

I-X Process Panels – User Guide

Austin Tate, Jeff Dalton, Jussi Stader and Stephen Potter
Artificial Intelligence Applications Institute
School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

Web: http://i-x.info
E-mail: query@i-x.info

Version 4.3 – 27 Mach 2006

1

CONTENTS

0 How to Use This Guide..3

1 Introduction to I-X and I-X Process Panels (I-P2)4
1.1 I-X Research Programme... 4
1.2 I-X Process Panels (I-P2) .. 5

2 Quick Start Guide...7

3 Using an I-X Process Panel...9

4 I-X Domains and the I-X Domain Editor (I-DE)11
4.1 Editing Domains: Overview ... 11
4.2 Using the I-DE Domain Editor Tool... 11
4.3 Building and Maintaining Libraries with I-DE .. 13
4.4 Use of XML and Text Editors... 15

5 Using the I-Space Tool ..16

6 Using the I-X Messenger Tool...17

7 I-Plan ...18

8 Creating your own I-X Application ...19
8.1 Configuring Process Panels.. 19
8.2 Advanced Tailoring .. 20
8.3 Issue and Activity Handlers... 21
8.4 Creating your own I-X Domain/Process Library.. 21

9 Further Tailoring ..22
9.1 Communications Strategy ... 22
9.2 Custom World State Viewer and I-X Map Tool... 22

10 References..23

Appendix A: I-P2 Parameters ..24

Appendix B: <I-N-C-A> XML Message Formats...29

Appendix C: Test Menu Setup ..30

2

0 How to Use This Guide

This document is intended to provide an introduction to the I-X system, its foundations and its
tools, to give a user’s manual allow you to apply I-X to your task, and to provide some
guidelines for tailoring I-X to your particular task, domain and environment.

Section 1 gives an introduction to the motivation behind the I-X project and the facilities it
provides its users.

Section 2 provides a quick-start guide: those eager to try the I-X tools should skip to this
section.

The subsequent five sections describe the use of individual I-X tools in greater detail:

• Section 3 describes the use of I-P2, Process Panels.

• Section 4 covers the use of I-DE, the domain and process editor.

• Section 5 explains the use of the I-Space agent organisation and relationship tool.

• Section 6 describes the use of Messenger instant messaging tool.

• Section 7 discusses the use of I-Plan an AI activity planning tool.

Sections 8 and 9 outline the steps necessary to move beyond a basic use of the I-X tools by
tailoring them for particular applications.

Finally, Appendices A, B and C provide handy reference information.

3

1 Introduction to I-X and I-X Process Panels (I-P2)

1.1 I-X Research Programme
I-X is a multi-faceted research programme whose goal is to produce a well-founded system
that allows humans and computers to cooperate in the creation or modification of some
artefact. This artefact may be a plan, a design or a physical entity – in other words, I-X
supports synthesis tasks. Beyond this, it can also be used to provide a framework for any
collaborative activity.

The I-X research draws on earlier work on O-Plan (Tate et al. 1998; 2000; 2002), <I-N-OVA>
(Tate, 1996), the Enterprise Project (Fraser and Tate, 1995; Uschold, et al., 1998) and the
Task-Based Process Management Project (Stader, 2000) but seeks to make the framework
generic and to clarify terminology, simplify the approach taken, and increase the re-usability
and applicability of the core ideas.

The I-X research programme includes the following threads or work areas:

1. I-Core, comprising the core architecture, an underlying ontology for activity and
processes (termed <I-N-C-A> - Issues, Nodes, Constraints and Annotations), and the
terminology used to describe systems or applications built in the I-X framework.

2. I-P2, which are I-X Process Panels used to support user tasks and cooperation.

3. I-DE, which is the I-X Domain Editor, which is itself an I-X application but is also used
to create and maintain the domain description, process models and activity
specifications used elsewhere.

4. I-Plan, which is the I-X Planning System. This is also used within I-P2 and other
applications as it provides generic facilities for supporting planning, process
refinement, process composition, dynamic response to changing needs, etc.

5. I-Views, which are viewers for processes and products, and which are employed in
other applications of I-X. I-Views can be for a wide range of modalities and types of
user.

6. I-Faces, which are underlying support utilities to allow for the creation of user
interfaces (User I-Faces), inter-agent communications (Communications I-Faces) and
repository access (Repository I-Faces).

7. I-X Applications of the above work areas in a variety of domains. These currently
include:

a. Coalition Operations (CoAX)

b. Emergency and Unusual Procedure Assistance (I-Aid, I-Help, I-Rescue)

c. Support Desks (I-Support)

d. Multi-Perspective Knowledge Modelling and Management (I-AKT)

e. Medical Best Practice Procedures or Protocols (I-Medic)

f. Natural Language Presentations of Procedures and Plans (I-Tell)

g. Collaborative Meeting and Task Support (I-Space, I-Room and I-World).

h. Intelligent Messaging (I-Me).

8. I-X Student Projects, which are deepening and refining a number of aspects of the
I-X research programme.

9. I-X Technology Transfer, including work on standards committees, especially for
process, plan, activity and capability models.

4

1.2 I-X Process Panels (I-P2)
An I-X Process Panel (I-P2) is designed to act as a workflow, reporting and messaging ‘catch
all’ for its user. It can act in conjunction with other panels for other users if desired.

• Can take ANY requirement to:

o Handle an issue

o Perform an activity

o Maintain a constraint

o Note an annotation

• Deals with these via:

o Manual (user) activity

o Internal capabilities

o External capabilities (invoke or query)

o Reroute or delegate to other panels or agents (escalate, pass or delegate)

o Plan and execute a composite of these capabilities (expand)

• Receives reports and messages and, where possible, interprets them to:

o Understand current status of issues, activities, constraints and annotations

o Understand current world state, especially status of process products

o Help control the situation

• Copes with partial knowledge

Three example process panels are shown in the figure below. These panels are from a
demonstration of agent systems within a military Coalition context – part of the Coalition
Agents eXperiment – CoAX (Allsopp et al. 2001; 2002).

5

An I-X Process Panel supports a user or collaborative users in selecting and carrying out
processes and creating or modifying process products. Both processes and process products
are abstractly considered to be made up of Nodes (activities in a process, or parts of a
process product), which may contain sub-nodes, thereby constituting a hierarchical
description of the process or product. The nodes are related by a set of detailed Constraints
of various kinds. A set of Issues is associated with the processes or process products to
represent unsatisfied requirements, problems raised by analysis or critique, and so on.

Processes and process products in I-X are represented in the <I-N-C-A> (Issues – Nodes –
Constraints – Annotations) model of synthesised artefacts (Tate, 2000; 2003).

6

2 Quick Start Guide

This section describes the quickest way to run an I-X Process Panel and begin exploring the
capabilities of I-X. This approach uses the Jabber instant messaging protocol for
communicating with other users’ panels; for this you will need to have an account on a Jabber
server (step 4 below). However, this is not necessary: a panel can be invoked in a stand-
alone mode (but of course, in order to take full advantage of the potential of I-X as a
collaborative environment, you will eventually want to communicate with other panels, though
not necessarily using Jabber).

1. Since it is written in the Java programming language, to use I-X you will need to have
a Java interpreter (the Java Virtual Machine (JVM)) installed on your computer, and
its location specified in the value of your path environment variable. (To test whether
you have a JVM installed, type “java” at command-line prompt – if it is correctly
installed this should return a message about how to use Java.) If you need to install
Java, you should download the Java Software Development Kit (SDK) from
http://java.sun.com - in addition to the JVM this also contains a Java compiler
and debugger, useful if you then go on to develop code to extend the I-X system for
your own applications. Alternatively, ask your local computing support staff – they
should be able to help you install and run a JVM.

2. Download the I-X distribution from http://i-x.info. This is packaged as a zip
file. Unpack this in a convenient location on your local system, where it will create a
single directory with all necessary files.

3. Go to this directory, and then double-click the ix.exe icon (MS Windows users) or
the IX-Mac icon (Apple Mac users) or from a command-line prompt call the ix
application script (Unix, Linux and Mac OS X users). This should start a basic I-X
Process Panel.

4. Along with the panel, a “Jabber login” window should now appear (pictured below):

• If you wish to simply run a stand-alone panel, you should click “Cancel”.

• If, on the other hand, you want to communicate with other I-X panels and you
already have a valid Jabber username and password, you should enter these
details, along with the name of the Jabber server on which this name is
registered, and then click on “Login”. If successful, the name of your panel should
be updated to show your username.

• Finally, if you want to communicate but do not have a username, then you can
attempt to create a new account through this window: you need to type in the
name of a Jabber server that allows new accounts to be created (jabber.org,
for example) and enter a new username and password (taking care to remember
your choices!) and tick the “New account” box. Now click on “Login”: if the new
account has been successfully created, the name of your panel should now be

7

updated with your new username. However, if the attempt fails (perhaps
because the username you chose is already in use), you will see an error
message, and will be prompted to try different values. (To learn more about
Jabber Instant Messaging see http://www.jabber.org/.)

5. You are now free to explore the different I-X facilities:

• From the “New” menu you can create new issues, activities, constraints and
annotations, and see these displayed on the panel (and once you’ve created a
plan, save this through the “File” menu).

• From the “Tools” menu you can start a Domain Editor, and try creating your own
process models. You can start a simple HTML Viewer for accessing directly local
I-X HTML resources. You can use the I-Space tool to enter the names of other
agents and your relationships with them (and see how this affects your options
for handling the issues and activities on the main panel). If you are logged on to a
Jabber server and you know the Jabber Identification (JID) of another online user
(who may be running a conventional Jabber client, rather than an I-X panel) you
can try communicating using the Messenger tool by typing their JID into the
“Recipient” field, adding some text to the “Compose Message” field, and clicking
“Send” (if you do not know of any other online users, you can still test your
connection by sending a message to ix-test@jabber.org - this is an agent
that simply responds with an acknowledgment of any message it receives).

• The options in the “Help” menu provide more information about using I-X.

Soon you’ll be ready to learn more about I-X and how to tailor it to your own applications.

8

3 Using an I-X Process Panel

bove) contains a number of sub-panels

f activities to be performed.

ting the current set of constraints to be respected. This
rocess products being created or manipulated by

The pan ser in handling issues, deciding on a course of action and performing
activities, nt state, constraints, process products, etc., and
mak

Entries on panels s library used by
a panel, or th

Right click on erations you can

play of some levels of hierarchically

An I-X Process Panel (I-P2) (shown schematically a
that describe:

• A set of issues to be handled.

• A set o

• Current state information reflec
includes the status of a range of p
the processes.

• Annotations in the form of keyword=value pairs.

el supports its u
maintaining awareness of the curre

ing annotations of various kinds.

can be expanded using information provided in the proces
e entries can be passed between panels.

 a line to get a context-sensitive menu that describes op
perform on the entry. Where relevant, this includes the ability to pop-up a window with more
details of the entry, or to expand or contract the dis
specified activities, to send information about the entry to the Messenger tool for sending on
to others (perhaps in a modified form), etc.

9

A Tools menu is available to make accessible the following:

• A domain or process library editor to view, edit or add to the list of process
descriptions which may be used to ‘expand’ entries on the process panel (I-DE – see
section 4).

• A tool to view and change the relationships of the current panel to others (I-Space –
see section 5).

• An instant messaging or ‘chat’ tool to communicate in free format or the encouraged
<I-N-C-A> structured forms with other I-X Process Panels and other systems
(“intelligent messaging” or “semantically augmented messaging”: Messenger – see
section 6).

• Other tools can be added to I-P2, for example, a Map Tool, as the application
demands.

In addition, an AI planner is available to try to construct alternative ways of performing current
activities and achieving objectives (I-Plan – see section 7).

10

4 I-X Domains and the I-X Domain Editor (I-DE)

4.1 Editing Domains: Overview
The process model descriptions used by I-X Process Panels are kept in domain libraries.
These can be loaded when a panel is started, and can be augmented dynamically by the user
of the panel. There are two editing tools available to I-X users to help them create and
manage their own domains: the Simple Editor and the I-X Domain Editor (I-DE). These are
introduced below. The current editor may be invoked from a Process Panel by selecting Tools
> Domain Editor.

Simple Editor interface

Basic Editing: The Simple Editor

The process panels contain a simple, form-based domain and process editor (shown above).
This allows simple task breakdowns to be specified along with a temporal constraint that the
sub-steps should be either sequentially ordered or performed in parallel.

A More Sophisticated Editor: I-DE

To create richer descriptions of process models and allow more sophisticated management of
domain libraries, the user of I-X will want to use I-DE. I-DE is a more powerful domain and
process editor, and offers multiple perspectives and views onto models. The use of I-DE will
now be described. (I-DE is currently the default domain editor in I-X; appendix A describes
how it can be replaced by the Simple Editor for applications where this is adequate. I-DE is
also available as a stand-alone application for the maintenance of domain and process
libraries.)

4.2 Using the I-DE Domain Editor Tool
The main I-DE Window provides access to most functions via its menu bar and access to the
most commonly used ones via its tool bar.

The Menu Bar

The menu bar has 5 standard menus:

1. File for closing the Domain Editor and for file access (open/save). All functions here
manipulate the domain as a whole, not individual constructs;

2. Edit for manipulating the current construct, i.e. the construct that is currently shown in
the Domain Editor’s panel;

3. View for changing which panel is shown in the Domain Editor and - if applicable - for
changing which view is shown in that panel – see Views below;

4. Tools for additional support like consistency checks etc.;

11

5. Help for access to this manual, other help, and information about the application.

The Tool Bar

The tool bar provides access to the most commonly used functions via buttons. All these
functions are also available via the menu bar (with the image alongside the menu item being
that used on the corresponding toolbar button). The toolbar can be switched on and off via
the Toolbar check box in the View menu. Moving the mouse over a toolbar button will, after a
while, display a ‘tool tip text’ that gives a brief explanation of the button’s function.

Views

The window can display in one of three styles: single, tabbed, and card style. The style can
be changed via the options through the View > Panel Style menu. In addition there are
several other View options for changing the appearance of I-DE.

I-DE can be run in two modes (View > Editor Mode):

• Simple mode. This mode is for simple editing only, as it lacks the more sophisticated
editing functions. The simple mode restricts the user to the single display style and
minimal view (described below).

• Advanced mode. In Advanced mode, the user can, amongst other things, place more
complex ordering, precondition and effect constraints on the steps of a process
model.

I-DE: Advanced mode Activity panel

The main window of the Domain Editor contains several editor sub-panels for editing different
aspects (or constructs) of the domain (View > Windows, or choose the appropriate tab or
card, depending on selected Panel Style):

• Domain panel, used to edit global information about the domain itself (e.g. the domain
name).

• Activity panel, used to edit information about activities and how they break down into
sub-activities (refinement).

• Grammar panel, which currently only shows the patterns that are in use in the
domain.

12

I-DE: Domain (left) and Grammar (right) panels

An editor panel may itself have different ‘views’ that are used to display and edit the panel’s
constructs. The activity panel has three such views:

• Minimal view: a simplified version of the activity and its refinement. The main
simplification is that no constraints are shown. (This option provides an interface that
is intended to be visually similar to that of the Simple Editor.)

• Comprehensive view: a view that can display and edit all of an activity’s specification,
allowing the user to specify more complex temporal and world-state (condition/effect)
constraints. Other constraints, such as spatial constraints or constraints on
resources, can also be specified using this view.

• Graphical view: a graphical view that uses nodes and arcs to show an activity’s sub-
activities and the temporal relationships between them. (Other constraints and
specifications cannot be viewed or edited using this view.) The user can add,
manipulate and delete the nodes and arcs to develop the task breakdown structures.

I-DE: Graphical view

4.3 Building and Maintaining Libraries with I-DE
For a given application, the user of an I-X Process Panel will have access to the process
model definitions in a particular domain library to support him or her in performing the task in
hand. The richness of the definitions in this domain will depend in part on the nature of the

13

task and the extent to which it can be codified – and the extent to which it has been codified.
The codification and subsequent maintenance of process models is, in effect, a knowledge
engineering task, and the role of I-DE is to support this exercise.

Realising that complex applications may demand complex process models, and the task of
modelling these might itself be complex and involve many revisions and alterations, I-DE
(unlike the Simple Editor) imposes a particular regime on the saving and updating of domains.
The twin aims of this regime are, on the one hand, to try to ensure that the integrity of the
base domain (whose models may concurrently be in use in a Process Panel, for instance) is
maintained by not admitting partial or provisional modifications, while, on the other hand,
allowing the modeller to regularly save changes to provide ‘roll-back’ points in the event of
system crashes or second thoughts.

Accordingly, when the user invokes I-DE, a draft copy of the current base domain is ‘checked
out’ and presented for modification. Any edits saved using I-DE are saved only to this draft
domain, with the base domain remaining unaltered, until the edits are explicitly ‘published’ by
the I-DE user. In this manner users can develop a domain by creating and modifying
processes, and, when they are satisfied that their alterations constitute a coherent body
worthy of addition to the base domain, can then confirm these changes by publishing them.

Saving and Reverting

To implement this regime, there are 3 levels of saving:

1. When a construct has been edited, initially these changes may be made only to the
interface itself, and not to the underlying draft construct in memory. In order to
transfer changes from the interface into the construct in the draft domain, the user
has to modify the draft, i.e. Edit > Note Domain/Activity/Grammar into Draft. In
addition, at relevant times the system will automatically update the draft for the user,
so as to keep the draft domain in step with what is shown in the interface. If a user
has edited a construct and without noting changes to the draft then decides to switch
constructs, views, or panels, or else decides to save or publish the draft domain, the
system will first note the changes.

2. Modifying the draft (noting changes) does not save to file, so the next level of saving
is to save the draft domain to file (via toolbar button or File > Save draft to file). As
with all editing applications, it is recommended that this be done frequently to ensure
that work is not lost. Saving the draft domain to file will write the whole domain with all
its constructs into a file in XML format. This can later be loaded back into I-DE for
further editing, or it can be accessed by other applications.

3. The underlying base library is not changed by either of the above levels (noting to
draft or saving the draft to file). The only way to update the base library is to publish

14

the draft domain via the toolbar button or the File > Publish Draft menu command.
When this happens, the changes are made to the base domain and these changes
will be seen by any applications that have registered as listeners to this domain. Note
that publishing is always done for a whole domain, and not for individual constructs.
Note also that publishing a domain will not save it to file, but the same effect can be
achieved by saving the draft domain to file immediately before or after publishing. At
that point the draft domain and the public domain are represented by the same XML
structures. (It is a good idea to publish from time to time even if I-DE is running in
stand-alone mode because it will make the editor more efficient.)

It is worth noting that the Domain panel, i.e. the panel that is responsible for editing global
details about the domain like its name, only considers domain details as part of its editing
remit, not the constructs within the domain.

While there is no function that undoes individual editing steps, the following functions are
available, corresponding to the 3 levels of saving:

Corresponding to the different levels of editing and saving, there are different levels of
undoing changes:

1. Edit > Undo edit: undoes an editing step. Undo operations can themselves be
‘undone’ by the Edit > Redo command.

2. File > Open as draft domain…: revert the whole domain to the last time it was saved
to file by re-loading the file. This change cannot be undone – if unsure, first save the
current draft domain to a different file.

3. Edit > Revert to Published: revert a construct to its state in the most recent published
version, that is undo all changes to this construct since the domain was last
published. Once again, this change cannot be undone – if unsure, first save the
current draft domain to a different file.

There is a fourth ‘revert’ function for convenience: File > Discard domain changes which
reverts the whole domain (and not just the current construct) to its state in the latest published
version, that is, it undoes all changes to all constructs since the domain was last published.

4.4 Use of XML and Text Editors
There is a further option for users without access to either the Simple Editor or I-DE, or who
wish to make simple amendments to their models: the fact that the domains created by these
tools are saved as XML format files means they can be modified using a dedicated XML
editing tool - such as the freely available Microsoft XML Notepad (see
http://msdn.microsoft.com/xml/notepad/intro.asp) - or even a standard text
editor.

15

5 Using the I-Space Tool

The I-Space tool allows for the management of the organisational relationships of the current
panel (referred to as “me”) to other panels, agents and external services. New agent names
can be typed into the text field at the bottom. Existing agents or panels can have their
relationships altered. The Commit button is used to inform the process panel of any addition
or changes to the set of relationships with existing entries. You can undo any changes made
to the I-Space table that have not been committed already.

The relationships implicitly construct Action menu items for issues and activities on the parent
Process Panel. The relationships and the corresponding Action menu items are as follows:

Relationship Action Menu Item

Superior Escalate to (with report back)

Peer Pass to (with report back)

Subordinate Delegate to (with report back)

Service Invoke (with report back)

Contact None

None None

Providing a description of the verbs associated with any agent (via the Capabilities tab) can
be used to selectively show the agent in the Action menu only for the specified verbs. If no
verb association is provided, it is assumed that all Superiors, Peers and Subordinates can
handle any item (i.e., described using any verb). It is expected that an external-capabilities
description is given for a Service or it will not appear on the menu at all.

For some communications strategies, extra menu options are added into the I-Space tool to
provide services and facilities relevant to the specific nature of the communications strategies
in use.

16

6 Using the I-X Messenger Tool

The I-X Messenger tool is used to compose and send messages to other panels and agents.
Messages can be designated issues, activities (these with corresponding priorities) or
constraints, or, less formally, as simple ‘chat’ messages. The tool also shows any chat
messages received from other agents (in the Transcript window). You can send messages to
your own panel (“me”) and there is a simple group sending facility (which will be expanded in
future releases).

17

7 I-Plan

The facilities available in the I-X Process Panels provide context sensitive options for the
handing of issues (such as the achievement of stated objectives), the performance of
activities, and the satisfaction of constraints. A simple AI Planner (I-Plan) is available as a
tool to propose alternative ways in which activities on the panel can be expanded.

I-Plan can perform hierarchical partial-order composition of plans from a library of plan
schemas or Standard Operating Procedures. This library can be augmented during planning
either using a simple ‘activity details’ interface to add in specific ways to expand a given
activity (intended for users familiar with the application domain but not AI planning
techniques) or with a more comprehensive graphical domain editor (I-DE – see section 4).
Grammars and lexicons for the activities in the domain and the objects manipulated by them
are built automatically during domain editing to assist the user.

I-Plan can check that conditions are satisfied or introduce activities to achieve them, it can
select consistent bindings for a set of variables in the current plan, and can check or impose
temporal constraints between activities. I-Plan cannot currently reason about resources,
spatial constraints, or metric time constraints.

Future developments of I-Plan will provide more assistance with a ‘How do I do this?’ option
under the Action menu which will be able to account for other concurrent items on the panel,
and account for mutual satisfaction of open variables, unsatisfied world state conditions and
other constraints. I-Plan will also be extended to provide a plan repair capability should
activities fail during execution, or the environment dynamically change in unforeseen ways.

18

8 Creating your own I-X Application

Other tutorial and sample material is available. You can find pointers to these in the “doc”
directory of the system. A file “doc/index.html” gives an overview of what is available.

A single Process Panel or a small cluster of panels in Superior, Peer or Subordinate
relationships to one another can be quickly adapted to a new application. We will later support
more dynamic and adaptable combinations of multiple panels in more complex organisational
structures (which we call I-Spaces), but much of the support required for this is not yet
sufficiently generic to provide in an easily altered form.

8.1 Configuring Process Panels
An example I-P2 application is provided in the apps\isample directory, which can be copied
and adapted as follows:

• Copy the whole isample directory to become a new directory with a name of your
choice (e.g. apps\myapp).

• In the sub-directory config alter the .props properties file names and contents of
these files to tailor display names and labels used on the Process Panels.

• You can modify the ways in which the panel Actions are set up using I-Space
relationships such as Superior, Peer and Subordinate.

• In the directory images add in any logo or logos for panels as you wish. Replacing
the logo images\isample-logo.gif will mean the default logo is amended
without further changes.

• Tailoring a panel to a new application usually involves providing a suitable ‘domain
model’ that describes ways in which activities can be refined into more detailed sub-
activities for that application. Domain models can be represented in XML format
(although a Lisp-oriented format is also available) and for I-Sample Process Panels
are in the domain-library directory. Domain editors are provided to create or
amend domain models (see section 4), and domain models can be augmented while
a Process Panel is running.

• You can add appropriate Test menu entries (see below).

A wide range of parameters can be specified to simply customise a range of things about
each panel. A properties file for a panel can specify most of these and can be set using, e.g.,

ix.ip2.Ip2 -load config/isample-supervisor.props

For example, the file config/isample-supervisor.props contains such things as:
symbol-name=Supervisor
display-name=Supervisor I-X Process Panel
logo-line-1=Supervisor I-X Process Panel
logo-line-2=Based on I-X Technology
logo-image=images/isample-logo.gif
domain=domain-library/isample-supervisor.xml
subordinates=Operator

You can also set one property individually when the Process Panel program is started using a
command-line argument, such as

"-display-name=myapp <panel-identifier>"

The domain model, including process descriptions available to the panel, can be preloaded
from a domain library file (e.g. as in the case above which loads the isample-
supervisor.xml file describing sample processes that the panel is then made aware of
and can use to ‘expand’ entries placed onto the panel).

19

The Test Menu

It can be convenient to provide some example issues, activities or other entries that can be
added to a panel, which could have come from other systems or panels. It can also be
convenient to provide messages that could be sent to other panels and agents. This allows
simple demonstrations and testing to occur. The contents of the Test menu can be set using
an XML file describing the entries, and informing the panel about this file using the

-test-menu=<pathname>

parameter – see Appendix A for details of all parameters. An example test menu file follows.
(Note: using “me” for as the value of the to-name attribute means the message is sent to the
current panel rather than externally. The value of menu-text is what actually appears as an
entry in the Test menu. A $to item in the menu-text string (if present) is substituted by the
to-name of the panel or agent for which the message is intended.)

<?xml version="1.0" encoding="UTF-8"?>
<list>

 <test-item
 menu-text="Send $to a request for transport"
 to-name="Supervisor">
 <contents>
 <activity priority="high"
 report-back="yes">
 <pattern>
 <list>
 <symbol>transport_by_helicopter</symbol>
 <item-var>?wounded</item-var>
 <symbol>field_hospital_a</symbol>
 </list>
 </pattern>
 </activity>
 </contents>
 </test-item>

 ...

</list>

More details of setting up a test menu are provided in Appendix C.

8.2 Advanced Tailoring
You can further tailor an I-X Process Panel to a specific application by renaming and
amending the I-Sample Process Panel code as follows:

• You can rename the java\isample directory to be java\myapp and, in that
directory, rename Isample.java to be Myapp.java or whatever you wish. Delete
the compiled class files included there.

• Edit this renamed file to change the package name from isample to myapp.

• Change the class name Isample to Myapp wherever it occurs.

• Change any strings that refer to I-Sample to My-App as you wish.

• You can provide a customised ‘state’ viewer for panels. A description of how to do
this is in the I-X Developer Guide.

20

• Recompile the Myapp.java code with the compile script provided.

• In the directory scripts\win (and unix) alter the script names and script contents
as necessary to refer to the new name rather than the basic ix.ip2.Ip2 class or
the custom isample.Isample class.

8.3 Issue and Activity Handlers
The I-X Process Panels have a number of handlers that can process issues and activities in
specific ways:

• Escalate, Pass and Delegate: One type of handling is to use the options in the
Action menu reroute the issue or activity to other users or panels. These handlers
are defined using information supplied in the I-Space description of Superiors, Peers
and Subordinates for the Process Panel (this may be done using the I-Space tool
(see section 5), via the command line or using the .props file for the panel).

• Invoke: External agents defined as being a Service will appear on the Action as
possible handlers when their capability-verb that matches the verb of the current
issue/activity. (Services are specified using the Capabilities tab of the I-Space tool or
specifying their external-capabilities in the panel .props file.)

• Connect: Activities of the form connect <agent-name> <relationship-type>
(e.g. connect john peer) have a connect handler that sets the appropriate entries
in I-Space automatically. See section 5 for details of the available relationship types.

• Others: may be available. You can check this via a panel’s menus using Help >
About Syntax.

So, in order to impose some organisational structure on the domain and state the existence of
Service agents, the application-builder may wish to declare the appropriate relationships
within a .props file, and distribute this to all panel users within the environment. In addition,
advanced I-X users can code their own handlers for specific applications.

8.4 Creating your own I-X Domain/Process Library
Each I-X Process Panel can make use of a domain model or process library which describes
ways in which issues can be handled or high level activities can be broken down into more
detailed activities which may then be performed. A panel can operate without such process
descriptions, but becomes more useful and helpful if it has such knowledge. A process library
can be loaded when a panel is started up, and additional process descriptions can be
provided while it is running: indeed, they can be saved at any stage to amend the stored
version for later preloading.

You can create the process descriptions with the I-X Domain Editor provided (see section 4).
It can be run on its own or can be called from within a Process Panel from the Tools menu.
Since the process descriptions can be saved in a simple XML format, it is also possible to use
any XML editor to change the descriptions if you wish. The format of the XML is described
separately.

Example domain models and refinements can be found in the apps\isample\domain-
library directory. Variables begin with ? and can be used anywhere. Unbound variables
appear in the process panel and can be bound by the user of the panel (and in later versions
by external query capabilities). The representation used is based on the <I-N-OVA>
constraint representation of activity (Tate, 1996).

21

9 Further Tailoring

An I-X Developer Guide is available with details on more ways to tailor I-X Process Panels
and systems. Note that this usually involves programming extensions in Java.

9.1 Communications Strategy
I-X Process Panels can also be used with any of a number of “Communications Strategies”.
Example strategies are provided for the DARPA CoABS Grid (grid), Institute of Human and
Machine Cognition (IHMC) KAoS (kaos) (Urzok et. al., 2004), Jabber XML framework
(jabber), and the UK EPSRC-sponsored Advanced Knowledge Technologies AKTBus
(akt). Also provided is an adaptor for a simple direct link between panels, possibly supported
by a simple name server (referred to as the ‘simple’ or ‘xml’ communications strategy). Writing
a suitable Communications Strategy can provide other message transport routes. More
details are available in the I-X Developer Guide.

9.2 Custom World State Viewer and I-X Map Tool
It is possible to replace the simple table view used for the current world state.

-state-viewer-class=StateViewTable (default)

Viewers that show the state information clustered into the various objects or process products
being handled, and giving their attributes and values in a convenient form can be provided.
Graphical images of the process products can be added where required. This could include
map-based data to show the position of the objects.

One example of a custom world state viewer is a Map Tool based on BBN’s OpenMap (BBN,
2003). This is provided as an add-on that may be added into any I-X application that requires
it.

22

10 References

Allsopp, D., Beautement, P., Bradshaw, J.M., Durfee, E.H., Kirton, M., Knoblock, C.A., Suri, N., Tate, A.
and Thompson, C.W. (2002) "Coalition Agents Experiment: Multi-Agent Co-operation in an
International Coalition Setting", Special Issue on Knowledge Systems for Coalition Operations
(KSCO), IEEE Intelligent Systems, June 2002.

BBN (2003) OpenMap, http://openmap.bbn.com

Fraser, J. and Tate, A. (1995) "The Enterprise Tool Set -- An Open Enterprise Architecture",
Proceedings of the Workshop on Intelligent Manufacturing Systems, International Joint
Conference on Artificial Intelligence (IJCAI-95), Montreal, Canada, August 1995.

Potter, S., Tate, A. and Dalton, J. (2003) I-X: Task Support on the Semantic Web, Poster Abstract,
Second International Semantic Web Conference (ISWC-2003), Sanibel Island, Florida, October
2003.

Stader J., Moore J., Chung P., McBriar I., Ravinranathan M., Macintosh A.. (2000) "Applying Intelligent
Workflow Management in the Chemicals Industries"; in “The Workflow Handbook 2001”, L.
Fisher (ed), Published in association with the Workflow Management Coalition (WfMC), pp 161-
181, Oct 2000.

Tate, A. (1996) "The <I-N-OVA> Constraint Model of Plans", Proceedings of the Third International
Conference on Artificial Intelligence Planning Systems, (ed. Drabble, B.), pp. 221-228,
Edinburgh, UK, May 1996, AAAI Press.

Tate, A. (1998) “Roots of SPAR”, in "Special Issue on Ontologies", Knowledge Engineering Review,
Vol.13 (1), March 1998, Cambridge University Press.

Tate, A. (2000) “<I-N-OVA> and <I-N-CA> - Representing Plans and other Synthesized Artifacts as a
Set of Constraints”, AAAI-2000 Workshop on Representational Issues for Real-World Planning
Systems, at the National Conference of the American Association of Artificial Intelligence (AAAI-
2000), Austin, Texas, USA, August 2000.

Tate, A. (2003) <I-N-C-A>: an Ontology for Mixed-initiative Synthesis Tasks, Proceedings of the
Workshop on Mixed-Initiative Intelligent Systems (MIIS) at the International Joint Conference on
Artificial Intelligence (IJCAI-03), Acapulco, Mexico, August 2003.

Tate, A., Dalton, J. and Levine, J. (1998) "Generation of Multiple Qualitatively Different Plan Options",
Fourth International Conference on AI Planning Systems (AIPS-98), Pittsburgh, PA, USA, June
1998.

Tate, A., Dalton, J. and Levine, J. (2000) “O-Plan: a Web-based AI Planning Agent”, AAAI-2000
Intelligent Systems Demonstrator, in Proceedings of the National Conference of the American
Association of Artificial Intelligence (AAAI-2000), Austin, Texas, USA, August 2000.

Tate, A., Levine, J., Dalton, J. and Nixon, A. (2002) “Task Achieving Agents on the World Wide Web”, in
“Creating the Semantic Web”, Fensel, D., Hendler, J., Liebermann, H. and Wahlster, W. (eds.),
MIT Press, 2001.

Uszok, A., Bradshaw, J.M., Jeffers, R., Johnson, M., Tate, A., Dalton, J. and Aitken, S. (2004) Policy
and Contract Management for Semantic Web Services, AAAI Spring Symposium, Stanford
University, California, USA, March 2004.

Uschold, M., King, M., Moralee, S. and Zorgios, Y. (1998) "The Enterprise Ontology", in "Special Issue
on Ontologies", Knowledge Engineering Review, Vol.13(1), March, 1998, Cambridge University
Press.

23

Appendix A: I-P2 Parameters

IXAgent
-debug=Boolean

Set to true for more detailed diagnostics in the Java console window.
-ipc-name=name

ipc-name is essentially a synonym for symbol-name
-symbol-name=text

Note that symbol-name, by default, also becomes the ipc-name. If not provided, the default
symbol-name is set to “<user-name>@<machine-name>”.

-display-name=text

Note that display-name is set to “<symbol-name> Process Panel” if not explicitly set.

I-P2
-classic=boolean

Use alternative (simpler) interface for table views and other user interface elements.
-descriptions-column-width=integer
-annotations-column-width=integer

For classic viewers only.

IP2 Visual Appearance
-metal-theme-secondary3=colour

note secondary3 not secondary-3 (may alter in future)
-font-increment=integer

The relative font size for text, buttons and labels in I-X Process Panels: e.g., 2, 4 or –2. Odd
numbers (e.g. 1 or 3) may not have bold fonts installed on all systems).

-logo-line-1=text
-logo-line-2=text

-logo-image=pathname (URL syntax)
-frame-size=WIDTHxHEIGHT

The initial width and height of the process panel in the form WIDTHxHEIGHT (e.g. 800x400)

I-Space
-superiors=namelist
-subordinates=namelist
-peers=namelist
-contacts=namelist

-external-capabilities=name:verb,...

Note that namelist is a list of names of other process panels or external agent resources. A
namelist is comma separated, and the list cannot contain spaces.

external-capabilities specifies the verbs associated with any panel name or external
agent name. If the panel or agent is not in a defined relationship, then it is considered to be a
‘resource’ that can be invoked through the Action menu when the specified verbs are
encountered. If it is already in a defined relationship then it is treated as a restriction
specification, so the relevant Action menu entries (i.e., escalate, pass or delegate) will only
appear for those specific verbs – rather than for any pattern verb.

-use-long-ids=boolean (default true)
-use-hash-ids=boolean (default false)
-allow-random-device=boolean (default false)
-send-received-reports=boolean (default true)

24

Specify whether or not to send a “received” report when a panel receives an item. Can be
turned off if this causes problems for the recipient (which may not be an I-X Process Panel).

IP2 Domain Library
-library-directory=pathname (URL syntax)

[for backwards compatibility with versions 3.0 and earlier this can also be called domain-
library]

A directory can be specified which will be used as the location for saving or loading files via a
file browser. By default this will be the current directory.

-domain=resource(s) (filename or URL syntax, comma separated)

One or more domain files can be loaded when a panel starts up. These can be in OWL
(.owl), RDF (.rdf), XML (.xml) or Lisp (.lsp) formats. A resource can be a URL, a
filename for an existing file, or the name of a resource that can be obtained from the agent’s
classpath by a ClassLoader.

Initial Panel Contents (Initial Plan)
-plan=resource(s) (filename or URL syntax, comma separated)

One or more initial files can be provided to set up the panel contents and state. Panel
contents can be given in OWL (.owl), RDF (.rdf), XML (.xml) or Lisp (.lsp) formats
(typically saved from a previous run of the panel). Also files where each line is of the form
Attribute.ObjectName = Value can be provided (with file suffix .init).

-plan-state-to-save=namelist or * for all (default is none)

State information is normally not saved into a saved plan file. You can save all state
information by specifying –plan-state-to-save=* or else can select the initial keywords
of those state patterns to save (a comma separated list).

Test Menu
-test-menu=resource(s) (filename or URL syntax, comma separated)

One or more XML files can be provided to set the Test menu entries that appear in the top
right corner of a process panel. This can be convenient for testing and demonstrations.

IPC
-ipc=strategyName
-ipc=class

strategyName can be simple (default) or xml using built-in support. With suitable
communications strategy add-ons other strategies can be specified such as: grid, kaos,
jabber or akt.

See the javadoc for IPC.getCommunicationStrategy(String strategyName).
-enqueue-incoming-messages=boolean (default false)
-rename-variables-in-input=boolean (default true)

Tells agent to rename any ?name variables in patterns in incoming issues and activities so
that they do not conflict with any existing variables in the receiving agent.

Default/Simple and XML Communication Strategies
-port=number

Tells the agent to use a specific port number rather than to ask the underlying operating
system to allocate a free one. This is especially useful in environments with a firewall.

-host=hostname

Used to tell the agent what to call the machine it is running on when the default name will be
incorrect. The default is the name returned by
InetAddress.getLocalHost().getHostName().

-run-name-server

Tells the agent to run a name-server.
-name-server

25

-name-server=servername:port
-no name-server

Tells the agent whether to use a name-server to look up the addresses of other agents, and if
so, what host and port to connect to. The name-server servername:port defaults to
localhost:5555.

Jabber Communication Strategy
-jabber-server=hostname (eg. jabber.org or jabber.aiai.ed.ac.uk)
-jabber-username=username
-jabber-port=5222
-jabber-password=password

-jabber-resource=resource (I-X by default)
-jabber-priority=integer (positive integer. 1 by default)

The jabber-port should not be altered lightly. Likewise, you should usually leave the
jabber-resource at its default value. The assumption is made that all other panels with
which this panel will communicate will share the same resource name. Hence, the resource
name is used for two purposes:

• to distinguish I-X panel jabber clients from non-I-X panel jabber clients, and;

• to distinguish I-X panel clients belonging to a particular I-X 'cluster' from other I-X
panels.

Caution should be applied when setting this parameter to anything other than its default
value.

-jabber-presence=keyword (e.g. Online)
-jabber-allow-queuing=boolean (default false)

Can be set to true to allow asynchronous communications between panels that are not on-
line at the same time (queuing is provided by jabber servers). The default mode (false) will
indicate a communications failure if the target recipient resource is not on-line or, if no
resource is specified, the target user has no on-line resources at all. (In the latter case, if no
resource is specified and an I-X Process Panel is identified among the target user’s on-line
jabber clients, then this Panel will be the preferred destination for the message.)

-jabber-autosubscribe=boolean (default true)

If jabber-autosubscribe is set to true, any incoming request from another jabber user
for subscription to the presence of the current I-X user will be automatically accepted, and a
corresponding subscription request generated and sent in response. If jabber-
autosubscribe is set to false then any incoming subscription request is ignored (and will
be re-submitted the next time the current user starts a jabber client).

Parameterised Communication Strategies

Some communication strategies take other strategies as parameters. The syntax is
<strategy> = <name> | <name>:<strategy>,<strategy>,...

A parameterised strategy typically provides a ‘wrapper’ around ‘inner’ strategies specified by
its parameters. The ones provided are:

tracing:strategy

Prints an XML description of the message contents when a message is sent or received by
the specified inner strategy.

separate:stategy

Creates a dummy I-X agent for the inner strategy to use. This protects the main I-X agent
from some operations a communications strategy might perform, such as changing the
agent's symbol-name. separate is often used together with dispatching:

dispatching:strategy,strategy,...

Allows different inner strategies to be used for communicating with different agents. One of
the arguments must be prefixed by default:. Strategies are assigned to agents as follows.

26

If a message is received from an agent A via strategy S, then A gets S as its strategy;
otherwise a tab in the I-Space tool can be used to assign strategies explicitly.

Examples:
tracing:xml
dispatching:jabber,default:xml,tracing:xml
dispatching:jabber,xml,default:tracing:xml
dispatching:separate:jabber,default:kaos

The notation for communications strategy combinations is fairly general, but not quite to the
point of allowing parentheses for grouping. For example,

dispatching:tracing:jabber,default:tracing:xml

works, but
tracing:dispatching:jabber,default:xml

does not, because the tracing strategy gets parameters jabber and default:xml.

Some strategy combinations won't work semantically despite being valid syntax. For
example, you can't do

dispatching:xml,simple

because they both expect a name-server on the same port (but with different syntaxes for its
messages).

Domain Editors, Item Viewers and Map Tool
-domain-editor-class=classname

Possible values are currently:
ix.iview.DomainEditor (default)
ix.iview.SimpleDomainEditor

Select domain editor to use.
-issue-viewer-class=class
-activity-viewer-class=class
-state-viewer-class=class
-annotation-viewer-class=class

These parameters allow the default Issue, Activity, State or Annotation Viewer to be replaced
with a custom viewer class. For example the default State Viewer (StateViewTable) could be
replaced with a custom class such as the Map Tool (StateViewMap).

-map-properties=pathname (URL syntax)
-map-default-icon=pathname (URL syntax)
-map-object-icons=pathname (URL syntax)
-map-type-icons=pathname (URL syntax)

The map-properties parameter (this parameter is required) is a Java properties file used
to configure the BBN OpenMap tool with the map to use, the latitude/longitude it originates at
and various other properties. The map-initial-state parameter allows for an initial world
state to be specified which is loaded on start up of I-P2. It is equivalent to adding world state
effects entries into the panel. The map-type-icons and map-object-icons parameters
allow directories to be specified which contain icons to associate with various types of specific
named objects that can be displayed. A default icon is used if no specific named or type icon
is available. This default can itself be specified with the map-default-icon parameter.

Issue and Activity Handlers

It is possible to add new issue and activity handlers at run-time. As with plans and domains,
there are 2 ways to do it: either via a command-line argument / .props file entry:

-additional-handers=className,className,...

Or through an activity with the pattern:
add-handlers className className

27

The reason for the language difference (additional-handlers vs. add-handlers) is
that the former is a declaration, whereas the latter is an imperative. Here a class name can
be a full Java class name (including package), but classes in the packages that are expected
to supply handlers can be given in the ‘dash-syntax’ style used in the XML, e.g.,
test-handler rather than, say, ix.test.TestHandler.

One use for this is during testing. Some handlers will be only for testing purposes, and now
they can be used without having to define an Ip2 subclass. But it also allows domain-specific
handlers to be added for demos etc.

General Notes

• Filenames and pathnames are relative to the current directory when an application is
run. This is usually the root directory for an I-X application using default start up
scripts (i.e., <I-X-base-directory>/apps/<app-name>/).

• When providing command line arguments, the “-” is not part of the parameter name.
It is just command line syntax.

• -load is not a parameter. It is syntax that says to load name=value lines from a
file. More than one -load may be specified.

• -no and -not can negate the subsequent parameter (which is written without the
initial “-”). It is equivalent to giving the parameter the value false but can be used in
cases where it would seem odd to explicitly state =false.

• Resources for parameters like domain, plan and test-menu can be specified by
URLs, file names, or names of resources accessible via a class loader (class-loaders
use forward slashes for this).

28

Appendix B: <I-N-C-A> XML Message Formats

An I-X Process Panel can receive XML format messages from other agents or systems to
give it issues to address, activities to perform and reports to note. A Test agent (called I-Test)
is provided to give a simple way to try this out. The format of these messages is described
separately.

29

Appendix C: Test Menu Setup

Test-menu Files
To use a test-menu file, have a command-line argument or .props file entry test-
menu=filename, e.g., ip2 -test-menu=somedir/test-sequences.xml

The file contains a list; each element describes a single entry on the test menu. In outline, the
file therefore looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<list>

...
</list>

Three types of entry are allowed:

TEST-ITEM ::=
<test-item

delay-before="INT">
<menu-text>STRING</menu-text>
<to-name>STRING</to-name>

<contents>SENDABLE</contents>
</test-item>

TEST-SEQUENCE ::=
<test-sequence>

<menu-text>STRING</menu-text>
<test-items>

<list>TEST-ITEM*</list>
</test-items>

</test-sequence>

TEST-SEQUENCE-GENERATOR ::=
<test-sequence-generator

initial-delay="INT"
delay-between="INT">
<menu-text>STRING</menu-text>

<template>TEST-ITEM</template>

[<to-names>
<list>...</list>

</to-names> |
<content-strings>

<list>...</list>

</content-strings>]
</test-sequence-generator>

A SENDABLE is an issue, activity, constraint, report or chat-message.

Note that STRING-valued fields (such as menu-text) may be written as attributes instead of
as elements if the string is sufficiently simple.

Test items, sequences, and sequence-generators do not have to come from files. They are
ordinary Java objects that can also be constructed in Java. However, it is often more
convenient to specify them in XML.

In each of the above syntaxes, the menu-text is a string that is displayed in the Test menu
in the top right corner of an I-X Process Panel. For a test-item only, any occurrence of
$to in the menu-text string will be replaced by the value of the same test-item's

30

to-name. (This is not done for a sequence, because the messages in a sequence might be
to different destinations.)

A to-name is the symbol-name of the agent the test-item's contents should be sent to.

The delay-before in a test-item is the number of milliseconds to wait before sending
the contents. Delay-before defaults to 0.

Note that within the SENDABLE test item contents you can specify a sender-id if you wish
it to look like an item came from that agent or panel. The syntax for SENDABLE items is
included in an earlier section.

Here is an example.
<test-item

menu-text="Give $to a report-back example issue"
to-name="me">
<contents>

<issue priority="high"
report-back="yes">
<pattern>

<list>
<symbol>note</symbol>
<string>sample note text</string>

</list>
</pattern>

</issue>
</contents>

</test-item>

That test-item would appear in the Test menu as Give me a report-back example issue
and when selected would send the panel an issue with priority=high, report-back=yes, etc.

Here is a test-item that sends a report after a delay of 4 seconds:
<test-item menu-text="Send $to a single report with a delay"

to-name="me"
delay-before="4000">
<contents>

<report report-type="information"
text="Here's some information"/>

</contents>
</test-item>

A test-sequence contains a list of test-items. The menu-text of those items is
ignored (and needn't be specified). The test-sequences' own menu-text appears in the
Test menu.

When the test-sequence is selected from the Test menu, it processes the list of
test-items in order. For each item, it waits for the item's delay-before milliseconds and
then sends the item's contents to the agent named by the item's to-name. This allows a
sequence to send messages to a variety of different destinations. By using delay-before
values of 0, it is possible to get several messages to be sent (almost) at once.

Each item in a test-sequence may have a different type of contents. That makes it
possible to send an issue to one agent, a report to a second, and so forth.

However, in some cases, all of the items in a sequence will have certain things in common;
and then it may be possible to use a test-sequence-generator. A test-sequence-
generator contains a single test-item that is used as a template. The menu-text of
that item is ignored (and needn't be specified), but all other fields may be significant.

A test-sequence may contain either a list of to-names or a list of content-strings,
but not both. If it contains a list of to-names, a sequence is constructed by making a copy of

31

the template for each of the to-names, replacing the copy's to-name each time. The
resulting sequence will send essentially the same message to a series of agents.

If there is a list of content-strings instead, the sequence contains one copy for each of
the content-strings, with the "main contents" of the copy replaced by the corresponding
content-string, suitably interpreted. This sequence will send a series of similar messages
of the same type (issue, report, or whatever) to a single agent: the agent specified by the
to-name of the template.

The interpretation of a content-string depends on the class of the template's contents. If
the template contains an issue or activity, the content string is treated as a pattern and parsed
in the usual way (with ?names being variables etc); if the template contains a report or chat-
message, the content-string is placed in the object's text field. Constraints are not yet
supported (although they may appear in ordinary test-sequences).

The test-items in the generated sequence have delay-before values determined as
follows: If the generator specifies an initial-delay, it becomes the delay-before of
the first item in the generated sequence. If the generator specifies a delay-between, it
becomes the delay-before of all subsequent items in the sequence. Otherwise, the
template's delay-before is preserved. Here is an example that when selected will send a
series of chat-messages:

<test-sequence-generator initial-delay="0"
delay-between="2000"
menu-text=”Send me some example chat messages”>
<content-strings>

<list>
<string>Sample chat text 1</string>
<string>Sample chat text two</string>
<string>More chat</string>
<string>This time there will be

several lines of text
and maybe some indentation
just for variety

and a last line</string>
</list>

</content-strings>
<template>

<test-item>
<to-name>

<string>me</string>
</to-name>
<contents>

<chat-message />
</contents>

</test-item>
</template>

</test-sequence-generator>

Menu separators can be specified in the test-menu file. The XML syntax is
<test-separator />

Just include it in the list between the test items you want to separate.

Using the Test Menu

Entries in the Test menu do not have to send messages. They don't even need to involve
any of the objects described here. However, this section will describe only the cases that can
be specified by a test-menu file.

32

If a single message is to be sent, without a delay, it is sent as soon as its Test menu entry is
selected. That is so regardless of whether it came from a single test-item or from a 1-item
test-sequence.

Otherwise, a new thread is created to supervise the message sending. While that thread is
running, the corresponding menu entry is prefixed by “Stop: ” and, if selected, stops the
thread. When the thread terminates, the entry reverts to its original form.

However, all messages are actually sent by the GUI event thread just as in the normal
operation of a panel). The other thread exists only to control the timing.

Messages sent to “me” are given directly to the panel rather than going via the
communications strategy.

33

	How to Use This Guide
	1 Introduction to I-X and I-X Process Panels (I-P2)
	1.1 I-X Research Programme
	1.2 I-X Process Panels (I-P2)

	2 Quick Start Guide
	Using an I-X Process Panel
	4 I-X Domains and the I-X Domain Editor (I-DE)
	4.1 Editing Domains: Overview
	4.2 Using the I-DE Domain Editor Tool
	4.3 Building and Maintaining Libraries with I-DE
	4.4 Use of XML and Text Editors

	Using the I-Space Tool
	6 Using the I-X Messenger Tool
	7 I-Plan
	8 Creating your own I-X Application
	8.1 Configuring Process Panels
	8.2 Advanced Tailoring
	8.3 Issue and Activity Handlers
	8.4 Creating your own I-X Domain/Process Library

	9 Further Tailoring
	9.1 Communications Strategy
	9.2 Custom World State Viewer and I-X Map Tool

	10 References
	Appendix A: I-P2 Parameters
	Appendix B: <I-N-C-A> XML Message Formats
	Appendix C: Test Menu Setup

