now, given this definition of the languages one wants to consider, the next

step towards a formalisation of definition 7.1 is to define when an expression in

7.2. EXPRESSIVENESS OF AR LANGUAGES 211

Ly “represents certain circumstances that cannot be adequately represented” by
an expression in Ls. The basic idea in Baader’s work now is to define that two
expressions 'y € Ly and I'y € Ly express the same circumstances, or concepts in
the case of terminological logics, if they have the same models. Baader’s actual
definition is more general than this though, allowing for the renaming of predicate

symbols and the presence of auxiliary predicates in L, [Baader, 1996, page 41]:

Definition 7.3 (Model equality modulo ¢-embedding) For an element I’
of FO let Pred(T) denote the set of all predicate symbols occurring in T'. Assume
that we have a mapping 1 : Pred(I'y) — Pred(I's), and models My, M, of
[y, Ty respectively. The elements of Pred(I's) that are outside the range of 1 are
auziliary predicate symbols. We say that M, is embedded in My by ¢ (My Cy Ms)
iff all R in Pred(I'y) satisfy RM = (R)™2.3 Equality of classes of models modulo
Y-embedding is defined by extensionality, i.e. Mody,(I'y) =4 Mody,(T's) iff

e forall My in Mody, (I'y) there exists My in Mody,(I's) such that My Cy Mo,

and

o for all My in Mody,(T'y) there exists My in Mody, (I'y) such that My Cy
M,.4

This definition tells us what it means for two sets of models to be equivalent.
Essentially, it defines two models as equivalent if they are equal subject to a
function renaming the symbols and subject to the omission of auxiliary predicates.
One can now use the model-restriction function that maps expressions into sets of
models to define when two expressions represent the same circumstances, namely
if their models as defined by the model-restriction functions are equivalent. This

can be formalised as follows [Baader, 1996, page 41]:

3 Although not defined in Baader’s paper, it is fairly obvious that RM is intended to denote
the extension of the predicate R in the model M.
* Note that Baader’s definition of =, is not symmetric.

212 CHAPTER 7. EXPRESSIVENESS OF CDL

Definition 7.4 (Expressive power of KR1 languages) Let 'y € L; and
['s € Ly for KR1 languages Ly and Ls.

1. Ty can be expressed by Uy iff there exists 1 : Pred(I'y) — Pred(T'y) such
that]\40d[/1 (Fl) =y MOdL2 (FZ)

2. Ly can be expressed by Lo iff for any I'y € Ly there exists I'y € Ly such that
[’y can be expressed by I's—i.e. iff there is a mapping x : L1 — Ly such

that T'y € Ly can be expressed by x(I'y).

3. Ly and L, have the same expressive power iff Ly can be expressed by

Ly and vice versa.

The first part of this definition formalises when two expressions in different
languages express the same circumstances. The second part then generalises this
notion for languages: one language can be expressed in another if every expression
in the former language can be expressed in the latter. Notice that if L; can be
expressed by Lo then L is at least as expressive as L;. Finally, the third part
of this definition defines when two KR1 languages are equally expressive. Notice
that this definition does not define an absolute measure of the expressiveness of
a KR language. It does, however, group KR1 languages into equivalence classes
and defines a partial order on those. The limit is first-order logic itself which is

the most expressive language in this framework.

7.2.2 Expressiveness of Action Representations

Baader’s definition of expressiveness is only applicable to KR1 languages. In
essence, these languages are what we have called state representation languages in
section 4.2.3.1. Action representations are usually not described as languages that
fit into this category (cf. section 2.3.1). Hence, the definition of expressiveness

for KR1 languages is not applicable to action representations directly.

7.2. EXPRESSIVENESS OF AR LANGUAGES 213

In this section we will present our definition of expressiveness for action rep-
resentations. The first step towards this definition must be a definition of the

class of action representations we want to consider:

Definition 7.5 (AR1 language) An AR1 language (Action Representation
based on first-order predicate logic) L is a quadruple (A, S, Modgs, Rel 4) where:

A is the (decoupled) action description language of L;

S is the state description language of L;

the model-restriction function Mods maps each state description s € S to

a set Modg(s) of first-order models;

the action definition function Rel, maps each action description a € A to

a binary relation Rel(a) on state descriptions, i.e. Rela(a) C S x S.

This definition reflects our view of decoupled action representations presented
in section 4.2.3.2, i.e. an action representation consists of a decoupled action
description language (A in the above definition) and a state description language
(S). Note that the above definition does not define what either language has to
look like.

The state description language S together with the model-restriction function
Modgs is almost identical to a KR1 language. The only difference is that expres-
sions in S do not have to be sets of formulae in FOPL. However, the function
Modgs has to map every expression in S into a set of first-order models. Thus,
while the form of the state description language of an AR1 language is not defined
in the above definition, we do require that the semantics of this language has to

be definable in terms of first-order models.

The decoupled action description language A is the language that allows us to

describe actions. Note that in general an expression a € A is intended to define a

214 CHAPTER 7. EXPRESSIVENESS OF CDL

set of actions, not just a single action.> The underlying idea here is that actions
transform one state into another.® Thus, the action description language A can
be used to define a binary relation on states, where states are described in the
state description language S. The action definition function Rel, defines how to
obtain this relation from a description of a set of actions a € A. Note that this
definition does not impose any restrictions on the action description language

itself other then the fact that it can be used to define a binary relation on states.

To illustrate the above definition we shall now informally describe a proposi-
tional version of the STRIPS representation as defined in [Nilsson, 1980, chapter

7] as an ARI language STRIPS = (A, S5, Mods,, Rela,):

e An expression in the action description language A, is a set of STRIPS
operators. Each operator consists of an action identifier, a set of variables
specifying parameters, a precondition expression, an add expression, and a
delete expression. Each of these expressions must be an expression in the

state description language S;.

e An expression in the state description language Sy is a set of function-free
literals over a given set of predicate, constant, and variable symbols. An
expression in the state description language which occurs inside an operator

may only contain variables from this operator’s parameters.

e The model-restriction function Modg, maps an expression in S, i.e. a set

of literals, into the models of the conjunction of the literals in the set.

e Finally, the action definition function Rel,, defines two states as related if
there is an operator such that the precondition expression is a subset of the
first state and the first state modified by the add and delete expressions is

a equal to the second state.

5 Thus, we shall use the term “set of actions” to refer to an action description a € A”, i.e. an
expression in the action description language A.

6 We shall use the term “state” to refer to a state description s € S”, i.e. an expression in the
state description language S.

7.2. EXPRESSIVENESS OF AR LANGUAGES 215

This gives us a formal definition of an AR1 language. The basic idea now
is to say that two action descriptions in different AR1 languages express the
same actions if and only if for every state in one language there is a somehow
equivalent state in the other language and the states that can be reached within

each representation are again somehow equivalent.

To formalise this notion we first need to define what we mean by two states in
two different state description languages being somehow equivalent. As mentioned
before, state description languages together with their model-restriction functions
are quite similar to KR1 languages and thus, we can use the definition of model
equality for sets of models (definition 7.3) to define the equivalence of states which

are mapped to sets of models by the model-restriction function.

This leaves us a need to formalise the concept of state reachability before
we can define the expressiveness of action representations. Intuitively, a state is
reachable from another state if there is an action or a sequence of actions that

takes us from one to the other.

Definition 7.6 (Reachability in L) Let L = (A, S, Modg, Rela) be an ARI
language, s € S a state description, and a € A a set of actions. Then the set
R'(s,a) of all states reachable in one step from s through a is the set of all
states s' for which (s,s") is in Rela(a). The set R(s,a) of all states reachable
from s through a is the union of R'(s,a) and all states s" for which there is a

state s' that is known to be in R(s,a) and (s',s") is in Rela(a).

The set R(s,a) is the set of all states that can be reached from the state
s by performing a sequence of actions, where each action in the sequence must
be described in a. Thus, R(s,a) is the possibly infinite state space of all states
reachable from s through a. If two sets of actions define the same state space
from a given state then these sets of actions can be considered equivalent in this
state. If they are equivalent in all states then we can say that they express the

same set of actions.

216 CHAPTER 7. EXPRESSIVENESS OF CDL

We are now in a position to formally define when two sets of actions repres-

ented in two different AR1 languages represent the same actions:

Definition 7.7 (Expressive power of AR1 languages) Let a; and ay be two
sets of actions described in action representations A, and A, for ARI1 languages

Li and Ly respectively. Then:

1. a; can be expressed by a, if and only if for all states s, in S there exists

a state sy in Sy and a function 1 : Pred(s;) — Pred(ss) such that:

e Mods, (s1) =y Modsg,(s2) and

o R(s1,a1) =y R(s2,a2).

2. AR1 language L; can be expressed by ARI language Lo if and only
if for any set of actions a; described in A, there exists a set of action as
described in Ay such that ay can be expressed by ao—i.e. if there is a mapping

X : A1 — Ay such that ay can be expressed by x(ay).

3. Ly and L, have the same expressive power iff Ly can be expressed by

Ly and vice versa.

The first part of this definition just formalises what we have said informally
before: that two sets of operator descriptions express the same actions if for every
state in one language there is an equivalent state in the other language and the
states that can be reached within each representation are also equivalent. The
second part of this definition extends this concept to AR1 languages, i.e. an AR1
language can be expressed by another if every set of actions expressible in the
first language can also be expressed in the second. Finally, if two AR1 languages

can express each other they have the same expressive power.

7.2. EXPRESSIVENESS OF AR LANGUAGES 217
7.2.3 Polynomial Transformability

An alternative definition of expressive equivalence of planning formalisms can be
found in [Béckstrom, 1995]. We shall now have a brief look at this definition to

see how it compares with our concept of expressiveness as described above.

Backstrom defines expressive equivalence based on the general planning prob-

lem and its solutions [Béckstrom, 1995, page 24]:

Definition 7.8 (General planning problem) Given a planning formalism X,
the (general) planning problem in X (X-GPP) consists of a set of instances,

each instance I1 having an associated set Sol(I1) of solutions.

A solution to a given planning problem in a given formalism needs to be
defined for every formalism individually. Based on this concept of a general
planning problem ezpressive equivalence is defined as follows [Béckstrom, 1995,

page 25]:

Definition 7.9 (Expressive equivalence) Given two planning formalisms X
and Y, we say that X is at least as expressive as Y with respect to plan existence
if Y-GPP <, X-GPP, i.e. Y-GPP polynomially transforms’ into X-GPP.
Further, X and Y are equally expressive with respect to plan existence iff both

X-GPP <, Y-GPP and Y-GPP <, X-GPP.

Essentially, this definition states that two planning formalisms are equally
expressive if every instance of a planning problem expressed in X polynomially
transforms into an instance of a planning problem expressed in Y and vice versa.
Furthermore, every problem in X must have a solution if and only if the corres-

ponding problem in Y also has a solution.

An interesting aspect of this definition is that it is based solely on plan ez-

istence, i.e. it does not require the plans in Sol(II) to be somehow equivalent. It

7 See [Garey and Johnson, 1979, section 2.5] for a definition of polynomial transformability in
general.

218 CHAPTER 7. EXPRESSIVENESS OF CDL

only matters whether the set Sol(IT) is empty or not for expressive equivalence.
This is consistent with our definition of expressive equivalence (cf. definition 7.7).
The classical planning problem [Tate et al., 1990, page 28] is given as an initial
state description, a goal state description, and a set of operator schemata. A
solution is a sequence of operator instances that transforms the initial state into
the goal state. It is easy to see that such a solution exists (as required for defin-
ition 7.9) if and only if the goal state is reachable (cf. definition 7.6) from the
initial state. Thus, both definitions of expressiveness do not place any constraints

on the sequence of operators required to reach the goal state.

One difference between the two definitions of expressiveness lies in the require-
ment of a formal semantics for an AR1 language in our definition. In contrast,
Béckstrom only requires the set of solutions Sol(II) for a given planning prob-
lem to be defined. While this broadens the applicability of his definition® it also
provides little insight as to what exactly an action representation is. For ex-
ample, the concept of a decoupled action representation cannot be incorporated

into definition 7.9.

The most interesting difference between Backstrom’s definition of expressive-
ness and our own is that he requires instances of planning problems to poly-
nomially transform into each other. The transformation that is implicit in this
requirement corresponds to the mapping x : Ay —> A, of definition 7.7, only that
we did not require this mapping to be computable in polynomial time. The inten-
sion behind our (and presumably Baader’s) definition of expressive equivalence is
that two languages are equally expressive if one can say the same things in both
languages, however complicated the translation process might be. Backstrom’s
argument for this additional requirement is that polynomial transformability im-
plies that transformaion does not change the complexity class of the underlying
problem. This seems sensible, and it is questionable whether an expression that

grows exponentially in the translation process should still be considered as ex-

8 Bickstrom applied his definition of expressiveness to compare the expressiveness of various
variants of propositional STRIPS.

7.2. EXPRESSIVENESS OF AR LANGUAGES 219

pressing the same content.

Therefore, we shall retain our definition of expressiveness as given in defini-

tion 7.7, but add the following extension:

Definition 7.10 (Poly-expressive equivalence) Let a; and ay be two sets of
actions described in action representations Ay and Ay for AR languages Ly and

L, respectively. Then:

1. ARI language L; can be poly-expressed by ARI language Ly if and
only if for any set of actions a; described in Ay there exists a set of action
as described in Ay such that ay can be expressed by as—i.e. if there is a
mapping X : Ay —> Ay such that a; can be expressed by x(a1) and x is

computable in polynomial time.

2. Ly and Ly are equally poly-expressive iff Li; can be poly-expressed by Lo

and vice versa.

220 CHAPTER 7. EXPRESSIVENESS OF CDL

7.3 c¢DL: An ARI1 Language

In this section we will present a formal semantics for CDL that can be
used to compare its expressiveness to that of other action representa-

tion languages. Such a comparison will follow in section 9.2.1.

7.3.1 The State Description Language

One of the components of an AR1 language as defined in definition 7.5 is the
state representation language S. We have described CDL in chapter 4 as a de-
coupled action representation language, i.e. as an action representation language
into which arbitrary state representations can be plugged to form a complete ac-
tion representation. To define CDL as an AR1 language it is necessary to describe
at least one state language that can be used within the decoupled action repres-
entation and, as before, we shall use first-order logic for this purpose. This choice
also allows us to view the state representation together with the model-restriction

function as a KR1 language.

A syntax of FOPL has already been defined in figure 4.2. This formalism will
be the basis of the first-order language that we will use as the state representation
S here. The only change we need to make in the syntax concerns the predicate,
function, constant, and variable symbols of the language: these need to be defined
in a KR1 language (cf. definition 7.2). Since our definition of expressiveness
allows for the embedding of models with a function ¢ that effectively renames
these symbols, the names of these symbols in the definition of the syntax do not
matter. The revised syntax of FOPL which will be used as state representation

for cDL in this chapter is given in figure 7.1.

Note that in this definition of the state representation we have defined the
syntactical category of terms as part of the state description language, whereas
it was defined as part of the action description language in chapter 4. This is

necessary to define the state language independent from the action representation.

7.3. CDL: AN AR1 LANGUAGE

<formula>
<quant>

<quantifier>
<varspec>

<c-form>

<literal>

<term>

<predicate>
<function>
<constant>
<variable>

(<quant> <c-form>) | <c-form>

(<quantifier> <varspec>+)
forall | exists
<variable> |

(<variable> <constant>)

<literal> |

(not <formula>) |
and <formula> <formula>+) |
or <formula> <formula>+) |
implies <formula> <formula>) |
iff <formula> <formula>) |
xor <formula> <formula>) |

N N NN

<predicate> |
(= <term> <term>)
(<predicate> <term>+)

<constant> | <variable> |
(<function> <term>+) |

P1 | P2 | P3 |
f1 | f2 | £3 |
cl | c2 | c3 |
?2vi | ?v2 | ?v3 |

Figure 7.1: Syntax of the state representation S

221

222 CHAPTER 7. EXPRESSIVENESS OF CDL

<cdl-descr> ::= (<ctype>
:state-language fopl
:action <name>
:isa <name>
:properties (<name>+)
:input (<param-spec>+)
:output (<param-spec>+)
:input-constraints (<constraint>+)
:output-constraints (<constraint>+)
:io-constraints (<constraint>+)

<ctype> ::= capability | task

<param-spec> ::= (<name> <term>)

<term> ::= <constant> | <variable> |
(<function> <term>+) |

<function> o= f1 | £f2 | £3 |

<constant> i:=cl | c2 | c3 |

<variable> =7vl | ?v2 | ?v3 |

<constraint> <formula>

Figure 7.2: Syntax of the action representation A
7.3.2 The Action Description Language

The next step towards the definition of ¢DL as an AR1 language is the definition
of the action description language A. Again, the syntax of the A can be based
on the syntax of ¢DL described in chapter 4. The syntax is repeated in figure 7.2
here for convenience. Note that it contains the same modification as the state
language: the function, constant, and variable symbols are now defined in the

syntax.

Also, the syntactical category of terms is now defined as part of the state
and as part of the action representation. Both definitions are identical, based on
the same set of function, constant, and variable symbols. This is not actually

necessary as terms in the action representation may, and usually will, only use

7.3. CDL: AN AR1 LANGUAGE 223

a subset, of the symbols listed in the state representation. However, to keep the

definition simple we have defined them with the same sets of symbols.

A further difference between this definition of the action representation and
the syntax of cDL described in figure 4.4 is that the state language fopl is now
fized in the language: the value following the keyword :state-language is fopl
and the syntactical category <constraint> is defined as being a <formula>,

i.e. an expression in the state description language FOPL as described above.

7.3.3 The Model-Restriction Function

The model-restriction function Mods maps each state description s € S to a
set Modg(s) of first-order models, thus effectively defining the semantics of the
state description language. The choice of FOPL as our state representation in CDL
makes the definition of Modg relatively straight forward. We shall only describe
the semantics briefly and informally here based on a more formal definition in

[Shanahan, 1997, sections 2.2 and 2.3].

The semantics of FOPL is based on the concept of an interpretation. An
interpretation consists of a non-empty set D of objects that is the domain for
this interpretation. An interpretation also consists of two functions F and P. F
maps all constant and variable symbols into elements in D and all n-ary function
symbols into functions from D™ to D. P maps all n-ary predicate symbols to the
extension of this predicate which is a subset of D”. For an interpretation M one

can then define the following abbreviations:

e if 2 is a predicate symbol, constant symbol, or function symbol, let M[x] be

P(z), F(x), or F(z) respectively;

e if f is a function symbol and ¢, ..., ¢, are terms, then let M[(ft;...t,)] be
MIfIM[t], - .., M[ta]).

In other words, M maps every term into the domain object it stands for and

224

CHAPTER 7. EXPRESSIVENESS OF CDL

predicates to their extension. Based on the above, one can define the satisfaction

relation between an interpretation M and a well-formed formula in S as follows:

M satisfies (P ty...t,) if (M[t1], ..., M[t,]) € M[P] for predicate symbol P

and terms ty,...,t,;
M satisfies (= t; t3) if M[t1] = M[ts] for terms t; and to;
M satisfies (not F') if M does not satisfy F' for formula F’;

M satisfies (and Fy ... F,) if for all i € {1...n} M satisfies F; for formulae

M satisfies (or F ... F,) if there exists ¢ € {1...n} such that M satisfies F;

for formulae Fi ... Fy;

M satisfies (implies F; F3) if M satisfies F; implies that M satisfies Fy for

formulae F; and Fy;

M satisfies (iff F} F,) if M satisfies Fi if and only if M satisfies Fy for

formulae F; and F5;

M satisfies (xor Fy F3) if either M satisfies F; or M satisfies F», but not
both, for formulae F; and F5;

M satisfies ((forall vs; ...vs,) F) where vs; is either v; or (v; ¢;), if for all
interpretations M’ that agree with M except possibly in the interpretation
of vy...v,, M’ satisfies F' and maps all variables v; specified as (v; ¢;) to

domain objects of type ¢;;

M satisfies ((exists vsy...vs,) F) where vs; is either v; or (v; ¢;), if there
is some interpretations M’ that differs from M only in the interpretation
of vy...v,, M’ satisfies F' and maps all variables v; specified as (v; ¢;) to

domain objects of type ¢;;

7.3. CDL: AN AR1 LANGUAGE 225

This allows us to finally define the model-restriction function Modg that maps
each state description s € S to the set Modg(s) of interpretations M that satisfy

s. These interpretations are also called the models of s.

7.3.4 The Action Definition Function

The last component of an AR1 language that remains to be defined for ¢DL is the
action definition function which maps a set of capability descriptions a in CDL
to a binary relation on states Rels(a) C S x S. To define this relation we will
effectively use the match conditions as described in definition 5.3: capability C

subsumes task 7 if and only if there exists a substitution o such that:

T = o(CF) (input match condition)

and

a(CE) Na(RY) = Ch (output match condition)
and

Vn e {l...me}:if o(CE) A (0(RE) — o(RE)) W~ CF and o(CS) A o(RE) E CF
then C] = o(LE) (input-output match condition)

n

We will say that a pair of state descriptions is related by a set of actions,
i.e. (s1,52) € Rela(a), if there is a capability description in a that can be instan-
tiated to C (cf. definition 5.6) such that the capability C subsumes the task T

that corresponds to the state transition (s, ss).

The task T that corresponds to the state transition (s, so) can be defined as a
cDL description that contains exactly one input constraint, namely s, i.e. C] =
{s1}, and exactly one output constraint, namely s,, i.e. CJ = {sy}. Thus, T
describes the task of transforming the state described by s; into a state in which

So 1S true.

Finally, the match conditions outlined above are based on the relation |=
between states rather than the function Modg that we have defined above. How-

ever, we have already pointed out in section 5.1.2.1 that the relation = can be

226 CHAPTER 7. EXPRESSIVENESS OF CDL

defined as the subset relation between models, i.e. e; = ey for state descriptions
e, es € Sifand only if Modgs(e;) C Modg(es). Thus, the definition for capability
subsumption can be used to define the action definition function Rel, as outlined

above.

This concludes our definition of expressiveness and the application of this
framework to CDL. A comparison of the expressiveness of ¢DL with that of other

action representations will follow in section 9.2.1.

Chapter 8

Flexibility of c¢DL

At this point we have described our capability description language
CDL which can be used to represent the content of messages required
for capability brokering. We have also shown how CDL can be used for
capability retrieval. Our aim is to show that CDL has two desirable
properties: it is expressive and flexible. The next step towards this
goal will be to define what we mean by flexibility in action represent-
ations. The contribution of this chapter will be a discussion of how
flexibility has been achieved through decoupled action representations.
In particular, we will be highlighting the issues involved in implement-
ing this approach in CDL. A comparison of the flexibility of CDL with

that of other representations will follow in section 9.2.2.

8.1 Why Flexible Action Representations?

In this section we will argue why we need a flexible action represent-
ation for capability descriptions. This arqgument will be based on a

scenario presented earlier in this thesis (in section 3.3).

As for expressiveness, we have simply assumed up to this point that flexib-
ility is a useful property of our capability description language. However, while

expressiveness can be extremely costly, flexibility has less of an impact on the

227

228 CHAPTER 8. FLEXIBILITY OF CDL

potential decline in performance (cf. section 6.3.2). General performance issues
have already been discussed in section 6.3. In this section we will discuss why

flexibility is a desirable property.

8.1.1 The Flexibility Scenario Revisited

One of the scenarios introduced in section 3.3 addresses the question of why
we need more flexibility; the flexibility scenario (example 3.3). The very idea
behind this scenario was to illustrate the need for a flexible capability description
language. We will now look at this scenario again to re-evaluate this need for

flexibility.
8.1.1.1 Restating the Scenario

In the flexibility scenario, our focus was on three problem-solving agents: two
hospitals and an ambulance service. The first hospital does not have an ambu-
lance in this scenario and thus, can only treat patients that are at the hospital.
This hospital advertises the following capability description to the broker (cf. sec-
tion 4.5.2):
(capability
:state-language lits
:input ((InjuredPerson ?person))
:input-constraints (
(elt ?person Person)
(Is 7person Injured)
(Has Location ?person Hospitall))

:output-constraints (
(not(Is ?person Injured))))

Note that the state language plugged into CDL is given as 1its, which only
allows literals as its expressions. Since lists of constraints are interpreted as con-
junctions in CDL, this language effectively corresponds to the STRIPS representa-
tion. Describing the capability of the h1l-agent in this rather simple representation

does not present a problem in the scenario.

8.1. WHY FLEXIBLE ACTION REPRESENTATIONS? 229

The second hospital has an ambulance, but does not want to spare it for
too long. Driving the ambulance to Calypso or Delta is considered too far and
thus, this hospital effectively only treats patients who are in Abyss, Barnacle, or
Exodus. The capability description it advertises to the broker is represented as

(cf. section 4.5.2):

(capability
:state-language fopl
:input ((InjuredPerson ?person))
:input-constraints (

(elt ?person Person)

(Is ?person Injured)

(or (Has Location ?person Abyss)
(Has Location ?person Barnacle)
(Has Location ?7person Exodus)))

:output-constraints (
(not(Is ?person Injured))))

The fact that patients can only be treated if they are at certain locations on
Pacifica is expressed as a disjunction. Thus, the state language required here needs
to be more powerful than 1its. The only state language we have implemented
that can express such constraints is fopl and this is the state language used in

this capability description.

Finally, the ambulance service cannot treat patients at all. It only transports
them from any place on Pacifica to a hospital, i.e. no restrictions are imposed
on the location of the injured person to be transported. The ambulance service

advertises the following capability description to the broker (cf. section 4.5.2):

(capability
:state-language lits
:input ((InjuredPerson ?person) (From ?pl) (To ?p2))
:input-constraints (
(elt ?person Person)
(Is ?person Injured)
(Has Location ?person 7pl))
:output-constraints (
(not (Has Location ?person 7pl))
(Has Location ?7person 7p2)))

230 CHAPTER 8. FLEXIBILITY OF CDL

As for the first hospital, the capability description is sufficiently simple to only

require conjunctions of literals in its state language.

The problem for this scenario was to heal an injured person at the power
plant which is located in Delta. The task description in CDL is represented by

(cf. section 4.5.2):

(broker-one
:sender pp
:content
(task
:state-language lits
:input-constraints (
(elt JohnSmith Person)
(Is JohnSmith Injured)
(Has Location JohnSmith Delta))
:output-constraints (
(not (Is JohnSmith Injured))))
:ontology capabilities
:receiver ANS
:language CDL)

The capability description of the second hospital will not match this problem
as the patient needs to be at Abyss, Barnacle, or Exodus for this capability to be
applicable. Similarly, the capability of the first hospital is not applicable because
the injured person is not at this hospital. Finally, the ambulance service is not
capable of achieving the right kind of objective at all. However, a combination
of the ambulance service and the first hospital will solve the given problem and

this is the planned solution the broker finds.

8.1.1.2 Analysis of the Required Flexibility

What is interesting in this scenario is that different agents use different state
representation languages in their capability descriptions that allow for different
types of reasoning, i.e. they exploit the flexibility offered by ¢DL. Our aim now is
to show that this flexibility in the capability description language was necessary to
adequately deal with this scenario. To this end we will argue that the alternatives

are not suitable, leaving only the flexible representation as adequate.

8.1. WHY FLEXIBLE ACTION REPRESENTATIONS? 231

The first alternative would be to simply choose the most expressive state rep-
resentation language used and make all agents describe their capabilities using
this state language. In the above example this would be first-order logic (fopl)
and the re-expression of the capabilities of the first hospital and the ambulance
service using fopl would not pose a problem. Note that in general there might not
exist one language in a given scenario that is more expressive than all languages

used in this scenario.

In the flexibility scenario, reasoning over a language as powerful as first-order
logic for all agents causes a problem. Since none of the single agents can solve the
problem at hand the broker will attempt to create a plan involving the capabilities
of several agents. However, our planner cannot deal with capabilities described
using first-order logic. This limitation is not artificial but fairly common amongst
current Al planners. Thus, if we allowed only fopl as a possible state description
language here, the broker would not be able to come up with a plan involving
the ambulance service and the first hospital, i.e. the broker would not be able to

find a solution to the problem described.

The second alternative would be to only allow conjunctions of literals as state
descriptions within ¢DL. The problem then is how to describe the capability of
the second hospital, specifically, how to represent its disjunctive input constraint.
The approach of splitting the single capability description into several descriptions
has already been discussed in section 7.1.1. The problem with this approach is

that it may lead to a large number of separate capabilities.

Another option that requires only conjunctions of literals in the capability
description of the second hospital would be to sacrifice correctness and to drop
the disjunctive constraint altogether. However, assuming there are equally many
injuries in all five cities on Pacifica, dropping the disjunctive input constraint

would lead to 40% false matches during brokering. This may not be acceptable.

To summarise, maximising the expressiveness of the state language to avoid

the need for flexibility also means minimising the potential inferences that can

232 CHAPTER 8. FLEXIBILITY OF CDL

be drawn. Minimising the expressiveness on the other hand leads to problems
in re-expressing capabilities that previously took advantage of a more expressive
representation. Any compromise between these extremes is bound to lead to
some of these problems, too, and for the flexibility scenario which is based on
only two content languages there is no such compromise. Thus, what is required
to appropriately deal with the above scenario is the flexibility we have designed

into CDL.

8.1.2 Further State Representations

The flexibility scenario illustrates the need for flexibility in a capability description
language by requiring two different state description languages: first-order logic
and conjunctions of literals. The need for only two different content languages
in this scenario might be considered insufficient to allow us to conclude that, in
general, different scenarios may require a whole spectrum of languages and thus,
flexibility. To address this concern, we will now look at some further possible
circumstances that may need to be represented in different scenarios and which

require different state state languages.

e Agent Knowledge: Many actions not only change the physical world but
also the knowledge states of agents. For example, to transport the patient to
a hospital the ambulance service needs to know where the patient is. This is
a knowledge precondition not represented in the current flexibility scenario.
Similarly, there could be knowledge goals. Representations that can express
such circumstances are presented e.g. in [Moore, 1985, Morgenstern, 1987,
Lesp’erance, 1989]. However, reasoning about knowledge in general is still
an open issue due the problem of logical omniscience (cf. [Fagin et al., 1995,

chapter 9]).

e Existence: Many actions create and/or destroy objects. cDL allows for the

representation of newly created objects in its output parameters, but the

8.1.

WHY FLEXIBLE ACTION REPRESENTATIONS? 233

general problem is that current state description languages do not provide
an adequate representation for existence. For a detailed discussion of the
problems associated with the representation of and reasoning about exist-

ence see [Hirst, 1991].

Uncertainty: Many actions are intrinsically uncertain. For example, per-
forming an operation always contains the risk that the patient might die.
This is an example of uncertainty in the relation between states, i.e. un-
certainty in the outcome of an action. A second type of uncertainty is
uncertainty in single states. For example, if the information we have is
only of qualitative nature, like “the patient is heavy”, we are dealing with

uncertainty in states.

The state representations we have actually implemented to support our chosen

scenarios cannot adequately handle any of these circumstances. Thus, further,

more expressive state representations would be necessary in scenarios which re-

quired the representation of such circumstances. Therefore, the flexibility of cDL

is required for a generic capability description language that does not preclude

the representation of knowledge that may be important for certain capabilities.

234 CHAPTER 8. FLEXIBILITY OF CDL

8.2 Defining and Implementing Flexibility

In this section we will define what we mean by flexibility and discuss
some of the problems involved in implementing flexible representations

such as C¢DL through decoupled languages.

8.2.1 A Definition of Flexibility

We will now define what we mean by a flexible knowledge representation language.
Unlike for expressiveness, this will not lead to a formal framework that could be
used to develop a flexibility hierarchy of different representations. One reason for
this difference is the fact that we are not aware of any previous work on formalising
what we have called flexibility. Another reason is that the issues involved are not
so much problems of formalisation, but problems with the implementation of

flexible representations to which we will turn later in this section.

8.2.1.1 Flexibility and Trade-Offs

In the flexibility scenario the problem arises because the problem-solving agents
require different state representation languages within cDL: first-order logic and
conjunctions of literals. First-order logic is required because it provides the ex-
pressiveness needed by the second hospital to represent its disjunctive input con-
straint. Conjunctions of literals are required for the first hospital and the ambu-
lance service because expressions of this type allow sufficiently efficient reasoning
to facilitate planning. Thus, the underlying problem in the flexibility scenario is
a classic trade-off that can be found in knowledge representation and reasoning:

expressiveness versus efficiency.

Most conventional knowledge representation languages are designed as a com-
promise with respect to this trade-off, i.e. they offer some degree of expressiveness
which allows for some degree of efficiency. For such languages, a specific com-

promise has been chosen when the language was designed. CDL is different in

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 235

that it does not prescribe a fixed compromise. This is exactly what we mean by

flexibility in a knowledge representation language:

Definition 8.1 (Flexibility) A knowledge representation language is flexible
iof it allows the knowledge engineer to choose a compromise regarding a certain
trade-off at the time of knowledge representation rather than having to adopt a

fixed compromise prescribed by and designed into the representation.

Note that this definition is not specific to action representations but can be
applied to knowledge representation formalisms in general. Note also that a com-
promise regarding a given trade-off has to be chosen in conventional as well as
flexible knowledge representation languages. The difference lies in when this com-
promise has to be chosen. While this is at language design time in conventional
knowledge representation languages, flexible knowledge representations allow one
to make this choice later, i.e. at knowledge representation time, e.g. when a capab-
ility needs to be represented. Thus, it is possible to choose different compromises
for every statement (e.g. a capability in cDL) in a flexible knowledge represent-
ation, rather than having one fixed compromise prescribed by the language. In
this sense, flexible knowledge representations to some degree can be regarded as

a least commitment approach to knowledge representation.

8.2.1.2 Language Properties

The trade-off mentioned in the definition of flexibility is a trade-off between some
properties of a knowledge representation language, e.g. expressiveness and effi-
ciency. During knowledge representation, a compromise between such properties
has to be chosen. Up to now we have only looked at the compromise between
two such properties: expressiveness and efficiency. The former has already been

discussed in chapter 7.

Now we will briefly look at some further properties that might cause trade-

offs during knowledge representation and thus might require flexibility. By effi-

236 CHAPTER 8. FLEXIBILITY OF CDL

ciency we essentially mean the potential to perform fast reasoning over a form-
alism; what has been called heuristic adequacy in [Wilkins, 1988, page 8] or
[McCarthy and Hayes, 1969]. Another way to view efficiency is as usage of the
resource time, which is to be minimised for time efficiency. Similarly, other re-
sources, like memory, can be minimised to result in different kinds of efficiency in a
language, e.g. memory efficiency. Another language property we have considered
in the design of cDL is the formality of a language (cf. section 4.1.1). Yet other
properties that might cause trade-offs include generality, i.e. the ability to sup-
port generic rather than task specific reasoning, richness [Polyak and Tate, 1998],

explainability [Swartout, 1983|, and declarativeness [Ginsberg, 1993, page 9.

To summarise, flexibility in a knowledge representation language, like CDL,
allows one to choose a trade-off between several properties at the time of know-
ledge representation. In a dynamic world of agents this flexibility is required in
a capability description language to allow each agent to choose an appropriate

compromise in its capability description, as illustrated in the flexibility scenario.

8.2.2 Flexibility through Decoupling

Flexibility is achieved in c¢DL through its implementation as a decoupled action
representation. Thus, we shall now briefly discuss decoupled action representa-

tions and how they provide flexibility.

8.2.2.1 Integral Action Representations

As we pointed out in section 4.2.3.1, many knowledge representation languages are
state representation languages at heart, i.e. they assume the world to be in exactly
one state. That is, unless otherwise stated, a set of sentences in such a language
is assumed to refer to the same state. The most commonly used knowledge
representation language that makes the above assumptions is first order logic. It is
possible to represent and reason about actions in first order logic as demonstrated

by the situation calculus (cf. section 2.2.1), but this leads to a number of problems;

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 237

most prominently the frame problem. Hence the development of specific action

representation languages (cf. section 2.3.1).

In conventional action representation languages the state representation lan-
guage is an integral part of the overall representation. We have called such
languages integral action representations in section 4.2.3.1. For example, the
first (integral) action representation language was the STRIPS representation
[Nilsson, 1980, chapter 7|. In sTRIPS-like languages an action is represented as
a statement that contains several sub-expressions in what can be considered the
state representation language. This state representation is an integral part of the

action representation.

Thus, integral action representations are not flerible because the integrated
state representation language prescribes a fixed compromise that has been chosen

when the language was designed.

8.2.2.2 Decoupling Action Representations

To allow the arbitrary combination of action and state representation one needs
to define the action representation language independently from the state rep-
resentation language. We have called this a decoupled action representation in
section 4.2.3.2. Thus, a full action representation consists of the combination of

a decoupled action representation with a state representation language.

The most important difference between a decoupled action representation and
its conventional, integral counterpart is that it allows one to plug different state
representation languages into the same decoupled action representation language.
This feature of the language results in the flexibility of the action representation
as described in definition 8.1. This flexibility is what is needed to address the
problem in the flexibility scenario: we can combine an appropriate decoupled
action representation (CDL) with an appropriate state representation (e.g. fopl

or lits) for each agent’s individual representational needs.

Decoupled action representation languages are flexible because plugging in

238 CHAPTER 8. FLEXIBILITY OF CDL

different state languages changes, for example, the expressiveness of the overall
language as well as the efficiency with which we can reason over this language.
In this way, decoupled languages allow compromises between these properties to

be chosen at knowledge representation time and thus, they provide flexibility.

8.2.3 Implementing Decoupled Languages

As opposed to expressiveness, the implementation of a flexible knowledge repres-
entation turns out to be quite challenging. We will now discuss some problems
encountered during the implementation of CDL as a decoupled action represent-
ation. Some of these problems are specific to decoupled action representations,
but most problems need to be addressed in any decoupled knowledge represent-
ation. We will return to these problems in section 9.2.2 where they will form the
basis for our evaluation of the flexibility of ¢DL as compared to other decoupled

languages.
8.2.3.1 Problems with Decoupling the Languages

The first group of problems we have encountered during the implementation of
CDL as a decoupled action representation is related to the implementation of the

internal representation of a statement in the language itself.

How to Allow for Arbitrary Content Languages Our implementation of
cDL as a decoupled language follows the example of KQML (cf. section 2.1.2.3).
KQML allows content expressions to be in some arbitrary content language by
having a field that names this language and one that holds exactly one expression
in this language as a sub-expression of the KQML message. CDL, too, allows for
arbitrary content languages by having a field that names the content language to
be used, namely the state-language field. Requiring the content language to be
explicitly named permits the plugging in of arbitrary content languages.

There are some minor differences between KQML and CDL though. As opposed

to KQML, there are several fields that contain expressions in the content language

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 239

in cDL: the input constraints, the output constraints, and the input-output con-
straints. Furthermore, each of these fields contains a list of expressions in the
named language rather than just one expression as in KQML. Another difference
between KQML and CDL lies in the meaning of the expressions. The outer part of
a KQML message represents the speech act that is performed with this message
and the inner part conveys the content of the message. An expression in CDL
represents an action; either a capability that can be performed or a task that
needs to be performed. Content expressions within a KQML message have to be
interpreted with respect to the performative in which they are embedded whereas

content expressions in CDL always represent constraints on states.

Where to Decouple the Languages One of the issues arising in the design of
a decoupled representation is where to decouple the language, i.e. where to make
the cut between inner and outer language. Looking at the syntax of an integral
knowledge representation, one can, in principle, create a decoupled representation
by replacing any non-terminal symbol with a named language. However, such ar-
bitrary decoupling can hardly be expected to result in useful decoupled languages.
As there currently exist only a handful of decoupled representations, it is difficult
to generalise where such languages should be decoupled. In our limited experience
the cut should be made such that the different languages represent fundamentally
different entities. For example, in KQML the outer expression represents a speech

act and the inner expression is a statement of some kind.

In cpL, the outer expression represents a binary relation between states and
the inner expressions represent constraints on states, i.e. the cut is between ac-
tions and states. This cut is meaningful only for action representations though.
As suggested in section 4.2.4, a second cut that could conceivably be made in CDL
would be to allow a separate language for terms. Again, these represent a fun-
damentally different collection of entities, namely objects in the domain. Thus,
such a cut could be useful but has not been made in CDL in order to simplify this

implementation.

240 CHAPTER 8. FLEXIBILITY OF CDL

How to Parse Decoupled Languages Another problem with the implement-
ation of decoupled languages is the parsing problem. There are basically two ap-
proaches to parsing a sentence in a decoupled language. Firstly, the parser can
read and parse the sentence according to the syntax of the outer language up
to the point where it expects a sub-expression in the content language. Then it
can extract this expression as a separate string and continue parsing after the
end of this sub-expression, according to the syntax of the outer language. After
the complete outer part of the sentence has been parsed the inner expression can
be dealt with. The problem with this approach is that the parser for the outer
language needs to be able to decide where the expression in the inner language
ends. CDL as well as most implementations of KQML assume that this is possible,
usually by requiring the inner language to be enclosed in parentheses and to only

contain balanced pairs of parentheses.

A second approach to parsing a decoupled language is to start parsing the
expression according to the syntax of the outer language up to the point where
it expects a sub-expression in the content language. At this point the parser
switches to the syntax of the inner language, parses the content, and returns to
the outer language afterwards. However, in general the parser will need to read
at least one more token at the end of the inner language to decide whether this
expression is actually complete. If the inner expression was complete, this token
will not be defined in the syntax of the inner language and the behaviour of
the parser is undefined at this point. Even worse, the token following the inner
expression might have meaning in the syntax of the inner and outer language.

Again, this can considerably complicate parsing.

8.2.3.2 Problems with Reasoning over Decoupled Languages

Defining the internal representation of a decoupled action representation lan-
guage is not the only group of implementation problems though. The second

group of problems we have encountered during the implementation of CDL as a

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 241

decoupled action representation is related to the implementation of the reasoning

mechanisms for decoupled languages.

How to Determine What Inferences can be Drawn To reason over a
decoupled language, virtually any reasoner will need to make explicit inferences
over the inner language. In cDL, for example, we have evaluated whether a cap-
ability subsumes a task by performing certain inferences over expressions in the
state description language (cf. chapter 5). That is, we have reduced inferences
over the outer language to inferences over the inner language. But we have not
only drawn inferences within the inner language, we have also drawn inferences
about the inner language. Since the inner language could be an arbitrary know-
ledge representation, we have to work out which inferences are supported by this
language. The inferences supported by the inner language then determine which
inferences can be performed over the outer language. Reasoning about the in-
ner language to determine which inferences are supported is a kind of refiective
reasoning (cf. section 2.2.3.1).

We shall illustrate this using an imaginary decoupled version of STRIPS. In
the STRIPS representation state expressions are used to describe preconditions, an
add-list, and a delete-list. Initial and goal states are also represented as expres-
sions in the state language. The STRIPS planner basically works by decomposing
goals, testing whether an expression is true, and by regressing goals through op-
erators. The latter is mainly a combination of retraction and assertion of state
expressions to generate new states. Thus, the STRIPS planner could, in principle,
work with any state representation language that defines these operations (decom-
position, expression evaluation, assertion, retraction) in its interface. However,
a decoupled STRIPS planner would not only need to perform these inferences, it
would also need to reflect on whether they are defined in the actual state language
used. Similarly, a decoupled plan-space planner requires a state representation
language that supports decomposition, test for entailment (can the action bring

about some goal state), and test for inconsistency (test for clobbering).

242 CHAPTER 8. FLEXIBILITY OF CDL

How to Define available Inference Mechanisms The problem with reflect-
ive reasoning as required for the implementation of decoupled languages is that
it is hardly supported in Java and other programming languages. Reflection in
Java primarily allows one to find a function that has a given name and takes cer-
tain parameters. If there is a function that performs the right kind of inference
over the state language, but this function has a different name from the one the
reflective algorithm is looking for, it will not be found. We have addressed this
problem in ¢DL by introducing what we call optional functions. These functions
are defined in the API of the class Language from which every state language
must inherit. However, rather than enforcing the implementation of these func-
tions through the normal inheritance mechanism, these functions are optional,
i.e. they may or may not be implemented in a class inheriting from the class
Language. The idea behind optional functions is that they constitute the defini-
tion of an interface for certain functionality in case this functionality is provided.
With such an interface the interpreter for the outer language can easily reflect on
whether some functionality of the inner language is available.

When a reasoner like our broker attempts to perform certain inferences over
expressions in the outer language it has two options for testing whether the func-
tionality required in the inner language is available. Firstly, the reasoner could
reflect on whether all the required functionality in the inner language exists be-
fore attempting to reason over the outer language. If this is not the case, the
reasoning attempt over the outer language is immediately abandoned. Secondly,
the reasoner could only test for functionality when it is required. This is how
we have implemented brokering for ¢DL. The advantage of this approach is that
functionality that may be used in an algorithm but is not necessarily used will
only be tested if it is actually used. The disadvantage is that the test will be

performed every time the functionality is used, leading to a slight inefficiency.

How to Control the Reasoning Process Another, potentially more severe

problem is the fact that the reasoner over the outer language has to pass control to

8.2. DEFINING AND IMPLEMENTING FLEXIBILITY 243

a reasoner over the inner language when it uses the functionality offered there. For
example, to test for capability subsumption our broker needs to evaluate whether
a set of sentences in the state language entails another. We have used first-order
logic as the state language in most of our examples and entailment is tested via
resolution theorem proving. This process is not guaranteed to terminate. Thus,
when the broker passes control to the theorem prover, it might never re-gain
control. This behaviour is highly undesirable. In our implementation we have
addressed this problem by limiting the number of clauses that will be generated,

but in general the problem remains.

How to React to an Unknown Language Finally, a problem arises when the
reasoner over the outer language attempts to perform an inference and discovers
that it does not know the named inner language. In this case Java and JAT
provide the support needed to address the problem (cf. section 5.3.3). Effectively
what happens in this case is that the reasoner automatically contacts the sender
of the message containing the unknown inner language. It is reasonable to assume
that the sender knows the language which it is using to communicate. Thus, this
agent is asked where the Java class corresponding to this language can be found.
When this information is made available to the reasoner, it will attempt to load
this class from the specified location and then perform the reflective reasoning
over this language as outlined above. With this mechanism, the outer language

can be completely decoupled from the inner language.

Summary

In this section we have defined what we mean by a flexible knowledge representa-
tion language and how this flexibility can be achieved in an action representation
through its implementation as a decoupled language. We have also discussed a
number of problems that arise in the implementation of decoupled languages.

We shall return to these problems when we evaluate the flexibility of CDL by

244 CHAPTER 8. FLEXIBILITY OF CDL

comparing the solutions to these problems with those adopted in other flexible

representations (cf. section 9.2.2).

Chapter 9

Related Work and Evaluation

At this point we have defined CDL, an expressive and flexible action
representation that can be used to represent and reason about capabil-
ities of intelligent agents. Our aim in defining this formalism was to
address the problem of capability brokering. The next step will be to
compare CDL to the more closely related work described in chapter 2.
The contribution of this chapter is an evaluation of CDL, specifically
its expressiveness and flexibility, through a comparison with related
work. It will also use a range of examples from other domains to

demonstrate the generality of our approach.

9.1 Comparison with other Brokers

In this section we will present a comparison of our CDL broker with
several other brokers described in section 2.1. QOur focus will be on the
capability description languages and matching algorithms used by the

different systems.

9.1.1 Capability Description Languages

The first aspect of the different systems we shall be looking at is the capability
description language used. The languages supported by the different systems

limit the capabilities that can be represented. Furthermore, the two properties

245

246 CHAPTER 9. RELATED WORK AND EVALUATION

(<brokering-performative>

:language KQML
:content
(<performative>

:language <language>
:content (<capability-description>)))

Figure 9.1: General format of brokering messages in KQML

we are most concerned with, expressiveness and flexibility, are properties of the
capability description language. Thus, these languages are our initial focus. Later
(section 9.1.2) we shall be looking at the inference mechanisms utilised by the

different brokers to put the languages in perspective.

9.1.1.1 Languages Used

According to the KQML specification [Labrou and Finin, 1997], the content of
most messages related to brokering should be another KQML message, i.e. the

general format of these messages is as given in figure 9.1.

The brokering performative in the outer part of this message describes
the brokering action to be performed with this message, e.g. advertise or
recommend-one. The most important KQML performatives related to brokering

were summarised in table 2.1 in section 2.1.2.

The content of the outer message is again a KQML message, the inner KQML
message, which contains a performative and some content. The meaning of the
inner message depends on the brokering performative in the outer message. In our
scenarios all capabilities are physical actions on the environment of the agents.
KQML provides only one performative that could be used as the performative of
the inner message to represent such capabilities: achieve. All other perform-

atives only deal with reasoning actions. Note that all brokers using KQML for

9.1. COMPARISON WITH OTHER BROKERS 247

inter-agent communication should adhere to the message format described this

far, i.e. they should be indistinguishable at this level.

The content of the inner message represents the capability in the message.
KQML does not specify or suggest a language to be used for the content of the
inner message, i.e. the language for describing capabilities is undefined. This is
where the capability descriptions supported by the various brokers differ. Thus,
our comparison of capability description languages offered by the different brokers
concentrates on the content languages of the inner message. One possible content
language is, of course, CDL and this is exactly the way we have used KQML in this
thesis. In the remainder of this section we shall briefly review the different content

languages used for capability descriptions before turning to their evaluation.

The ABsI facilitator (cf. section 2.1.3.1 or [Singh, 1993a, Singh, 1993b]) is
based on an early KQML specification [Finin et al., 1993] and supports only KIF

[Genesereth et al., 1992] as the content language to describe capabilities.

The SHADE and COINS matchmakers previously described in section 2.1.3.2 (or
cf. [Kuokka and Harada, 1995a, Kuokka and Harada, 1995b]) support free text
descriptions in the case of COINS, and KIF and MAX in the case of SHADE. MAX
(Meta-reasoning Architecture for “X”) [Kuokka, 1990] is a structured logic rep-
resentation. In MAX all knowledge is declaratively stored in logic frames (or
Iframes). Each lframe denotes a possible “state” by representing the conjunction
of a set of predicate logic literals. Lframes may be composed of other Iframes,

and may have local variables.

Like the SHADE matchmaker, the InfoSleuth broker (cf. section 2.1.3.3
or [Bayardo et al., 1997, Nodine and Unruh, 1997, Nodine et al., 1998]) supports
two content languages for capability descriptions and again, the first supported
language is KIF. The second supported language is the deductive database lan-
guage LDL++ [Zaniolo, 1991] which has a semantics similar to Prolog, but which

supports transparent access to external databases as well as its own fact base.

Brokers for problem-solving methods (PSMs), e.g. the Intelligent Broker (1B)

248 CHAPTER 9. RELATED WORK AND EVALUATION

[Fensel, 1997, Decker et al., 1998] and the IBROW? broker [Benjamins et al., 1998,
Armengol et al., 1998] can be described as being in their early stages which means
that they are not yet implemented and important design decisions remain to be
taken. For example, the language in which PSMs are to be described is not
yet defined. There is, however, a draft proposal for a PSM description language
that is mostly based on KADS models of expertise, the conceptual modelling
language cML [Wielinga (ed) et al., 1994, chapter 3], and ML? (cf. section 2.4.1.2).
This new language will be called the Unified Problem-solving Method description
Language (UPML) [Fensel et al., 1998a, Fensel et al., 1998b].

The final broker we will have a look at here is the Object Request Broker of
the Common Object Request Broker Architecture (CORBA) [Orfali et al., 1997,
Baker et al., 1997, CORBA V2.2, 1998]. This broker is not based on KQML and
was intended for the brokering of objects rather than agent capabilities. The
language in which objects and their interfaces have to be described to the broker
is called the Interface Definition Language (IDL) [CORBA V2.2, 1998, chapter 3].
IDL allows the specification of classes of objects in terms of their ingredients and

interface, i.e. the functionality an instance of this class will offer to other objects.

To summarise, we can distinguish three types of languages for capability de-

scriptions supported by the different brokers:

e Free text is supported by the cOINS matchmaker and is used in most PSM

description languages, e.g. UPML.

e KIF, a logical language based on first-order predicate logic, is supported

by the ABsI facilitator, the SHADE matchmaker, and the InfoSleuth broker.

e Object description languages (MAX, LDL++, and IDL) are supported
by the SHADE matchmaker, the InfoSleuth broker, and the Object Request
Broker.

9.1. COMPARISON WITH OTHER BROKERS 249
9.1.1.2 Evaluation

The most important question for this evaluation now is how these languages
compare to CDL. The first group of languages mentioned above, languages based
on free text, are, of course, very powerful languages. Every capability described
in CDL can also be described in natural language, but presumably not vice versa.
Similarly, since KIF is based on first-order predicate logic, it provides a highly
expressive language. In fact, as we will argue in section 9.2.1.2, FOPL is a more
expressive action representation than c¢DL. Finally, object description languages,
or frame languages as they are sometimes called, also provide a quite powerful
formalism. Thus, it appears that cDL, the language supported by our broker,
compares rather unfavourably to the capability description languages supported

by other brokers.

While expressiveness is an important issue, it is not our only concern. Another
important issue is the support offered by a framework for knowledge engineering,
e.g. the task of describing capabilities in a given formalism. Free text or KIF do not
provide any support for this task and the knowledge engineer has to make a large
number of choices without any guidance. CDL presents a significant advance in
this respect: capabilities have to be represented as a collection of different objects
manipulated by the capability and different types of constraints. Furthermore,
our language facilitates the implementation of an ontology of performable actions
from which capability descriptions can be derived. We believe that such an on-
tology is a very effective means for the facilitation of the knowledge engineering
task, and although cDL does not include an ontology, it does provide the rep-
resentational basis for it. Thus, ¢DL provides substantially more support for the

knowledge engineering task than any of the languages used by other brokers.

9.1.2 Reasoning Facilities to Support Brokering

Comparing just the languages results in an incorrect picture. It is equally im-

portant to compare the inference mechanisms employed by the different brokers

250 CHAPTER 9. RELATED WORK AND EVALUATION

to reason over the languages they support. If a language has certain features that
are not supported by the broker’s reasoner then these features should not be con-
sidered part of the representation. We will now review the reasoning mechanisms
implemented by the different brokers. In the next section we will re-evaluate the
different capability description languages, showing that they are not nearly as

expressive as they initially appeared.

Brokers reason about capabilities on two levels. Firstly, they need to test
whether a given capability can be used to solve a given problem. This inference
can be seen as the essence of brokering. Secondly, brokers maintain a database of
capability descriptions on which they can perform certain operations, e.g. retriev-
ing a capability for a given problem. Since the interface to a broker is defined in
KQML, all brokers adhering to the KQML specification should support the same
inferences at this level. Note that this interface corresponds to the outer part of
the general format of brokering messages described in figure 9.1. We shall look
at matching of capabilities and problems in section 9.1.2.2. But first we review
the interface provided by the different brokers for maintaining their database of

capability descriptions.

9.1.2.1 Supported Performatives

KQML only defines the behaviour a broker should exhibit on receipt of the various
brokering performatives, i.e. it defines what the result of the reasoning that has
to take place in the broker should look like (cf. table 2.1 in section 2.1.2). KQML

does not specify how this is to be implemented though.

The only brokering performative explicitly provided by the ABSI facilitator is
handles. Note that no such performative is defined in the KQML specification.
The handles performative implements exactly the behaviour specified for the
advertise performative in KQML, i.e. the ABSI facilitator effectively provides
this performative. The functionality of another KQML brokering performative,

namely broker-one, is only supported implicitly by the ABsI facilitator. The

9.1. COMPARISON WITH OTHER BROKERS 251

basic mechanism is that problems are sent to the facilitator as if this agent was
the one to solve the problem. The facilitator then manages the solution of the
problem. The resulting behaviour corresponds to the broker-one performative
in KQML. Thus, advertise and broker-one are the only brokering performatives

which are (implicitly) supported by the ABsI facilitator.

The sHADE and CcOINS matchmakers as well as the InfoSleuth broker support
all the KQML brokering performatives described in the specification and thus,

they completely adhere to the standard.

The PsMm brokers and CORBA on the other hand cannot be compared to the
other brokers in this respect as they do not provide a KQML interface. The Psm
brokers are still in an early phase of their development and such an interface
might well follow. For CORBA there are no plans to provide a KQML interface,

although such an extension has been attempted [Benech and Desprats, 1997].

Finally, of the brokering performatives defined in KQML, the only one our
broker does not support is subscribe. All other brokering performatives are

supported by our broker and conform to the KQML specification.

To summarise, amongst the KQML-based brokers there are several that sup-
port all the brokering performatives defined in the KQML specification. The only
performative not provided by our broker is subscribe. The broker supporting
the smallest number of performatives is the ABSI facilitator which only supports

advertise and broker-one implicitly.

9.1.2.2 Matching of Capabilities and Problems

As mentioned above, brokers not only maintain a database of capability descrip-
tions, they also have to test whether a capability can be used to address a given
problem. How this inference is performed in the different brokers is the focus of

this section.

KQML does not specify a content language for capability descriptions. It does,

however, specify that matching between capabilities and tasks is to be performed

252 CHAPTER 9. RELATED WORK AND EVALUATION

by comparing the respective performatives and contents of the two inner messages
(cf. figure 9.1), and these match if they are equal [Labrou and Finin, 1997, page
19]. Note that this form of matching is rather trivial.

The matching between capabilities and problems which is performed by the
ABsI facilitator is based on the matching algorithm between KIF expressions. For
this matching, the KIF expression representing the generalised message content
and the KIF expression representing the actual message content are treated as Pro-
log terms, and matching is performed like a unification with the Prolog equality
predicate. If this unification succeeds, the additional constraints will be evaluated
using the variable bindings obtained in the unification. If all the constraints can

be satisfied, the capability subsumes the problem.

The matching that is performed by the COINS matchmaker is based on
a concept vector extracted from text employing an inverse document fre-
quency scheme, a technique often used in search engines [Witten et al., 1994,
Howe and Dreilinger, 1997]. The matching performed by the SHADE matchmaker
is similar to the matching of the ABSI facilitator and based on the matching of KIF
expressions. The MAX representation is based on frames and slots and provides
little more than the KIF matcher by providing a Prolog-like unifier. Furthermore,
advertisement and request must match solely based on their content and no ad-
ditional predicates are allowed as for the ABSI facilitator. Limited inference for

future versions is envisaged though.

Although the first language supported by the InfoSleuth broker is KiF, the
standard matching method for KIF used by the other brokers is not used here.
Capability descriptions using KIF are translated into LDL+-+ and the matcher
operates on this language only. Effectively, the advertisement of a capability
results in an assertion to a database. This is quite similar to the way the ABSI
facilitator treated capability advertisements. Requests seeking capabilities are

then treated as normal database queries.

The brokers for PSMs are, as mentioned before, still in an early phase of their

9.1. COMPARISON WITH OTHER BROKERS 253

development. Not even the language they will use to describe PsMs is finalised

yet, and no description of the matching algorithm they will use is available.

Finally, the matching algorithm used in CORBA is fairly straightforward con-
sidering that this is an object broker. It will be roughly the same as the one

found in any compiler for unifying parameter specifications.

To summarise, most of the brokers employ a KiF-based matching algorithm
that is very similar to a simple unification algorithm as described e.g. in
[Robinson, 1965]. Specifically, matching between KIF expressions which is used by
several brokers is defined in such a way. The only significant extension is provided
by the ABsI facilitator, where in addition to this unification-like matching there
may also be a number of Prolog predicates that must be evaluated. Note, how-
ever, that these predicates cannot be user defined. Other forms of matching are

the equality test specified in KQML and the keyword-based algorithm for COINS.

9.1.2.3 Evaluation

Matching capabilities and problems is the essence of the reasoning the broker has
to perform. All the brokers we have looked at including our own provides at least
one brokering performative that is based on this matching. Thus, we do not see
a significant difference in the brokering performatives supported by the different
brokers. The reason for the omission of subscribe in our broker is that the
type of scenario we were aiming to address is based on isolated problems which
a problem-holding agent (PHA) experiences and seeks help with, i.e. capabilities
are to be evaluated at run-time (cf. section 1.2.2). These problems largely tend to
be non-recurrent. The subscribe performative on the other hand is intended for
recurrent problems and the posting of persistent requests. Thus, the implement-
ation of the subscribe performative did not appear necessary for our broker and

we do not consider its omission a deficiency of our system.

While there is no significant difference in supported brokering performatives,

the matching algorithm implemented in CDL and based on the notion of capability

254 CHAPTER 9. RELATED WORK AND EVALUATION

subsumption (cf. definition 5.4) is significantly more powerful than the matching
provided by other brokers. 1t is fairly easy to see that the notion of capability sub-
sumption is more powerful than the equality test specified in KQML; if capability
and problem description are equal then the capability also subsumes the problem.
Thus, our matching algorithm (cf. figure 5.9) includes, and in fact, surpasses the

KQML specification.

The same is true for all matching algorithms based on unification; cDL’s sub-
sumption test can be used to emulate this behaviour. One simple way to achieve
this is to define a result variable as an output parameter to a CDL capability and
have just one output constraint stating that the result variable must be equal
to the expression describing the capability. The same procedure can be applied
to the problem description. In this case our capability subsumption test would
attempt to unify the two expressions to test the output match condition, and the
result of this test would determine whether the capability matches the problem,
since there are no input constraints. Thus, the result of our capability subsump-
tion test depends solely on the result of the unification, i.e. it emulates the other

brokers’ matching behaviour.

A slight extension of this procedure can be used to emulate the matching
performed by the ABSI facilitator, which allows for additional constraints on the
variables bound during the unification. These constraints must be specified in
terms of predicates defined in the language, e.g. Prolog. Assuming our broker also
knows this language and the predicates defined in it, these constraints can simply
be specified as input constraints of the cDL capability and they will be evaluated
as part of the input match condition. Thus, our capability subsumption test can
also emulate the matching behaviour of the ABsI facilitator. An example, of this

procedure for a capability used by the ABsI facilitator is given in section 9.3.1.

This shows that the subsumption test defined in CDL can indeed be used
to emulate the matching performed by the other brokers. However, the rather

simple, unification-based matching used by these brokers cannot emulate our

9.1. COMPARISON WITH OTHER BROKERS 255

subsumption test. The reason for this is that Kir-like unification is essentially a
syntactic matching whereas the subsumption test for ¢DL is based on the content
language’s semantics. For example, a KIF sentence consisting of the conjunction
of two propositions only matches (unifies with) an identical sentence, but both
conjuncts as well as the sentence in which the two conjuncts have swapped pos-
itions logically follow from the original sentence. The subsumption test used in
cDL for matching easily copes with this example, but matching based on unifica-
tion must fail for it. Thus, cDL’s subsumption test is indeed more powerful than

the matching used by other brokers.

A final concern worth mentioning here is that of efficiency. It is true that the
subsumption algorithm used in ¢DL will usually be less efficient than a unification-
based algorithm. This is only to be expected though as the problem it solves is
far more complex than that solved by unification. A detailed complexity analysis
of the capability subsumption algorithm can be found in section 6.3.1. However,
as pointed out in section 6.3.2, the complexity of the capability subsumption
algorithm does not depend on the parameter we would expect to scale up, namely
the number of capabilities known to the broker. Thus, the complexity of this test

does not present a problem for our broker.

9.1.3 Evaluating Expressiveness and Flexibility

In this section we will evaluate CDL by comparing the usable expressiveness and
flexibility of the various capability description languages supported by the differ-
ent brokers to that of cbL. We will show that CDL’s usable expressiveness and
flexibility are higher than those offered by other languages and that these features

are the right ones to consider in the context of brokering.

9.1.3.1 Usable Expressiveness

Our aim now is to show that, while the expressiveness of the capability description

languages offered by the other brokers appears high (cf. section 9.1.1.2), their

256 CHAPTER 9. RELATED WORK AND EVALUATION

usable expressiveness is in fact comparatively low.

Characterising Usable Expressiveness By the usable expressiveness of a
capability description language we mean the expressiveness of the language that
can be utilised in a capability description and which can be adequately handled
by the broker based on this language. In other words, the usable expressive-
ness of a language is the expressiveness of the subset of the language that can
be adequately handled by the broker. Note that this characterisation of usable
expressiveness of a language depends on the existence of a broker that handles
capability descriptions in this language, i.e. usable expressiveness is only defined

in the context of brokering.

The key requirement here is that the broker needs to be able to adequately
handle capability descriptions. A broker handles capability descriptions by reas-
oning about them. What capability descriptions can be adequately handled by
a broker depends on the reasoning mechanisms employed by the broker to draw
inferences over the capabilities. Thus, the usable expressiveness of a language de-
pends on the adequacy of the reasoning mechanisms employed by the respective

broker.

Thus, our aim here is to show that the expressiveness which can be adequately
reasoned about by other brokers is lower than the expressiveness that can be
adequately reasoned about by our broker. We have reviewed the reasoning mech-

anisms implemented for the various brokers in section 9.1.2.

What remains to be specified at this point is when the reasoning mechanisms
employed by a broker should be considered adequate. The essence of the reasoning
performed by brokers is the matching between capabilities and problems, and
this is also where the brokers we reviewed differ most from our ¢DL broker. We
will say that a broker’s matching is adequate if it minimises the number of false
matches. By a false match we mean a situation in which the broker believes a

capability description to subsume a problem, but in fact, the capability cannot be

9.1. COMPARISON WITH OTHER BROKERS 257

used to address the problem. Furthermore, an adequate matcher will maximise
the probability that it finds a capability to address a given problem if such a

capability is available.

Comparing Usable Expressiveness In section 9.1.1.1 we showed that there
are three types of languages for capability descriptions used by the brokers we
reviewed. The first group is based on free text. The matching performed by the
COINS matchmaker is based on a concept vector extracted from text employing an
inverse document frequency scheme. Such keyword-based techniques can never
be guaranteed not to result in false matches or to find a capability if there is one
available. The reason for this potential inadequacy is that these techniques rely
on words in the textual capability description which are taken out of context and
are usually ambiguous. Thus, this form of matching will often be inadequate and

the usable expressiveness of free text is in general undefined.

The other languages used by the different brokers for capability descriptions
are KIF and frame languages for object descriptions. The limitation for the usable
expressiveness here is again the matching performed by the different brokers.
This matching is mostly based on unification. Only the ABSI facilitator has a
slightly more powerful matcher that allows for additional constraints. As we have
argued in section 9.1.2.3, the behaviour of such algorithms can be emulated by the
subsumption algorithm implemented for cDL. Thus, the usable expressiveness of

CDL is at least as high as that offered by the languages used by the other brokers.

A closer inspection of the Kir-like unification-based matching algorithms even
reveals that cDL’s usable expressiveness is higher. For example, unification-based
matching cannot handle cases in which the capability description contains com-
mutative operators or in which the capability cannot be instantiated to the prob-
lem description solely by the binding of variables. In such cases a unification-
based matcher may fail to find the capability that can address the problem. Thus,

the matching is inadequate in these cases and the usable expressiveness of the

258 CHAPTER 9. RELATED WORK AND EVALUATION

language does not include them. ¢cDL, however, can handle these cases, and thus,
its usable expressiveness is higher than that of the languages used by the other

brokers.

Expressiveness or Usable Expressiveness? Evaluating CDL by comparing
its usable expressiveness to that offered by languages supported by other brokers
allows for a more meaningful comparison than comparing the expressiveness of
the various languages at face value as we did in section 9.1.1. In considering the
usable expressiveness of a capability description language we disregard capability
descriptions that can be written in a language, but which cannot be adequately
reasoned about by the broker. Disregarding these capability descriptions does
not change the desired or intended behaviour of the broker. But the desired and
intended behaviour is exactly what we are interested in and thus, in the context of
brokering comparing the usable expressiveness of capability descriptions is more

meaningful.
9.1.3.2 Usable Flexibility

The second property we are most concerned with in this evaluation of CDL and
our broker is flexibility. Again, we should look at the flexibility offered by the
different systems in the context of the reasoning mechanisms supporting this

flexibility, i.e. their usable flexibility. This turns out to be unnecessary though.

Flexibility as we have defined it (cf. definition 8.1) allows the knowledge engin-
eer to choose a compromise regarding a certain trade-off at the time of knowledge
representation rather than having to adopt a fixed compromise prescribed by and
designed into the representation.

All the brokers we have reviewed provide either one fixed language for cap-
ability descriptions or at most two alternative languages. Providing just one
language clearly provides no flexibility as there is no choice to be made. The
brokers offering two different languages and thus some limited degree of flexibility

are SHADE and the InfoSleuth broker.

9.1. COMPARISON WITH OTHER BROKERS 259
content reasoning reasoning usable usable
language | performatives matching expressiveness | flexibility
KQML undefined all defined equality undefined undefined
ABSI KIF handles/ unification/ low none
broker-one constraints
SHADE/ KIF /MAX all KQML unification low low
COINS free text | performatives keywords
InfoSleuth KIF/ all KQML unification low low
LDL++ | performatives
PSMS UMPL — undefined undefined low
CORBA IDL — unification low none
CDL CDL all except subsumption high high
subscribe test

Table 9.1: Comparison of different brokers

For our broker, capabilities have to be described in CDL. CDL is not just one
language though. Through its plug-in mechanism for state languages it provides
a framework for a whole set of languages, all based on the same top-level syntax.
Each language in this set may provide a different compromise regarding a certain
trade-off and by choosing the state language the knowledge engineer can choose
the required compromise. The only caveat here is that we have only implemented
two content languages that can be plugged into CDL, but our implementation of

CcDL as a decoupled language allows for arbitrary content languages.

Thus, ¢DL in principle offers a far greater degree of flexibility than the capab-
ility description languages offered by the other brokers. Furthermore, since this
flexibility is fully supported by the reflective reasoning mechanisms, this high

flexibility also means a high usable flexibility of CDL.

9.1.4 Summary

The result of the comparison between our CDL broker and other brokers is sum-

marised in table 9.1.

In this section we have evaluated our broker and CDL by comparing it to other

brokers reviewed earlier in this thesis. For this purpose, we have first compared

260 CHAPTER 9. RELATED WORK AND EVALUATION

the capability description languages supported by the different brokers. At this
point it appeared that the expressiveness offered by CDL was inferior to that
offered by other languages. The only advantage of CDL revealed at this stage of

the comparison was its better support for knowledge engineering.

In the next stage of this evaluation we reviewed the reasoning mechanisms
employed by the different brokers. The essential difference between other brokers
and our CDL broker found at this point was in the matching algorithm used to
test whether a capability and problem description match: CDL’s subsumption
algorithm can be used to emulate the matching behaviour of the other brokers

and, in fact, surpasses them.

The fact that other brokers only have limited matching algorithms also limits
the usable expressiveness of the capability description languages they provide.
Thus, cDL provides a higher usable expressiveness and we have shown that this is
a more meaningful criterion than plain expressiveness in the context of brokering.
Similarly, the fact that cDL is implemented as a decoupled language gives it a
higher flexibility than offered by the other broker’s languages. Thus, ¢DL and
our broker can be used to represent and reason about all capabilities that can be

adequately handled by other brokers and more.

A question that remains at this point is whether we have compared cDL with
the right languages. CDL is an action representation and the languages used
by the other brokers are far more general. Thus, we shall now continue this
evaluation by comparing the expressiveness of CDL to that of other languages
for the representation of similar entities: action representations. Note that we
cannot compare the usable expressiveness here as there are no brokers for these
languages. Similarly, we want to compare the flexibility of CDL to other languages
that are meant to offer this property. This is what we will do in the following

section.

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 261

9.2 c¢bDL: Expressiveness and Flexibility

In this section we will look at the two important properties of CDL
again and show what has been achieved and where there are still open

18SUES.

9.2.1 Expressiveness of CDL

Expressiveness of action representation languages as we have defined it in defini-
tion 7.7 is a relative measure, i.e. we can only formally show that one language is
more expressive than another, but we cannot show that a language is expressive
in an absolute sense. However, using a less formal notion of expressiveness, one
could say that a language is expressive if it is at least as expressive as most other
languages that are intended for the representation of similar entities and relations.
This is what we mean by our claim that CDL is an expressive action represent-
ation. Thus, we shall now compare CDL with other languages that are intended

for the representation of similar entities and relations: action representations.

A formal comparison of CDL with other action representation languages would
require these languages to be defined as AR1 languages, too, so that definition 7.7
of the expressiveness of AR1 languages could be applied. Needless to say, none of
the action representation languages mentioned in section 2.3.1, which are the rep-
resentations we intend to compare CDL with here, are defined as AR1 languages.

This means that the comparisons that will follow may only be informal.

A final remark before we begin to compare the expressiveness of CDL with that
of other action representations concerns the fact that AR1 languages are defined
as decoupled action representations. Looking at the first part of definition 7.7
again, there are two conditions listed for a set of actions in one language to
be expressed by a set of actions in another language. Firstly, for every state
description in the first language there must be a corresponding state description

in second language. Secondly, the set of states reachable through the two sets

262 CHAPTER 9. RELATED WORK AND EVALUATION

of actions in their respective representations must also correspond to each other.
Thus, one action representation can be more expressive than another because it
can represent more complex states, i.e. the re-expression would fail on the first
condition, or it can be more expressive than another because it can represent more
complex relations between states in its decoupled actions, i.e. the re-expression
would fail on the second condition. Note how these two reasons for differences in
expressiveness reflect the distinction between states and actions in a decoupled

action representation.

9.2.1.1 Comparing State Descriptions

In this section we will look at the state description languages used within the more
interesting action representations described in section 2.3.1 and we will compare
them with FOPL which we have implemented as one of the state languages in CDL.
For this comparison we shall treat all representations as if they were defined as
decoupled action representations and mostly ignore the part of the representation
that expresses relations between states. This part of the representation will be
reviewed in the following section. Here, we shall concentrate on the world states

expressible in the different representations.

The first action representation to be reviewed here is the situation calcu-
lus which uses FOPL as the underlying representation for actions and states
[McCarthy and Hayes, 1969, Shanahan, 1997]. Essentially, the predicate Holds
is used to represent that a fact is true in a given situation. The fluent repres-
enting the fact is technically a function term but it describes factual knowledge
in the form of a positive literal. It is fairly easy to see that Holds commutes
with various connectives and thus allows the full expressiveness of FOPL for state

descriptions.

The next group of action representations to be reviewed here are the classical
non-hierarchical representations (cf. section 2.3.1.2). The original STRIPS planner

[Fikes and Nilsson, 1971, Fikes et al., 1972] was described as an extension of a

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 263

resolution theorem prover and a state was represented as a set of clauses, thus
incorporating the power of FOPL for the state description language. However, the
theorem prover was later dropped and only conjunctions of literals were allowed
in the state representation, resulting in a far less expressive state representation,
and a far more efficient planner [Nilsson, 1980, chapter 7]. Many planners are

based on this restricted version of STRIPS.

The middle ground between the STRIPS representation with conjunctions of
literals and the situation calculus was explored by [Pednault, 1989] and resulted
in a new action representation called ADL. This language successfully combined
the expressiveness of the situation calculus with the STRIPS assumption. Thus,
states could be represented using FOPL. Interestingly, the language is described
in a way that clearly distinguishes state and action representation. No attempt
was made to define ADL with a state description other than FOPL though. The
UCPOP planner was the first planner that was based on a restricted version of ADL
[Penberthy and Weld, 1992, Barrett et al., 1995]. However, once again states in
this version were restricted to conjunctions of literals and limited universal quan-
tification was only permitted over finite domains so that they could be replaced
by a long conjunction. The latest version of UCPOP also allows disjunctions in
places, thus allowing more expressiveness in states, but work on such extensions

is still in progress.

The representations used in contingency planners like CNLP or Cassandra
[Peot and Smith, 1992, Pryor and Collins, 1996] are essentially based on the
STRIPS representation and world states are represented as conjunctions of literals
only. However, looking at the action representation, alternative sets of effects can
be specified for an action under different contingencies. This effectively repres-
ents a disjunction between two possible outcomes of an action and thus, provides
more expressiveness than conjunctions of literals. On the other hand, it does not

provide the full power FOPL by providing a limited form of disjunction in states.

Real world planners such as O-Plan [Currie and Tate, 1991, Tate et al., 1994,

264 CHAPTER 9. RELATED WORK AND EVALUATION

‘ CDL

f

[Original STRIPS CDL with FOPL]

SPAR ’

Situation calculus ADL
Cassandra
‘ STRIPS ’
UCPOP-ADL

Figure 9.2: Expressiveness of state representations

Tate, 1995] must be efficient and thus essentially only allow conjunctions of liter-
als in world states. However, these planners allow for a number of extensions such
as reasoning about resources that, were they represented in FOPL, would require
more than just conjunctions of literals to represent. Thus, the effective express-
iveness of the state description language is higher than that of conjunctions of

literals, but it does not provide the power of FOPL.

Finally, shared action representations such as SPAR [SPAR, 1997, Tate, 1998|
are designed as decoupled action representations, although they are not defined
as AR1 languages. Thus, states in SPAR could be represented in any language
one chooses to plug in, including FOPL. In this sense SPAR can be considered
to be the language most similar to cDL, allowing for the most expressive state

description language.

The result of this comparison of the expressiveness of the various state rep-
resentations used in action representations is summarised in figure 9.2. Action

representations allowing the most expressive state description languages are at

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 265

the top of the figure.

9.2.1.2 Comparing Action Descriptions

In this section we will look at the decoupled action description languages used
within the more interesting action representations described in section 2.3.1 and
compare them with ¢cDL. Note that the decoupled action representation just
describes the relation between states, not how states are to be represented. As
in the previous section, we shall treat all representations as if they were defined
as decoupled action representations and we will mostly ignore the part of the
representation that expresses states. This part of the representation was reviewed

in the previous section.

Asin the previous section, we shall begin our review with the situation calculus
[McCarthy and Hayes, 1969, Shanahan, 1997]. However, a problem here is that
the situation calculus does not provide a structure for the representation of an
action. Any first-order sentence that mentions a specific action contributes to the
definition of this action. Depending on the kinds of axioms one considers a situ-
ation calculus representation, actions can be highly expressive. [Shanahan, 1997,
section 2.7] illustrates this point nicely with a formalisation of a toggle action.
He uses the usual effect axioms to define the state after the action has been per-
formed in a given state, but first-order logic also permits an axiom that expresses
that the state remains unchanged after toggling a switch twice. Shanahan does
not consider such axioms part of the situation calculus. Obviously the express-
iveness of the decoupled action representation of the situation calculus very much

depends on what exactly is permitted in the representation.

In the STRIPS action representation [Fikes and Nilsson, 1971, Nilsson, 1980]
an action description consists mainly of three components: the preconditions,
the add list, and the delete list. These define the relation between states as
outlined in section 7.2.2. The difference between the early and later version of

STRIPS lies only in the state representation.

266 CHAPTER 9. RELATED WORK AND EVALUATION

In ADL [Pednault, 1989] actions are essentially defined as a number of situ-
ation calculus formulae. However, the syntax of ADL resembles more that of
STRIPS and there is a precise definition of how to generate situation-calculus-like
formulae from an action represented in ADL. This defines the semantics of ADL
as an equivalence semantics based on the situation calculus, but it avoids the
problem with the situation calculus mentioned above: that it is not clear which
formulae should be considered situation calculus representations of an action and
which should not. As for the expressiveness of the decoupled actions in ADL, the
representation allows for preconditions, add list, and delete list, like the STRIPS
representation. An essential extension is that one can also specify conditional add
and delete lists in ADL. The same extension is implemented in the uCPOP plan-
ner [Penberthy and Weld, 1992, Barrett et al., 1995]. The restrictions imposed
by this planner are solely on the state language and thus, UCPOP’s version of
ADL is as expressive as ADL as far as decoupled actions are concerned. In CDL,

conditional effects are represented as input-output constraints.

Contingency planners differ from conventional planners by allowing the spe-
cification of various sets of effects in an action to represent the various contingen-
cies that may occur. However, as we have argued above, these contingencies can
be seen as one disjunctive set of effects and thus, this feature does increase the ex-
pressiveness of the decoupled action representation. Thus, the decoupled action
representation of a CNLP action [Peot and Smith, 1992] is not more expressive
than STRIPS, allowing only preconditions, add list, and delete list. Cassandra
[Pryor and Collins, 1996] on the other hand implements contingencies as condi-
tional effects and, as a by-product, it can deal with ordinary conditional effects

too.

Real world planners like O-Plan [Currie and Tate, 1991, Tate et al., 1994,
Tate, 1995] need to be efficient, as pointed out before, and thus, do not implement
conditional effects but provide many other features important for planning. And

finally, the SPAR action representation provides more like an ontological definition

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 267

FOPL

ADL UCPOP-ADL
CDL Cassandra

CNLP O-Plan TF
(original) STRIPS

Figure 9.3: Expressiveness of action representations

of an action, rather than a formalism. While this leads to a very open language,
it also means there is nothing that cannot be added to an action by defining a
new class of actions that inherits from SPAR. Thus, it is not clear how one could
compare the expressiveness of SPAR’s decoupled action representation to that of

CDL.

The results of this comparison are again summarised in figure 9.3. Only
three levels of expressiveness for decoupled action representation are shown: basic
sTRIPS-like languages, languages supporting ADL-like conditional effects, and the

unstructured representation of FOPL. CDL falls into the middle category.

9.2.2 Flexibility of cDL

Unlike expressiveness, flexibility has been defined in section 8.2.1 as a property
that a knowledge representation either has or does not have. It may also be
possible to distinguish different degrees of flexibility, but we have not done so. As
for expressiveness, our evaluation of the flexibility of ¢DL will be done through

a detailed comparison with other representations. However, the result will not

268 CHAPTER 9. RELATED WORK AND EVALUATION

| | UnLang | Ctl | OpFn | Refl | Pars | a/s | Content |

KQML ok local no no | undef | no | arbitrary
Modal L. fail global | no no | fixed | no | limited
Meta-K. fail local no yes | fixed | no | arbitrary
ADL fail global | no no | fixed | yes | limited
O-Plan TF defer local no yes | undef | yes | arbitrary
SPAR defer local no yes | undef | yes | arbitrary
PDDL fail global | no no - no fixed
CML ok global | no yes - no fixed
CDL load local | yes | yes | () | yes |arbitrary

Key: UnLang: behaviour on encountering undefined content language; Ctl: control
over reasoning; OpFn: interface uses optional functions; Refl: interpreter uses reflect-
ive reasoning; Pars: approach to parsing problem; a/s: language distinguishes actions
and states; Content: allowed content languages

Table 9.2: Comparison of flexibility

be a flexibility hierarchy, but a close inspection of the solutions offered by other

languages to the implementation problems described in section 8.2.3.

The results of this comparison are summarised in table 9.2. In this table
each row is labelled with a representation that can be considered flexible and
each column is labelled with a problem that has to be addressed in a flexible

language.' The first four columns are concerned with reasoning aspects.

The first column (UnLang) looks at the behaviour of an interpreter for the
representation when it encounters an unknown language (cf. section 8.2.3.2). In
many languages the parsing of an expression with an unknown content language
would simply fail. This is because, although the definitions of these languages
can be seen as decoupled, in practise they are integral knowledge representation
languages. There are some notable exceptions though. KQML (cf. section 2.1.2.3),
for example, is meant to perform no reasoning over the content of a message
and thus, most KQML interpreters will cope with an unknown content language.
However, a problem might well occur at a later stage in the reasoning process, as

it would, for example, in the JAT implementation of KQML. A different approach

! By a language we mean a class in the object-oriented sense here, i.e. it includes the function-
ality provided for reasoning over this language.

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 269

is taken in O-Plan TF (cf. section 2.3.1.5) and SPAR (cf. section 2.3.1.6). Both
languages allow for the specification of constraints in new languages. SPAR even
provides a mechanism that allows one to specify the syntax of a new language.
However, no example of this extension mechanism is actually implemented as far
as we are aware today. The basic mechanism for reasoning over constraints in an
unknown language in O-Plan is to postpone evaluation of these constraints until
an appropriate constraint manager becomes available. ¢ML (cf. section 2.4.1.2)
is a special case as it allows free text as content which includes any language,

i.e. there cannot be an unknown language.

Our language, cDL, distinguishes itself from all other languages here by fa-
cilitating the retrieval of an interpreter for an unknown content language which
may be incorporated into a reasoning process (cf. section 5.3.1.2), resulting in the

flexible behaviour of the broker.

The second column of table 9.2 (Ctl) analyses whether an interpreter for the
representation passes control to an external interpreter for the content language
(cf. section 8.2.3.2) which corresponds to local control; otherwise control is con-
sidered global. Passing control to an interpreter for the content language can
be seen as a greater degree of decoupling in the language. For example, KQML
does not specify how the reasoning over the content language is to be performed,
but the implementation in JAT, for example, maintains a number of external in-
terpreters that perform this reasoning, i.e. control is local to each interpreter.
Similarly, most systems using explicit meta-level knowledge (cf. section 2.2.3),
e.g. PRODIGY’s search controller, have independent modules to reason over meta-
and object-level knowledge. O-Plan also has a controller and constraint-associator
to handle its meta-level reasoning. In CDL control is passed to an external inter-

preter when capabilities are evaluated (cf. section 5.1.2).

The third column of table 9.2 (OpFn) studies whether the procedural se-
mantics of the language is defined in terms of optional functions, i.e. functionality

that is defined for all languages but only provided for some (cf. section 8.2.3.2).

270 CHAPTER 9. RELATED WORK AND EVALUATION

Although optional functions do not directly indicate flexibility in a language, we
have found them to be a very useful implementational mechanism for a decoupled
language. Of the languages listed in the table, CDL appears to be the only lan-
guage that supports this mechanism. An example of such a function is evaluate

in figure 5.2.

The fourth column of table 9.2 (Refl) examines whether an interpreter for
the representation uses explicit reflective reasoning to determine how to reason
over the content expressions (cf. section 8.2.3.2). Interpreters for representations
using meta-level knowledge almost by definition fall into this category. O-Plan
can also be described as employing reflective reasoning when it performs explicit
reasoning over which knowledge source to fire next based on the open issues in a
partial plan. CML is again a special case because of its free text base. If there is
any reasoning to be performed it almost has to be reflective to work out which
part of the free text can be used for reasoning. CDL uses reflective reasoning when

it performs a subsumption test as described in section 5.1.2.2.

The last three columns of table 9.2 are concerned with solutions to imple-
mentation problems of the individual representations. The fifth column (Pars)
looks at the approach to the parsing problem (cf. section 8.2.3.1) in the differ-
ent representations. The only languages we are interested in here are, of course,
those that do not have a fixed parser for the content language as this means
the language is not really flexible. KQML is a decoupled language, but the ap-
proach to the parsing problem is undefined in the language. The most generic
approach to the parsing problem is probably that in SPAR and the latest version
of O-Plan TF, which allows the specification of a syntax as part of the language.
How ambiguities are to be resolved is not clear though. pDDL (cf. section 2.3.1.6)
allows for various extensions in the language, but these are fixed and thus the
parser is fixed, too. CML is a special case again, because no attempt is made to
parse the free text that is its content. CDL is somewhat similar to some KQML

implementations in that it requires expressions in the content language to be in

9.2. CDL: EXPRESSIVENESS AND FLEXIBILITY 271

brackets, and the content languages we have implemented adopt the Lisp syntax

(cf. figure 4.4).

The sixth column of table 9.2 (a/s) takes a look at the cut that is made in the
representation, specifically, whether it distinguishes between actions and states
(cf. section 8.2.3.1). Not all of the representations in the table are action repres-
entations and thus, it is not surprising that the only representations other than
cDL which decouple actions from their underlying state representation are ADL
(cf. section 2.3.1.2), O-Plan TF, and sPAR. The decoupling of ¢DL to distinguish

actions and states has been discussed in section 4.2.3.

Finally, the last column of table 9.2 (Content) examines whether the outer
language allows the plugging in of arbitrary content languages (cf. section 8.2.3.1).
This is obviously one of the most fundamental features of a flexible action rep-
resentation. KQML, meta-level knowledge representations, O-Plan TF, and SPAR
all allow for arbitrary content languages. Modal logics (cf. section 2.2.2) also
allow some degree of freedom but the range of language they have been used
with is rather limited. Similarly, the definition of ADL can be interpreted as the
definition of a decoupled language, but the actual language was only specified
for one content language. ¢DL allows one to plug in arbitrary content languages

(cf. section 4.2.3.2).

Summary

A language can be considered expressive if it is at least as expressive as other
representations for similar entities and relations. Figures 9.2 and 9.3 illustrate the
result of our comparison of CDL with other action representations. CDL together
with SPAR provide the most expressive state description languages and only FOPL
provides a more expressive decoupled action representation than c¢DL. The latter
is due to the generality of FOPL which essentially leads to the lack of methodology

problem with other brokers mentioned in section 9.1.

Table 9.2 shows how the flexibility of CDL compares to that of other languages.

272 CHAPTER 9. RELATED WORK AND EVALUATION

cpL allows for plugging in of arbitrary content languages and uses reflective
reasoning to test for capability subsumption. While this much is true for the
other flexible languages reviewed here, ¢DL is different in the way it handles
unknown content languages and specifies a procedural interface to the content

languages through optional functions.

Thus, cDL is an expressive and flexible action representation.

9.3. OTHER DOMAINS 273

9.3 Other Domains

In this section we will briefly discuss and reflect on the adequacy of
CDL if it was applied to common domains used in related systems and

approaches. It will demonstrate the generality of our approach.

9.3.1 Brokers

We have already compared our broker to some other generic brokers in section 9.1.
In this section we will consider some of the domains these brokers have been ap-
plied to and we will demonstrate that our broker, too, could handle these domains.
The only limitation is the fact that our broker does not support the subscribe
performative. As explained in section 9.1.2.3, the reason for the omission of this
performative in our broker is not a crucial one, but simply that this performative
was not required in our type of scenario. We believe that it would not be too

difficult to extend our broker to support this performative though.

Another remark concerns the brokers we have compared our ¢DL broker to in
section 9.1. These brokers were all developed as part of a larger agent system.
The descriptions of the brokers cited in this thesis are in fact mostly descriptions
of these systems of which the broker is just one agent. Thus, descriptions are brief
and sometimes not illustrated with any example domains. As the most elaborate
description is that of the ABSI facilitator [Singh, 1993a, Singh, 1993b] we have
concentrated on the examples used to describe the behaviour of this broker. As

will be seen this is still a rather trivial domain.

The domain chosen to illustrate the ABsI facilitator is that of information
provision, e.g. the computation of factorials. To make this domain interesting
they have implemented two PSAs for this task, one that computes the factorials of
even numbers, and one that computes the factorials of odd numbers. The message
with which the first of these agents advertises its capability to the facilitator is
given as follows [Singh, 1993a, page 54]:

274 CHAPTER 9. RELATED WORK AND EVALUATION

(package
:content
’(stash (<= (handles efact-agent (list-of ’factorial 7x))
(= (denotation ?7x) ?y)
(even-integer 7y)))
:sender ’efact-agent
:reply-with nil)

The content of this capability-advertising message is fairly easy to under-
stand: (list-of ’factorial ?x) represents the format of the message the
efact-agent advertises it can process. This format expression is followed by
two constraints defined in terms of functions known to the broker. The capabil-

ity advertisement of the ofact-agent which computes factorials for odd numbers

is almost identical to the above.

Now, the way the ABSI facilitator is implemented requires PHAs to send their
problems to the broker directly, rather than having the facilitator recommend a

PSA. For example, the facilitator might receive the following message:

(package
:content
(factorial 2)
2)
On receipt of this message the facilitator will attempt to match the content
expression to an expression in a previously received capability advertisement and
evaluate the according constraints. On success, the matching PSA will be asked

to solve the problem, i.e. to perform the computation, and the result will be

forwarded to the PHA.

Capabilities of this type can be expressed quite easily in ¢DL. Remember that
a capability advertisement in ¢DL must have the following format:

(advertise ... (<performative> ... :content (<cdl-expression>)))

The performative must be the performative of the message the agent advert-
ises it can process and the cdl-expression that is the content of this message
must represent the capability. Returning to the example from the ABSI facilit-

ator, the performative to be used here is achieve as the capability description

9.3. OTHER DOMAINS 275

that is the content of this message will describe what can be achieved with this

capability.

The cDL expression representing the above capability can be described as
follows: The only input object is the argument of the function to be computed
and there is one new output object that is the result of this computation or the

the value of the expression to be evaluated.

The format of the expression is expressed in an output constraint by requiring
it to be equal to the output parameter. Thus, the only input constraint that
needs to be expressed is the fact that the given integer must be even. This could
be done by specifying this predicate in first-order logic and using FOPL as the
state language or by assuming a content language in which such a predicate is
implemented directly. Assuming we have an according content language called
absiL, the above capability can be described in ¢DL as follows:

(capability

:state-language absil
:input ((Argument ?7x)))
:output ((Value ?y))

:input-constraints ((even-integer 7x))
:output-constraints ((== 7y (factorial ?x))))

This capability description is sufficient to emulate the behaviour of the ABSI
facilitator. Thus, our CDL broker can be used to implement the scenarios used
to illustrate the behaviour of the ABSI facilitator. However, the domain of the
ABSI facilitator is concerned with information brokering rather than capability
brokering. This is not our primary interest. Therefore, we shall now turn to

another source for relevant example domains.

9.3.2 Planning Domains

As we have argued in section 4.2.1, capabilities and actions bear a close similarity.
Domains involving the representation of actions have been investigated in Al

planning, and these are the domains we shall consider next.

276 CHAPTER 9. RELATED WORK AND EVALUATION

As we shall argue, cDL is perfectly adequate to represent many of the domains
developed for Al planning scenarios. This is not a coincidence but true because
we have designed CDL is such a way that these domains can be represented in
cDL. When we designed CDL we first defined a set of properties we want this lan-
guage to have (cf. section 4.1.1). We then performed a preliminary evaluation of
representations reviewed in chapter 2 against these properties to determine which
formalisms possess the properties we desire (cf. section 4.1.2). One result of this
evaluation was that the knowledge we need to represent most closely resembles the
knowledge represented in action representations as used in Al planning. Thus, we
decided to base the structure of CDL on that of these action representations. This
explains why most of the domains that can be represented in these formalisms

can also be represented in CDL.

There are two groups of domains that cannot be represented in CDL though.
Firstly, there are the rich domains developed for real world planners such as
O-Plan or sIPE (cf. section 2.3.1.5). These include rich representations for time
and resource constraints, for example. CDL does not provide for such rich domains
as it is. We believe, however, that this richness is mostly found in the state
language and thus, this limitation might be addressed by implementing a similarly
rich state representation language and plugging it into CDL. Secondly, CDL does
not support hierarchical action representations. The reason for this limitation is
that the representation of how to refine an action is not the kind of knowledge
we wanted to include in a capability description. Capabilities in CDL are meant
to represent an exterior view of a performable action and not how this action
may be performed or broken down into more primitive actions. Apart from these
restrictions CDL should be suitable for the representation of any action from a

planning domain.

To further substantiate this claim we have looked at the set of domains that

come with the UCPOP planner.? There are eleven different domains ranging from

2 The ucpop planner (version 4.1) and the domains are available on the Internet at
http://www.cs.washington.edu/research/projects/ai/www/ucpop.html.

9.3. OTHER DOMAINS 277

rather simple domains like two different formalisations of the Blocks World to
more complex domains such as the so-called flat-tyre domain with 14 different
operators. Although we have not attempted to represent every operator defined
in these domains in CDL, it is fairly obvious that such a translation would be

quite straightforward.

For example, the operator for removing a wheel is represented as follows in
the flat-tyre domain:

(define (operator remove-wheel)
:parameters ((wheel ?x) (hub ?y))
:precondition (:and (:neq ?x ?y) (:not (on-ground 7y))
(on ?x ?7y) (unfastened ?y))
reffects ((:effect (:and (have ?7x) (free ?y)
(:not (on ?x ?y))))))

The parameters correspond to inputs and outputs in ¢DL. In this example
both parameters represent objects that exist in the input situation. Preconditions
and effects correspond to input and output constraints and only a change of syntax
is required to translate them into the state language 1its where only literals were
allowed. The resulting capability description of the above operator in CDL can
be given as follows:

(capability
:state-language lits
:input ((wheel ?7x) (hub ?7y))
:input-constraints (

(not (== 7x ?7y))

(not (on-ground ?y))

(on ?x ?7y)

(unfastened ?y))
:output-constraints (

(have 7x)

(free 7y)

(not (on ?x ?y))))

Summary

To summarise, CDL can not only be used to represent capabilities in the Pacifica

domain described in chapter 3, but it is also fairly straightforward to translate

278 CHAPTER 9. RELATED WORK AND EVALUATION

the operators in domains of classical, non-hierarchical planners into capability
descriptions in CDL. Furthermore, our broker can also emulate the information
brokering behaviour of other brokers reviewed in this thesis. Thus, CDL can be

considered a generic capability description language.

Chapter 10

Conclusions

At this point we have described and addressed the problem of capabil-
ity brokering. We have defined a new capability description language
that can be used for this purpose. We also have demonstrated and
discussed two new and desirable properties of this language: its ex-
pressiveness and flexibility. The final step will be to summarise the

arqgument presented in this thesis and reflect on it.

10.1 Possible Extensions

In this section we will indicate how the scenarios described in chapter 3
could be extended and how these extensions could be realized in the
framework described in this thesis. This will show the extensibility as

well as current limitations of our approach.

The development of extensions to our capability description language should
always be driven by the problems, agents, and capabilities the broker needs to
distinguish between. Of course, generality of the description language is one aim,
but all features of the capability description language should be demonstrable in
example scenarios like the ones described in chapter 3 in this thesis. There are

two principal ways in which these scenarios could be extended.

279

280 CHAPTER 10. CONCLUSIONS

Firstly, we could increase the number of PSAs in the scenarios. The broker
would then have more PSAs and capabilities to choose from, and different agents
with different capabilities may provide new challenges. We would not expect
such an extension to lead to more communication between agents, apart from
the advertisement messages of the additional agents. Thus, the basic framework
described in this thesis would remain. New PSAs and capabilities are most likely
to require an extended capability description language. An extended language
in turn will require extended algorithms to reason over it. We believe that in-
creasing the number of PSAs and capabilities in the scenarios will be inevitable

in developing extensions to CDL.

Secondly, our scenarios could be further complicated by adding another
problem-holding agent, e.g. a doctor who has an ill patient in one of the towns
that requires hospital treatment. Depending on the time when this second prob-
lem arises the exact capabilities of the PSAs may have changed. For example, the
hl-agent’s sole ambulance might be at the power plant and thus not available.
Having several PHAs is a very realistic extension to the scenarios and the broker
should be able to cope with it. However, often tasks do not interact, which is
essentially why the STRIPS assumption is reasonable. In these cases the ¢DL and
the broker described are sufficient and no extension is required. If tasks interact
through changing capabilities, one way of addressing the problem would be to
send messages to the broker updating capabilities. Another way would be to

leave this detail to the PSA and fail there.

10.1.1 Extensions based on more PSAS

We believe that an increased number of interestingly different PSAs leads to more
interesting problems. For example, the capability descriptions of the different
agents may be insufficient to decide on which one to recommend. With an in-
creasing number of PSAs this is bound to happen at some point, e.g. if two agents

advertise identical capability descriptions. In fact, the initial scenario already

10.1. POSSIBLE EXTENSIONS 281

illustrates this problem. The currently implemented solution is to recommend
the first agent found capable of solving the given problem. While this solution

works fine in our scenarios, it may be inappropriate elsewhere.

Another option would be to forward the problem to all the PsAs found capable
of addressing it and ask them to perform an assessment of their own capabilities,
i.e. to ask them how likely they think they are to find a solution to the given
problem. This option would not require an extension to ¢DL and only a minor
change in the brokering algorithms. Since we expect a capability description to be
an abstraction of what can actually be done by a PSA, the capability-possessing
PSAs may well have further detailed knowledge about their capabilities which they
can use in a self-assessment. If the PSAs use search to solve the problem then
using techniques based on inspecting a partial search space might help in choos-
ing a PsA [Wickler and Pryor, 1996]. However, such a self-assessment cannot be
comparative as the PSAs will, in general, only be aware of their own capabilities.
Thus, it may not help the broker to decide which PSA to recommend if only one

PSA is to be recommended.

Part of the problem here is that capabilities either subsume or do not subsume
a given task in our framework. If capability evaluation was based on the notion of
how well a capability can be used to address a given task, the broker could always
recommend the best agent, which is far less likely to lead to ambiguity than the
subsumption concept defined in this thesis. For example, the hospital closer to
an emergency is more likely to be reached faster and thus, its capability better
addresses the given task. In general, deciding how well a capability could address
a given problem would require the broker to obtain knowledge about the solutions
offered by the different PSAs and the utility these solutions have for the PHA. The
crucial problem here is the representation of a utility function for the pHA. Un-
fortunately, the representation of generic utility functions is not well understood
at present and some of the problems are discussed in [Russell and Norvig, 1995,

pages 473-484].

282 CHAPTER 10. CONCLUSIONS

A final problem that may arise in scenarios involving a large number of agents
is related to the representation of capabilities and tasks. While the framework
provides different types of parameters and constraints for the representation of
capabilities, there is still a number of open representational choices. Current
approaches to knowledge sharing consistently suggest the use of ontologies to
narrow these choices. CDL already provides a framework for the representation of
ontologies of actions and their incorporation into the brokering mechanism, but
for the practical use of the broker the ontology will need to be filled in. This
not only allows for the convenient expression of capabilities as performable ac-
tions, as described in this thesis, but also provides the PSA with some vocabulary
to represent its capabilities. Without this vocabulary different agents may use
different terminology to represent the same problems and capabilities, making it

impossible for the broker to perform appropriate matching.

10.1.2 Other Extensions

Apart from extensions arising through an increased number of agents in the scen-
arios, there are also some limitations to our broker we are aware of which are
related to the fact that it is a “proof of concept” rather than a complete product.
For example, as we have pointed out in section 4.5.2, our broker does not attempt
to manage the solution of problems, and neither do the PHAs we have implemen-
ted. However, we have also argued that capability descriptions usually cannot
be guaranteed to be complete or even sound. This may lead to problems during
the application of a capability or during the execution of a plan involving several
agents’ capabilities. For example, if one PSA fails to solve a problem, there is
currently no way the PHA could ask the broker to recommend another psaA. If
one or more agents fail in the performance of their capabilities while the broker
manages a plan to solve a given problem, the broker needs to re-plan. Perform-
ance problems could provide a very interesting set of extensions to the current

scenarios.

10.1. POSSIBLE EXTENSIONS 283

Another limitation of the current implementation is the way capabilities and
problems based on different languages are handled. For example, a capability de-
scribed in CDL using fopl as the state language and a problem described in CDL
using 1its which has to be evaluated against this capability will work because
the two languages are based on the same abstract Java classes. A cleaner solution
would be to have the broker offer an explicit translation service to other agents
in which they could ask the broker to translate a given expression from one rep-
resentation into another, if this is possible. The Enterprise Toolkit [Stader, 1997]
implements an approach to such a service. The broker itself could use this explicit
service to translate problems into an appropriate representation before perform-
ing the subsumption test. Currently the implementation of this translation is
rather ad-hoc. We believe that the introduction of an explicit translation service
by the broker would add to the flexibility, although such a service cannot be

considered to operationalise part of the brokering process.

In conclusion, while the broker and language presented in this thesis present
a comprehensive framework for the representation of and reasoning about capab-
ilities of intelligent agents, there are also some practical issues that remain to be
resolved before the work can be embedded in a large, realistic scenario. On the
other hand, the framework provides a promising vehicle for basic research into

capabilities.

284 CHAPTER 10. CONCLUSIONS

10.2 Summary

In this section we will summarise the results of the work presented
in this thesis. This will include what has been achieved as well as

problems encountered.

10.2.1 Introduction of the Problem

In chapter 1 we introduced and described the problem of capability

brokering, the main problem addressed in this thesis.

In this thesis we have addressed the problem of capability brokering which
arises when intelligent agents communicate and cooperate. Finding an agent
that can help one solve a given problem is at the heart of capability broker-
ing. There are a variety of contexts in which capability brokering can take place
and we have chosen to assume that: capabilities will be evaluated at run-time;
problem-solving agents have domain knowledge; and problem-holding agents are
interested in finding other agents that can solve the whole problem. To success-
fully address the problem of capability brokering we were aiming for a reasonably
robust implementation of a broker and a capability description language that
could be used to operationalise several scenarios. Furthermore, we expected the

capability description language to be expressive and highly flexible.

10.2.2 Relevant Work in the Literature

In chapter 2 we reviewed work relevant to the problem of capability

brokering in order to have an established foundation for our own work.

The first step towards understanding the problem of capability brokering con-
sisted of a literature survey. As the problem arises when intelligent agents com-
municate and cooperate, we have looked at approaches from this area first. In

fact, the problem of capability brokering had been addressed as the connection

10.2. SUMMARY 285

problem in Distributed AI. The most interesting contributions for our work found
in research into intelligent software agents were the generic agent communication
languages, specifically KQML, which is highly flexible, and which a number of

brokers were designed to utilise in recent years.

The second area we looked at are logics as capability representation form-
alisms. The best known logic, first-order predicate logic, has been used in the
situation calculus to represent actions, but first-order logic is more naturally seen
as a state representation language. We also reviewed some more advanced logics
but none of these offered itself for the representation of agent capabilities. More
promising was the approach to re-use meta-level knowledge, but ultimately this
turned out to be inauspicious due to the utility problem. Terminological logics
were interesting not so much as capability representations but because they have
been used for the representation of ontologies and there is an interesting theory

of expressiveness defined for these logics.

Representations geared more towards capabilities are action representations
as used in Al planning, and this is the area we looked at next. A number of
action representations have grown out of this area and one that stands out as the
most influential is the STRIPS representation based on the STRIPS assumption.
A more recent contribution we have taken up in our work is the development of
ontologies of actions, although our work only provides a framework rather than
an actual ontology. Processes can be seen as refined models of activity, but most
of the work in this area attempts to model interactions between processes which is
not a problem that needs to be addressed for capability brokering. Similarly, the
problems addressed in work on agents that plan with capabilities, e.g. execution

failure and re-planning, were not our concern although they are relevant.

A final area which inspired us rather than provided results is concerned with
the modelling of problem-solving methods. These reasoning actions have been
analysed mostly from a knowledge acquisition perspective in two major efforts:

the KADS and the PROTEGE project. However, their models and guidelines for

286 CHAPTER 10. CONCLUSIONS

modelling are mostly based on informal representations. Currently the HPKB
program is also aiming for models of problem-solving to greatly speed up the

knowledge engineering process, but few results are available yet.

10.2.3 The Scenarios

In chapter 3 we introduced a number of scenarios which defined

the target behaviour we wanted our broker to exhibit.

Having looked at various areas that have represented knowledge similar to
capability knowledge, we defined a number of scenarios which we wanted our
broker and representation to handle. The first scenario was rather simple and it
was aimed at introducing our domain, the island Pacifica with its agents, along
with illustrating the basic exchange of messages we envisaged. Messages were
described in KQML and the content was only given informally to illustrate what
needed to be represented. The initial scenario was followed by two more complex
scenarios that were meant to motivate and exemplify the two properties we desired

for our capability description language: expressiveness and flexibility.

10.2.4 The Capability Description Language

In chapter 4 we defined our capability description language, CDL,
and illustrated this language with a number of examples from our

scenarios.

Given the work we reviewed on capability brokering and representations along
with the scenarios illustrating our aims, we were now in a position to evaluate pre-
vious work and see which ideas we could utilise for our new capability description
language. For this purpose, we described several desirable characteristics for our
language. The main result of this preliminary evaluation was that we wanted:
to preserve the structure found in action representations; to benefit from the

expressiveness of powerful logics; and to retain the flexibility of KQML.

10.2. SUMMARY 287

This gave us a sufficient foundation to design our new capability description
language based on the concept of achievable objectives. We first argued that cap-
abilities are essentially actions and discussed the knowledge they contain: input
and output parameters as well as several types of constraints on the situations
before and after the capability has been applied. To implement a representation
formalism for this knowledge we introduced the concept of a decoupled action
representation language that separates states from actions. After the definition
of the syntax in BNF we used this language to complete the messages from the

initial scenario, thereby illustrating the language itself.

Based on this core language centred around the concept of achievable object-
ives we developed and presented two extensions. The first of these was based
on the idea of performable actions. The idea here was to describe an action as
a modified description of another action, thus allowing one to build a complex
ontology of actions. The description of the syntax extension was again followed
by examples from the initial scenario. The second extension was concerned with
the representation of properties of the problem-solving agents which was achieved
through a set of propositions added to the representation. Finally, since most of
the examples used this far stemmed from the relatively simple initial scenario, we
showed how CDL could be used to complete the messages required for the more
complex scenarios, the expressiveness and flexibility scenario. Remember that

these messages were described with an informal content initially.

10.2.5 Reasoning over CDL

In chapter 5 we defined and described the reasoning mechanisms

and algorithms we implemented for capability brokering with CDL.

By defining the language we also defined the communication that was to take
place in the various scenarios. However, equally important is the implementation
of the language and the mechanisms that can be used to reason about it. For

this purpose we have first formalised the internal representation in order to have

288 CHAPTER 10. CONCLUSIONS

a precise definition of what a CDL capability description is. Next we introduced
the most basic version of an algorithm which tests whether a given capability
subsumes a given task. The concept of capability subsumption has been defined
in terms of the logical entailment relation through the input and output match
condition, and this definition provided the basis for the basic algorithm that
evaluated capability subsumption. The algorithm was given as pseudo-code and

applied to an example.

The basic algorithm suffered from a number of limitations that we imposed
on the capability and the task for which subsumption was to be evaluated. The
next step in our work was to relax these restrictions and extend the algorithm
to deal with the resulting capability and task descriptions. The first step was
to allow input-output constraints in the capability description which could be
handled with an extension which was very similar to the original algorithm. Next
we dealt with capabilities and tasks described as performable actions. The ap-
proach here was to translate a capability or task described as a performable action
into one described in terms of achievable objectives before applying the algorithm
described previously. This translation is effectively an instantiation of the cap-
ability or task. The last extension deals with agent properties. For all extensions
we have also extended our definition of capability subsumption and illustrated

the extensions with examples.

The final part of the description of our implementation of ¢cDL and the broker
concerned the embedding of our work into the Java Agent Template. After a
brief description of JAT we described the CDL Interpreter which is effectively
the broker attached to an agent name server. An interpreter is just one type
of resource managed by a JAT agent, and our implementation also made use of
another type of resource: JAT languages. The mechanisms provided by JAT for
managing resources allowed an elegant implementation of CDL as a decoupled
language. This was exemplified by tracing the reasoning and messages generated

in the flexibility scenario.

10.2. SUMMARY 289

10.2.6 Evaluation of the Broker

In chapter 6 we presented the results of applying our broker to our
scenarios and some variations on these which constitutes a practical

evaluation of our work.

Having described the language and its implementation, it was time to evaluate
what has been achieved in practise this far. The first question we had to address
was how generic and robust the broker is. Extensive testing was beyond the
scope of this thesis, but we used a number of variations of the expressiveness
and flexibility scenario in order to evaluate broker performance. The result was
that our broker performed well in virtually all cases. The next question then
was how efficient the broker is. Actual response times were virtually instant,
but this might have been due to the small number of PSAs in our scenarios. A
detailed complexity analysis that followed essentially revealed that the complexity
of evaluating capability subsumption mainly depends on the underlying state
language used, but that this does not affect scaling issues. Thus, we showed
that our broker is reasonably generic and robust, and that it exhibits adequate
performance, i.e. we showed that our practical criteria for success have been

achieved.

Next we turned to the more theoretical issues of expressiveness and flexibility.

10.2.7 Expressiveness of CDL

In chapter 7 we defined and discussed a formal notion of express-
iveness for action representation languages which could be used to

compare such languages.

Having met the practical criteria for success outlined in the introduction, all
that remained to be shown was that CDL possessed the two properties we claimed
it has. We first looked at expressiveness, a property claimed for many represent-

ations but hardly ever formally defined. In fact, the first question we had to

290 CHAPTER 10. CONCLUSIONS

answer was why we need expressiveness in our capability description language.
The argument is mostly based on the expressiveness scenario and the potential for
conciseness offered by expressiveness. To define what we meant by the express-
iveness of an action representation we have looked at a very general framework
for terminological KR languages. Based on the ideas found there we defined what
it means for an action representation to be more expressive than another. While
we were happy with this definition, an open question remains, namely whether
one should impose an additional condition of polynomial transformability onto

the definition.

The type of language for which we have defined the concept of expressiveness
is what we called AR1 languages. The next step in our work was to define CDL as
such an AR1 language. This required the definition of a state description language
for which we used first-order logic, although cDL allows different state languages
to be plugged in. Next we had to define the decoupled action representation
language which expresses relations between states. The third component of an
AR1 language is the model-restriction function which defines the semantics of the
state language. The final component of an AR1 language, the action definition
function, then defines the semantics of the actions based on the semantics of the
state language. By defining ¢DL as an AR1 language we effectively also defined

the semantics of this language.

10.2.8 Flexibility of cDL

In chapter 8 we introduced our notion of flexibility and discussed
a number of problems that arise during the implementation of flexible

languages.

Flexibility turned out to be an entirely different matter. To begin with, we
again had to answer the question of why we need flexibility in our capability
description language. The argument was based on the flexibility scenario and a

number of examples of further state representation languages one might want to

10.2. SUMMARY 291

plug into ¢DL in different scenarios. However, while expressiveness was a relat-
ively well-understood concept, flexibility is new. Thus, we did not even attempt
to formalise it. One issue we discussed is the trade-offs that flexibility allows one
to resolve at a later time, and this is how we informally defined flexibility. The
most interesting issues arose out of the question of how a decoupled knowledge
representation language can be implemented and we described how we addressed
various problems in the implementation of CDL, e.g. reflective reasoning or pars-
ing. Finally, we have also argued that decoupled action representations provide

us with a deeper understanding of actions and their representations.

10.2.9 Evaluation of cDL

In chapter 9 we evaluated cDL by comparing it to languages used
by other brokers and by comparing its expressiveness and flexibility

to that of other relevant formalisms.

Having defined expressiveness and flexibility, the next step was an evaluation
of ¢DL in this respect. This has been achieved though a comparison of ¢DL and
our broker with other brokers. There we showed that, while there is no significant
difference in supported brokering performatives, the matching algorithm imple-
mented in ¢DL and based on the notion of capability subsumption (cf. defin-
ition 5.4) is significantly more powerful than the matching provided by other
brokers. To evaluate expressiveness, we have compared CDL with various action
representations which are the formalisms for representing the same type of entity.
For this comparison other action representation were treated as if they were also
decoupled languages. In summary, CDL can be described as an expressive action
representation. For flexibility, we have compared ¢DL with languages that offer
at least some degree of this property. Again, the result of this comparison reveals
that c¢DL is a highly flexible language. Finally, we have demonstrated the gener-
ality of our broker by applying to different domains from AI planning and other

brokers.

10.2.10 Conclusions

To summarise, we have described and addressed the problem of capability broker-
ing. To address this problem we have presented a new capability description lan-
guage that possesses two desirable properties: it is expressive and highly flexible.
These were two of the criteria for success we set out, others being that our broker
be reasonably robust and efficient. As we have shown in chapters 6 and 9, our
broker and ¢DL do indeed meet all the criteria for success set out in the intro-
duction. We showed this in a number of representative scenarios and compared
our work with other related work to show what we have achieved and that cDL is
indeed the generic capability description language that can be used for capability

brokering we set out to create.

292

Bibliography

[Aamodt et al., 1993] Agnar Aamodt, Bart Benus, Cuno Duursma, Christine
Tomlinson, Ronald Schrooten, and Walter Van de Velde. Task features and
their use in CommonKADS. Deliverable D 1.5, Free University of Brussels,
Brussels, Belgium, January 1993.

[Aben, 1995] Manfred Aben. Formal Methods in Knowledge Engineering. PhD
thesis, University of Amsterdam, Amsterdam, The Netherlands, February
1995.

[Aitken et al., 1998] Stuart Aitken, Ian Filby, John Kingston, and Austin Tate.
Capability descriptions for problem-solving methods. ATAI, University of Ed-
inburgh, Edinburgh, Scotland (HPKB Deliverable), January 1998.

[Allen et al., 1990] James Allen, James Hendler, and Austin Tate, editors. Read-
ings in Planning. Morgan Kaufmann, San Mateo, CA, 1990.

[Ambros-Ingerson and Steel, 1988] José A. Ambros-Ingerson and Sam Steel. In-
tegrating planning, execution and monitoring. In Proc. 7th AAAI, pages 83-88,
Saint Paul, MN, August 1988. Morgan Kaufmann. Also in [Allen et al., 1990,
pages 735-740].

[Anderson, 1981] John R. Anderson. Tuning of search of the problem space for
geometry proofs. In Proc. 7th IJCAI pages 165-170, Vancouver, Canada,
August 1981. University of British Columbia, William Kaufmann.

[Armengol et al., 1998] Eva Armengol, Richard Benjamins, Stefan Decker, Dieter
Fensel, Enrico Motta, Rudi Studer, and Bob Wielinga. State of the art deliv-
erable. Deliverable D1.4, University of Amsterdam, Amsterdam, The Nether-
lands, May 1998.

[Attardi and Simi, 1984] Giuseppe Attardi and Maria Simi. Metalanguage and
reasoning across viewpoints. In Tim O’Shea, editor, Proc. 6th ECAI, pages
413-422, Pisa, Italy, September 1984. North-Holland.

[Baader, 1996] Franz Baader. A formal definition for the expressive power of ter-
minological knowledge representation languages. Journal of Logic and Com-
putation, 6(1):33-54, February 1996.

293

[Béckstrom, 1995] Christer Backstrom. Expressive equivalence of planning form-
alisms. Artificial Intelligence, 76:17-34, 1995.

[Baker et al., 1997] Sean Baker, Vinny Cahill, and Paddy Nixon. Bridging
boundaries: CORBA in perspective. IEEE Internet Computing, 1(5):52-57,
1997.

[Barr, 1979] Avron Barr. Meta-knowledge and cognition. In Proc. 6th IJCAI,
pages 31-33, Tokyo, Japan, August 1979. William Kaufmann.

[Barrett and Weld, 1994] Anthony Barrett and Daniel S. Weld. Partial-order
planning: Evaluating possible efficiency gains. Artificial Intelligence, 67:71—
112, 1994.

[Barrett et al., 1995] Anthony Barrett, Dave Christianson, Marc Friedman,
Chung Kwok, Keith Golden, Scott Penberthy, Ying Sun, and Daniel Weld.
UCPOP user’s manual (version 4.0). Technical Report 93-09-06d, University
of Washington, Seattle, WA, November 1995.

[Barros et al., 1996] Leliane Barros, André Valente, and Richard Benjamins.
Modeling planning tasks. In Brian Drabble, editor, Proc. 3rd International
Conference on Artificial Intelligence Planning Sytems, pages 11-18, Edinburgh,
Scotland, May 1996. AAAI Press.

[Bayardo et al., 1997] R. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler,
A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M. Nodine, M. Rashid, M. Ru-
sinkiewicz, R. Shea, C. Unnikrishnan, A. Unruh, and D. Woelk. Semantic
integration of information in open and dynamic environments. In Joan M.
Peckman, editor, Proc. ACM SIGMOD International Conference on Manage-
ment of Data, Tucson, AZ, May 1997. ACM Press.

[Benech and Desprats, 1997] D. Benech and T. Desprats. A KQML-CORBA based
architecture for intelligent agents communication in cooperative service and
network management. In Proc. IFIP/IEEE InternationalConference on Man-
agement of Multimedia Networks and Services, Montréal, Canada, July 1997.

[Benjamins et al., 1997] Richard Benjamins, Dieter Fensel, and B. Chandra-
sekaran. PSMs do IT! In Proc. IJCAI Workshop on Problem-Solving Methods

for Knowledge-Based Systems, Nagoya, Japan, August 1997.

[Benjamins et al., 1998] Richard Benjamins, Enric Plaza, Enrico Motta, Dieter
Fensel, Rudi Studer, Bob Wielinga, Guus Schreiber, and Zdenek Zdrahal.
IBROW? — an intelligent brokering service for knowledge-component reuse
on the world-wide web. In Proc. 11th Workshop on Knowledge Acquisition,
Modeling and Management, Banff, Canada, April 1998.

294

[Blum and Furst, 1995] Avrim L. Blum and Merrick L. Furst. Fast planning
through planning graph analysis. In Proc. 1/th IJCAI, pages 16361642,
Montréal, Canada, August 1995. Morgan Kaufmann.

[Bond and Gasser, 1988] Alan H. Bond and Les Gasser, editors. Readings in
Distributed Artificial Intelligence. Morgan Kaufmann, San Mateo, CA, 1988.

[Brachman and Levesque, 1985] Ronald J. Brachman and Hector J. Levesque,
editors. Readings in Knowledge Representation. Morgan Kaufmann, Los Altos,
CA, 1985.

[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. Schmolze.
An overview of the KL-ONE knowledge representation system. Cognitive Sci-
ence, 9(2):171-216, April 1985.

[Brachman, 1979] Ronald J. Brachman. On the epistemological status of se-
mantic networks. In Nicholas V. Findler, editor, Associative Networks, pages
3-50. Academic Press, New York, NY, 1979.

[Bradshaw, 1997] Jeffrey M. Bradshaw, editor. Software Agents. AAAI Press/
The MIT Press, Menlo Park, CA/Cambridge MA, 1997.

[Brazier et al., 1995] Frances M. T. Brazier, Jan Treur, and Niek J. E. Wijn-
gaards. Modelling interaction with experts: The role of a shared task model.
Technical Report IR-382, Free University of Amsterdam, Amsterdam, The
Netherlands, 1995.

[Breuker and Van de Velde, 1994] Joost A. Breuker and Walter Van de Velde, ed-
itors. CommonKADS Library for Fxpertise Modelling. 10S Press, Amsterdam,
The Netherlands, 1994.

[Breuker and Wielinga, 1989] Joost Breuker and Bob Wielinga. Models of ex-
pertise in knowledge acquisition. In Giovanni Guida and Carlo Tasso, editors,

Topics in Fxpert System Design, chapter 5, pages 265—-295. Elsevier Science
Publishers, Amsterdam, The Netherlands, 1989.

[Breuker et al., 1987] Joost Breuker, Bob Wielinga, Maarten van Someren,
Robert de Hoog, Guus Schreiber, Paul de Greef, Bert Bredeweg, Jan Wiele-
maker, Jean-Paul Billault, Massoud Davoodi, and Simon Hayward. Model
driven knowledge acquisition: Interpretation models. KADS Deliverable Task
A1, University of Amsterdam, Amsterdam, The Netherlands, 1987.

[Breuker, 1997] Joost Breuker. Problems in indexing problem-solving methods.
In Proc. IJCAI Workshop on Problem-Solving Methods for Knowledge-Based
Systems, Nagoya, Japan, August 1997.

[Brewka, 1991] Gerhard Brewka. Nonmonotonic Reasoning: Logical Foundations
of Commonsense. Cambridge University Press, Cambridge, UK, 1991.

295

[Brooks, 1986] R. A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14-23, 1986.

[Brooks, 1991] R. A. Brooks. Intelligence without representation. Artificial In-
telligence, 47:139-159, 1991.

[Bundy and Welham, 1981] Alan Bundy and Bob Welham. Using meta-level in-
ference for selective application of multiple rewrite rule sets in algebraic ma-
nipulation. Artificial Intelligence, 16(2):189-212, 1981.

[Bundy et al., 1979] Alan Bundy, Lawrence Byrd, George Luger, Chris Mellish,
and Martha Palmer. Solving mechanics problems using meta-level inference.
In Proc. 6th IJCAI pages 1017-1027, Tokyo, Japan, August 1979. William
Kaufmann.

[Bylander, 1994] Tom Bylander. The computational complexity of propositional
STRIPS planning. Artificial Intelligence, 69(1-2):165-204, September 1994.

[Campione and Walrath, 1998] Mary Campione and Kathy Walrath. The Java
Tutorial: Object-Oriented Programming for the Internet. The Java Series.
Addison-Wesley Longman, 2nd edition, 1998.

[Carbonell et al., 1992] Jaime G. Carbonell, Jim Blythe, Oren Etzioni, Yolanda
Gil, Robert Joseph, Dan Kahn, Craig Knoblock, Steven Minton, Alicia Pérez,
Scott Reilly, Manuela Veloso, and Xuemei Wang. PRODIGY 4.0: The manual
and tutorial. Technical Report CMU-CS-92-150, Carnegie Mellon University,
Pittsburgh, PA, June 1992.

[Chagrov and Zakharyaschev, 1997] Alexander Chagrov and Michael Zakharya-
schev. Modal Logic. Clarendon Press, Oxford, UK, 1997.

[Chaib-Draa et al., 1992] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Mil-
lot. Trends in distributed artificial intelligence. Artificial Intelligence Review,
6(1):35-66, 1992.

[Chang and Lee, 1973] Chin-Liang Chang and Richard Char-Tung Lee. Sym-
bolic Logic and Mechanical Theorem Proving. Computer Science and Applied
Mathematics Series. Academic Press, New York, NY, 1973.

[Charniak and McDermott, 1985] Eugene Charniak and Drew McDermott. In-
troduction to Artificial Intelligence. Computer Science Series. Addison-Wesley,
Reading, MA, 1985.

[Chase et al., 1989] Melissa P. Chase, Monte Zweben, Richard L. Piazza, John D.
Burger, Paul P. Maglio, and Haym Hirsh. Approximating learned search control
knowledge. In Alberto Maria Segre, editor, Proc. 6th International Workshop
on Machine Learning, pages 218-220, Ithaca, NY, June 1989. Cornell Univer-
sity, Morgan Kaufmann.

296

[Chellas, 1980] Brian F. Chellas. Modal Logic: An Introduction. Cambridge
University Press, Cambridge, UK, 1980.

[Chi et al., 1981] Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser.
Categorization and representation of physics problems by experts and novices.
Cognitive Science, 5(2):121-152, April 1981.

[Cohen and Levesque, 1990] Paul R. Cohen and Hector J. Levesque. Intention is
choice with commitment. Artificial Intelligence, 42:213-261, 1990.

[Cohen and Levesque, 1995] Philip R. Cohen and Hector J. Levesque. Commu-
nicative actions for artificial agents. In Victor Lesser, editor, Proc. 1st Inter-
national Conference on Multi-Agent Systems, pages 65—72, San Francisco, CA,
June 1995. AAAT Press/The MIT Press.

[Cohen et al., 1989] Paul R. Cohen, M. L. Greenberg, D. M. Hart, and A. E.
Howe. Trial by fire: Understanding the design requirements for agents in
complex environments. Al Magazine, 10(3):32-48, Autumn 1989.

[Cohen et al., 1998] Paul Cohen, Robert Schrag, Eric Jones, Adam Pease, Albert
Lin, Barbara Starr, David Gunning, and Murray Bruke. The DARPA high-
performance knowledge bases project. AI Magazine, 19(4):25-49, Winter 1998.

[CORBA V2.2, 1998] The Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification, February 1998.

[Croft, 1985] David Croft. Choice making in planning systems. In Martin Merry,
editor, Proc. 5th Expert Systems Conference, pages 125—-141, Warwick, UK,
December 1985. University of Warwick, Cambridge University Press.

[Currie and Tate, 1991] Ken Currie and Austin Tate. O-Plan: The open planning
architecture. Artificial Intelligence, 52(1):49-86, 1991.

[Davis and Buchanan, 1977] Randall Davis and Bruce G. Buchanan. Meta-
level knowledge: Overview and applications. In Proc. 5th IJCAI, pages
920-927, Cambridge, MA, August 1977. MIT, William Kaufmann. Also in:
[Brachman and Levesque, 1985, pages 389-396].

[Davis and Smith, 1983] Randall Davis and Reid G. Smith. Negotiation as a
metaphor for distributed problem solving. Artificial Intelligence, 20(1):63-109,
1983. Also in: [Bond and Gasser, 1988, pages 333-356].

[Davis, 1980] Randall Davis. Meta-rules: Reasoning about control. Artificial
Intelligence, 15(3):179-222, 1980.

[Davis, 1990] Ernest Davis. Representations of Commonsense Knowledge. Mor-
gan Kaufmann, San Mateo, CA, 1990.

297

[Decker et al., 1997] Keith Decker, Katia Sycara, and Mike Williamson. Middle-
agents for the internet. In Proc. 15th IJCAI pages 578-583, Nagoya, Japan,
August 1997. Morgan Kaufmann.

[Decker et al., 1998] Setfan Decker, Michael Erdmann, Dieter Fensel, and Rudi
Studer. Reasoning with metadata: Ontobroker. University of Karlsruhe, Karls-
ruhe, Germany, 1998.

[Doyle, 1997] Jon Doyle. Problem-solving method language proposal. MIT, Cam-
bridge, MA, October 1997.

[Eckel, 1997] Bruce Eckel. Thinking in Java. Prentice Hall, 1997.

[Eriksson et al., 1995] Henrik Eriksson, Yuval Shahar, Samson W. Tu, Angel R.
Puerta, and Mark A. Musen. Task modeling with reusable problem-solving
methods. Artificial Intelligence, 79(2):293-326, December 1995.

[Eskey and Zweben, 1990] Megan Eskey and Monte Zweben. Learning search
control for constraint-based scheduling. In Proc. 8th AAAI pages 908-915,
Boston, MA, August 1990. AAAT Press/The MIT Press.

[Etzioni and Minton, 1992] Oren Etzioni and Steven Minton. Why EBL produces
overly-specific knowledge: A critique of the PRODIGY approaches. In Derek
Sleeman and Peter Edwards, editors, Proc. 9th International Workshop on
Machine Learning, pages 137-143, Aberdeen, Scotland, July 1992. Morgan
Kaufmann.

[Etzioni et al., 1992] Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper,
Neal Lesh, and Mike Williamson. An approach to planning with incomplete
information. In Bernhard Nebel, Charles Rich, and William Swartout, edit-
ors, Proc. 3rd KR, pages 115-125, Cambridge, MA, October 1992. Morgan
Kaufmann.

[Etzioni et al., 1993] Oren Etzioni, Henry M. Levy, Richard B. Segal, and Chan-
dramohan A. Thekkath. OS agents: Using Al techniques in the operating
system environment. Technical Report 93-04-04, University of Washington,
Seattle, WA, April 1993.

[Etzioni, 1997] Oren Etzioni. Moving up the information food chain. Al
Magazine, 18(2):11-18, Summer 1997.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and
Moshe Y. Vardi. Reasoning about Knowledge. The MIT Press, Cambridge,
MA, 1995.

[Farquahar et al., 1996] A. Farquahar, R. Fikes, and J. Rice. The Ontolingua
server: A tool for collaborative ontology construction. Technical Report KSL
96-26, Stanford University, Stanford, CA, September 1996.

298

[Fensel et al., 1998a] Dieter Fensel, Richard Benjamins, Stefan Decker, Mauro
Gaspari, Rix Groenboom, Enrico Motta, Enric Plaza, Guus Schreiber, Rudi
Studer, and Bob Wielinga. uPML: The very high idea. University of Karlsruhe,
Karlsruhe, Germany, 1998.

[Fensel et al., 1998b] Dieter Fensel, Richard Benjamins, Stefan Decker, Mauro
Gaspari, Rix Groenboom, Enrico Motta, Enric Plaza, Guus Schreiber, Rudi
Studer, and Bob Wielinga. The unified problem-solving method description
language UPML (version 1.0.7). University of Karlsruhe, Karlsruhe, Germany,
July 1998.

[Fensel, 1997] Dieter Fensel. An ontology-based broker: Making problem-solving
method reuse work. In Proc. IJCAI Workshop on Problem-Solving Methods
for Knowledge-Based Systems, Nagoya, Japan, August 1997.

[Fernandez et al., 1997] M. Ferndndez, A. Gémez-Pérez, and N. Juristo. METH-
ONTOLOGY: From ontological art towards ontological engineering. In Work-

ing Notes of the AAAI Spring Symposium on Ontological Engineering, Stan-
ford, CA, March 1997. Stanford University, AAATI Press.

[Fikes and Nilsson, 1971] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new
approach to the application of theorem proving to problem solving. Artificial
Intelligence, 2(3/4):189-208, 1971. Also in: [Allen et al., 1990, pages 88-97].

[Fikes et al., 1972] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning
and executing generalized robot plans. Artificial Intelligence, 3(4):251-288,
1972.

[Fikes et al., 1991] Richard Fikes, Mark Cutkosky, Tom Gruber, and Jeffrey Van
Baalen. Knowledge sharing technology—project overview. Technical Report
KSL 91-71, Stanford University, Stanford, CA, November 1991.

[Filman et al., 1983] Robert E. Filman, John Lamping, and Fanya S. Montalvo.
Meta-language and meta-reasoning. In Proc. 8th IJCAI, pages 365-369, Karls-
ruhe, Germany, August 1983. William Kaufmann.

[Finin et al., 1992] Tim Finin, Don McKay, and Rich Fritzson. An overview
of KQML: A knowledge query and manipulation language. Technical report,
UMBC, Baltimore, MD, March 1992.

[Finin et al., 1993] Tim Finin, Jay Weber, Gio Wiederhold, Michael Genesereth,
Richard Fritzson, Donald McKay, James McGuire, Richard Pelavin, Stu-
art Shapiro, and Chris Beckauthor. Specification of the KQML agent-
communication language. Technical report, The DARPA Knowledge Sharing
Initiative External Interfaces Working Group, June 1993.

299

[Finin et al., 1997] Tim Finin, Yannis Labrou, and James Mayfield. KQML as
an agent communication language. In Jeffrey M. Bredshaw, editor, Soft-
ware Agents, chapter 14, pages 291-316. AAAT Press/MIT Press, Menlo Park,
CA/Cambridge, MA, 1997.

[Fisher, 1994] M. Fisher. A survey of concurrent METATEM—the language and
its applications. In D. M. Gabbay and H. J. Ohlbach, editors, Proc. 1st Inter-
national Conference on Temporal Logic, pages 480-505. Springer, 1994. LNAI
827.

[Forbus, 1984] Kenneth D. Forbus. Qualitative process theory. Artificial Intelli-
gence, 24:85-168, 1984.

[Fox et al., 1989] Mark S. Fox, Norman Sadeh, and Can Baykan. Constraied
heuristic search. In Proc. 11th IJCAI pages 309-315, Detroit, MI, August
1989. Morgan Kaufmann.

[Gallier, 1986] Jean H. Gallier. Logic for Computer Science. Harper and Row,
New York, NY, 1986.

[Garey and Johnson, 1979] Michael R. Garey and David S. Johnson. Computers
and Intractability. W. H. Freeman, New York, NY, 1979.

[Genesereth and Ketchpel, 1994] Michael R. Genesereth and Steven P. Ketchpel.
Software agents. Communications of the ACM, 37(7):48-53, 147, July 1994.

[Genesereth and Singh, 1993] Michael R. Genesereth and Narinder Singh. A
knowledge sharing approach to software interoperation. Report Logic-93-12,
Stanford University, Stanford, CA, February 1993.

[Genesereth et al., 1992] Michael R. Genesereth, Richard E. Fikes, Daniel Bob-
row, Ronald Brachman, Thomas Gruber, Patrick Hayes, Reed Letsinger, Vla-
dimir Lifschitz, Robert MacGregor, John McCarthy, Peter Norvig, Ramesh
Patil, and Len Schubert. Knowledge interchange format version 3.0 reference
manual. Report Logic-92-1, Stanford University, Stanford, CA, June 1992.

[Genesereth, 1991] Michael R. Genesereth. Knowledge interchange format. In
Proc. 2nd KR, pages 599-600, Cambridge, MA, 1991. Morgan Kaufmann.

[Gennari et al., 1998] John H. Gennari, William Grosso, and Mark Musen.
A method-description language: An initial ontology with examples. In

Proc. 11th Workshop on Knowledge Acquisition, Modeling and Management,
Banff, Canada, April 1998.

[Georgeff, 1982] Michael P. Georgeff. Procedural control in production systems.
Artificial Intelligence, 18(2):175-201, March 1982.

300

[Georgeff, 1987] Michael P. Georgeff. Planning. Annual Reviews in Computing
Science, 2:359-400, 1987. Also in: [Allen et al., 1990, pages 5-25].

[Ghallab et al., 1998] Malik Ghallab, Adele Howe, Craig Knoblock, Drew Mc-
Dermott, Ashwin Ram, Manuela Veloso, Daniel Weld, and David Wilkins.
PDDL—The Planning Domain Definition Language. Yale University, New
Haven, CT, March 1998. Draft 1.0.

[Ginsberg, 1986] Allen Ginsberg. A metalinguistic approach to the construction
of knowledge base refinement systems. In Proc. 5th AAAI pages 436-441,
Philadelphia, PA, August 1986. Morgan Kaufmann.

[Ginsberg, 1987] Matthew L. Ginsberg, editor. Readings in Nonmonotonic Reas-
oning. Morgan Kaufmann, Los Altos, CA, 1987.

[Ginsberg, 1993] Matt Ginsberg. Essentials of Artificial Intelligence. Morgan
Kaufmann, San Francisco, CA, 1993.

[Ginsberg, 1996a] Matthew L. Ginsberg. Do computers need common sense? In
Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors, Proc. 5th KR,
pages 620-626, Cambridge, MA, November 1996. Morgan Kaufmann.

[Ginsberg, 1996b] Matthew L. Ginsberg. A new algorithm for generative plan-
ning. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,
Proc. 5th KR, pages 186-197, Cambridge, MA, November 1996. Morgan
Kaufmann.

[Golding et al., 1987] Andrew Golding, Paul S. Rosenbloom, and John E. Laird.
Learning general search control from outside guidance. In Proc. 10th IJCAI,
pages 334-337, Milan, Italy, August 1987. Morgan Kaufmann.

[Gémez-Pérez, 1998] A. Gomez-Pérez. Knowledge sharing and reuse. In
Liebowitz, editor, Handbook of Applied Expert Systems. CRC, 1998.

[Green, 1969] Cordell Green. Application of theorem proving to problem solv-
ing. In Donald E. Walker and Lewis M. Norton, editors, Proc. 1st IJCAI
pages 219-239, Washington, D.C., August 1969. Morgan Kaufmann. Also in:
[Allen et al., 1990, pages 67-87].

[Gruber, 1992] Thomas R. Gruber. Ontolingua: A mechanism to support port-
able onotologies. Technical Report KSL 91-66, Stanford University, Stanford,
CA, June 1992.

[Gruber, 1993a] Thomas R. Gruber. Toward principles for the design of on-

tologies used for knowledge sharing. Technical Report KSL 93-04, Stanford
University, Stanford, CA, August 1993.

301

[Gruber, 1993b] Thomas R. Gruber. A translation approach to portable ontolo-
gies. Knowledge Acquisition, 5(2):199-220, 1993.

[Gruninger and Fox, 1994] Michael Gruninger and Mark S. Fox. An activity on-
tology for enterprise modelling. In Proc. Workshop on Enabling Technologies—
Infrastructures for Collaborative Enterprises. West Virginia University, 1994.

[Gruninger et al., 1997] Michael Gruninger, C. Schlenoff, A. Knutilla, and S. Ray.
Using process requirements as the basis for the creation and evaluation of
process ontologies for enterprise modeling. ACM SIGGROUP Bulletin Special
Issue on Enterprise Modelling, 18(3), 1997.

[Guha and Lenat, 1990] R. V. Guha and Douglas B. Lenat. Cyc: A midterm
report. AI Magazine, 11(3):32-59, Fall 1990.

[Guha and Lenat, 1994] R. V. Guha and Douglas B. Lenat. Enabling agents to
work together. Communications of the ACM, 37(7):127-142, July 1994.

[Haggith, 1995] Mandy Haggith. A meta-level framework for exploring conflicts
in multiple knowledge bases. In John Hallam, editor, Hybrid Problems, Hybrid
Solutions, pages 87-98. 10S Press, Amsterdam, The Netherlands, 1995.

[Harel et al., 1982] David Harel, Dexter Kozen, and Rohit Parikh. Process logic:
Expressiveness, decidability, completeness. Journal of Computer and System
Sciences, 25:144-170, 1982.

[Harel, 1984] David Harel. Dynamic logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic Vol. II, chapter 10, pages 497-604.
D. Reidel Publishing Company, 1984.

[Hayes, 1974] Patrick J. Hayes. Some problems and non-problems in represent-
ation theory. In Proc. AISB Summer Conference, pages 63-79, University of
Sussex, 1974. Also in: [Brachman and Levesque, 1985, pages 4-22].

[Hendrix, 1973] Gary G. Hendrix. Modeling simultaneous actions and con-
tinuous processes. Artificial Intelligence, 4:145-180, 1973. Also in:
[Weld and de Kleer, 1990, pages 64-82].

[Hintikka, 1962] J. Hintikka. Knowledge and Belief. Cornell University Press,
Ithaca, NY, 1962.

[Hirst, 1991] Graeme Hirst. Existence assumptions in knowledge representation.
Artificial Intelligence, 49(1-3):199-242, May 1991.

[Howe and Dreilinger, 1997] Adele E. Howe and Daniel Dreilinger. SAvVY-
SEARCH: A metasearch engine that learns which search engines to query. Al
Magazine, 18(2):19-25, Summer 1997.

302

[Huhns and Singh, 1998] Michael N. Huhns and Munindar P. Singh, editors.
Readings in Agents. Morgan Kaufmann, San Francisco, CA, 1998.

[Thrig and Kambhampati, 1997] Laurie H. Ihrig and Subbarao Kambhampati.
Storing and indexing plan derivations through explanation-based analysis of
retrieval failures. Journal of Artificial Intelligence Research, 7:161-198, Novem-
ber 1997.

[Jennings, 1996] Nicholas R. Jennings, editor. Foundations of Distributed Artifi-
cial Intelligence. Wiley, New York, NY, 1996.

[Joslin and Pollack, 1996] David Joslin and Martha E. Pollack. Is “early com-
mitment” in plan generation ever a good idea. In Proc. 13th AAAI pages
1188-1193, Portland, OR, August 1996. AAAT Press/The MIT Press.

[Kambhampati and Yang, 1996] Subbarao Kambhampati and Xiuping Yang. On
the role of disjunctive representations and constraint propagation in refine-
ment planning. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, ed-
itors, Proc. 5th KR, pages 135-146, Cambridge, MA, November 1996. Morgan
Kaufmann.

[Kambhampati et al., 1996] Subbarao Kambhampati, Suresh Katukam, and
Yong Qu. Failure-driven dynamic search control for partial order planners: An

explanation-based approach. Artificial Intelligence, 88(1-2):253-315, Decem-
ber 1996.

[Kambhampati, 1997] Subbarrao Kambhampati. Challenges in bridging plan
synthesis paradigms. In Proc. 15th IJCAI pages 44-49, Nagoya, Japan, August
1997. Morgan Kaufmann.

[Kautz and Selman, 1992] Henry Kautz and Bart Selman. Planning as satisfiab-
ility. In Bernd Neumann, editor, Proc. 10th ECAI pages 359-363, Vienna,
Austria, August 1992. Wiley.

[Kautz and Selman, 1996] Henry Kautz and Bart Selman. Pushing the envelope:
Planning, propositional logic, and stochastic search. In Proc. 13th AAAI pages
1194-1201, Portland, OR, August 1996. AAAI Press/The MIT Press.

[Kingston et al., 1996] John Kingston, Nigel Shadbolt, and Austin Tate. Com-
monKADS models for knowledge-based planning. In Proc. 13th AAAI pages
477-482, Portland, OR, August 1996. AAATI Press/The MIT Press.

[Konolige, 1986] Kurt Konolige. A Deduction Model of Belief. Morgan Kauf-
mann, San Mateo, CA, 1986.

[Kornfeld, 1979] William A. Kornfeld. ETHER—a parallel problem solving sys-
tem. In Proc. 6th IJCAI, pages 490492, Tokyo, Japan, August 1979. William
Kaufmann.

303

[Kornfeld, 1981] William A. Kornfeld. The use of parallelism to implement a
heuristic search. In Proc. 7th IJCAI, pages 575-580, Vancouver, Canada, Au-
gust 1981. University of British Columbia, William Kaufmann.

[Kripke, 1963] S. Kripke. Semantical analysis of modal logic. Zeitschrift fir
Mathematische Logik und Grundlagen der Mathematik, 9:67-96, 1963.

[Kuokka and Harada, 1995a] Daniel Kuokka and Larry Harada. Matchmaking
for information agents. In Proc. 14th IJCAI pages 672—678, Montréal, Canada,
August 1995. Morgan Kaufmann.

[Kuokka and Harada, 1995b] Daniel Kuokka and Larry Harada. On using KQML
for matchmaking. In Proc. 1st International Conference on Multi-Agent Sys-
tems, pages 239-245, San Francisco, CA, June 1995. AAAT Press/MIT Press.

[Kuokka, 1990] Daniel Kuokka. The Deliberative Integration of Planning, Execu-
tion, and Learning. PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
1990.

[Labrou and Finin, 1997] Yannis Labrou and Tim Finin. A proposal for a new
KQML specification. TR CS-97-03, University of Maryland Baltimore County,
Baltimore, MD, February 1997.

[Laird et al., 1987] John E. Laird, Allen Newell, and Paul S. Rosenblum. SOAR:
An architecture for general intelligence. Artificial Intelligence, 33(1):1-64, 1987.

[Larkin et al., 1980] Jill H. Larkin, John McDermott, Dorothea P. Simon, and
Herbert A. Simon. Models of competence in solving physics problems. Cognitive
Science, 4(4):317-345, October 1980.

[Laske, 1986] Otto E. Laske. On competence and performance notions in expert
system design: A critique of rapid prototyping. In Proc. 6th International
Workshop Expert Systems and their Applications, pages 257-297, Avignon,
France, April 1986.

[Leckie and Zukerman, 1991] Christopher Leckie and Ingrid Zukerman. Learning
search control rules for planning: An inductive approach. In Lawrence A.
Birnbaum and Gregg C. Collins, editors, Proc. 8th International Workshop
on Machine Learning, pages 422-426, Evanston, IL, June 1991. Northwestern
University, Morgan Kaufmann.

[Lecoeuche et al., 1996] Renaud Lecoeuche, Oliver Catinaud, and Catherine
Gréboval-Barry. Competence in human beings and knowledge-based systems.
In Proc. 10th Knowledge Acquisition for Knowledge-Based Systems Workshop,
Banff, Canada, November 1996.

304

[Lee et al., 1996] Jintae Lee, Micheal Grunninger, Yan Jin, Thomas Malone, Aus-
tin Tate, Gregg Yost, and other members of the PIF Working Group. The PIF
process interchange format and framework version 1.1. Working Paper #194,
MIT Center for Coordination Science, Cambridge, MA, May 1996.

[Lee et al., 1998] Jintae Lee, Michael Grunninger, Yan Jin, Thomas Malone, Aus-
tin Tate, and Gregg Yost. The Process Interchange Format and framework.
The Knowledge Engineering Review, 13(1):91-120, March 1998.

[Lenat et al., 1983] Douglas B. Lenat, Randall Davis, Jon Doyle, Michael Gene-
sereth, Ira Goldstein, and Howard Schrobe. Reasoning about reasoning. In
Frederick Hayes-Roth, Donald A. Waterman, and Douglas B. Lenat, editors,
Building Ezpert Systems, chapter 7, pages 219-239. Addison-Wesley, Reading,
MA, 1983.

[Lenat, 1995] Douglas B. Lenat. cyc: A large-scale investment in knowledge
infrastructure. Commaunications of the ACM, 38(11):33-38, November 1995.

[Lesp’erance, 1989] Yves Lesp’erance. A formal account of self-knowledge and
action. In Proc. 11th IJCAI pages 868-874, Detroit, MI, August 1989. Morgan
Kaufmann.

[Levesque, 1984] Hector J. Levesque. A logic of implicit and explicit belief. In
Proc. jth AAAI pages 198-202, Austin, TX, August 1984. University of Texas,
William Kaufman.

[Lifschitz, 1986] Vladimir Lifschitz. On the semantics of STRIPS. In Michael P.
Georgeff and Amy L. Lansky, editors, Proc. Workshop on Reasoning about Ac-
tions and Plans, pages 1-9, Timberline, Oregon, July 1986. Morgan Kaufmann.
Also in: [Allen et al., 1990, pages 523-530].

[Loveland, 1978] Donald W. Loveland. Automated Theorem Proving: A Logical
Basis. Fundamental Studies in Computer Science Vol. 6. North-Holland, Am-
sterdam, The Netherlands, 1978.

[Lydiard, 1996] Terri Lydiard. Using IDEF3 to capture the air campaign planning
process. AIAI, University of Edinburgh, Scotland, March 1996.

[Maes and Nardi, 1988] Pattie Maes and Daniele Nardi, editors. Meta-Level Ar-
chitectures and Reflection. North-Holland, Amsterdam, The Netherlands, 1988.

[Maes, 1986] Pattie Maes. Introspection in knowledge representation. In Proc. 7th
ECAI Vol. I, pages 256-269, Brighton, UK, July 1986.

[Malone et al., 1997] Thomas W. Malone, Kevin Crowston, Jintae Lee, Brian
Pentland, Chrysanthos Dellarocas, George Wyner, John Quimby, Charley Os-
born, and Abraham Bernstein. Tools for inventing organizations: Toward a
handbook of organizational processes. MIT, Cambridge, MA, 1997.

305

[Mayer et al., 1992] R. J. Mayer, T. P. Cullinane, P. S. deWitte, W. B. Knappen-
berger, B. Perakath, and M. S. Wells. Information integration for concurrent
engineering (IICE) IDEF3 process description capture method report. Report
AL-TR-1992-0057, Armstrong Laboratory, Logistics Research Division, 1992.

[McAllester and Rosenblitt, 1991] David McAllester and D. Rosenblitt. System-
atic nonlinear planning. In Proc. 9th AAAI pages 634—639, Anaheim, CA,
August 1991. AAAT Press/The MIT Press.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J. Hayes. Some philo-
sophical problems from the standpoint of artificial intelligence. In Bernhard
Meltzer and Donald Michie, editors, Machine Intelligence 4, pages 463—
502. Edinburgh University Press, Edinburgh, Scotland, 1969. Also in:
[Allen et al., 1990, pages 393-435].

[McCarthy, 1980a] John McCarthy. Applications of circumscription to formaliz-
ing commonsense knowledge. Artificial Intelligence, 28:89-116, 1980.

[McCarthy, 1980b] John McCarthy. Circumscription—a form of nonmonotonic
reasoning. Artificial Intelligence, 13:27-39, 1980.

[McDermott and Doyle, 1980] Drew McDermott and Jon Doyle. Non-monotonic
logic i. Artificial Intelligence, 13:41-72, 1980. Also in: [Ginsberg, 1987, pages
111-126].

[Minton and Carbonell, 1987] Steven Minton and Jaime G. Carbonell. Strategies
for learning search control rules: An explanation-based approach. In Proc. 10th
1JCAI pages 228-235, Milan, Italy, August 1987. Morgan Kaufmann.

[Minton et al., 1985] Steven Minton, Philip J. Hayes, and Jill Fain. Controlling
search in flexible parsing. In Proc. 9th IJCAI pages 785-787, Los Angeles,
CA, August 1985. Morgan Kaufmann.

[Minton et al., 1987] Steven Minton, Jaime G. Carbonell, Oren Etzioni, Craig A.
Knoblock, and Daniel R. Kuokka. Acquiring effective search control rules:
Explanation-based learning in the PRODIGY system. In Pat Langley, editor,
Proc. 4th International Workshop on Machine Learning, pages 122-133, Irvine,
CA, June 1987. University of California, Morgan Kaufmann.

[Minton et al., 1989] Steven Minton, Craig A. Knoblock, Daniel R. Kuokka,
Yolanda Gil, Robert L. Joseph, and Jaime G. Carbonell. PRODIGY 2.0: The
manual and tutorial. Technical Report CMU-CS-89-146, Carnegie Mellon Uni-
versity, Pittsburgh, PA, May 1989.

[Moore, 1985] Robert C. Moore. A formal theory of knowledge and action. In
Jerry R. Hobbs and Robert C. Moore, editors, Formal Theories of the Com-
monsense World, chapter 9, pages 319-358. Ablex, Norwood, NJ, 1985. Also
in: [Allen et al., 1990, pages 480-519].

306

[Morgenstern, 1987] Leora Morgenstern. Knowledge preconditions for actions
and plans. In Proc. 10th IJCAI, pages 867-874, Milan, Italy, August 1987.
Morgan Kaufmann.

[Murray and Porter, 1989] Kenneth S. Murray and Bruce W. Porter. Controlling
search for the consequences of new information during knowledge integration.
In Alberto Maria Segre, editor, Proc. 6th International Workshop on Machine
Learning, pages 290-295, Ithaca, NY, June 1989. Cornell University, Morgan
Kaufmann.

[Musen, 1989] Mark A. Musen. Automated support for building and extending
expert models. Machine Learning, 4:349-377, 1989.

[Neches et al., 1991] Robert Neches, Richard Fikes, Tim Finin, Thomas Gruber,
Ramesh Patil, Ted Senator, and William R. Swartout. Enabling technologies
for knowledge sharing. AI Magazine, 12(3):36-56, Fall 1991.

[Newell and Simon, 1963] Allen Newell and Herbert A. Simon. GPS, a program
that simulates human thought. In E. A. Feigenbaum and J. Feldman, editors,
Computers and Thought, pages 279-293. R. Oldenbourgh KG, 1963. Also in:
[Allen et al., 1990, pages 59-66].

[Newell and Simon, 1976] Allen Newell and Herbert Simon. Computer science as
empirical enquiry. Communications of the ACM, 19:113-126, 1976.

[Newell, 1982] Allen Newell. The knowledge level. Artificial Intelligence,
18(1):87-127, January 1982.

[Nilsson, 1980] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga, Palo
Alto, CA, 1980.

[Nodine and Unruh, 1997] Marian Nodine and Amy Unruh. Facilitating open
communication in agent systems: The InfoSleuth infrastructure. In N. Singh,
A. Rao, and m. Wooldridge, editors, Proc. 4th International Workshop on
Agent Theories, Architectures, and Languages, pages 281-295, Providence, RI,
July 1997.

[Nodine et al., 1998] Marian Nodine, Brad Perry, and Amy Unruh. Experience
with the InfoSleuth agent architecture. In Brian Logan and Jeremy Bax-
ter, editors, Proc. AAAI Workshop on Software Tools for Developing Agents,
Madison, WI, January 1998. AAAI Press.

[O-Plan TF, 1997] AIAI, University of Edinburgh, Edinburgh, Scotland. Task
Formalism Manual, January 1997. Version 3.1.

[Orfali et al., 1997] Robert Orfali, Dan Harkey, and Jeri Edwards. Instant
CORBA. Wiley, New York, NY, March 1997.

307

[Pease and Carrico, 1997] R. Adam Pease and Todd M. Carrico. Core plan rep-
resentation. Armstrong Lab Report AL/HR-TP-96-9631, Armstrong Laborat-
ory, US Air Force, January 1997. Object Modeling Working Group.

[Pednault, 1989] Edwin P. D. Pednault. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Ronald J. Brachman, Hec-
tor J. Levesque, and Raymond Reiter, editors, Proc. 1st KR, pages 324-332,
Toronto, Canada, 1989. Morgan Kaufmann.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S. Weld. UCPOP: A
sound, complete, partial order planner for ADL. In Bernhard Nebel, Charles
Rich, and William Swartout, editors, Proc. 3rd KR, pages 103-114, Cambridge,
MA, October 1992. Morgan Kaufmann.

[Peot and Smith, 1992] Mark A. Peot and David E. Smith. Conditional nonlinear
planning. In James Hendler, editor, Proc. 1st International Conference on
Artificial Intelligence Planning Sytems, pages 189197, College Park, MD, June
1992. Morgan Kaufmann.

[Polyak and Tate, 1998] Stephen T. Polyak and Austin Tate. Rationale in plan-
ning: Causality, dependencies, and decisions. The Knowledge Engineering Re-
view, 13(3):247-262, 1998.

[Pryor and Collins, 1996] Louise Pryor and Gregg Collins. Planning for contin-
gencies: A decision-based approach. Journal of Artificial Intelligence Research,
4:287-339, May 1996.

[Pryor, 1996] Louise Pryor. Opportunity recognition in complex environments.
In Proc. 13th AAAI pages 1147-1152, Portland, OR, August 1996. AAAI
Press/The MIT Press.

[Reece et al., 1994] Glen A. Reece, Austin Tate, David I. Brown, Mark Hoffman,
and Rebecca E. Burnard. The PRECIS environment. University of Edinburgh,
Scotland, March 1994.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial Intelli-
gence, 13:81-132, 1980.

[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM, 12(1):23-41, January 1965.

[Rosenblum et al., 1993] Paul S. Rosenblum, John E. Laird, and Allen Newell,
editors. The SOAR Papaers: Readings on Integrated Intelligence, volume 1 &
IT. MIT Press, Cambridge, MA, 1993.

[Russell and Norvig, 1995] Stuart J. Russell and Peter Norvig. Artificial Intelli-
gence: A Modern Approach. Prentice Hall, Upper Saddle River, NJ, 1995.

308

[Secker, 1988] Judith A. Secker. Use of O-Plan for oil platform construction
project planning. AIAI-PR 22, AIAI, University of Edinburgh, Edinburgh,
Scotland, June 1988.

[Seel, 1989] N. Seel. Agent Theories and Architectures. PhD thesis, Surrey Uni-
versity, Guildford, UK, 1989.

[Selman et al., 1992] Bart Selman, Hector Levesque, and David Mitchell. A new
method for solving hard satisfiability problems. In Proc. 10th AAAI, pages
440-446, San Jose, CA, July 1992. AAAT Press/The MIT Press.

[Selman, 1994] Bart Selman. Near-optimal plans, tractability, and reactivity. In
Jon Doyle, Erik Sandewall, and Pietro Torasso, editors, Proc. jth KR, pages
521-529, Bonn, Germany, May 1994. Morgan Kaufmann.

[Shanahan, 1997] Murray Shanahan. Solving the Frame Problem. MIT Press,
Cambridge, MA, 1997.

[Shoham, 1993] Y. Shoham. Agent-oriented programming. Artificial Intelligence,
60(1):51-92, 1993.

[Singh, 1993a] Narinder Singh. A Common Lisp API and facilitator for ABSI.
Report Logic-93-4, Stanford University, Stanford, CA, January 1993.

[Singh, 1993b] Narinder P. Singh. Implementation details for the new ABSI facil-
itator. Stanford University, Stanford, CA, April 1993.

[Smith, 1977] Reid G. Smith. The CONTRACT NET: A formalism for the control
of distributed problem solving. In Proc. 5th IJCAI page 472, Cambridge, MA,
August 1977. MIT, William Kaufmann.

[Smith, 1982] Brian C. Smith. Reflection and Semantics in a Procadural
Language. PhD thesis, MIT, Cambridge, MA, 1982. Prologue in:
[Brachman and Levesque, 1985, pages 32-39].

[SPAR, 1997] DARPA/Rome Laboratory. Planning Initiative Shared Planning
and Activity Representation—SPAR, October 1997. Version 0.1.

[Stader, 1997] Jussi Stader. A tool set for enterprise modelling. In Proc. 6th
International Conference on Interfaces, Montpellier, France, May 1997. EC2
& Developpement, Paris, France.

[Swartout, 1983] William R. Swartout. XPLAIN: A system for creating and
explaining expert consulting programs. Artificial Intelligence, 21(3):285-325,
September 1983.

309

[Tate et al., 1990] Austin Tate, James Hendler, and Mark Drummond. A review
of Al planning techniques. In James Allen, James Hendler, and Austin Tate,

editors, Readings in Planning, pages 26—49. Morgan Kaufmann, San Mateo,
CA, 1990.

[Tate et al., 1994] Austin Tate, Brian Drabble, and Richard Kirby. O-Plan2: An
open architecture for command, planning and control. In Monte Zweben and
Mark S. Fox, editors, Intelligent Scheduling, chapter 7, pages 213-239. Morgan
Kaufmann, San Francisco, 1994.

[Tate et al., 1998] Austin Tate, Stephen T. Polyak, and Peter Jarvis. TF method:
An initial framework for modelling and analysing planning domains. In
Proc. Knowledge Engineering and Acquisition for Planning: Bridging Theory
and Practice, Pittsburgh, PA, June 1998. Carnegie-Mellon University, AAAI
Press.

[Tate, 1975] Austin Tate. Using Goal Structure to Direct Search in a Problem
Solver. PhD thesis, University of Edinburgh, Edinburgh, Scotland, 1975.

[Tate, 1995] Austin Tate. Integrating constraint management into an Al planner.
Artificial Intelligence in Engineering, 9:221-228, 1995.

[Tate, 1996a] Austin Tate. Representing plans as a set of constraints — the <I-N-
OVA> model. In Brian Drabble, editor, Proc. 3rd International Conference on
Artificial Intelligence Planning Sytems, pages 221-228, Edinburgh, Scotland,
May 1996. AAAI Press.

[Tate, 1996b] Austin Tate. Towards a plan ontology. AT*IA Notizige (Quarterly
Publication of the Associazione Italiana per I’Intelligenza Artificiale), 9(1):19—-
26, March 1996.

[Tate, 1998] Austin Tate. Roots of SPAR—shared planning and activity repres-
entation. The Knowledge Engineering Review, 13(1):121-128, March 1998.

[Uschold et al., 1996] Mike Uschold, Martin King, Stuart Moralee, and Yannis
Zorgios. The enterprise ontology. Technical Report ATAI-TR-195, ATAI, Uni-
versity of Edinburgh, Edinburgh, Scotland, August 1996.

[Uschold et al., 1998] Mike Uschold, Martin King, Stuart Moralee, and Yan-
nis Zorgios. The Enterprise ontology. The Knowledge Engineering Review,
13(1):31-90, March 1998.

[Valente, 1994] André Valente. Planning. In Joost Breuker and Walter Van
de Velde, editors, CommonKADS Library for Ezpertise Modelling, chapter 10,
pages 213-229. IOS Press, Amsterdam, 1994.

[Valente, 1995] André Valente. Knowledge-level analysis of planning systems.
SIGART Bulletin, 6(1):33-41, January 1995.

310

[van Harmelen and Balder, 1992] Frank van Harmelen and J. R. Balder. (ML)%
A formal language for KADS models of expertise. Knowledge Acquisition, 4(1),
March 1992.

[van Harmelen and ten Teije, 1998] Frank van Harmelen and Annette ten Teije.
Characterising problem-solving methods by gradual requirements: Overcoming
the yes/no distinction. In Proc. 8th Knowledge Engineering: Methods and
Languages, Karlsruhe, Germany, January 1998. University of Karlsruhe.

[VanLehn and Jones, 1991] Kurt VanLehn and Randolph M. Jones. Learning
physics via explanation-based learning of correctness and analogical search
control. In Lawrence A. Birnbaum and Gregg C. Collins, editors, Proc. 8th
International Workshop on Machine Learning, pages 110-114, Evanston, IL,
June 1991. Northwestern University, Morgan Kaufmann.

[Veloso et al., 1995] Manuela Veloso, Jaime Carbonell, Alicia Perez, Daniel Bor-
rajo, Eugene Fink, and Jim Blythe. Integrating planning and learning: The
PRODIGY architecture. Journal of Theoretical and Fxperimental Artificial In-
telligence, 7(1), 1995.

[Vo3 et al., 1990] Angi Vof}, Werner Karbach, Uwe Drouven, and Darius Lorek.
Competence assessment in configuration tasks. In Proc. 9th ECAI, pages 676—
681, Stokholm, Sweden, August 1990. Pitman.

[Warren, 1976] David H. D. Warren. Generating conditional plans and programs.
In Proc. AISB, pages 344-354, Edinburgh, Scotland, July 1976. University of
Edinburgh.

[Wavish, 1992] P. Wavish. Exploiting emergent behaviour in multi-agent sys-
tems. In E. Werner and Y. Demazeau, editors, Proc. 3rd European Workshop
on Modelling Autonomous Agents and Multi-Agent Worlds, pages 297-310. El-
sevier Science Publishers, 1992.

[Wefald and Russell, 1989] Eric H. Wefald and Stuart J. Russell. Adaptive learn-
ing of decision-theoretic search control knowledge. In Alberto Maria Segre, ed-
itor, Proc. 6th International Workshop on Machine Learning, pages 408411,
Ithaca, NY, June 1989. Cornell University, Morgan Kaufmann.

[Weld and de Kleer, 1990] Daniel S. Weld and Johan de Kleer, editors. Read-
ings in Qualitative Reasoning about Physical Systems. Morgan Kaufmann, San
Mateo, CA, 1990.

[Weld, 1996] Daniel S. Weld. Planning-based control of software agents. In Brian

Drabble, editor, Proc. 3rd International Conference on Artificial Intelligence
Planning Sytems, pages 268274, Edinburgh, Scotland, May 1996. AAAI Press.

311

[Wickler and Pryor, 1996] Gerhard Wickler and Louise Pryor. On competence
and meta-knowledge. In Milind Tambe and Piotr Gmytrasiewicz, editors,
Proc. AAAI Workshop on Agent Modeling, pages 98-104, Portland, OR, Au-
gust 1996. AAAT Press, Menlo Park, CA.

[Wielinga and Breuker, 1986] Bob J. Wielinga and Joost A. Breuker. Models of
expertise. In Proc. 7th ECAI, Vol. I, pages 306-318, Brighton, UK, July 1986.

[Wielinga et al., 1992] B. J. Wielinga, A. Th. Schreiber, and J. A. Breuker.
KADS: A modelling approach to knowledge engineering. Knowledge Acquisi-
tion, 4(1):5-53, March 1992.

[Wielinga (ed) et al., 1994] Bob Wielinga (ed), Hans Akkermans, Heshem Has-
san, Olle Olsson, Klas Orsvarn, Guus Schreiber, Peter Terpstra, Walter Van
de Velde, and Steve Wells. Expertise model definition document. Report
KADS-II/M2/UvA /026/5.0, University of Amsterdam, Amsterdam, The Neth-
erlands, June 1994.

[Wilensky, 1981] Robert Wilensky. Meta-planning: Representing and using
knowledge about planning in problem solving and natural language under-
standing. Cognitive Science, 5(3):197-233, July 1981.

[Wilkins, 1982] David E. Wilkins. Using knowledge to control tree searching.
Artificial Intelligence, 18(1):1-51, January 1982.

[Wilkins, 1988] David E. Wilkins. Practical Planning. Representation and Reas-
oning Series. Morgan Kaufmann, San Mateo, CA, 1988.

[Winston, 1992] Patrick Henry Winston. Artificial Intelligence. Addison-Wesley,
Reading, MA, 3rd edition, 1992.

[Witten et al., 1994] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Man-
aging Gigabytes: Compressing and Indexing Documents and Images. Van Nos-
trand Reinhold, New York, NY, April 1994.

[Wooldridge and Jennings, 1995] Michael Wooldridge and Nicholas R. Jennings.
Intelligent agents: Theories and practice. The Knowledge Engineering Review,
10(2):115-152, June 1995.

[Wooldridge, 1994] Michael Wooldridge. Coherent social action. In A. G. Cohn,
editor, Proc. 11th ECAI, pages 279-283, Amsterdam, The Netherlands, August
1994. Wiley.

[Zaniolo, 1991] C. Zaniolo. The logical data language (LDL): An integrated ap-
proach to logic and databases. Technical Report STP-LD-328-91, MCC, Aus-
tin, TX, 1991.

312

