

The IM-PACs Method of Building I-X Applications

Jussi Stader
Contributions from Jessica Chen-Burger, Jeff Dalton, Stephen Potter, Austin Tate, Gerhard Wickler
Artificial Intelligence Applications Institute
Centre for Intelligent Systems and their Applications
School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

Web: http://i-x.info
E-mail: query@i-x.info

22 August 2005

mailto:query@i-x.info

The IM-PACs Method of Building I-X Applications

Table of Contents
1 Introduction ... 3

1.1 Will I-X Help Me?.. 3
1.2 About this Document .. 4

2 Taking a Peek at I-X Technology .. 4
2.1 Getting I-X and Setting It Up... 4
2.2 The I-Demo Suite of Demonstrators ... 5

3 Building Applications with I-X Technology... 5
3.1 Specifying Application Domains for I-X... 6

3.1.1 Gathering Domain Information.. 6
3.1.2 Building Domain Models ... 6
3.1.2.1 Building Organisational Models ... 7
3.1.2.2 Modelling Domain Objects... 7
3.1.2.3 Building Process Models ... 9
3.1.2.4 Making Models Work Together .. 10
3.1.2.5 Some Constraints on Domain Models 11

3.2 Configuring I-X Applications ... 12
3.3 Initialising I-X Applications .. 13
3.4 Extending I-X Applications.. 13

4 Basic Configuration ... 13
4.1 Files for Initialisation ... 14

4.1.1 Domain Models... 14
4.1.2 Test Menus... 14
4.1.3 Initial States and Plans ... 14
4.1.3.1 Building Initial States and Plans... 14

4.2 Configuration Issues ... 14
4.2.1 Using a Configuration File .. 14
4.2.2 Using a Domain Model ... 15
4.2.3 Using an Initial Plan and State.. 15
4.2.4 Using a Test Menu.. 15
4.2.5 Running without a Name Server ... 15

5 Step-by-Step Configuration... 15
5.1 I-Demo Cooperation ... 15

5.1.1 Conceptual Modelling ... 16
5.1.2 Building Files for Initialisation ... 16
5.1.2.1 Building Domain Models .. 16
5.1.2.2 Building Test Menus .. 16
5.1.2.3 Building Initial States and Plans... 16
5.1.3 Configuring the Application... 16
5.1.3.1 Adjusting Properties... 17
5.1.3.2 Adjusting Windows Scripts... 17
5.1.3.3 Adjusting Unix Scripts.. 18

5.2 Using the Map State Viewer Add-On.. 18
5.3 Running Agents on Different Machines .. 19
5.4 Running Across Firewalls ... 19

5.4.1 XML .. 19
5.4.2 Jabber... 20

5.5 Building Your Own I-X Agent .. 20
6 Further Reading .. 20

 Page 2

The IM-PACs Method of Building I-X Applications

1 Introduction
I-X is a new systems integration architecture. It is an environment for helping people work together on
processes that may be distributed over different geographical locations. I-X supports specification and
implementation of best-practice procedures, process management, communication between collaborating
agents, management of world state information, access to web services, planning, and option management.
It includes

• Process panels – similar to todo lists that people use to plan and monitor processes (what to do
next, delegate/expand, manage world state)

• A planning system – helps to explore different courses of action using what-if scenarios

• Collaborating agents – process panels that provide links to people (with organisational relationships)
and software agents

• A domain modelling tool – to produce a library of best-practice or common ways of doing things that
can be used to guide and support actual processes

• A messaging system to help communication

The building blocks of I-X applications are process panels which provide interfaces to real-world agents.
These process panels can be configured to look and behave in ways that suit the application. If more
extensive specialisation is required, it is also possible to use extensions and add-ons to further adapt
process panels or to develop other kinds of agents that can be included in I-X applications. However, this
extent of specialisation requires programming in Java and a much deeper knowledge of I-X application
development.

IM-PACs (Intelligent Messaging - Planning and Collaboration Systems) is a project to explore the use of I-X
Technology in a range of commercial applications. The project has received assistance from the Proof of
Concept Fund managed by Scottish Enterprise and funded by Scottish Enterprise, the European Research
Development Fund (ERDF) and AIAI at the University of Edinburgh. The Proof of Concept Funds supports
the pre-commercialisation of leading-edge technologies emerging from Scotland's Universities, Research
Institutes and National Health Service Trusts. For more detail, see the IM-PACs web site at
http://www.aiai.ed.ac.uk/project/impacs/.

1.1 Will I-X Help Me?
I-X will bring most benefit to those application areas where different people or systems collaborate to solve a
complex problem. Although there are plans to make I-X more aware of other aspects of the domain, in its
current state of development I-X is concerned with the management and support of processes. Aspects that
are well covered by I-X technology are:

• Management of to-do lists (what can be done next and what are suitable courses of action?)

• Exploring alternative courses of action

• Maintaining world state information

• Monitoring task execution in real-time

• Monitoring conditions and effects of activities

• Communication between remote partners (distributed agents) during task execution

Currently, inputs and outputs of activities can be represented in I-X, but they fit into I-X less naturally than
into other process management methods. Simple object types and state information can be represented and
managed in I-X world state descriptions, but to date there is no modelling support for these and it is the
user’s task to maintain consistency. Future releases of I-X will improve both these issues.

I-X will offer little support in areas where complex process flow logic is required (e.g. there is no exclusive-or
split to represent “do only one of the following actions”), and it does not support any ontology related aspects
of the domain (e.g. types of objects or activities).

 Page 3

http://www.aiai.ed.ac.uk/project/impacs/

The IM-PACs Method of Building I-X Applications

1.2 About this Document
This document's purpose is to help people use, configure, and extend I-X applications. Its remit is to be
useful rather than comprehensive by providing a tutorial-style introduction based on a simple demonstrator,
the idemo-basic example. There is a wealth of other I-X documentation providing background information
and comprehensive descriptions of what is available (see below).

In the following, we first specify how to get a running version of I-X and how to start up and use
demonstration applications (section 2). The aim here is to illustrate the basic features of I-X applications.
Then we give instructions for building I-X applications in general (section 3) in order to give an overview of
how I-X technology is applied. The section starts with instructions for populating I-X systems, i.e. what
models to provide and how to load them into I-X applications, moves on to instructions for configuring I-X
applications, i.e. making, adapting, and using process panels, and finishes on some instructions for
extending I-X applications. Finally, we give step-by-step instructions for configuring an I-X application
(section 4). After reading this section, you should be able to generalize from it and build similar I-X
applications. If at any point you feel that you need more detailed information than is provided in this
document, turn to section 6 which provides pointers to in-depth I-X documentation and related papers. This
complementary I-X documentation will be required for most real-world I-X application development.

I-X systems can be used, configured, and developed under different platforms. To make the documentation
less cluttered, we assume in this document that you are working in a Windows environment, but this choice
of platform is not preferable to any other. Where it is particularly relevant we do include brief instructions for
running in a Unix/Linux environment.

This document was written for I-X version 4.0. It has been revised for version 4.1. Although the instructions
in this document will work for I-X version 4.2, the new features in version 4.2 are not yet considered.
Instructions for running under Unix are basic at best and need to be revised. The step-by-step configuration
instructions in section 4 and 5 do not include instructions on how to build domain models or how to build
test-menu files.

2 Taking a Peek at I-X Technology
This section covers issues of obtaining I-X, and starting up and running demonstrations and sample
applications. See also the I-X home page at http://www.aiai.ed.ac.uk/project/ix/ for reference.

2.1 Getting I-X and Setting It Up
To get a copy of I-X, go to the I-X web page at http://www.aiai.ed.ac.uk/project/ix/ and follow the links to the
area of downloads where you will find the core system of the current version
http://www.aiai.ed.ac.uk/project/ix/release/current/. It will be called something like ix-N-core.zip, where N is
the latest version number (e.g. the I-X version 4.0 is called “ix-4.0-core.zip”). Before downloading this core
system file, make sure to read the licence so that you know what you can and cannot legally do with the
system. The core system also includes various other documentation to help you use and develop the
system.

Once you have downloaded the core system, you can install it. Choose an appropriate directory and unzip
the core into it. For instance, under Windows, you can unzip the core directly onto the D. This will generate
the directory “D:\ix-4.0\” as the base directory which contains the core system. Under Unix, use the “unzip”
command to unzip the core system into a location of your choice. Again, this will create the directory “ix-4.0”
as the base directory. Under both Windows and Unix, you can re-name this directory (e.g. call it “I-X” instead
of “ix-4.0”) or unzip it in a different location. In this document, we use the term base directory, or <ix-base>,
to refer to this directory. For specific examples we will assume that the base directory is “D:\I-X”.

After unzipping the core system, you should determine whether you have a suitable Java environment.
Under Unix, the command “java –version” will tell you whether you have access to a Java engine and which
version of Java you are running. Under Windows, run the test setup script in “<ix-base>/scripts/win/test-
setup.bat” (double-click on the file), and you should be able to see something similar to the message below
in a new pop-up window:

I-X Set up Test
Testing Java Environment…
Java version “1.4.1_01”
Java<TM> 2 Runtime Environment, Standard Edition <build 1.4.1_01-b01>

 Page 4

http://www.aiai.ed.ac.uk/project/ix/
http://www.aiai.ed.ac.uk/project/ix/release/current/

The IM-PACs Method of Building I-X Applications

Java HotSpot<TM> client VM <build 1.4.1_01-b01, mixed mode>
Press any key to continue …

This message tells you the version and type of Java that was found on your machine. By pressing any key,
the script should complete the test and the window should disappear. Note that the script may continue to
test the existence of various specific I-X applications; you can ignore them and just keep pressing keys until
the script finishes.

If the script does not find the location of the Java program, you will see a popup window like this:

I-X Setup Test
Testing Java Environment...
'java' is not recognized as an internal or external command, operable program or batch file.
Press any key to continue …

If this happens, it means that either Java has not been installed on your computer, or it has been installed in
a location where I-X cannot find it. If you know that Java has been installed on your computer, you can point
I-X at the java command. To do this, find the location of the java command and add this location to your
path, or change the java command that I-X uses in “<ix-base>/scripts/..” to include the location.

If Java is not installed on your computer, you will need to get it installed. Go to http://java.sun.com/ for
downloading and follow Sun's instructions. I-X developers have been careful to keep I-X code compatible
with the developing world of Java, so I-X should work with most Java versions available. However, Java
versions before 1.4 will produce more problems than the later ones (Note: at the time of writing, J2SE v
1.4.2 is a good version to get).

2.2 The I-Demo Suite of Demonstrators
An I-X process panel may be seen as an independent agent who carries out tasks within an organisation
while communicating and collaborating with other agents, therefore the example application is provided in
such a setting. The example application is a system that aims to support the moving of objects using
different forms of transport. It is an operator agent’s task to move the object; there may be a supervisor
agent who can grant authority for the use of certain types of transport.

The I-Demo suite of demonstrators all use this simple scenario. Each of the I-Demo demonstrators is
documented with a demo script and explanations of what part of the I-X technology the demonstrator
illustrates. There is a basic demonstrator, idemo-basic, which uses a stand-alone operator agent. All other I-
Demo demonstrators are based on this basic demonstrator, each adding one specific aspect of I-X
technology that they aim to illustrate. The next section describes how each of the demonstrators is built or
configured, starting from the idemo-basic demonstrator. There is also a demonstrator, I-Demo Features,
which combines the features of all other I-Demo demonstrators. This demonstrator is not described here.

All I-Demo demonstrators can be found in the I-X applications area, e.g. the I-Demo Basic demonstrator is in
<ix-base>/apps/idemo-basic.

3 Building Applications with I-X Technology
This section describes the major steps that need to be taken when setting up an I-X application. This section
is split into:

1. Specifying application domains for I-X – describing the problem, gathering information, and building
models

2. Configuring I-X applications – building process panels and making them work in an application

3. Initialising I-X applications – using models, states, and plans

4. Extending I-X applications – more extensive and challenging application development that involves
programming

Section 4 will give step-by-step instructions of how to perform different configuration tasks introduced in this
section.

 Page 5

http://java.sun.com/

The IM-PACs Method of Building I-X Applications

3.1 Specifying Application Domains for I-X
When building any serious application, it is important to first establish the requirements for the application
with an informal problem description. Then follows a phase of domain information gathering, interleaved with
knowledge modelling and capture.

3.1.1 Gathering Domain Information
The kind of domain information that is required by the current implementation of I-X is mainly in the areas of
processes and how they are performed, organisational structure in which agents operate, and domain
objects that are manipulated by the processes. In more detail:

• Processes and how they can be broken down into sub-processes (in the form of “refinements”) are
the basis of the support that can be provided by I-X applications. Thus, most of the information
gathering and modelling work will be done in this area. Sub-processes within a refinement can be
ordered (e.g. step 1 has to be done before step 2). Refinements of processes also carry conditions
and effects that are used to query and update the world state. In addition, refinements can have
issues associated with them, and variables can be used for a variety of purposes. In summary, the
following information is most relevant in the area of processes

o Sub-processes with orderings

o Conditions/effects

o Issues

o Variables

• Organisational structure with respect to participating agents covers the agents’ relationships with
other agents (see below), but a basic description of agent capabilities is also useful. Agent
relationships that are supported are:

o Peers – same level within the organisation; activities can be passed to these

o Subordinates – lower organisational level; activities can be delegated to these

o Superiors – higher organisational level; activities can be escalated to these

o Contacts – people that may not be within the organisation

o Services – automatic services internal or external to the organisation; these can be invoked

o External Capabilities – explicit capabilities of any of the above expressed as comma-
separated pairs (<agent1>:<verb1>,< agent1>:<verb2>,<agent2>:<verb1>, etc.)

• Domain Objects are manipulated as part of the application, but support that I-X provides for this is
limited to the use of variables in process models and what can be managed using world state
specifications, so only basic modelling is required here. World state specifications are statements
about what is true in the world that the I-X application knows about. Each agent has its own world
state, but it can pass (parts of) its state to other agents.

3.1.2 Building Domain Models
In this section we describe the models that are to be built and some strategies, techniques, and details for
building them. This section does not aim to provide a guide for domain modelling in general. If you have no
modelling experience you can expect to try out I-X technology, but developing real I-X applications will
require modelling expertise. There is a variety of domain modelling methods, some of which give an
introduction to domain modelling. For readers interested in learning more about process modelling methods,
the IDEF3 web site [1] provides relatively rich guidelines. For foundations in domain modelling methods, e.g.
ontology building methods, see [2] and [3]. To understand how Semantic Web based applications are
related to processes and enactment, BPEL4WS [4] and OWL-S [5] are good references. For similar interests
on the Semantic Web based data representation, OWL [6] is worth a read.

What we do describe in this section is an outline of how to build the models that are required for I-X
applications. The different types of I-X models all relate to each other because they represent different
aspects of the same domain (or application area) and they complement each other when they are used in
the application. We first describe how the different models are built (organisational models, domain object
models, and process models) and then give indications of how they relate to each other and how they are

 Page 6

The IM-PACs Method of Building I-X Applications

used in concert. Finally, we give some details of modelling constraints that are imposed by how I-X and
some relevant add-ons use and manage models.

3.1.2.1 Building Organisational Models
As a first step of building organisational models, it is useful to sketch out what agents are in the organisation,
how they relate to each other, how they communicate with each other, and what kinds of processes different
agents are involved in. For each agent, take a note of:

• Organisational relationships between the agent and other agents (i.e. peers, superiors,
subordinates, contacts),

• Areas of expertise (i.e. capabilities, processes it knows about or is responsible for)

• Interfaces (communication) with other agents

• Other relevant characteristics of the agents

The only information about organisational models that can directly be included in I-X applications is the
organisational relationships. This information is made available through the agent’s I-Space specifications.
Adding relationships to other agents to the I-Space specifications of an agent will have the effect that those
other agents will increase the number of options that are available for dealing with activities. For example,
the agent will be able to “”delegate” activities to subordinates with suitable capabilities, “pass” them to peers,
etc. In addition to agent relationships, I-Space can also be used to specify agent capabilities. If capabilities
are used coherently, agents with relevant capabilities will appear as options for dealing with activities. For
example, consider the situation where towing is to be done (activity “tow-vehicle” is on the activity list). If
there is an agent that has advertised a capability “tow-vehicle”, this agent will appear on the list of possible
actions for dealing with the activity. Note that if no capabilities are specified for an agent, the agent is
assumed to have all capabilities (i.e. can perform any activity).

An example of an agent’s organisational relationships in I-Space is:

• Superiors: Supervisor

• Peers: Operator2,Operator3

• Subordinates:

• External Capabilities: Operator2:move-vehicle,Operator2:load-vehicle,Operator3:source-objects

Currently, I-Space specifications are part of an agent’s properties file (see section 3.2). It is important to
decide which agent should have information about which other agents. A good rule of thumb is that if an
agent is to initiate communication with another agent (e.g. to delegate/pass and activity to that agent), the
agent needs to know about that other agent. An agent does not need to know about other agents if it only
needs to reply to those agents’ requests.

Any information about agents that is not part of the I-Space specifications (e.g. the agent’s location or
contact information) can be included in the system as part of Modelling Domain Objects below.

At the moment, the onus is on the user to get the agent names right, to make capability specifications useful,
and to tie in other “object information” about the agents. In future, the modelling of organisational information
will be supported by I-DE and it will be tied into organisational ontologies that will also contain concepts of
organisational roles.

3.1.2.2 Modelling Domain Objects
The modelling of domain objects and their lifecycles is not supported well in the current implementation of I-
X. In future versions, there will be additions to I-DE that will provide support in this area and in the
development of ontologies that underpin the modelling of domain objects. Until this is done, the only way in
which objects can be modelled is through constraints of the world state. World state specifications are
statements about what is true in the world that the I-X application knows about. Each agent has its own
world state and it can pass (parts of) its state to other agents.

Which information about domain objects is relevant depends strongly on the application, but it is often useful
to start by organising objects into different types, e.g. persons, vehicles, cargo objects, warehouses, etc.
Once you have identified the types of objects that are relevant in your application, try to determine what
kinds of things you may want to say about them. For example, vehicles have locations, are assigned to
persons who drive them, and have a weight limit for their transport capability, but their colour does not
matter in our context. There are some characteristics that objects of a specific type will always have and

 Page 7

The IM-PACs Method of Building I-X Applications

others that will change over time. For example, we may want to know whether a vehicle is in transit or
parked. Finally, try to establish how object types may relate to each other. For example, persons and
vehicles may be linked by a driver-of (or driven-by) relationship. Here are the kinds of notes you should take
about your domain modelling:

• Object type person

o Represented by name (e.g. John)

o Status (working/waiting/resting)

o Location (longitude = x, latitude = y)

o Job(s) assigned

• Object type vehicle

o Represented by vehicle type and an ID number (e.g. Van10)

o Status (parked, transit, transporting)

o Location (longitude = x, latitude = y)

o Driver(s) assigned

• Relationships

o Driver-of vehicle person

These notes are important because they will help you to be consistent about how you refer to objects and
their characteristics and relationships. There will always be several choices of how relevant information can
be represented. Some of these choices will make life harder or more difficult later, but often there are
several alternatives that are all suitable. However, it is important that a choice is made and that the choice is
used coherently. If you find later that a modelling choice is making your life difficult, do try to go back to the
modelling and make the changes required (expecting to throw away much of the work that was based on the
old models). If it is not possible to make these changes, make sure you document the choice, its problem,
why it could not be changed, and how to work around it (i.e. live with it).

Once you have decided what types of object are relevant and what their relevant characteristics are, you
can decide on how to represent these in world state constraints and start to put in some instances to make
your ideas more concrete. World state constraints always have the following structure: pattern = value. In
our models, including the example below, we usually choose representations like this: attribute object =
value.

Any world state constraints of a process panel are shown in the world state viewer part of the panel. Figure
1 shows a world state based on the modelling information above. The world state includes a representation
of a person, Operator1, at a location.

 Page 8

The IM-PACs Method of Building I-X Applications

Figure 1: World State in iDemo-basic

If you have modelling experience, some of the representations in this model may already seem odd to you.
Our representation choices are restricted by I-X and by some of the tools we are using in this tutorial. See
section 3.1.2.5 for more detail.

For details of how to set up an initial state of the world see section 3.3.

3.1.2.3 Building Process Models
Having gathered information about how things are (or should be) done (see section 3.1.1), you now need to
organise this information into process models that are part of a domain model. These process models can
then be used within process panels. It is not necessary to keep all process information in one domain model
– different agents have different areas of expertise, so different process panels can have different domain
models. Note, however, that if agents (process panels) need to communicate about objects and processes,
their models have to be consistent.

I-X process models are organised as a set of refinements. A refinement has a name which is used for
display purposes, and a pattern, which is used to determine which activities the refinement can be used for
(i.e. the refinement is one way of dealing with any activity that matches its pattern). A refinement may also
have a set of issues which have to be resolved whenever this way of dealing with an activity is chosen, and
a set of nodes which are the steps (sub-activities) to be taken when dealing with an activity in this way. A
refinement can also have constraints. There are different types of constraints: a set of specific constraint
types (precedence constraints, conditions, and effects), and there may be other constraints that the user can
specify. Precedence constraints are used to specify node orderings within a refinement (e.g. “node1 must
end before node2 can begin”). Conditions and effects are both constraints on the world state. Conditions
specify aspects of the world state that have to be met in order for the refinement to work, effects are
specifications of how performing the steps in the refinement change the world state. Finally, refinements can
have annotations, which can be used for comments.

Patterns are a central part of I-X process models. As mentioned above, each refinement has a pattern that is
used to determine the activities for which the refinement can be used. Patterns also appear as specifications
of nodes and issues within refinements, and as part of constraints. A pattern is made up of any number of
terms (words and variables). For example, “move ?cargo-object ?to-x ?to-y” is a pattern. Variables are used
to stand for (and match against) parts of patterns. In I-X, variables are terms that start with “?”, e.g. “?cargo-

 Page 9

The IM-PACs Method of Building I-X Applications

object”. They are needed to generalise specific situations and make them more generally applicable (“move
‘medical-box1’ …” vs. the above). During process execution, matching variables in specific situations
assigns values to the variables and thus makes generic descriptions specific. In process models, variables
can be used to query and update the world state, and to carry information into refinements and between
process steps.

Like many process modelling techniques, I-X supports the concept of “hierarchical” models, i.e. breaking
down (expanding) activities into sub-activities, which can themselves be expanded into further detail. Unlike
most techniques, I-X process models use flexible links between activities and their expansions. In the
process models, each refinement specifies via its pattern that it can be used to expand “this kind of activity”,
i.e. any activity that matches the pattern. It is not until process enactment that a connection between an
activity and an expansion is made, leaving options of how to perform the activity (alternative expansions)
open until a choice is required. During process modelling, this means that you will produce a “flat” set of
refinements rather than an expansion tree. Figure 2 shows a simple process model in I-DE.

To produce I-X process models, the best support currently available is I-DE, the I-X domain editor. This
editor can be started from any I-X process panel (under the Tools menu) or it can be used stand-alone,
although this stand-alone mode is not yet documented. When using I-DE, remember to save your work
frequently! Its user guide describes details on how to use the editor to enter and view process information.

3.1.2.4 Making Models Work Together
The most used connection between models is that between process models and world state. However, there
may be connections between the agents and the world state, for example if you want to represent, monitor,
and visualise an agent’s geographical location and there may be connections between agents and process
models where an agent handle can be passed to a process via parameters or world state conditions.

The connection between world state constraints and process models is at the heart of I-X techniques.
Having represented objects and their characteristics as world state constraints, you can then use them in
activity specifications of your process models. Because the process models are designed to be generally
useful, they will contain variables. The variables can be used to link different parts of the specifications. For
example there may be an activity that assigns a vehicle to a person who drives it. In order to do this, we
need to find a vehicle that is free. After the activity, the vehicle is no longer free. This could be modelled as
follows: the activity’s name is “assign-vehicle-to-driver”. Its pattern is “assign ?driver ?vehicle”. The activity
has the conditions “type ?driver = person”, “type ?vehicle = vehicle”, “assigned ?vehicle = false”. The activity
has the effects “assigned ?vehicle = true”, “driver-of ?vehicle ?driver”, and “assigned ?driver = true”. (Note:
in this activity we do not care whether the driver has already been assigned a vehicle.) If we take a world
state containing a person “John” and a vehicle “Truck1”, we can perform the activity: its conditions are met if
we assign the variables ?driver=John and ?vehicle=Truck1. After we performed the activity, the state
changes to include: “assigned Truck1 = true”, “assigned John = true”, “driver-of Truck1 = John”.

By now you will appreciate that the notes on object types and characteristics will be useful when working on
other models (e.g. process models).

Note: the conditions, effects, and world state descriptions may need to be implemented in a somewhat
verbose way because of the restrictions in the kinds of constraints I-X can manage (see next sub-section).

 Page 10

The IM-PACs Method of Building I-X Applications

Figure 2: Simple Process Model in I-DE

3.1.2.5 Some Constraints on Domain Models
In addition to the constraints imposed by the specific approach that I-X adopts with respect to domain
models, there are some constraints that are imposed either by limitations of the current version of I-X or by
the approach taken by add-ons we are using in this document.

The main limitation of I-X with respect to process models is that I-X cannot handle logic within the conditions
of refinements (process models). This means that some models are more long-winded than they should be.
The only logical operator between conditions is “and”, which means that alternatives and negations cannot
be expressed directly. For example, there is no direct way to say that a vehicle cannot be assigned to a
resting driver (cannot say “status ?driver != resting” and cannot say “status ?driver = working OR status
?driver = waiting”). If this kind of specification is required, we may have to introduce a separate “assignable”
characteristic to driver objects, e.g. “assignable ?driver = true”. We can then use this to check whether we
can assign a vehicle to the driver.

The add-on we use in this document is the I-X Map Tool which can be used to view geographical information
about agents and objects. The main limitation imposed by the I-X Map Tool add-on is on attribute names. I-X
Map Tool inspects the world state of a process panel and derives its own conclusions based on a set of pre-
determined keywords. When I-X Map Tool finds a constraint pair of the form “longitude ?who ?x” , “latitude
?who ?y” it translates it into a point on the map. If there is also a “type ?who ?type-name” constraint, I-X
Map Tool checks whether there is a specific icon to display the ?type-name objects or an even more specific
icon for displaying the individual ?who. This means that if I-X Map Tool is to be used in conjunction with an I-
X process panel, locations have to be represented using longitude and latitude information for object types,
using the exact keywords and the exact statements as described in the models above although it may seem

 Page 11

The IM-PACs Method of Building I-X Applications

preferable to use different attribute names (e.g. “object-type” instead of “type”) or different representational
styles (e.g. “location ?place-name ?x ?y”).

3.2 Configuring I-X Applications
Applications are kept in the applications sub-directory called “apps”. A good starting point for developing I-X
applications is to use the sample application, called idemo-basic, and to adapt it to your application’s
requirements. The first step is to copy the whole application (copy the idemo-basic directory) and call the
copy something you like (we call it my-app here). Within an application’s area, configuration work will take
place in two sub-directories:

1. In the config area (my-app/config/) the properties of agents are set. Nearly all your configuration
work will take place in this directory

2. In the scripts area (my-app/scripts/win) you will place scripts to run your agents. You may also
specify add-ons here (see below), if they are required by your application

The building blocks of applications are process panels. The behaviour and appearance of panels can be
configured as appropriate for the application. The main way of configuring applications is through property
files (which conventionally have the file extension "props"). Property files are kept in the config directory.
They are used to supply values of various parameters of process panels (see below) and they identify any
test menu files used to adapt the test menus of their respective panels. Property files can also include initial
plans, domain libraries, background colour, etc. If you are using extensions and add-ons, they too have to
be linked into the application here. There is also a file called bg-colour.txt that contains the code of a few
useful colours that work well as backgrounds of panels. This file is just for documentation/guidance.

In summary, property files set parameters that get passed to a panel at start-up. All parameter settings are
optional. The parameters that you are likely to want to set for a process panel agent are:

• the panel's symbol name (e.g. Supervisor) which is used when communicating with other agents,

• the panel's label or display name (e.g. Operations Supervisor Panel), the panel's logo, and its
background colour, all used in the panel's display to suit the panel’s purpose and make it easily
recognised (especially when more than one panel is used on one display)

• the domain model to load at start-up

• the plan (saved process panel state) to load at start-up

• the test-menu-adaptation file to use (if any),

• the I-Space configuration (relationships to other agents)

For a full set of process panel parameters and their descriptions see Appendix A of the I-X User Guide at
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf.

Each process panel usually has its own script (in my-app/scripts/win) that can be used to start up the panel.
For simple applications, the only parts of the script that may have to be adapted are the name of the panel's
properties file and whether the panel is to run a name server. There are more advanced parameters that can
be used e.g. if non-standard locations are used for the application's files, if Java add-ons are to be used, or if
different communication protocols are to be used. It is also possible to pass command-line parameters to the
panel. This can provide an alternative way of specifying initial plans, domain models etc. If add-ons like the
map state viewer are to be used, their file locations have to be specified here. If a non-standard (custom
programmed) IX-Agent other than the standard one (ix.ip2.Ip2) is to be used, the command line for calling
the java class will be edited here.

Relating agents has the advantage that additional options will appear in the panel to handle activities and
issues. For example, if the panel's agent has designated subordinates, the agent may delegate activities to
them using the commands that will now be available through the Action menu.

Setting up test menus has the advantage that potentially complex effects can be achieved with a single user
action. For example, if another staff member joins the team, we can use a single test-menu selection as a
short-cut to start up an agent, give it a physical location, and re-distribute jobs to share the work evenly.
Unfortunately, setting up test menus involves writing XML.

Add-ons are modules that are linked into an I-X application and used to perform tasks on (parts of) the
application. If you are using add-ons, these are specified in the scripts area, and their resources are kept in

 Page 12

http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf

The IM-PACs Method of Building I-X Applications

the resources area (my-app/resources). We provide an example of an add-on, I-X Map Tool, which is used
to display geographical information about world state objects.

3.3 Initialising I-X Applications
Initialising (or populating) I-X applications is done in three areas:

1. Process models: These are models of best-practice or instructions of how things can be done. It will
often be necessary to have different domains of expertise for different panels (e.g. operator vs.
supervisor). Process models can be built using the integrated domain editor (I-DE) that comes with
every instance of an I-X panel. Alternatively, domain models can be produced as XML documents in
any editor. Although process models can be created and modified while the application is used,
process models will often be built before the application is used, i.e. when running the application
they are available to support activities.

2. World state: By world state we mean a description of the current state of the world, in which an I-X
process panel operates. In I-X, such a world state is described using “constraints” such as “colour =
red”. The world state of a panel can be manipulated directly from within the panel by explicit user
actions or through effects of activities that have been carried out. To explicitly change the world
state, use "New | New Constraints" to add a new constraint (which will appear in the panel’s state
area), or modify existing world state values by typing into the value fields in the world state area.
The world state of a panel can also be changed by other process panels. A process panel can pass
(parts of) its own world state to another panel in bulk (using the “File | Send state” option, followed
by choosing a panel to send it to) or in part by sending constraints as messages to another panel. A
world state of a panel can be saved as a plan. Previously saved world states can later be loaded
and may be used as an initial state. Initial world states will usually be available with an application,
and users may save their own world states if required.

3. Plans: A plan is a collection of activities in which an agent is involved in some way. Usually these
activities are related to each other and to the world state (which can be saved along with a plan). A
plan changes over time as activities are performed, expanded, delegated, etc. Initial plans may be
provided with an I-X application, but the user can save their own plans if required. This is often done
to save a session that is to be continued later.

See also later sections for step-by-step instructions.

3.4 Extending I-X Applications
I-X is implemented in Java and its architecture and components are accessible to Java programmers. The I-
X source is well-documented using javadoc.

Apart from general programming, there are two main areas in which I-X applications can be extended and
adapted: by providing a custom world state viewer, and by providing a communications strategy. The I-X
Developer’s Guide at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Developer-Guide.pdf gives details
on both of these. In addition, the map viewer described in the next section (0) is an example of a custom
world state viewer. See also sections 5.3, 5.4, and 5.5 below.

4 Basic Configuration
This section describes I-Demo Basic, the demo application that illustrates the basic concepts of I-X
technology. The next section describes further configuration issues, each illustrated with their own I-Demo
application. The configuration tasks that are covered in I-Demo Basic are:

1. Using a domain

2. Building an initial plan and state

3. Using an initial plan and state

4. Using a test menu

5. Running without a name server

Below, we first describe the initialisation files that are required and give an indication of how they are built.
We then describe in detail how the configuration tasks above are achieved in I-Demo Basic.

 Page 13

http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Developer-Guide.pdf

The IM-PACs Method of Building I-X Applications

4.1 Files for Initialisation
The files that are used to initialise I-Demo Basic are the domain model, the initial plan, the initial state, and
the test menu.

4.1.1 Domain Models
The operator’s domain model can be found in I-Demo Basic’s domain-library sub-directory: “apps/idemo-
basic/domain-library/domain-operator.xml”. Future versions of this document may have a section detailing
the process of building this model. For the moment, use I-DE to look that the domain model file provided.

4.1.2 Test Menus
The operator has a test menu file to provide short-cuts for placing tasks onto the operator’s panel. The file is
in the configuration sub-directory: “apps/idemo-basic/config/operator-test.xml”. Unfortunately, setting up test
menus involves writing XML. Future versions of I-X may have support for building such files. For the
moment, use an XML viewer to look that the test menu files provided and edit files with any means you can
find. Test menus can be specified within one test menu file or in several files whose entries will be appended
to the menu. Section 8 of the User’s Guide at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-
Guide.pdf has an introduction of how to adapt test menus and Appendix C of the same guide gives more
examples of test menus.

4.1.3 Initial States and Plans
Initial states and plans are located in the domain-library sub-directory. The operator has both an initial state
(“apps/idemo-basic/domain-library/state-operator-init.xml”) and an initial plan (“apps/idemo-basic/domain-
library/plan-operator-init.xml”). They are kept separate to support maintenance of the initialisation files. Both
are best viewed by starting up the operator panel.

4.1.3.1 Building Initial States and Plans
The easiest way to create an initial state is to run the operator panel. First make sure that the panel's script
allows you to save the plan information you need. Make sure the -plan-state-to-save part of the application
parameters is set correctly. For saving the whole plan, the parameter should be set to "*". For Windows,
make sure the file scripts/win/operator.bat contains a line like this: "set app_params=-ipc=xml -load
config/operator.props -plan-state-to-save=*”. Once this is done, start the operator panel, reset it to ensure
there is no plan or state information already there, and enter the state information in the form of new
constraints which will be shown in the panel’s state area. When you are happy with the constraints, save the
panel’s state (using the save plan option). Note that building initial states and plans should be done after the
configuration of the application.

double-click on scripts/win/operator.bat (ignore messages about not finding
files)
In the “File” menu, select “Reset” ► “All”
In the “New” menu, select “New Constraint” and type “type Heli1 = helicopter”
then click “Ok”
…add more constraints as required….
In the “File” menu, select “Save Plan As…”, then specify file “state-
operator-init.xml”

The easiest way to create the operator’s initial plan is to again reset the operator panel and use the test
menu to place an initial task onto the agent’s agenda by using the test menu option. Then the plan can be
saved in the same way that the state was saved.

In the “File” menu, select “Reset” ► “All”
In the “Test” menu, select “Move…locagtion-a”
…add more activities or partially run the demo as required ….
In the “File” menu, select “Save Plan As…”, then specify file “plan-operator-
init.xml”

4.2 Configuration Issues
4.2.1 Using a Configuration File
The Operator in I-Demo Basic uses the configuration file “config/operator.props”. It is linked into the
application as an application parameter in the agent’s script. For Windows the file “scripts/win/operator.bat”
contains the line "set app_params=-ipc=xml -load config/operator.props"

 Page 14

http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf

The IM-PACs Method of Building I-X Applications

4.2.2 Using a Domain Model
The domain is specified as part of the panel’s configuration. For I-Demo Basic, the file
“config/operator.props” contains the line "domain=domain-library/domain-operator.xml" to link in its domain
model in that location.

4.2.3 Using an Initial Plan and State
The initial plans and states are specified as part of the panel’s configuration. For I-Demo Basic, the file
“config/operator.props” contains the line “plan=domain-library/state-operator-init.xml,domain-library/plan-
operator-init. " to link in both plan and state. Note that there are no spaces in the line at all.

4.2.4 Using a Test Menu
Test menus files are linked into the application in the configuration files. For I-Demo Basic, the file
“config/operator.props” contains the line "test-menu=config/operator-test.xml" to link in its test menu file in
that location.

4.2.5 Running without a Name Server
I-Demo Basic only has one agent and runs without a name server. This is achieved using the application
parameters in the script files. For Windows, the file “scripts/win/operator.bat” contains the line "set
app_params=-ipc=xml -load config/operator.props –no name-server".

5 Step-by-Step Configuration
This section describes how to build each of the I-Demo demonstrators from the basic demonstrator, I-Demo
Basic. There are three distinct approaches for developing your own application with the help of the I-Demo
suite of demonstrators:

1. start with a copy of I-Demo Basic and add I-X technologies one at a time until you have included all
the features required for your application;

2. start with a copy of the I-Demo demonstrator that is closest to what you need, then add I-X
technologies one at a time until you have included all the features required for your application;

3. start with a copy of I-Demo Features and remove all the features you do not need for your
application.

Which of these approaches you take will depend on your own preference for building applications, and on
the complexity of your application, i.e. how many of the features you need to include.

The descriptions below all assume the first approach. Each starts with taking a copy of idemo-basic and
then describes how to add the specific part of I-X technology that the demonstrator aims to illustrate. The
separate tasks to perform for building an I-Demo application are:

• Conceptual modelling

• Building files for intialisations (domain models, test menus, and initial states and plans)

• Configuring the application

The descriptions of the I-Demo applications below is organised along these tasks, also listing the specific
aspects of I-X application building that is illustrated. Detail on how to run each I-Demo application can be
found in their respective demo scripts.

5.1 I-Demo Cooperation
I-Demo-Cooperation illustrates how to use I-X process panels to support two agents who are working
together on a common task. This section describes how to build the I-Demo Cooperation application,
starting from I-Demo Basic, the base application. The configuration tasks that are covered in building this
demo are:

1. Running a name server

2. Relating agents

3. Combining test menus

 Page 15

The IM-PACs Method of Building I-X Applications

5.1.1 Conceptual Modelling
Add a supervisor to the scenario whose job it is to take on tasks (for which the supervisor is then
responsible), and to authorize the use of helicopters. The supervisor agent will be called “Supervisor”.

5.1.2 Building Files for Initialisation
5.1.2.1 Building Domain Models
Build a domain model for the supervisor that reflects this. Call it domain-supervisor.xml and put it into the
domain-library sub-directory.

Create “apps/idemo-coop/domain-library/domain-supervisor.xml”
Future versions of this document may have a section detailing this process. For the moment, use I-DE to
look that the domain model file provided.

5.1.2.2 Building Test Menus
Both operator and supervisor have additional test menu entries to delegate/escalate tasks directly to the
other agent. These menu entries are short-cuts to use in a demo situation. If you do not want to use such
short-cuts, the user of the application can achieve the same by typing the activities into the Messenger tool
and sending them to the other agent.

To add to the test menus, build XML files of the test menu entries and place them in the config area:

Create “apps/idemo-coop/config/operator-test.xml”
Create “apps/idemo-coop/config/supervisor-test.xml”

Future versions of I-X may have support for building such files. For the moment, use an XML viewer to look
that the test menu files provided.

5.1.2.3 Building Initial States and Plans
Both agents have initial states, and the supervisor agent also has an initial plan. The operator’s initial state is
the same as for idemo-basic and therefore needs no change. The supervisor’s initial state needs to be
created.

The easiest way to create the supervisor’s initial state is to run the supervisor panel, to reset it to ensure
there is not plan or state information already there, and to enter the state information in the form of new
constraints which will be shown in the panel’s state area. When you are happy with the constraint, save the
panel’s state (using the save plan option). Do all this after the configuration of the application.

double-click on scripts/win/supervisor.bat (ignore messages about not finding
files)
In the “File” menu, select “Reset” ► “All”
In the “New” menu, select “New Constraint” and type “type Heli1 = helicopter”
then click “Ok”
In the “File” menu, select “Save Plan As…”, then specify file “state-
supervisor-init.xml”
In the “File” menu, select “Exit”

The supervisor’s initial plan was previously the operator’s initial plan, so all you have to do is to rename the
file:

Go to the domain library directory, “apps/idemo-coop/domain-library”
Rename “plan-operator-init.xml” to “plan-supervisor-init.xml”

5.1.3 Configuring the Application
Take a copy of idemo-basic. Rename it idemo-coop. You will have to work in all sub-directories. Start up a
to-do list to note things that you should remember to do later. Copy the operator’s property files and script
files to make the supervisor’s files: copy config/operator.props and rename it config/supervisor.props, copy
scripts/win/operator.bat and rename it scripts/win/supervisor.bat.

Take a copy of idemo-basic. Rename it idemo-coop
Take a copy of config/operator.props and rename it config/supervisor.props
Take a copy of scripts/win/operator.props and rename it
scripts/win/supervisor.props

 Page 16

The IM-PACs Method of Building I-X Applications

5.1.3.1 Adjusting Properties
Adjusting properties is done in the config directory. Edit the operator’s properties to fit the new environment:

Edit config/operator.props
• The operator does not have an initial plan in this application, so remove “,domain-library/plan-

operator-init.xml” from the plan parameter:

Change “plan=domain-library/state-operator-init.xml,domain-library/plan-
operator-init.xml”
to “plan=domain-library/state-operator-init.xml”
• Add test menu entries for communicating with the supervisor to the operator’s test menu and take a

note to build an XML file with the new test menu entries with the right name in the right location,
unless you have already done this.

Change “test-menu=config/move-thing-test.xml”
to “test-menu=config/move-thing-test.xml,config/operator-test.xml”

Note: build config/operator-test.xml
• Add the supervisor to the operator’s I-Space, making sure there are no spaces (watch for trailing

ones)

Change “superiors=” to “superiors=Supervisor”
Save and close

Edit the supervisor’s properties to reflect that it has different characteristics from the operator:

Edit supervisor.props
• Replace all occurrences of “Operator” with “Supervisor” and “operator” with “supervisor” and take a

note on your todo list to make the supervisor’s initializations and the domain model with the right
names and in the right locations, unless you have already done this.

Change “symbol-name=Operator” to “symbol-name=Supervisor”
Change “display-name=Operator Panel” to “display-name=Supervisor Panel”
Change “domain=domain-library/domain-operator.xml”
to “domain=domain-library/domain-supervisor.xml”
Change “plan=domain-library/state-operator-init.xml,domain-library/plan-
operator-init.xml”
to “plan=domain-library/state-supervisor-init.xml,domain-library/plan-
supervisor-init.xml”

Note: build domain-library/domain-supervisor.xml
build domain-library/state-supervisor-init.xml
build domain-library/plan-supervisor-init.xml

• Add test menu entries for communicating with the operator to the supervisor’s test menu and take a
note to build an XML file with the new test menu entries with the right name in the right location,
unless you have already done this.

Change “test-menu=config/move-thing-test.xml”
to “test-menu=config/move-thing-test.xml,config/supervisor-test.xml”

Note: build config/supervisor-test.xml
• add the operator to the supervisor’s I-Space, again making sure there are no spaces (watch for

trailing ones)

change “subordinates=” to “subordinates=Operator”
• Change the background colour to help users distinguish between different agents’ windows,

especially panels. Consult config/bg-colour.txt for good colours to use, e.g. ffeeff.

Change “metal-theme-secondary3=0xeeeeff” to “metal-theme-secondary3=0xffeeff”
Save and close

5.1.3.2 Adjusting Windows Scripts
Adjusting scripts is done in the scripts directory, “apps/demo-coop/scripts/win”. Edit the operator’s script file
to suit the new environment:

 Page 17

The IM-PACs Method of Building I-X Applications

Edit scripts/win/operator.bat
• Remove the note to not use a name server

Change “set app_params=-ipc=xml -load config\operator.props -plan-state-to-
save=* -no name-server” to “set app_params=-ipc=xml -load
config\operator.props -plan-state-to-save=*”
Save and close

Take a copy of operator.bat and call it supervisor.bat to make the supervisor’s script. Edit the supervisor’s
script:

Edit supervisor.bat
• Replace all occurrences of Operator with Supervisor and “operator” with “supervisor”; also replace

the note not to use a name server with a note to run a name server.

Change “title Operator Command Console” to “title Supervisor Command Console”
Change “set app_params=-ipc=xml -load config\operator.props -plan-state-to-
save=* -no name-server” to “set app_params=-ipc=xml -load
config\osupervisor.props -plan-state-to-save=* -run-name-server”
Save and close

5.1.3.3 Adjusting Unix Scripts
Adjusting Unix scripts is done in the directory, “apps/demo-coop/scripts/unix”. Edit the operator’s script file to
suit the new environment:

Edit scripts/unix/operator
• Remove the note to not use a name server

Take a copy of the file “operator” and call it “supervisor” to make the supervisor’s script. Edit this file:

Edit supervisor
• Replace all occurrences of Operator with Supervisor and “operator” with “supervisor”; also replace

the note not to use a name server with a note to run a name server.

Change “title Operator Command Console” to “title Supervisor Command Console”
Change “set app_params=-ipc=xml -load config\operator.props -plan-state-to-
save=* -no name-server” to “set app_params=-ipc=xml -load
config\osupervisor.props -plan-state-to-save=* -run-name-server”
Save and close

5.2 Using the Map State Viewer Add-On
I-Demo Map will illustrate how to use the map state viewer add-on. For the moment, use the following
instructions to guide you.

There is a stand-alone tool that can be used to provide a view of the world state that is based on maps and
geographical locations. In order to use this tool as a world state viewer, you should get map image of your
area. This could be, for example, a street plan, an aerial photograph, or a plan-view of your office space.
You can also provide different images that are used to show the locations of agents or objects that have
location information. Any world state objects that have longitude and latitude information will then be shown
in the map viewer. By default, object locations are shown with the help of a default icon. You can replace the
default icon and you can also use your own icons to show object locations. To do this, use object names and
object type names to link objects to specific icons via the icon file names. The tool will show the most
specific icon it can find.

To set up the map tool, decide what images you want to use (at least myWorld.jpg) and set about getting the
images ready. Getting the images to look good requires specific skills and tends to take a long time so plan
ahead for this. If there are images you want to use that are not available yet, put a placeholder image in the
right location. Then set up the tool:

• edit resources/map/world-map/map.props
"jpgmaplayer.jpgPath=resources/map/world-map/myWorld.jpg"

 Page 18

The IM-PACs Method of Building I-X Applications

To give the rescue centre an overview of the locations of drivers and vehicles:

• edit config/rescueCentre.props file
"state-viewer-class=ix.ip2.StateViewMap
 map-properties=resources/map/world-map/map.props
 map-type-icons=resources/map/icons/type-icons/
 map-object-icons=resources/map/icons/object-icons/"

For more detail, see the I-X Map Tool documentation in <ix-base>/apps/addon/map/java/resources/html/ix-
map-help.html.

5.3 Running Agents on Different Machines
I-Demo Distributed will illustrate how to run agents on different machines. For the moment, use the following
instructions to guide you.

The easiest way to run agents on different machines is by using a Jabber server. You can use a third party
one such as jabber.org (and you can create a new account there using I-X and the Jabber communication
strategy - just tick the New Account" box). Different jabber users usually have to be mutually "subscribed" to
send messages - but again, this can be done from within I-X. However, you then become reliant both on
having an Internet connection and on your chosen jabber server being 'live'.

Once the Jabber accounts are set up, all you have to do is to alter -ipc=xml and ipc=xml entries in the scripts
to jabber (ipc=jabber).

The alternative is to stick with the nameserver/xml strategy as used in the rest of this document. To do this
you must know the names or IP addresses of the end points. This is not so good across the Internet where
DHCP (Dynamic Host Configuration Protocol) is in use. However, to use this approach, start up one panel
with a name server as described above. In the other panels on the other machines give a parameter
(app_param) of -name-server=localhost:5555 if you run on the same machine (5555 is the port you are
using). Replace “localhost” with the name or IP address of the machine that is running the name server, e.g.
-name-server=somemachine.aiai.ed.ac.uk:5555.

In summary, to use the nameserver/xml strategy:

• edit scripts/win/rescueCentre.bat
"set app_params=-ipc=xml -load config/rescueCentre.props -run-name-server"

• edit scripts/win/rescueDriver1.bat
"set app_params=-ipc=xml -load config/rescueCentre.props
-name-server=eoiRescue.aiai.ed.ac.uk:5555", assuming that rescueCentre panel
is running on eoiRescue.aiai.ed.ac.uk.

5.4 Running Across Firewalls
If you are running an I-X panel behind a local firewall and wish to connect to other panels via the Internet, it
may be necessary to open ports in the firewall to allow messages to be sent and received. The steps that
need to be taken depend on the particular communication strategy that you are using; below we describe
what needs to be done for the XML and Jabber strategies. You will probably also need to consult the user
guide (http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf) for details of how to set
particular parameters etc.

5.4.1 XML
If you are running a panel behind a firewall, and you wish to communicate with a name server and/or other
panels that are outside that firewall, then you will need to ensure that the ports that you use for
communication are opened to allow Internet traffic. You should probably stipulate the particular port that you
would like to use and ensure that it is opened (note that unless a particular port is stipulated, the behaviour
of the name server is to allocate a port dynamically). If you are administrator of the firewall, then you should
open this port using the TCP protocol; otherwise you should ask your local network administrator to do this
for you.

Moreover, if you are also running a name server behind a firewall, and you wish to allow it to be accessed by
panels outside the firewall, then it is expected that the designated port used by the name server (default:
5555) will be opened to allow communications through. Again, if you have administrative privileges you
should open this port; otherwise you should ask your local network administrator for help.

 Page 19

http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf

The IM-PACs Method of Building I-X Applications

5.4.2 Jabber
If you are using Jabber, and the Jabber server that you are using is outside your firewall, then it will be
necessary to open a port through the firewall to enable this communication. In most cases the port to open
will be 5222 (this is the default port used for Jabber client connections to a server). If you are administrator
of the firewall, then you should open this port using the TCP protocol; otherwise you should ask your local
network administrator to do this for you. (If you wish to use only certain designated servers, for added
security port 5222 can be constrained to allow connections only to those servers’ IP addresses.)

5.5 Building Your Own I-X Agent
For certain applications, it may be useful to interact with agents that have perhaps been developed for
different purposes but which share some underlying concepts with I-X panels. For instance, the ability to
invoke seamlessly an agent that is able to perform a particular type of activity that arises in your application,
and then to confirm that this activity has been successfully completed, would be of great use. This can be
done by ‘wrapping’ this agent with an I-X wrapper which deals with the interactions with the other agents –
sending and receiving messages – and, when appropriate, invoking and monitoring the agent’s intrinsic
abilities, and collecting any results that are generated. In other words, since its internal mechanisms are
hidden, to other I-X users the wrapped agent now appears to be an I-X agent like any other. For those with a
little programming experience, the I-X architecture provides some support to allow this sort of I-X agent to be
developed.

For java programmers, the easiest way to do this is to extend the class ix.icore.IXAgent: this provides basic
initialisation methods (allowing, for instance, standard I-X parameters to be read, either from the command
line or from a props file, an agent to be started, and its communications to be initialised, all done in the same
manner as for an I-X panel) and methods for handling the different types of message that might be received
(some or all of which might be overridden to invoke the specific capabilities of this agent). For further details,
consult the developer’s guide (see http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Developer-
Guide.pdf) and the I-X javadoc.

While using java to extend the existing IXAgent class provides the most convenient approach to this sort of
development, it is not the only approach possible. Any programming language that offers the basic
functionality of generating, sending, receiving and parsing appropriate messages could, in theory, be used to
develop an I-X agent of this sort. The I-X Syntax document provides more details about the message
formats that I-X uses.

6 Further Reading
The main sources of information currently available are:

• The I-X User’s Guide at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf which
currently also includes the I-X Configurer’s Guide in section 8,

• The I-X Developer’s Guide at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf,
and

• The I-DE User’s Guide at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Domain-Editor-
Guide.pdf

• The I-X Syntax Document at http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Syntax.pdf

• The I-X Map Tool – Addon Help at <ix-base>/apps/addon/map/java/resources/html/ix-map-help.html

See also http://www.aiai.ed.ac.uk/project/ix/documents/contents.html for an overview of what other I-X
papers and documents are available.

In future, the documentation will include

• The I-X User’s Guide – a comprehensive guide to using I-X applications, covering I-X process
panels, menu options, available tools, formats, etc.

• The I-X Configurer’s Guide – a comprehensive guide to building applications with I-X technology

• The I-X Developer’s Guide – a comprehensive guide to tailoring I-X further to suit the application at
hand

 Page 20

http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-User-Guide.pdf
http://www.aiai.ed.ac.uk/project/ix/release/current/IX-Syntax.pdf
http://www.aiai.ed.ac.uk/project/ix/documents/contents.html

The IM-PACs Method of Building I-X Applications

• The I-X Method for Domain Modelling – a comprehensive guide to how a domain modeller should go
about capturing the information required for I-X applications

• The I-DE User’s Guide – a comprehensive guide to using I-DE for modelling application domains.

• The I-Demo Guide – a comprehensive guide to the I-Demo suite of I-X demonstrators.

Although this guide covers parts of all these documents, its aim is to provide an overview to get things
started, whereas the documents above are the definitive, comprehensive guides.

Advanced Readings:…

[1] IDEF3: http://www.idef.com/.

[2] John Sowa’s home page on Ontology: http://www.jfsowa.com/ontology/index.htm.

[3] Ontological Engineering: With Examples from the Areas of Knowledge Management, E-Commerce and
the Semantic Web Asunción Gómez-Pérez, Mariano Fernandez-Lopez, Oscar Corcho.

[4] Business Process Execution Language for Web Services: http://www-
106.ibm.com/developerworks/webservices/library/ws-bpelcol1/#1, and http://www-
106.ibm.com/developerworks/library/ws-bpel/.

[5] OWL-S: http://www.daml.org/services/owl-s/

[6] OWL: http://www.w3.org/TR/owl-features/.

[7] Java 2 SDK 1.4.2 Installation Notes for Microsoft Windows: http://java.sun.com/j2se/1.4.2/install-
windows.html.

 Page 21

http://www.idef.com/
http://www.jfsowa.com/ontology/index.htm
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www.daml.org/services/owl-s/
http://www.w3.org/TR/owl-features/
http://java.sun.com/j2se/1.4.2/install-windows.html
http://java.sun.com/j2se/1.4.2/install-windows.html

	Introduction
	Will I-X Help Me?
	About this Document

	Taking a Peek at I-X Technology
	Getting I-X and Setting It Up
	The I-Demo Suite of Demonstrators

	Building Applications with I-X Technology
	Specifying Application Domains for I-X
	Gathering Domain Information
	Building Domain Models
	Building Organisational Models
	Modelling Domain Objects
	Building Process Models
	Making Models Work Together
	Some Constraints on Domain Models

	Configuring I-X Applications
	Initialising I-X Applications
	Extending I-X Applications

	Basic Configuration
	Files for Initialisation
	Domain Models
	Test Menus
	Initial States and Plans
	Building Initial States and Plans

	Configuration Issues
	Using a Configuration File
	Using a Domain Model
	Using an Initial Plan and State
	Using a Test Menu
	Running without a Name Server

	Step-by-Step Configuration
	I-Demo Cooperation
	Conceptual Modelling
	Building Files for Initialisation
	Building Domain Models
	Building Test Menus
	Building Initial States and Plans

	Configuring the Application
	Adjusting Properties
	Adjusting Windows Scripts
	Adjusting Unix Scripts

	Using the Map State Viewer Add-On
	Running Agents on Different Machines
	Running Across Firewalls
	XML
	Jabber

	Building Your Own I-X Agent

	Further Reading

