

I-X Domain Editor Guide

Jussi Stader and Austin Tate
Artificial Intelligence Applications Institute
School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

Web: http://i-x.info
E-mail: query@i-x.info

Version 4.4 – 30 August 2006

 1

1 Introduction - Enterprise Modelling and <I-N-C-A>3

2 The Models...6

2.1 Domain.. 7

2.2 Activity Specifications .. 7

2.3 Activity Relatable Objects .. 7

2.4 Grammar and Lexicon... 8

3 The Domain Editor (I-DE) ..8

3.1 The Domain Editor Window.. 8

3.2 The Menu Bar... 9

3.3 The Tool Bar... 9

4 Working with the Domain Editor ..10

4.1 Saving and Reverting.. 10

4.2 Preferences .. 12

5 Construct Editing ..13

5.1 Activity Editing .. 15

5.2 Variable Declaration.. 19

6 Using the Models...20

7 Evaluation and Conclusion ..21

8 References ...22

 2

1 Introduction - Enterprise Modelling and <I-N-C-A>

Enterprise Modelling is the art of capturing and modelling the information
about an enterprise that is relevant for supporting the running of that
enterprise, covering as many aspects of the enterprise as required.

In the first instance, it has to be decided which information is relevant, and
that information has to be captured. The information captured must be both
accurate and open to change. Arguably, capturing information is the
hardest part of Enterprise Modelling. The modeller needs good capture
techniques and suitable notations so that the modeller can easily see what
has been modelled and can communicate this to others. There are today
many different techniques and notations to support an enterprise modeller
in capturing information, many of them informal [5, 8, 7, 9, 15, 2]. There are
good reasons for this proliferation of techniques and notations: the modeller
needs all the support available, and the better the technique and notations
suit the modeller and the aspect of the enterprise that is being modelled,
the more effective the modeller can be and the better she can understand
and communicate the information. This brings us to the first requirement for
enterprise modelling support: any realistic enterprise modelling support will
have to be able to provide and cope with different techniques for capturing
information, and with different notations (or views) for the information.

For Enterprise Modelling in the real world, it is impossible to ever say "this
model is finished". We believe that it is impossible to model all aspects of
an enterprise accurately and in sufficient detail so that the models truly
reflect all aspects of the enterprise [4, 3]. Even if it were possible, the world
within and outside an enterprise does not stand still, so changes will always
have to be incorporated into the model. Enterprise Modelling efforts can be
likened to the painting of the Forth Rail Bridge, a large and intricate metal
structure near Edinburgh. This bridge is painted periodically to prevent
corrosion of the structure. The painters start at one end of the bridge and
work their way to the other end. As soon as the painters reach the other
end, it is time to paint the first end again. I.e. it is a continuous job. Our
second and third requirements then are that it must not be necessary for
the models to be complete (we must be able to cope with incomplete
information and we should make use of all the information that we have),
and it must be possible (and easy) to change and update the models.

Once enterprise information has been captured, it should be used to
support the running of the organisation. How much support the models can
provide depends on their quality and their form. If the models are available
in paper form (printed documents of diagrams and descriptions), they can
be used for documentation and communication ("this is what we do"). This
can be useful for stating best practice, for teaching and training purposes,
etc. However, paper models are not easy to change and their availability is
not great. If the models are available on-line in the form of documents, they
are easier to change and (in most organisations) more readily available.
However, since Enterprise Modelling is such a difficult job, we should be

 3

able to base more support on the models rather than just using them as
documentation. The models should be used to support the running of the
enterprise much more directly. This usually makes more demands on the
already difficult task of modelling: more information has to be included in
the models and the models need to become more formalised. However, the
benefits can be significant and are usually well worth the effort. For
example, process models and related information can become active in
workflow systems and thus directly support the running of business
processes [11, 12, 6, 1], other models can be used for skills management
[10] and more generally knowledge management. This kind of support puts
an organisation in a good position to quickly react to change.

In summary, the high-level requirements relevant to Enterprise Modelling
are:

• any realistic enterprise modelling support will have to be able to provide

and cope with different techniques for capturing information, and with
different notations (or views) for the information;

• it must not be necessary for the models to be complete (we must be
able to cope with incomplete information and we should make use of all
the information that we have);

• it must be possible (and easy) to change and update the models;
• models should be used to their full capacity to support the running of the

organisation.

The I-X Domain Editor, I-DE, is a tool for Enterprise Modelling that takes
into account the high-level requirements above. I-DE supports models used
by I-X technology. These models are all based on the <I-N-C-A> (Issues -
Nodes – Constraints - Annotations) constraints model, a high-level
approach to model specifications [14]. <I-N-C-A> models can be used to
describe any synthesised artefact, e.g. results, models, plans,
configurations, designs, etc. An <I-N-C-A> specification defines a set of
"nodes" to be included in the design, along with "constraints" on how these
nodes can be related to one another and the environment they exist in. It
also includes a set of outstanding "issues" and “annotations” related to the
artefact(s). By having a clear description of the different components within
a synthesised artefact, the model allows for them to be manipulated and
used separately from the environments in which they are generated.

At various stages of the development of the I-X research the typography for
rendering <I-N-C-A> has varied as the components have received
clarification. <I-N-CA> originally stood for Issues, Node, Critical and
Auxiliary Constraints. The aspect of separating critical (shared
communications) constraints from auxiliary (separately managed)
constraints is still important within the I-X architecture, but is now
considered all part of managing the "C" (constraints) component of a
model. The annotations were always present in the ontology and can be
attached to all components, but the top-level entity annotations capturing
the rationale behind the synthesised product or the process/plan being

 4

described has required more prominence as the work has continued and as
mixed-initiative and human communications aspects have become more
important. Hence, the rendering <I-N-C-A> with the extra hyphen now
stands for Issues, Nodes, Constraints and Annotations.

The issues in the specifications state the outstanding items to be handled
and can represent unsatisfied objectives, problems which analysis has
shown need to be addressed, etc. The I constraints can be thought of as
implying further constraints which may have to be added into the design in
future in order to address the outstanding issues.

The nodes in the specifications describe components that are to be
included in the design. Nodes can themselves be artefacts that can have
their own design(s) associated with them.

The constraints restrict the relationships between the nodes to describe
only those artefacts within the design space which meet the requirements.
The constraints are split into "critical constraints" and "auxiliary constraints"
depending on whether some constraint managers (solvers) can return them
as "maybe" answers to indicate that the constraint being added to the
model is okay so long as other critical constraints are imposed. The maybe
answer is returned as a disjunction of conjunctions of critical constraints.

Finally, annotations can be added which describe the rationale behind
design choices and other useful information.

The choice of which constraints are considered critical is itself a decision
for an application of I-X and I-Core. It is not pre-determined for all
applications. A temporal activity-based planner would normally have
objects/variable constraints (equality and inequality of objects) and some
temporal constraints (maybe just the simple before(time-point1, time-point-
2) constraint) as the critical constraints. But, in a 3D design or a
configuration application object/variable and some other critical constraints
(possibly spatial constraints) might be chosen. It depends on the nature of
what is communicated between constraint managers in the application of
the architecture.

The types of constraints in an <I-N-C-A> model are usually specialised to a
great level of detail. For example, in a process model they might be as
shown below:

 I - Issue constraints
 - may add an "include node" constraint (add nodes to the model)
 - will not add an "include node" constraint
 N - Node Constraints
 - "include node" constraints
 - other node constraints
 C - Constraints; E.g., if the artefact is an activity plan:
 O - Ordering constraints
 V - Variable and other constraints

 5

 X - eXtra constraints (such as):
 - Authority Constraints
 - World State Constraints
 - Resource Constraints
 - Spatial Constraints
 - Miscellaneous Constraints
 A - Annotations; E.g., information about a graphical layout of the nodes
in a GUI.

In our generic, conceptual base model, an <I-N-C-A> construct has 5
components:
• name: an identifier for the construct
• issues: a set of issues related to the use of the construct
• nodes: a list of nodes that are part of the construct
• constraints: a set of constraints that apply to the construct and its nodes
• annotations: comments and other useful information about the

construct.

The following sections first describe the specifications that can be edited
using I-DE, before describing I-DE and its use.

2 The Models

In this section we describe the structures that can be specified, viewed, and
edited with the help of I-DE. I-DE’s concepts are:
• The Domain: a coherent set of specifications.
• Activity Specifications: details about an activity and how can be

performed. Activity Specifications are also called Refinements.
• Activity Relatable Objects (AROs): specifications of objects that are

generated or manipulated within the domain. The objects are organised
into an object type hierarchy. AROs are not currently implemented in I-
DE.

• Grammar and Lexicon: specifications of terms that can be used within
the domain and how they can be combined to form specifications.
Currently the lexicon is built automatically to reflect the patterns used in
issues, nodes and constraints, and the grammar is static to show the
constructs that are currently implemented in I-DE. It is envisaged that I-
DE will eventually allow for managed grammars and lexicons to allow
active assistance in modelling and provide active help in maintaining
coherence of models.

All main construct specifications within I-DE conceptually follow the <I-N-C-
A> model, except for the grammar and the lexicon. I-DE specifications
make use of specialisations of <I-N-C-A> for constraints regularly used in
process models and to add human-readable “comments” as part of their
annotations. The keywords (and their specialisations) currently used by I-
DE specifications are issue, node, constraint (temporal, before, world-state,
condition and effect) and annotation (comments).

 6

2.1 Domain
The Domain is a coherent set of specifications that represent an area of
expertise. The domain itself is an <I-N-C-A> object. It has a name and it
can have issues, constraints, and annotations. Its nodes consist of the
activity specifications and the activity relatable objects that are defined
within the domain. A domain can be loaded from files, saved to files,
published, and reverted to a previous version

2.2 Activity Specifications
Activity specifications follow the <I-N-C-A> model, but with the following
specialisations:

• They have a pattern that describes the activity performed

(conventionally starting with a verb).
• Nodes are sub-activities that are specified by giving their activity

pattern. Each node has two node-ends: begin and end which are time
points that can be referred to within constraints.

• Constraints take the form of type, sub-type, and other parameters such
as node-end time point reference(s), "pattern = value", etc. The types
and sub-types are keywords that can be shared between applications.
There are three specific constraint types that are currently supported
further. These are:

1. Orderings, which are precedence relationships between node
ends. An Ordering has the following specification: type is
"temporal", sub-type is "before", and node references are node-
end1 and node-end2. There is no pattern.

2. Conditions, which are descriptions of world state that have to be
fulfilled before the activity can be considered for execution. A
Condition has the following specification: type is "world state",
sub-type is "condition", and node reference must currently be set
to "self" but should in future also allow the activity's sub-nodes.
Any form of pattern = value is allowed.

3. Effects, which are descriptions of world state that will be true
when the activity has been performed. An Effect looks just like a
Condition, except for its sub-type, which is "effect".

• Activity specifications can have variable declarations that determine
which variables can be used in the specifications. The declarations can
be “none” (no variables allowed), “any” (any variables allowed), or a
given list of variables. In the latter case, no other variables are allowed.

2.3 Activity Relatable Objects
In I-X, Activity Relatable Objects are organised into a simple class system.
An IX-ObjectClass has a name and may have sub-classes and properties.
Classes can have more than one super-class, but cycles should be
avoided.

 7

Properties have a name and a syntax. Classes inherit properties from their
super-classes. The syntax of properties is one of {string, symbol, number,
object, list, default}. Currently, the syntax specifications are only used to
guide I-X parsers, but in future I-DE may use the syntax specifications to
check constraints in the models.

2.4 Grammar and Lexicon
Currently this is built automatically to reflect the patterns used in issues,
nodes and constraints. It is envisaged that this will eventually allow for
managed grammars and lexicons to allow active assistance in modelling
and provide active help in maintaining coherence of models.

3 The Domain Editor (I-DE)

I-DE is based on I-X Technology [13] from AIAI at the University of
Edinburgh. The main window of the Domain Editor (the frame) contains
several editor panels for editing different aspects (or constructs) of the
domain. Currently the editors available are
• the Global Domain Editor, which contains information about the domain

itself (e.g. the domain name);
• the Activity Editor, which edits “refinements” which contain information

about activities and how they break down into sub-activities;
• the Grammar Editor, which currently only shows the patterns that are in

use in the domain;
• the Objects Editor, which edits the object model which specifies object

classes and their properties and how they break down into sub-classes.

An editor panel may itself have different "views" that are used to display
and edit the panel's constructs. The Activity Editor has three such views:
1. Minimal View: a simplified version of the activity and its refinement. The

main simplification is that no constraints are shown

2. Comprehensive View: a view that can display and edit all of an

activity's specification

3. Graphical View: a graphical view that uses nodes and arcs to show an

activity's sub-activities and the temporal relationships between them.

3.1 The Domain Editor Window
This window provides access to most functions of the overall domain editor
via its menu bar, and access to the most commonly used functions via its
tool bar. The window can display in one of three styles: simple, tabbed, and
card style. The style can be changed using the preferences editor via the
View menu.
Figure 1 shows the window in simple mode with the activity editor showing.

 8

Figure 1: I-DE Window (in simple mode)

3.2 The Menu Bar
The menu bar has 5 standard menus:

1. File for closing the Domain Editor, for file access (open/save),

publishing, and reverting. All functions here manipulate the domain as a
whole, not individual constructs;

2. Edit for manipulating the current construct, i.e. the construct that is
currently shown in the Domain Editor's panel. Many of the edit menu
options are common to all types of panels (new, modify draft, revert, ...)
but there are also more specific options that are only available in
particular panels;

3. View for changing the visual set-up of the window, for changing which
panel is shown in the window, for changing which view is shown in that
panel (if applicable), for changing panel styles, etc.;

4. Tools for additional support like consistency checks etc. This menu also
gives access to the preferences editor;

5. Help for access to this manual, other help, and information about the
application.

3.3 The Tool Bar
The tool bar provides access to the most commonly used functions via
buttons. All these functions are also available via the menu bar (in most
cases, the image on the toolbar button is shown in the menu next to the
corresponding menu item. Moving the mouse over a toolbar button will,
after a while, display a "tool tip text" that gives a brief explanation of the
button's function. The buttons themselves can either show just an icon or

 9

an icon with a short text underneath (determined by user preferences). The
toolbar can be switched on and off via the View menu.

4 Working with the Domain Editor
This section gives an overview of how to work with I-DE. Construct specific
editing (e.g. Activity editing) is described separately in more detail. The
issues covered here are update levels, workflow, and preferences.

The Domain Editor maintains different levels of updates. The original
domain model that the editor is started with is considered a public domain
model, which other applications may be using for their own purposes (e.g.
within an I-X Process Panel). This public domain model is kept as it is
unless an updated model or a replacement model is explicitly "published"
by the Domain Editor's user. (Note that this is true whether the Domain
Editor is used in stand-alone mode or as part of another application). There
is also a "draft domain model" which is the one that is being edited. The
Domain Editor keeps track of any changes that are made to the draft
domain model so that updates to the original domain model can be made
explicitly.

4.1 Saving and Reverting
There are 3 levels of saving:

1. Modify Draft: When a construct has been edited in the Domain Editor

Panel, initially these changes may be made only in the panel itself, not
in the domain construct that is being edited. Such changes need to be
transferred from the panel into the construct in the draft domain. The
Domain Editor will perform this transfer (modify draft) when it is aware
that this may be necessary, e.g. when a node has been added, when
the user switches constructs, views or panels, or if the user decides to
save or publish the draft domain. However, at any point the user can
choose to explicitly modify the draft, i.e. note the changes into the draft
domain via the toolbar button or the Edit menu.

2. Save to File: Modifying the draft (noting changes) does not save to file,
so the next level of saving is to save the draft domain to file. As with all
editing applications, it is recommended to do this frequently to ensure
that work is not lost. Saving the draft domain to file will write the whole
domain with all its constructs into a file in XML format. This can later be
loaded into the Domain Editor for further editing, or it can be accessed
by other applications.

3. Publish: The underlying public domain is not changed by any of the
above (simple editing, modifying draft, or saving the draft domain to file).
The only way to update the public domain is to publish the draft domain
via the toolbar button or the File menu. When this happens, all pending
changes are transferred to the original domain and these changes will
be seen by any application that has registered as listeners to this
domain. Note that publishing is always done for a whole domain, not for
individual constructs. Note also that publishing a domain will not save it

 10

to file, but the same effect can be achieved by saving the draft domain
to file just before or straight after publishing. At that point the draft
domain and the public domain can be represented by the same XML
structures. It is a good idea to publish from time to time even if the
Domain Editor is running stand-alone because it will make the editor
more efficient.

There are undo functions that correspond to the 3 levels of saving:
1. Undo: revert a construct to the last time it was modified in the draft

domain, i.e. undo an editing step. This function is reversible with a Redo
function;

2. Revert to published: revert a construct to the public version (via Edit
menu), i.e. undo all changes to this construct since the domain was last
published. This function is not reversible;

3. Re-load: revert the whole domain to the last time it was saved to file by
opening that file via the File menu. This function is not reversible.

Note that the first two undo functions apply to an individual construct, while
the third applies to the domain as a whole. There is a fourth "revert"
function that also applies to the domain as a whole: "discard changes to
draft" which reverts the whole domain to the public version, i.e. undo all
changes to all constructs since the domain was last published.

Figure 2: I-DE Workflow

The diagram shows the different states that the system may be in during an
I-DE session, and it shows how a user can move between these states.
After editing is done, the user may explicitly choose to modify the draft
domain model. A modified draft domain model can be saved to file and/or
published to be visible to the application (the I-X Process Panel) or both.
When the domain editor is closed, the user is given the option to save the
current draft to file and/or to publish the current draft to be visible to the
application.

 11

4.2 Preferences
There are several preferences and two modes of use that the user can
choose from. There are default preferences for initial use of I-DE, but the
user can change the preferences using a simple preferences editor. The
preferences editor allows the user to change preferences, to apply the
current preferences to the I-DE they are currently working with, to save
preferences so that the editor starts up with the saved preferences, and to
revert to previously saved preferences. Below, we describe the two modes
of use and the preferences that are under the user's control.

The two modes of use are:
1. simple mode: a cut-down version of I-DE that shows only the essential

features needed to quickly put together simple process models. Other
user preferences are restricted in this mode, i.e. it can be seen as a
quick way to set all preferences to the simplest option. Explicitly
changing any of the restricted options will override the simple mode
restrictions and result in advanced mode to be set.

2. advanced mode: the full version of I-DE that gives the user full control
over preferences and access to all editing facilities.

If the user switches from advanced to simple mode, most preferences will
be set and restricted. However their previous settings are kept and when
the user switches back to advanced mode all preferences will go back to
their previous values.

The preferences that are under the user's control cover the editor in
general, sub-editors, and views. These include:
• mode of use: a flag that shows whether simple mode is set;
• button texts: a flag that determines whether text is shown on

underneath the icons of toolbar buttons;
• lists as text: whenever there is a list of specifications that can be edited

by the user (e.g. activity nodes), the user can choose whether to view
these as a list and edit them with special-purpose dialogue-style editors,
or to view them as lines of text that can be typed into directly.

• editable: to use the editor as a read-only viewer, its editing facilities can
be switched off to ensure that no unintended updates are made. This is
not yet implemented.

• panel style: the choice of panel style to use. The panel styles available
are minimal (no visual queue for changing panels), tabbed (a tab is
shown at the top of the panels that can be used to switch panel), and
card (a choice-box is displayed above the panel that can be used to
change panel). Note that it is always possible to change panels by using
the Windows option of the View menu.

• view: the view to use. The views available depend on the panel. For
example, for the activity panel, the views available are minimal,
comprehensive, and graphical.

There are additional choices that affect the display of constraints in the
comprehensive view of the activity sub-editor. The three groups of
constraints that can be displayed are "orderings", "conditions/effects",

 12

and the generic "other constraints". The user can choose to suppress
the display of some of these; for example, if only orderings are of
interest, all other constraints can be switched off. Note that, whenever
the generic "other constraints" are displayed, all available constraints are
shown. For example, if only conditions/effects is switched off, conditions
and effects will be shown in their generic form under "other constraints".
Constraint-related preferences are only available for the comprehensive
view - the minimal and graphical view have their own, special purpose
way of displaying constraints.

In simple mode, the following preferences are restricted as follows:

• panel style is set to minimal
• lists are displayed as text
• activity view is set to minimal
• only minimal information about orderings are displayed, so all

preferences relating to constraints are disabled.
Other preferences are not affected by the choice of mode.

5 Construct Editing

Each construct editor is responsible only for manipulating the specification
of the construct. In the Global Domain Editor Panel this is less intuitive than
for the other panels: this editor only considers domain details as part of its
editing remit (mainly name and comments), not the constructs within the
domain. The only way to manipulate the domain as a whole is via the
options in the File menu, and these are available for all panels.

I-DE provides several functions for all construct editors. The
implementation of these functions may vary between different construct
types, but they should all be available. These common functions are:

• new: create a new construct of this type;
• copy: make a new construct that holds the same details as the current

one;
• delete: delete the current construct;
• edit: select a construct to be edited;
• modify draft: save the changes made in the panel into the draft domain;
• revert: revert the construct to the last time it was modified in the draft;
• check: check the consistency within the current construct.

Figure 3 shows the global domain editor and Figure 4 shows the grammar
viewer (currently the grammar cannot be edited).

 13

Figure 3: Global Domain Editor

 14

Figure 4: Grammar Editor

5.1 Activity Editing
The functions described above are common between editors for different
concepts, but there are specific things that are available in I-DE to support
activity editing. The Activity Editor has three different views that have
different purposes:
1. the minimal view is for quickly defining or editing simple activity

specifications.
2. the comprehensive view provides full access to all fields of activity

specifications that are known to I-DE.

 15

3. the graphical view for a more visual way to specify or edit sub-activities
and ordering constraints between them.

The Minimal View (Figure 5): An activity's name and pattern can be
specified, along with its list of issues and sub-activities. The sub-activities
can be put into sequence or in parallel and the editor will indicate other
ordering constraints if they are present, i.e. if they have been specified
using a different view or a different editor. Specifications (and edits) can be
made by simply typing into the respective fields on the screen.

The Comprehensive View (Figure 6): The comprehensive view shares
some of the features of the minimal view, but provides additional ones. The
name and pattern of the activity are presented and specified or edited in
the same way as in the minimal view. For issues and nodes the user can
choose whether to type into the fields directly or whether to see fields as
lists and use structured dialogue-style editors for specifying and editing.
Constraints are split into orderings, conditions/effects, and other
constraints. The editor can show and edit these constraint types with
specific support, but the user can also decide to suppress the display of
specific constraint types, or to view constraints of all types (except
orderings) in their generic form.

The Graphical View (Figure 7): The graphical view uses nodes and arcs to
show sub-activities and ordering constraints between them. There are also
text fields for the activity name and pattern and (as in the other views)
these can be edited by typing into the fields. Nodes can be added and
deleted easily. They each show a node number that is assigned by I-DE
whenever a sub-activity is specified (also in the other views), the pattern of
the sub-activity, and the sub-activity's two node ends: begin and end. Arcs
can be drawn between node ends to specify ordering constraints between
the node ends.

In the graphical view, it is easy to move from a sub-activity to its possible
expansions (all activity specifications whose patterns match that of the sub-
activity) by clicking the right mouse button. This brings up a pop-up menu
that lists all matching activity specifications that are currently in the domain.
New expansions (activity specifications) can be defined using the same
pop-up menu.

The minimal and comprehensive views have a summary panel on the left
and an editing panel on the right. The summary panel lists all currently
defined activities and their sub-activities as a tree. Clicking on an activity
will put that activity's specification into the editing panel, clicking on a sub-
activity will put that node's pattern into the pattern field in the editing panel,
ready for the user to provide a new specification with that pattern.

Note that the graphical view is mainly for illustration and visualisation
purposes, and is not as stable as the other two views.

 16

Figure 5: I-DE Activity Editing - minimal view

 17

Figure 6: I-DE Activity Editing - comprehensive view

 18

Figure 7: I-DE Activity Editing - graphical view

5.2 Variable Declaration
It is possible to use the editor to restrict which variables can be used in an
activity specification. This is done with the help of variable declarations that
can be made via the "Declare Variables" option in the Edit menu. The user
can:
• allow any variable to be used in the specification (default),
• allow no variables to be used in the specification,

 19

• provide a list of all variables that can be used in the specification.

Once a variable declaration other than "any" has been given by the user,
the activity editor will attempt to support the user in sticking to the
declaration. Whenever the user types a "?" in a field that can contain a
variable, the editor checks whether there are any variable declarations are
present. If no variables are allowed, the editor complains and the "?" will
not appear in the specification. If there is a list of allowed variables, the
editor will present this list and allow the user to choose one of the declared
variables. This should help the user to adhere to declarations. Note that the
user can choose to ignore declarations and enter variables that are not
allowed.

The editor also lets the user check explicitly whether the activity
specification contains any violations via "check consistency" option in the
Tools menu. On request, the editor will check whether there are any
declarations. If there are, the editor checks whether any un-declared
variables are used, and whether any of the declared variables are not used.
Either of these two events is considered a violation and will be reported to
the user.

The Variable Declaration Editor also allows the user to specify an object
class for each variable. Once a variable has been assigned a class (or
type), the properties of the variable’s class are available for specifying
constraints on the variable. This helps the user to keep track of object
constraints and to be consistent about the use of property names.

6 Using the Models

A generic modelling framework, such as <I-N-C-A>, allows different kinds
of models to be represented in a uniform style. The high-level, generic,
multi-purpose structure combined with keywords that indicate the specific
semantics of contents makes this framework a powerful representation tool.
A shared ontology of keywords can ensure that the keywords are used
consistently in the models. Different kinds of problem solvers that also
share the ontology of keywords can then determine which specific parts of
the models are relevant to them. Ignoring those parts of the models whose
keywords are not part of the problem solver's domain can simply be
ignored.

If the problem-solving environment is distributed and agent-based and uses
a broker to coordinate different problem solvers, the broker may be able to
use the ontology of keywords to determine which problem solvers can best
contribute to the problem. Comparing the keywords used in the models with
the keywords that a problem solver can understand (i.e. are part of the
problem solver's domain) should help the broker to match solvers to
models and the problem at hand.

It is important to remember that the quality of the models and the amount of
information present in the models will significantly affect their usefulness.

 20

7 Evaluation and Conclusion

At the start of this paper we established a set of requirements for
Enterprise Modelling support. We now take these in turn and check how I-
DE relates to them:
• any realistic enterprise modelling support will have to be able to provide

and cope with different techniques for capturing information, and with
different notations (or views) for the information;

• I-DE illustrates how different viewers editors can be used in conjunction
with each other (different sub-panels or sub-editors) and how different
views can be used to highlight different types of information (form-based
vs. graphical activity editor views).

• it must not be necessary for the models to be complete (we must be
able to cope with incomplete information and we should make use of all
the information that we have);

• I-DE looks for those things in models that it can display and update,
ignoring the parts that it does not recognise. It also allows for
incomplete models to be stored and published. However, generating
and saving incomplete models is relatively easy. The main impact of
this issue is on systems that use the models as a knowledge base, e.g.
a workflow model.

• it must be possible (and easy) to change and update the models;
• We believe that I-DE is easy to use and that it provides good support for

updating models. Its architecture and connection to the I-X framework
also makes it easy to set up I-DE so that it can be used together with a
workflow system in order to interleave process specification, planning,
and enactment.

• models should be used to their full capacity to support the running of the
organisation.

• The kinds of information that I-DE is designed to capture lend
themselves well to being used as the basis of workflow.

Overall, I-DE provides good support for Enterprise Modelling. I-DE is
implemented in a way that makes it easy to use the editor in different
contexts and set-ups. It also makes it relatively easy to provide additional
support. In the future, it would be interesting to see how much modelling
support can be provided by using I-DE in conjunction with a workflow
system running a modelling process model, i.e. to guide the use of I-DE
with the help of a model that specifies Enterprise Modelling expertise.

 21

8 References

1. Chen-Burger Y. and Stader J., “Formal Support for Adaptive Workflow Systems in a

Distributed Environment”, to be published in Workflow Handbook 2003, Ed. Layna
Fischer, 2003.

2. Dobson J. and Blyth A., Chudge J. and Strens M., “The ORDIT Approach to
Organisational Requirements”, Requirements Engineering: Social and Technical Issues,
London, ed. Jirotka and J.A.Goguen, Academic Press, 1994.

3. Fox M. and Gruninger M., “Enterprise Modelling”, AI Magazine, AAAI press, Fall 1998,
pp.109-121.

4. Fraser J., “Managing Change through Enterprise Models”, Proceedings of Expert
Systems '94, the 14th Annual Conference of the British Computer Society Specialist
Group on Expert Systems, Cambridge, UK, 12-14 December 1994.

5. IBM, “Business System Development Method, Business Mapping, Part1: Entities; and
Part 2: Processes”, 2nd ed, IBM England, May 1992.

6. Jarvis, P., Stader, J., Macintosh, A., Moore, J., Chung P., “What Right Do You Have To
Do That?: Infusing adaptive workflow technology with knowledge about the organizational
and authority context of a task”. First International Conference on Enterprise Information
Systems (ICEIS-99), Setubal, Portugal,1999.

7. Mayer R, Cullinane T, deWitte P, Knappenberger W, Parakath B, & Wells S, “IICE IDEF3
process description capture method report (al/tr-1992-0057)”. Technical Report, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio, 1992. See also
http://www.idef.com/

8. NIST, “Integration Definition for Function Modelling (IDEF0)”, Federal Information
Processing Standards Publication 183, National Institute of Standards and Technology
(NIST), Dec 1993.

9. Ould M, “Business Processes: Modelling and Analysis for Re-engineering and
Improvement”, John Wiley and Sons, 1995.

10. Stader J. and Macintosh A., "Capability Modelling and Knowledge Management";
Applications and Innovations in Expert Systems VII, Proceedings of ES 99 the 19th
International Conference of the BCS Specialist Group on Knowledge-Based Systems and
Applied Artificial Intelligence, Cambridge, December, 1999; Springer-Verlag; ISBN 1-
85233-230-1; pp 33 – 50, 2000.

11. Stader J., Moore J., Chung P., McBriar I., Ravinranathan M., and Macintosh A., "Applying
Intelligent Workflow Management in the Chemicals Industries", Workflow Handbook 2001,
L. Fisher (ed), Published in association with the Workflow Management Coalition (WfMC),
2000, pp.161-181.

12. Stader J, “Results of the Enterprise Project”, Proceedings of the 16th International
Conference of the British Computer Society Specialist Group on Expert Systems,
Cambridge, UK, 1996.

13. Tate A, “I-X: Technology for Intelligent Systems”, www.i-x.info, AIAI, The University of
Edinburgh, 2002.

14. Tate, A., “I-X and <I-N-C-A>: an Architecture and Related Ontology for Mixed-initiative
Synthesis Tasks”, Proceedings of the Workshop on Planning/Scheduling and
Configuration/Design at PuK 2001, Vienna, Austria, 2001.

15. Waern A. and Hook K. and Gustavsson R. and Holm P., “The Common-KADS
Communication Model”, KADS-II/M3/SICS/TR/006/V2.0, Swedish Institute of Computer
Science, Stockholm, Sweden, Dec 1993.

 22

	Introduction - Enterprise Modelling and <I-N-C-A>
	The Models
	Domain
	Activity Specifications
	Activity Relatable Objects
	Grammar and Lexicon

	The Domain Editor (I-DE)
	The Domain Editor Window
	The Menu Bar
	The Tool Bar

	Working with the Domain Editor
	Saving and Reverting
	Preferences

	Construct Editing
	Activity Editing
	Variable Declaration

	Using the Models
	Evaluation and Conclusion
	References

